This is the peer reviewd version of the followng article:

Some progress on the existence of 1-rotational Steiner Triple Systems / Bonvicini, Simona; M., Buratti; Rinaldi, Gloria; T., Traetta. - In: DESIGNS, CODES AND CRYPTOGRAPHY. - ISSN 0925-1022. - STAMPA. 62:(2012), pp. 63-78. [10.1007/s10623-011-9491-3]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

Some progress on the existence of 1-rotational Steiner Triple Systems

Simona Bonvicini * Marco Buratti ${ }^{\dagger}$

Gloria Rinaldi \ddagger Tommaso Traetta §

Abstract

A Steiner Triple System of order v (briefly $S T S(v)$) is 1-rotational under G if it admits G as an automorphism group acting sharply transitively on all but one point. The spectrum of values of v for which there exists a 1-rotational $S T S(v)$ under a cyclic, an abelian, or a dicyclic group, has been established in [16], [8] and [15], respectively. Nevertheless, the spectrum of values of v for which there exists a 1rotational $S T S(v)$ under an arbitrary group has not been completely determined yet. This paper is a considerable step forward to the solution of this problem. In fact, we leave as uncertain cases only those for which we have $v=\left(p^{3}-p\right) n+1 \equiv 1(\bmod 96)$ with p a prime, $n \not \equiv 0(\bmod 4)$, and the odd part of $\left(p^{3}-p\right) n$ that is squarefree and without prime factors congruent to $1(\bmod 6)$.

Keywords: 1-rotational Steiner triple system; binary group; special linear group; octahedral binary group; even starter; extended Skolem sequence.

[^0]
1 Introduction

A Steiner 2-design of order v and block-size k, briefly $S(2, k, v)$, is a pair $\mathcal{D}=(V, \mathcal{B})$ where V is a set of v points and \mathcal{B} is a set of k-subsets of V (blocks) such that every 2 -subset of V is contained in exactly one block. An automorphism group of such a design is a group G of bijections on V preserving \mathcal{B}. The design is 1-rotational under G if G fixes one point ∞ and acts regularly (i.e., sharply transitively) on the others. In this case it is natural to identify the point-set V with $G \cup\{\infty\}$ and the action of G on V with the multiplication (or addition) on the right with the rule that $\infty \cdot g=\infty$ (or $\infty+g=\infty$) for every $g \in G$.
An $S(2,3, v)$ is usually called a Steiner triple system of order v, briefly $\operatorname{STS}(v)$, and it is very well known that an $S T S(v)$ exists if and only if $v \equiv 1$ or $3(\bmod 6)($ see $[6,10])$. In this paper we carry on the investigation, begun in [8], regarding the existence of a 1 -rotational STS of an assigned order v. The spectrum $\mathcal{C}_{1 r}$ of values v for which there exists a 1-rotational $\operatorname{STS}(v)$ under the cyclic group, namely under \mathbb{Z}_{v-1}, was determined by Phelps and Rosa [16]:

$$
\mathcal{C}_{1 r}=\{v \mid v \equiv 3 \text { or } 9(\bmod 24)\} .
$$

The spectrum $\mathcal{A}_{1 r}$ of values of v for which there exists a 1-rotational $\operatorname{STS}(v)$ under a suitable abelian group was determined by the second author [8]:

$$
\begin{equation*}
\mathcal{A}_{1 r}=\mathcal{C}_{1 r} \cup\{v \mid v \equiv 1 \text { or } 19(\bmod 72)\} . \tag{1}
\end{equation*}
$$

Finally, the spectrum $\mathcal{Q}_{1 r}$ of values of v for which there exists a 1-rotational $S T S(v)$ under the dicyclic group ${ }^{1}$ was determined by Mishima [15]:

$$
\mathcal{Q}_{1 r}=\{v \mid v \equiv 9(\bmod 24)\} .
$$

Nevertheless, the spectrum $\mathcal{G}_{1 r}$ of all values of v for which there exists a 1-rotational $S T S(v)$ under an arbitrary group G has not been completely determined yet. As observed in [8] every 1-rotational STS is, in particular, a reverse STS, i.e., it admits an involutory automorphism. So $\mathcal{G}_{1 r}$ is obviously contained in the set (determined by Rosa, Doyen and Teirlinck [17, 13, 19]) of values of v for which there exists a reverse $\operatorname{STS}(v)$:

$$
\mathcal{G}_{1 r} \subset\{v \mid v \equiv 1 \text { or } 3 \text { or } 9 \text { or } 19(\bmod 24)\} .
$$

Thus, in view of (1), the problem of determining $\mathcal{G}_{1 r}$ reduces to that of establishing for which $v \equiv 25$ or 43 or 49 or $67(\bmod 72)$ there exists a

[^1]1 -rotational STS (v) under a suitable group of order $u=v-1$. Some partial answers have been already got in [8]. For instance it was proved that the existence is ensured in the case that u has at least one prime factor $p \equiv 1$ $(\bmod 6)$.
As a consequence of more general results concerning Steiner 2-designs, we briefly recall how 1-rotational STSs can be constructed. The list of differences of a given subset B of an additive (or multiplicative) group G is the multiset ΔB consisting of all possible differences $x-y$ (or quotients $x y^{-1}$) between two distinct elements x and y of B. A partial spread (PS) of a group G is a set Σ of subgroups of G intersecting each other trivially. A (G, Σ, k, λ) difference family (DF) is a set $\mathcal{F}=\left\{B_{1}, \ldots, B_{t}\right\}$ of k-subsets of G whose list of differences $\Delta \mathcal{F}=\Delta B_{1} \cup \ldots \cup \Delta B_{t}$ is disjoint with every group of the partial spread Σ and covers exactly λ times all elements of G not lying in some group of Σ. In other words, every $g \in G-\bigcup_{S \in \Sigma} S$ is representable in exactly λ ways in the form $g=x-y$ (or $g=x y^{-1}$) with (x, y) an ordered pair of distinct elements of some $B \in \mathcal{F}$, while no element of $\bigcup_{S \in \Sigma} S$ admits such a representation. Note that a (G, Σ, k, λ)-DF in which Σ contains only the trivial subgroup of G is an ordinary difference family; one usually says that it is a (v, k, λ)-DF in G where v denotes the order of G (see [1] or [6]). A k-PS of a group G is a partial spread of G all members of which have order k; a k^{*}-PS of G is a partial spread of G with exactly one member of order $k-1$ and all the others of order k. If k is a prime, every $\mathrm{S}(2, k, v)$ admitting an automorphism group G acting sharply transitively on the points is completely equivalent to a ($G, \Sigma, k, 1$)-DF where Σ is a k - PS (see [7]). Similarly, for k a prime, every $\mathrm{S}(2, k, v)$ design that is 1-rotational under G is completely equivalent to a ($G, \Sigma, k, 1$)-DF with Σ a k^{*}-PS of G (see [9]). Thus, in particular, we can state:

Theorem 1.1. Every 1-rotational STS (v) under G is completely equivalent to $a(G, \Sigma, 3,1)-D F$ with $\Sigma a 3^{*}-P S$ in G.

Let \mathcal{F} be a difference family as in the above theorem and let \mathcal{D} be the STS generated by it. A complete system of representatives for the G-orbits of the blocks of \mathcal{D} is given by

$$
\left\{S_{0} \cup \infty\right\} \cup\left(\Sigma-\left\{S_{0}\right\}\right) \cup \mathcal{F}
$$

where S_{0} is the component of Σ of order 2 .
Observe that if \mathcal{F} is a ($G, \Sigma, 3,1$)-DF with Σ a 3^{*}-PS, then G has exactly one involution, namely the involution of the unique component of Σ of order 2. In the opposite case we would have another involution h representable as a difference $x-y$ (or $x y^{-1}$) of a block of \mathcal{F}. It would follow that $h=y-x$
(or $h=y x^{-1}$) is another representation of h as a difference from \mathcal{F}, that is absurd.
A group G with exactly one involution g^{*} is usually said binary and its unique subgroup of order 2 , that is $\left\{0, g^{*}\right\}$, will be denoted by $\Lambda(G)$. In view of the above paragraph an STS may be 1-rotational under G only if G is binary. Throughout the paper, in most cases the group G will be denoted additively. Sometimes, however, we will also adopt the multiplicative notation according to the situations.
Now observe that if \mathcal{F} is a $(G, \Sigma, 3,1)$-DF with Σ a 3^{*}-PS, then we have $6|\mathcal{F}|=|G|-2|\Sigma|$ since every triple of \mathcal{F} produces exactly 6 differences and the union of all subgroups in Σ has size $2|\Sigma|$. Thus, if G has order divisible by 3 the size of Σ is also divisible by 3, i.e., the number of its components of order 3 is congruent to $2(\bmod 3)$ and hence G, besides being binary, must have at least two subgroups of order 3 .
For this reason, throughout the paper, any binary group with more than one subgroup of order 3 will be said admissible. Hence we can state

Proposition 1.2. A necessary condition for the existence of a 1-rotational $\operatorname{STS}(v)$ with $v \equiv 1$ or $19(\bmod 24)$ is that $v-1$ is the order of an admissible group.

In the next section we will determine the set of all admissible orders $v-1$. The third section will deal with even starters in a binary group, a concept allowing us, in the fourth section, to establish the existence of a 1-rotational $\operatorname{STS}(v)$ for every $v \equiv 1$ or $19(\bmod 24)$ such that the odd part of $v-1$ is not square-free. In the fifth section we will give an explicit construction for a 1 -rotational $\operatorname{STS}(v)$ for any $v \equiv 25(\bmod 48)$ and any $v \equiv 49(\bmod 96)$. Putting together all these results with those obtained in [8], we conclude that the existence question for a 1-rotational $\operatorname{STS}(v)$ remains open only in the very special cases that the following conditions simultaneously hold:

- $v=\left(p^{3}-p\right) n+1$ with $n \not \equiv 0(\bmod 4)$ and p a prime;
- $\left(p^{3}-p\right) n=2^{\ell} 3 p_{1} p_{2} \ldots p_{t}$ with $\ell \geq 5$ and the p_{i} 's pairwise distinct primes congruent to 5 modulo 6 .

Note that the second of the above conditions can be equivalently formulated by saying that $v-1$ is divisible by 96 and that its odd part is square-free and without prime factors congruent to $1(\bmod 6)$.

2 On the existence of admissible groups of order $24 n+18$ or $24 n$

In this section we are able to establish the set of values of $u \equiv 0$ or $18(\bmod$ 24) for which at least one admissible group of order u exists obtaining in this way some non-existence results for 1-rotational STS $(24 n+1)$.
First recall the following known result (see Example 3 at page 106 in [18]).
Theorem 2.1. The number of Sylow p-subgroups of a finite group G can be expressed as a product of integers each of which is either a prime power $\equiv 1$ $(\bmod p)$ or the number of Sylow p-subgroups of a composition factor of G.

As a consequence of the above lemma we get the following.
Lemma 2.2. Let G be a group of order $3 t$ with t a square-free integer whose prime factors are all congruent to $2(\bmod 3)$. Then G has exactly one Sylow 3-subgroup.

Proof. By Sylow's theorem, the number n_{3} of Sylow 3 -subgroups of G is a divisor of t and by assumption on the prime factors of t it is obvious that there is no prime power divisor of t that is congruent to $1(\bmod 6)$. Hence n_{3} can be expressed as a product of integers each of which is the number of Sylow 3 -subgroups of a composition factor of G by Theorem 2.1. On the other hand G is solvable since its order is not divisible by 4 . Hence every composition factor of G has prime order so that the number of its Sylow 3 -subgroups is 0 or 1 . We conclude that $n_{3}=1$.

From now on, V_{q} will denote the elementary abelian group of order q, namely the additive group of the field \mathbb{F}_{q} with q elements.
The set of all $u \equiv 18(\bmod 24)$ which are orders of an admissible group was essentially established in [8] (see Theorem 3.2)

Theorem 2.3. There exists an admissible group of order $u=24 n+18$ if and only if the following condition DOES NOT hold:
(*) $4 n+3$ is square-free and all its prime factors are congruent to $2(\bmod 3)$.
Proof. If $(*)$ holds, the assertion follows from Lemma 2.2.
If $(*)$ does not hold we can write $4 n+3=3 t$ or $4 n+3=q t$ for a suitable prime power $q \equiv 1(\bmod 6)$. In the former case an admissible group of order u is given by $\mathbb{Z}_{2 t} \times V_{9}$ while, in the latter, it is given by $\mathbb{Z}_{2 t} \times\left(\mathbb{Z}_{3}+{ }_{\epsilon} V_{q}\right)$ where ϵ is a cubic primitive root of unity of \mathbb{F}_{q} and where $+_{\epsilon}$ is the semidirect product of \mathbb{Z}_{3} by V_{q} defined by the rule $(a, b)+_{\epsilon}\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, \epsilon^{a^{\prime}} b+b^{\prime}\right)$.

For convenience of the reader we recall the basic definitions about some classical groups. The general linear group of degree n over \mathbb{F}_{q} is the group $G L_{n}(q)$ of all $n \times n$ invertible matrices with elements in \mathbb{F}_{q}. The center of this group is the set of all scalar matrices, namely those of the form $k I_{n}$ with $k \in \mathbb{F}_{q}-\{0\}$ and where I_{n} is the $n \times n$ identity matrix.
The special linear group $S L_{n}(q)$ is the subgroup of $G L_{n}(q)$ consisting of all matrices with determinant 1 . Its center has order $\operatorname{gcd}(n, q-1)$ and consists of all scalar matrices $k I_{n}$ with k a n-th root of unity in \mathbb{F}_{q}. We note, in particular, that $S L_{2}(q)$ is an admissible group for every odd prime power q. The projective linear group $P G L_{n}(q)$ and the projective special linear group $P S L_{n}(q)$ are the quotients of $G L_{n}(q)$ and $S L_{n}(q)$ by their centers, respectively.
Finally, the general semilinear group $\Gamma L_{n}(q)$ and the projective semilinear group $P \Gamma L_{n}(q)$ are the semidirect products of $\operatorname{Aut}\left(\mathbb{F}_{q}\right)$ by $G L_{n}(q)$ and by $P G L_{n}(q)$, respectively, where $\operatorname{Aut}\left(\mathbb{F}_{q}\right)$ is the group of field automorphisms of \mathbb{F}_{q}. When q is a prime it is clear that we have $\Gamma L_{n}(q)=G L_{n}(q)$ and $P \Gamma L_{n}(q)=P G L_{n}(q)$.

A binary 2-group is well known to be either cyclic or dicyclic (in the second case it is also called a generalized quaternion group). Now note that if S is a cyclic or dicyclic group, then the quotient $S / \Lambda(G)$ is cyclic or dihedral, respectively. Hence, if S is a Sylow 2-subgroup of a binary group G, then $S / \Lambda(G)$ is to be either cyclic or dihedral. So the structure of binary groups is intimately related to the one of groups with cyclic or dihedral Sylow 2-subgroups, and it admits the following description which exploits the Burnside's Transfer Theorem and the Gorenstein-Walter Theorem [14].

Theorem 2.4. Let G be a binary group and let $O(G)$ be the largest normal subgroup of G of odd order. Then $G /(\Lambda(G) \cdot O(G))$ is either a 2-group or isomorphic to one of the following groups:
(i) a subgroup of $P \Gamma L_{2}(q)$ containing $P S L_{2}(q)$ for a suitable odd prime power q;
(ii) the alternating group \mathbb{A}_{7}.

We also need the following theorem.
Theorem 2.5. For an abstract group G, there exists a unique binary group \bar{G} such that $\bar{G} / \Lambda(\bar{G})$ is isomorphic to G if and only if the Sylow 2-subgroups of G are cyclic or dihedral.

As already observed in [5], the result of Theorem 2.5 is known to some group theorists, but we are not aware of an original proof in the literature. We refer to [5] for a proof suggested by Glaubermann.

Here is the main result of this section.
Theorem 2.6. There exists an admissible group of a given order $u \equiv 0$ (mod 24) if and only if at least one of the following good conditions hold:
$\left(\gamma_{0}\right) u$ is divisible by 9 ;
$\left(\gamma_{1}\right) u$ is divisible by a prime power (possibly a prime) $q \equiv 1(\bmod 6)$;
$\left(\gamma_{2}\right) u=\left(p^{3}-p\right) n$ with p an odd prime and $n \not \equiv 0(\bmod 4)$.
Proof. $\quad(\Longrightarrow)$ Let G be a binary group of order $u \equiv 0(\bmod 24)$ and assume that none of the conditions $\left(\gamma_{0}\right),\left(\gamma_{1}\right),\left(\gamma_{2}\right)$ hold. First observe that the order of G is not divisible by 7 otherwise condition $\left(\gamma_{1}\right)$ would be met. Hence no quotient of G can be isomorphic to \mathbb{A}_{7}.
Now assume that $G /(\Lambda(G) \cdot O(G))$ is isomorphic to a subgroup S of $P \Gamma L_{2}(q)$ containing $P S L_{2}(q)$ for a suitable odd prime power q, say $q=p^{\alpha}$ with p a prime and α a positive integer. In this case q is a divisor of $|G|$ since the order of $P S L_{2}(q)$ is divisible by q. It follows that $\alpha=1$ otherwise p^{2} would be a prime power divisor of u which contradicts the assumption that neither $\left(\gamma_{0}\right)$ nor $\left(\gamma_{1}\right)$ holds considering that we have $p^{2}=9$ or $p^{2} \equiv 1(\bmod 6)$ according to whether $p=3$ or not. Hence $q=p$, namely $P \Gamma L_{2}(q)=P G L_{2}(p)$. Now consider that we have $\left|P G L_{2}(p)\right|=p^{3}-p$ and $\left|P S L_{2}(p)\right|=\frac{p^{3}-p}{2}$ so that S is either $P G L_{2}(p)$ or $P S L_{2}(p)$. We have $|G|=2\left(p^{3}-p\right)|O(G)|$ in the former case and $|G|=\left(p^{3}-p\right)|O(G)|$ in the latter contradicting the fact that condition $\left(\gamma_{2}\right)$ does not hold.
Then $G /(\Lambda(G) \cdot O(G))$ is a 2-group by Theorem 2.4 and hence the order of $O(G)$ coincides with the largest odd divisor of the order of G. This implies that every subgroup of G of odd order is necessarily contained in $O(G)$. We have $|O(G)|=3 t$ with t a square-free integer whose prime factors are all congruent to $2(\bmod 3)$ since we are supposing that neither $\left(\gamma_{0}\right)$ nor $\left(\gamma_{1}\right)$ holds. Thus, by Lemma 2.2, $O(G)$ has exactly one subgroup of order 3 that, consequently, is also the the unique subgroup of G of order 3. In conclusion, G is not admissible.
(\Longleftarrow) Assume that $u \equiv 0(\bmod 24)$ and that at least one of the three good conditions $\left(\gamma_{0}\right),\left(\gamma_{1}\right),\left(\gamma_{2}\right)$ hold. We have to show that there exists an admissible group of order u.
If $\left(\gamma_{0}\right)$ holds we have $u=72 t$ for a suitable t and $\mathbb{Z}_{8 t} \times V_{9}$ is an admissible
group of order u.
If $\left(\gamma_{1}\right)$ holds we have $u=24 t q$ for a suitable t and a suitable prime power $q \equiv 1(\bmod 6)$. In this case an admissible group of order u is given by $\mathbb{Z}_{8 t} \times\left(\mathbb{Z}_{3}+{ }_{\epsilon} V_{q}\right)$ where ϵ is a cubic primitive root of unity of \mathbb{F}_{q} and where $+_{\epsilon}$ is the semidirect product of \mathbb{Z}_{3} by V_{q} defined by the rule $(a, b)+_{\epsilon}\left(a^{\prime}, b^{\prime}\right)=$ $\left(a+a^{\prime}, \epsilon^{a^{\prime}} b+b^{\prime}\right)$.
If $\left(\gamma_{2}\right)$ holds we can write $u=\left(p^{3}-p\right) m$ or $u=2\left(p^{3}-p\right) m$ for a suitable odd prime p and a suitable odd integer m. In the first case an admissible group of order u is given by $S L_{2}(p) \times \mathbb{Z}_{m}$. In the second case, considering that the Sylow 2-subgroups of $P G L_{2}(p)$ are dihedral (see, e.g., [11]), there exists a (unique) binary group G such that $G / \Lambda(G) \simeq P G L_{2}(p)$ by Theorem 2.5. This group G obviously possesses more than one subgroup of order 3 since this is also true for its quotient $P G L_{2}(p)$. Hence it is clear that $G \times \mathbb{Z}_{m}$ is an admissible group of order $2\left(p^{3}-p\right) m$.

As a consequence of the above theorem we deduce the non-existence of a 1 -rotational $\operatorname{STS}(v)$ for infinitely many values of $v \equiv 1(\bmod 24)$. For instance, it is an easy matter to see that the following result holds.

Corollary 2.7. If $v=2^{\ell} 3 p_{1} p_{2} \ldots p_{t}+1$ with $\ell \geq 5$ and the p_{i} 's are pairwise distinct primes congruent to $5(\bmod 6)$ with $p_{i} \not \equiv \pm 1\left(\bmod 2^{\ell-2}\right)$ for any i, then no 1-rotational $\operatorname{STS}(v)$ exists.

So, in particular, there is no 1 -rotational $\operatorname{STS}\left(2^{\ell} 3+1\right)$ with $l \geq 5$.

3 Some even starters with a prescribed missing element

An even starter of a binary group G is a set E of $|G| / 2-1$ pairs partitioning $G-\left\{0, m_{E}\right\}$ for a suitable $m_{E} \in G-\{0\}$ and whose differences partition $G-\Lambda(G)$ (see [12]). We will call m_{E} the missing element of E. An earlier result on this concept was given by B.A. Anderson who proved that every symmetrically sequenceable binary group ${ }^{2}$ admits an even starter (see [2], Theorem 2). In the same paper it is observed that the symmetric sequenceability is a sufficient but not necessary condition since, for instance, even though the quaternion group of order 8 (that is the multiplicative group

[^2]$Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ with composition law defined by the rules $(-1)^{2}=1$ and $i^{2}=j^{2}=k^{2}=i j k=-1$) does not admit a symmetric sequence, it is evident that
$$
E=\{\{i, j\},\{-i,-k\},\{-j, k\}\}
$$
is as an even starter of it with missing element -1 .
We also recall that B.A. Anderson himself and E.C. Ihrig proved that every finite solvable binary group $G \neq Q_{8}$ is symmetrically sequenceable [3] and hence we can state:

Theorem 3.1. Every finite solvable binary group admits an even starter.
Our aim is to establish under which conditions a given binary group G may admit an even starter with an assigned missing element m_{E}.

Lemma 3.2. Let G be a binary group admitting an even starter E_{0} with missing element $m_{E_{0}}=g^{*}$. Then, for any group H of odd order and for any even starter E_{1} of $\Lambda(G) \times H$, there exists an even starter E_{2} of $G \times H$ with $m_{E_{2}}=m_{E_{1}}$.

Proof. Consider the set

$$
E_{0}^{\prime}=\left\{\{(x, h),(y,-h)\} \mid\{x, y\} \in E_{0} ; h \in H\right\}
$$

and observe that its pairs, and their differences as well, partition $(G \times H)-$ $(\Lambda(G) \times H)$. It is then obvious that $E_{2}:=E_{0}^{\prime} \cup E_{1}$ is an even starter of $G \times H$ with the desired property.

Lemma 3.3. Let E be an even starter of $\mathbb{Z}_{2} \times H$ with H of odd order n. Then m_{E} lies in $\{0\} \times H$ or $\{1\} \times H$ according to whether $n \equiv 3$ or 1 $(\bmod 4)$, respectively.

Proof. Let us say that an element of $\mathbb{Z}_{2} \times H$ is even or odd according to whether it lies in $\{0\} \times H$ or $\{1\} \times H$, respectively.
Also, let us say that a pair $\{(a, b),(c, d)\}$ of elements of $\mathbb{Z}_{2} \times H$ is of type t_{00} or t_{11} or t_{01} according to whether we have $a=c=0$ or $a=c=1$ or $a \neq c$, namely according to whether the number of its even elements is 2 or 0 or 1 , respectively.
Denote by $x_{i j}$ the number of pairs of E of type $t_{i j}$. The size of E is $n-1$ so that we have $x_{00}+x_{11}+x_{01}=n-1$.
Now note that the two differences of any given pair of E are both even or both odd and that the latter case happens exactly when the given pair is of type
t_{01}. Thus $2 x_{01}$ gives the number of odd elements of $\left(\mathbb{Z}_{2} \times H\right)-\{(0,0),(1,0)\}$, namely $2 x_{01}=n-1$.
Finally, the number $2 x_{00}+x_{01}$ of even elements covered by the pairs of E must be equal to the number of even elements of the set $\left(\mathbb{Z}_{2} \times H\right)-\left\{(0,0), m_{E}\right\}$ so that we have

$$
2 x_{00}+x_{01}= \begin{cases}n-2 & \text { if } m_{E} \text { is even } \\ n-1 & \text { if } m_{E} \text { is odd }\end{cases}
$$

It is straightforward to see that the above equalities give

$$
\left(x_{00}, x_{11}, x_{01}\right)= \begin{cases}\left(\frac{n-3}{4}, \frac{n+1}{4}, \frac{n-1}{2}\right) & \text { if } m_{E} \text { is even } \\ \left(\frac{n-1}{4}, \frac{n-1}{4}, \frac{n-1}{2}\right) & \text { if } m_{E} \text { is odd }\end{cases}
$$

The assertion immediately follows.
Given k, with $1 \leq k \leq 2 n+1$, a k-extended Skolem sequence of order n is a sequence $\left(s_{1}, \ldots, s_{n}\right)$ of n integers such that

$$
\bigcup_{i=1}^{n}\left\{s_{i}, s_{i}-i\right\}=\{1,2, \ldots, 2 n+1\}-\{k\}
$$

The following Baker's theorem [4] holds.
Theorem 3.4. There exists a k-extended Skolem sequence of order n with k odd $[$ even $]$ if and only if $n \equiv 0$ or $1[n \equiv 2$ or 3$](\bmod 4)$.

Now note that k-extended Skolem sequences also produce some even starters.
Lemma 3.5. If $\left\{s_{1}, \ldots, s_{n-1}\right\}$ is a k-extended Skolem sequence of order $n-1$, then $E=\left\{\left\{s_{i}, s_{i}-i\right\} \mid 1 \leq i \leq n-1\right\}$ is an even starter of $\mathbb{Z}_{2 n}$ with missing element k.

Proof. Straightforward.
Here is an immediate special consequence of the above lemma and the theorem of Baker.

Lemma 3.6. If $G=\mathbb{Z}_{2 n}$ with $n \equiv 0$ or $1(\bmod 4)$, then there exists an even starter of G with missing element $g^{*}=n$.

The following two lemmas are crucial for proving the result of the next section.

Lemma 3.7. Let $n p^{\alpha} \equiv 3(\bmod 4)$ with p a prime not dividing n. There exists an even starter of $\mathbb{Z}_{2 n} \times V_{p^{\alpha}}$ with missing element \bar{m} for any prescribed $\bar{m} \in\{0\} \times\left(V_{p^{\alpha}}-\{0\}\right)$.

Proof. It is enough to prove that there exists an even starter E of $\mathbb{Z}_{2 n} \times V_{p^{\alpha}}$ whose missing element m_{E} lies in $\{0\} \times V_{p^{\alpha}}$. In this case in fact m_{E} is mapped into \bar{m} by a suitable automorphism ϕ of $\mathbb{Z}_{2 n} \times V_{p^{\alpha}}$ and hence it is clear that $\phi(E)$ is an even starter of $\mathbb{Z}_{2 n} \times V_{p^{\alpha}}$ with missing element \bar{m}.

$$
1^{s t} \text { case: } n \equiv 1(\bmod 4) .
$$

Set $G=\mathbb{Z}_{2 n}$ and $H=V_{p^{\alpha}}$. By Lemma 3.6 there exists an even starter of G with missing element $g^{*}=n$. Thus applying Lemma 3.2 we get an even starter of $G \times H$ with missing element m_{E} where E is an even starter of $\Lambda(G) \times H$ whose existence is ensured by Theorem 3.1. Now note that $n \equiv 1$ $(\bmod 4)$ implies that $|H|=p^{\alpha} \equiv 3(\bmod 4)$ and hence, by Lemma 3.3, we necessarily have $m_{E} \in\{0\} \times H$.

$$
2^{n d} \text { case: } n \equiv p \equiv 3(\bmod 4) .
$$

Set $G=\mathbb{Z}_{2 n p}$ and $H=V_{p^{\alpha-1}}$. We have $n p \equiv 1(\bmod 4)$ and hence, by Lemma 3.6, there exists an even starter of G with missing element $g^{*}=n p$. Applying Lemma 3.2 we get an even starter of $G \times H$ with missing element m_{E} where E is an even starter of $\Lambda(G) \times H$ whose existence is ensured by Theorem 3.1. Also here we have $|H|=p^{\alpha-1} \equiv 3(\bmod 4)$ and hence, by Lemma 3.3 , we necessarily have $m_{E} \in\{0\} \times H$.

$$
3^{r d} \text { case: } n \equiv 3(\bmod 4) \text { and } p \equiv 1(\bmod 4) .
$$

Set $G=\mathbb{Z}_{2} \times V_{p^{\alpha-1}}$ and $H=\mathbb{Z}_{p} \times \mathbb{Z}_{n}$. By induction on α and using Lemmas 3.2 and 3.6, it is easy to see that there exists an even starter of G with missing element $g^{*}=(1,0)$. Now note that by Baker's theorem there exists a $2 n$-extended Skolem sequence of order $p n-1$ which, by Lemma 3.5, yields an even starter of $\mathbb{Z}_{2 p n}$ with missing element $2 n$. Of course such an even starter can be also seen as an even starter of $\Lambda(G) \times H$ with missing element $((0,0),(2 n, 0))$ in view of the isomorphism $\mathbb{Z}_{2 p n} \simeq \Lambda(G) \times H$.
Thus, applying Lemma 3.2 we get an even starter of $G \times H$ with missing element $((0,0),(2 n, 0))$ and the assertion very easily follows.

Lemma 3.8. Let $p>3$ be a prime and let not divisible by p. There exists an even starter of $\mathbb{Z}_{8 n} \times V_{p^{\alpha}}$ with missing element \bar{m} for any prescribed $\bar{m} \in\{0\} \times\left(V_{p^{\alpha}}-\{0\}\right)$

Proof. Reasoning as in Lemma 3.7 it suffices to prove that there exists an even starter of $\mathbb{Z}_{8 n} \times V_{p^{\alpha}}$ with missing element in $\{0\} \times V_{p^{\alpha}}$.
By Baker's theorem there exists an $8 n$-extended Skolem sequence of order $4 n p-1$ which, by Lemma 3.5 , yields an even starter of $\mathbb{Z}_{8 n p}$ with missing
element $8 n$. So, identifying $\mathbb{Z}_{8 n p}$ with $\mathbb{Z}_{8 n} \times V_{p}$ we have an even starter of $\mathbb{Z}_{8 n} \times V_{p}$ with missing element in $\{0\} \times V_{p}$ and the assertion is true for $\alpha=1$. Now assume $\alpha>1$, set $8 n p=4 r$, and identify $\mathbb{Z}_{8 n} \times V_{p^{\alpha}}$ with $G:=\mathbb{Z}_{4 r} \times V_{p^{\alpha-1}}$. Consider the set E_{0} consisting of the following $4 r$ pairs of elements of G where i runs, in each case, from 1 to $r-1$:

$$
\begin{array}{cc}
\{(0,1),(0,-1)\} ; & \{(r, 1),(3 r, 3)\} ; \\
\{(2 r-1,-1),(2 r, 1)\} ; & \{(2 r,-1),(2 r+1,-3)\} ; \\
\{(i, 1),(4 r-i,-1)\} ; & \{(i,-1),(4 r-i, 1)\} ; \\
\{(r+i-1,-1),(3 r-i, 3)\} ; & \{(r+i, 1),(3 r-i+1,-3)\} .
\end{array}
$$

It is not difficult to check that we have:

$$
\bigcup_{\{x, y\} \in E_{0}}\{x, y\}=\bigcup_{z=0}^{4 r-1}\{z\} \times\left\{\gamma_{z},-\gamma_{z}\right\}
$$

with $\gamma_{z}=3$ for $2 r+1 \leq z \leq 3 r$ and $\gamma_{z}=1$ otherwise. We also have:

$$
\Delta E_{0}=\bigcup_{z=0}^{4 r-1}\{z\} \times\left\{\delta_{z},-\delta_{z}\right\}
$$

with $\delta_{z}=4$ for any odd $z \neq \pm 1$ and $\delta_{z}=2$ otherwise. Thus, denoting by S a complete system of representatives for the cosets of $\{1,-1\}$ in the multiplicative group of $\mathbb{F}_{p^{\alpha-1}}$, we have

$$
\left\{\gamma_{z},-\gamma_{z}\right\} \cdot S=\left\{\delta_{z},-\delta_{z}\right\} \cdot S=V_{p^{\alpha-1}}-\{0\} \quad \forall z \in \mathbb{Z}_{4 r}
$$

since we have supposed $p>3$. This implies that

$$
E_{1}:=\left\{\{(a s, b s),(c s, d s)\} \mid\{(a, b),(c, d)\} \in E_{0} ; s \in S\right\}
$$

is a set of pairs of G partitioning $G-\left(\mathbb{Z}_{4 r} \times\{0\}\right)$ and whose differences also partition $G-\left(\mathbb{Z}_{4 r} \times\{0\}\right)$.
As observed at the beginning of this proof, there exists an even starter E^{\prime} of $\mathbb{Z}_{4 r}=\mathbb{Z}_{8 n p}$ with missing element $8 n$. So, if E_{2} is the set of all pairs $\{(x, 0),(y, 0)\}$ of G with $\{x, y\}$ a pair of E^{\prime}, it is obvious that $E:=E_{1} \cup E_{2}$ is an even starter of $\mathbb{Z}_{8 n p} \times V_{p^{\alpha-1}}$ with missing element ($8 n, 0$). The natural isomorphism between $\mathbb{Z}_{8 n p} \times V_{p^{\alpha-1}}$ and $\mathbb{Z}_{8 n} \times V_{p^{\alpha}}$ maps this element into the pair $(0, m)$ where m is the α-tuple $(8 n, 0, \ldots, 0)$. Thus E can be viewed as an even starter of $\mathbb{Z}_{8 n} \times V_{p^{\alpha}}$ with missing element $(0, m)$ and the assertion follows.

4 1-rotational $\operatorname{STS}(v)$ with the odd part of $v-1$ non-square-free

We already mentioned that the existence of a 1-rotational $\operatorname{STS}(v)$ with $v \equiv 1$ or $19(\bmod 24)$ whenever $v-1$ has a prime factor $p \equiv 1(\bmod 6)$ has been established in [8]. Using a similar construction, now we show how our results about even starters allow to prove that the existence is also guaranteed in the weaker hypothesis that $v-1$ is divisible by a prime power $q \equiv 1$ $(\bmod 6)$.

Theorem 4.1. If $v \equiv 1$ or $19(\bmod 24)$ and the odd part of $v-1$ is not square-free, then there exists a 1-rotational STS(v).

Proof. By assumption $u:=v-1$ is divisible by p^{2} for a suitable odd prime p. If $p=3$ we have $u \equiv 0$ or $18(\bmod 72)$ and the assertion follows from (1). Assume $p \neq 3$ and set $u=6 n p^{\alpha}$ where p^{α} is the largest power of p dividing u. Consider the group $H=K \times V_{p^{2}}$ where $K=\mathbb{Z}_{2 n} \times V_{p^{\alpha-2}}$. We obviously have $p^{2} \equiv 1(\bmod 6)$. Let ϵ be a primitive cubic root of unity of $\mathbb{F}_{p^{2}}$ and consider the unit $w=(1, \epsilon)$ of the ring with additive group H. Observe that $\epsilon^{2}+\epsilon+1=0$ so that we have $w^{2}+w+1=(3,0)$. This implies that $\left(w^{2}+w+1\right) h=0$ for every $h \in\{0\} \times V_{p^{2}}$. Let $G=\mathbb{Z}_{3}+_{w} H$ be the group with elements in the cartesian product $\mathbb{Z}_{3} \times H$ and composition law $+_{w}$ defined by the rule

$$
(a, h)+_{w}\left(a^{\prime}, h^{\prime}\right)=\left(a+a^{\prime}, w^{a^{\prime}} h+h^{\prime}\right) .
$$

The hypothesis that $v \equiv 1$ or $19(\bmod 24)$ implies that we have $n p^{\alpha} \equiv 0$ or $3(\bmod 4)$. By Lemma 3.8 in the former case and by Lemma 3.7 in the latter, there exists an even starter $E=\left\{\left\{x_{i}, y_{i}\right\} \mid 1 \leq i \leq n p^{\alpha}-1\right\}$ of H with missing element $m_{E} \in\{0\} \times V_{p^{2}}$. Consider the triples $T_{1}, \ldots, T_{n p^{\alpha}-1}$ of elements of G defined as follows:

$$
T_{i}=\left\{(0,0),\left(1, x_{i}\right),\left(1, y_{i}\right)\right\} \quad 1 \leq i \leq n p^{\alpha}-1 .
$$

Given $h \in H$, the opposites of $(0, h),(1, h)$ and $(2, h)$ in G are $(0,-h)$, $\left(2,-w^{2} h\right)$ and $(1,-w h)$, respectively. Taking account of this, we easily see that
$\Delta T_{i}=\left\{\left(0, w^{2}\left(x_{i}-y_{i}\right)\right),\left(0, w^{2}\left(y_{i}-x_{i}\right)\right),\left(1, x_{i}\right),\left(1, y_{i}\right),\left(2,-w^{2} x_{i}\right),\left(2,-w^{2} y_{i}\right)\right\}$.
Hence, by the definition of an even starter, we see that we have

$$
\bigcup_{i=1}^{n p^{\alpha}-1} \Delta T_{i}=G-\left\{(0,0),\left(0, h^{*}\right),(1,0),\left(1, m_{E}\right),(2,0),\left(2,-w^{2} m_{E}\right)\right\}
$$

where h^{*} is the involution of H. Now note that the fact that $m_{E} \in\{0\} \times V_{p^{2}}$ implies that $\left(w^{2}+w+1\right) m_{E}=0$ and hence that $(w+1) m_{E}=-w^{2} m_{E}$. It follows that $\left(1, m_{E}\right)+\left(1, m_{E}\right)=\left(2,(w+1) m_{E}\right)=\left(2,-w^{2} m_{E}\right)=-\left(1, m_{E}\right)$. Thus $\left\{(0,0),\left(1, m_{E}\right),\left(2,-w^{2} m_{E}\right)\right\}$ is a subgroup of G of order 3 . We conclude that $\left\{T_{1}, \ldots, T_{n p^{\alpha}-1}\right\}$ is a $(G, 3, \Sigma, 1)$-DF where Σ is the following partial spread of G :

$$
\Sigma=\left\{\left\{(0,0),\left(0, h^{*}\right)\right\},\{(0,0),(1,0),(2,0)\},\left\{(0,0),\left(1, m_{E}\right),\left(2,-w^{2} m_{E}\right)\right\}\right\}
$$

The assertion follows.

5 Existence of a 1-rotational $\mathbf{S T S}(24 n+1)$ with $n \neq 0(\bmod 4)$

In this section we prove that the existence of a 1 -rotational $\operatorname{STS}(v)$ with $v \equiv 1(\bmod 24)$ is guaranteed in the case that the largest power of 2 in $v-1$ does not exceed 16. Hence we prove that there exists a 1 -rotational $\operatorname{STS}(48 n+25)$ and a 1 -rotational $\operatorname{STS}(96 n+49)$ for every $n \geq 0$. We first need the following fundamental lemma.

Lemma 5.1. Assume that there exists a 1-rotational $S T S(6 m+1)$ under G. Also assume that for a given positive integer n there exist $2 m$ triples $T_{1}, \ldots, T_{2 m}$ of $G \times \mathbb{Z}_{2 n+1}$ such that

$$
\bigcup_{i=1}^{2 m} \Delta T_{i}=\bigcup_{g \in G}\{g\} \times\left\{\delta_{g},-\delta_{g}\right\}
$$

for suitable elements $\delta_{g} \in \mathbb{Z}_{2 n+1}$ with $\operatorname{gcd}\left(\delta_{g}, 2 n+1\right)=1$ for every $g \in G$. Then there exists a 1 -rotational $\operatorname{STS}(12 m n+6 m+1)$ under $G \times \mathbb{Z}_{2 n+1}$.
Proof. By assumption, there exists a $(G, \Sigma, 3,1)$-DF, say $\mathcal{F}=\left\{B_{1}, \ldots, B_{t}\right\}$, for a suitable partial spread $\Sigma=\left\{S_{0}, S_{1}, \ldots, S_{u}\right\}$ of G with $S_{0}=\Lambda(G)$ and $\left|S_{i}\right|=3$ for $i=1, \ldots, u$.
For any given $j \in \mathbb{Z}_{2 n+1}-\{0\}$, let ϕ_{j} be the endomorphism of $G \times \mathbb{Z}_{2 n+1}$ defined by $\phi_{j}(g, z)=(g, j z)$ for every $(g, z) \in G \times \mathbb{Z}_{2 n+1}$. Set $T_{i j}=\phi_{j}\left(T_{i}\right)$ for $1 \leq i \leq 2 m$ and consider the set

$$
\mathcal{F}^{\prime}=\left\{T_{i j} \mid 1 \leq i \leq 2 m ; 1 \leq j \leq n\right\} .
$$

Of course $\Delta T_{i j}=\phi_{j}\left(\Delta T_{i}\right)$ and hence we have:

$$
\Delta \mathcal{F}^{\prime}=\bigcup_{j=1}^{n} \phi_{j}\left(\bigcup_{i=1}^{2 m} \Delta T_{i}\right)=\bigcup_{g \in G}\{g\} \times \bigcup_{j=1}^{n}\left\{j \delta_{g},-j \delta_{g}\right\} .
$$

Now consider that $\bigcup_{j=1}^{n}\left\{j \delta_{g},-j \delta_{g}\right\}=\mathbb{Z}_{2 n+1}-\{0\}$ for every $g \in G$ since we have $\operatorname{gcd}\left(\delta_{g}, 2 n+1\right)=1$ by assumption. Hence we can write:

$$
\Delta \mathcal{F}^{\prime}=\bigcup_{g \in G}\{g\} \times\left(\mathbb{Z}_{2 n+1}-\{0\}\right)=\left(G \times \mathbb{Z}_{2 n+1}\right)-(G \times\{0\}) .
$$

At this point it is clear that setting
$\hat{\mathcal{F}}=\left\{B_{1} \times\{0\}, \ldots, B_{t} \times\{0\}\right\} \quad$ and $\quad \hat{\Sigma}=\left\{S_{0} \times\{0\}, S_{1} \times\{0\}, \ldots, S_{u} \times\{0\}\right\}$ we have that $\hat{\mathcal{F}} \cup \mathcal{F}^{\prime}$ is a $\left(G \times \mathbb{Z}_{2 n+1}, \hat{\Sigma}, 3,1\right)$-DF. The assertion follows.

The constructions given in [8] and Theorem 4.1 allow to derive the existence of a 1 -rotational $\operatorname{STS}(48 n+25)$ for any n except when $2 n+1$ is a product of an odd number of pairwise distinct primes $\equiv 2(\bmod 3)$. Now we are able to cover also these cases since the next construction gives such an STS, directly, for every n.

Theorem 5.2. There exists a 1-rotational $\operatorname{STS}(48 n+25)$ for every $n \geq 0$.
Proof. The assertion is true for $n=0$ since the existence of a 1 -rotational $\operatorname{STS}(25)$ under $S L_{2}(3)$ has been proved in [8]. It is unique up to isomorphism and it is 1 -rotational under the unique admissible group of order 24 , that is the special linear group $S L_{2}(3)$.
The (unique) normal Sylow 2-subgroup of $S L_{2}(3)$ is $Q=\left\{q_{0}, q_{1}, \ldots, q_{7}\right\}$ where

$$
\begin{array}{lll}
q_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) ; & q_{1}=\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right) ; \quad q_{2}=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right) ; \quad q_{3}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) ; \\
q_{4}=\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right) ; \quad q_{5}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) ; \quad q_{6}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) ; \quad q_{7}=\left(\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right) .
\end{array}
$$

We can write $S L_{2}(3)=Q \cup Q r \cup Q r^{2}$ with $r=\left(\begin{array}{ll}0 & 2 \\ 1 & 2\end{array}\right)$.
Suppose that $n \geq 1$ and consider the following eight triples of $S L_{2}(3) \times \mathbb{Z}_{2 n+1}$:

$$
\begin{array}{ll}
T_{1}=\left\{\left(q_{0}, 0\right),\left(q_{1} r, 1\right),\left(q_{4} r,-1\right)\right\} ; & T_{2}=\left\{\left(q_{0}, 0\right),\left(q_{2} r, 1\right),\left(q_{7} r,-1\right)\right\} ; \\
T_{3}=\left\{\left(q_{0}, 0\right),(r, 1),\left(q_{1} r,-1\right)\right\} ; & T_{4}=\left\{\left(q_{0}, 0\right),\left(q_{3} r, 1\right),\left(q_{6} r,-1\right)\right\} ; \\
T_{5}=\left\{\left(q_{0}, 0\right),\left(q_{4} r, 1\right),(r,-1)\right\} ; & T_{6}=\left\{\left(q_{0}, 0\right),\left(q_{5} r, 1\right),\left(q_{5} r,-1\right)\right\} ; \\
T_{7}=\left\{\left(q_{0}, 0\right),\left(q_{6} r, 1\right),\left(q_{2} r,-1\right)\right\} ; & T_{8}=\left\{\left(q_{0}, 0\right),\left(q_{7} r, 1\right),\left(q_{3} r,-1\right)\right\} .
\end{array}
$$

It is straightforward to check that we have

$$
\bigcup_{i=1}^{8} \Delta T_{i}=\bigcup_{g \in S L_{2}(3)}\{g\} \times\left\{\delta_{g},-\delta_{g}\right\}
$$

where $\delta_{g}=2$ or 1 according to whether $g \in Q$ or not. Thus the assertion follows from Lemma 5.1.

At the moment, the existence of a 1-rotational $\operatorname{STS}(96 n+49)$ is uncertain in the case that $2 n+1$ is a square free product of primes $\equiv 2(\bmod 3)$ and hence, in particular, for $n=0$. Also here we are able to give a direct construction covering these cases.

Theorem 5.3. There exists a 1-rotational $\operatorname{STS}(96 n+49)$ for every $n \geq 0$.
Proof. Consider the octahedral group $O:=P G L_{2}(3)$ of order 24. By Theorem 2.5 there exists exactly one binary group \bar{O} such that $\bar{O} / \Lambda(\bar{O})$ is isomorphic to O. This is the so called binary octahedral group and, obviously, it is an admissible group of order 48 . Up to isomorphism it can be viewed as a subgroup of the multiplicative group of the skew-field \mathbb{H} of quaternions introduced by Hamilton that is an extension of the complex field \mathbb{C}. For convenience of the reader we recall the basic facts regarding \mathbb{H}. Its elements are all real linear combinations of $1, i, j$ and k. The sum and the product of two quaternions are defined in the natural way under the rules that $i^{2}=j^{2}=k^{2}=i j k=-1$. The conjugate of a quaternion $q=a+b i+c j+d k$ is $\bar{q}=a-b i-c j-d k$ and its norm is the real number $\|q\|=\sqrt{q \bar{q}}=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$. If $q \neq 0$, its inverse is given by $q^{-1}=\frac{\bar{q}}{\|q\|^{2}}$. The multiplicative group \bar{O} under examination consists of the following quaternions:

$$
\begin{aligned}
& \pm 1, \pm i, \pm j, \pm k ; \\
& \frac{1}{2}(\pm 1 \pm i \pm j \pm k) \text { with all possible choices of the signs; } \\
& \frac{1}{\sqrt{2}}(\pm x \pm y) \text { with }\{x, y\} \in\left(\begin{array}{|c|c|c|c|}
2
\end{array}\right) \text { and all possible choices of the signs. }
\end{aligned}
$$

We see that Q_{8} is a subgroup of \bar{O} and we have $\Lambda(\bar{O})=\{1,-1\}$. Also note that every element of \bar{O} has norm 1 so that its inverse simply is its conjugate.

Now consider the following seven triples of elements of \bar{O} :

$$
\begin{aligned}
& B_{1}=\left\{1, \frac{1}{\sqrt{2}}(j-k), \frac{1}{2}(-1-i+j+k)\right\} ; \\
& B_{2}=\{1,-j, k\} ; \\
& B_{3}=\left\{1, \frac{1}{\sqrt{2}}(i+k), \frac{1}{\sqrt{2}}(1+i)\right\} ; \\
& B_{4}=\left\{1, \frac{1}{2}(-1+i+j-k),-\frac{1}{\sqrt{2}}(j+k)\right\} ; \\
& B_{5}=\left\{1, \frac{1}{2}(1+i+j+k),-\frac{1}{\sqrt{2}}(1+j)\right\} ; \\
& B_{6}=\left\{1, \frac{1}{2}(1+i-j-k), \frac{1}{\sqrt{2}}(1-k)\right\} ; \\
& B_{7}=\left\{1, \frac{1}{\sqrt{2}}(i-k),-\frac{1}{\sqrt{2}}(1+k)\right\} .
\end{aligned}
$$

Let us calculate their lists of differences:

$$
\begin{aligned}
& \Delta B_{1}=\left\{\frac{1}{\sqrt{2}}(j-k), \frac{1}{2}(-1+i-j-k), \frac{1}{\sqrt{2}}(i+j)\right\}^{ \pm 1} \\
& \Delta B_{2}=\{i, j, k\}^{ \pm 1} \\
& \Delta B_{3}=\left\{\frac{1}{\sqrt{2}}(i+k), \frac{1}{\sqrt{2}}(1+i), \frac{1}{2}(1+i-j+k)\right\}^{ \pm 1} \\
& \Delta B_{4}=\left\{\frac{1}{2}(-1+i+j-k), \frac{1}{\sqrt{2}}(j+k), \frac{1}{\sqrt{2}}(i-j)\right\}^{ \pm 1} \\
& \Delta B_{5}=\left\{\frac{1}{2}(1+i+j+k), \frac{1}{\sqrt{2}}(-1+j), \frac{1}{\sqrt{2}}(-1+i)\right\}^{ \pm 1} \\
& \Delta B_{6}=\left\{\frac{1}{2}(1+i-j-k), \frac{1}{\sqrt{2}}(1+k), \frac{1}{\sqrt{2}}(1+j)\right\}^{ \pm 1} \\
& \Delta B_{7}=\left\{\frac{1}{\sqrt{2}}(i-k), \frac{1}{\sqrt{2}}(-1+k), \frac{1}{2}(1+i+j-k)\right\}^{ \pm 1}
\end{aligned}
$$

We see that

$$
\bigcup_{i=1}^{7} \Delta B_{i}=\bar{O}-H
$$

with
$H=\left\{1,-1, \frac{1}{2}(-1+i+j+k), \frac{1}{2}(-1-i-j-k), \frac{1}{2}(-1+i-j+k), \frac{1}{2}(-1-i+j-k)\right\}$.
Thus, observing that $S_{1}=\left\{1, \frac{1}{2}(-1+i+j+k), \frac{1}{2}(-1-i-j-k)\right\}$ and $S_{2}=\left\{1, \frac{1}{2}(-1+i-j+k), \frac{1}{2}(-1-i+j-k)\right\}$ are subgroups of \bar{O} of order 3 , we conclude that $\mathcal{F}=\left\{B_{1}, \ldots, B_{7}\right\}$ is a 1-rotational $(\bar{O}, \Sigma, 3,1)$ difference family with $\Sigma=\left\{\Lambda(\bar{O}), S_{1}, S_{2}\right\}$, i.e., there exists a 1-rotational STS(49) under \bar{O}. Then the assertion is true for $n=0$.
The assertion is also true when $2 n+1>0$ is divisible by 3 in view of (1).

So assume that $2 n+1>0$ is not divisible by 3 and consider the following sixteen triples of $\bar{O} \times \mathbb{Z}_{2 n+1}$:

$$
\begin{aligned}
& T_{1}=\left\{(1,1),(1,-1),\left(\frac{1}{2}(1+i-j-k), 0\right)\right\} ; \\
& T_{2}=\left\{(1,0),\left(\frac{1}{2}(-1-i+j-k), 3\right),\left(\frac{1}{2}(1+i-j+k),-1\right)\right\} ; \\
& T_{3}=\left\{(1,0),\left(\frac{1}{2}(-1-i+j-k),-3\right),\left(-\frac{1}{\sqrt{2}}(1-k),-2\right)\right\} ; \\
& T_{4}=\left\{(1,0),\left(\frac{1}{2}(1+i-j+k), 1\right),\left(-\frac{1}{\sqrt{2}}(1-k), 2\right)\right\} ; \\
& T_{5}=\{(1,0),(k, 1),(j,-1)\} ; \\
& T_{6}=\{(1,0),(k,-1),(j, 1)\} ; \\
& T_{7}=\left\{(1,0),\left(\frac{1}{\sqrt{2}}(i+k), 1\right),\left(-\frac{1}{2}(1+i+j-k),-1\right)\right\} ; \\
& T_{8}=\left\{(1,0),\left(\frac{1}{\sqrt{2}}(i+k),-1\right),\left(-\frac{1}{2}(1+i+j-k), 1\right)\right\} ; \\
& T_{9}=\left\{(1,0),\left(\frac{1}{\sqrt{2}}(i-k), 1\right),\left(\frac{1}{2}(-1-i+j+k),-1\right)\right\} ; \\
& T_{10}=\left\{(1,0),\left(\frac{1}{\sqrt{2}}(i-k),-1\right),\left(\frac{1}{2}(-1-i+j+k), 1\right)\right\} ; \\
& T_{11}=\left\{(1,0),\left(-\frac{1}{\sqrt{2}}(i+j), 1\right),\left(\frac{1}{\sqrt{2}}(-1+j),-1\right)\right\} ; \\
& T_{12}=\left\{(1,0),\left(-\frac{1}{\sqrt{2}}(i+j),-1\right),\left(\frac{1}{\sqrt{2}}(-1+j), 1\right)\right\} ; ; \\
& T_{13}=\left\{(1,0),\left(\frac{1}{\sqrt{2}}(1+i), 1\right),\left(\frac{1}{2}(1+i+j-k),-1\right)\right\} ; \\
& T_{14}=\left\{(1,0),\left(\frac{1}{\sqrt{2}}(1+i),-1\right),\left(\frac{1}{2}(1+i+j-k), 1\right)\right\} ; \\
& T_{15}=\left\{(1,0),\left(\frac{1}{2}(1+i+j+k), 1\right),\left(\frac{1}{\sqrt{2}}(j+k),-1\right)\right\} ; \\
& T_{16}=\left\{(1,0),\left(\frac{1}{2}(1+i+j+k),-1\right),\left(\frac{1}{\sqrt{2}}(j+k), 1\right)\right\} ;
\end{aligned}
$$

It is tedious but not difficult to check that we have

$$
\bigcup_{i=1}^{16} \Delta T_{i}=\bigcup_{g \in \bar{O}}\{g\} \times\left\{\delta_{g},-\delta_{g}\right\} \quad \text { with } \delta_{g} \in\{1,2,3,4\} \forall g \in \bar{O} \text {. }
$$

For the reader who would like to check the above calculation, we point out that we have $T_{2 i}=\phi\left(T_{2 i-1}\right)$ for $3 \leq i \leq 8$ where ϕ is the automorphism of $\bar{O} \times \mathbb{Z}_{2 n+1}$ defined by $\phi(g, z)=(g,-z)$ for every $(g, z) \in \bar{O} \times \mathbb{Z}_{2 n+1}$; hence we have $\Delta T_{2 i}=\phi\left(\Delta T_{2 i-1}\right)$ for $3 \leq i \leq 8$.
We have $\operatorname{gcd}\left(\delta_{g}, 2 n+1\right)=1$ for every g since we are supposing that 3 does not divide $2 n+1$ and hence, considering that a 1 -rotational STS(49) under \bar{O} has been proved to exist, the assertion follows from Lemma 5.1.

6 Conclusion

Putting together the results of [8] and those obtained in the previous sections we conclude that the existence of a 1-rotational $\operatorname{STS}(v)$ is uncertain only in the case of $v=\left(p^{3}-p\right) n+1 \equiv 1(\bmod 96)$ with p a prime, $n \not \equiv 0(\bmod 4)$, the odd part of $v-1$ square-free and without prime factors $\equiv 1(\bmod 6)$.
At the moment solving these open cases does not seem an easy matter to us. Maybe, the first step could be to find a solution when $n=1$ or 2 . Thus we propose the following problems.

Problem 1. Given an odd prime p, does there exist an $\operatorname{STS}\left(2 p^{3}-2 p+1\right)$ that is 1-rotational under an extension of $P G L_{2}(p)$ by \mathbb{Z}_{2} ?

Problem 2. Given an odd prime p, does there exist an $\operatorname{STS}\left(p^{3}-p+1\right)$ that is 1-rotational under $S L_{2}(p)$?

For the time being, the above problems have been positively solved only in the smallest case of $p=3$ (see the previous section). Also consider that the two solutions that we obtained in this special case allowed us, together with Lemmma 5.1, to prove the existence of a 1-rotational $\operatorname{STS}(v)$ for any $v \equiv 25(\bmod 48)$ and any $v \equiv 49(\bmod 96)$, namely the existence of a 1 rotational $\operatorname{STS}\left(\left(3^{3}-3\right) n+1\right)$ for any $n \not \equiv 0(\bmod 4)$.
Thus, it is maybe possible that if one positively solves Problems 1 and 2 for any odd prime p, then a clever use of Lemma 5.1 allows us to find a 1 -rotational $\operatorname{STS}\left(\left(p^{3}-p\right) n+1\right)$ for any odd prime p and any $n \not \equiv 0(\bmod$ 4). In this case our main question about the set of values of v for which a 1-rotational $\operatorname{STS}(v)$ exists would be completely solved.
We point out, however, that even though Problems 1 and 2 are interesting in their own right, for our main purpose it is not necessary to solve them for all odd primes p. In Problem 1 it is enough to consider those primes $p \equiv \pm 1$ $(\bmod 8)$ for which the odd part of $p^{3}-p$ is square-free and without prime factors $\equiv 1(\bmod 6)$. Analogously, in Problem 2 it is enough to consider those primes $p \equiv \pm 1(\bmod 16)$ for which, again, the odd part of $p^{3}-p$ is square-free and without prime factors $\equiv 1(\bmod 6)$.
So, the primes $p<1000$ for which our main question actually requires a solution to Problem 1 are 23, 47, 137, 263, 353, 383, 479, 641 and 983.
Instead, the primes $p<1000$ for which our main question actually requires a solution to Problem 2 are only 47, 353, 383, 479 and 641.
Hence $v=24289=\left(23^{3}-23\right) 2+1$ and $v=103777=47^{3}-47+1$ are the first two values of v for which the existence of a 1-rotational $\operatorname{STS}(v)$ is open. If a 1-rotational STS(24289) exists, it is necessarily under an extension of
$P G L_{2}(23)$ by \mathbb{Z}_{2}; also, if a 1 -rotational $\operatorname{STS}(103777)$ exists, it is necessarily under $S L_{2}(47)$.

Acknowledgement. We are very grateful to the referee for his/her suggestions which have been helpful in increasing the readibility of the paper.

References

[1] R.J.R. Abel and M. Buratti, Difference families, Handbook of Combinatorial Designs, Second Edition, C.J. Colbourn and J.H. Dinitz (Editors), Chapman \& Hall/CRC, Boca Raton, FL, 2006, 392-410.
[2] B.A. Anderson, Sequencings and starters, Pacific J. Math. 64 (1976), 17-24.
[3] B.A. Anderson and E. C. Ihrig, Every finite solvable group with a unique element of order two, except the quaternion group, has a symmetric sequencing, J. Combin. Des. 1 (1993), 3-14.
[4] C.A. Baker, Extended Skolem sequences, J. Combin. Des. 3 (1995), 363379.
[5] L. Babai and P.J. Cameron, Automorphisms and enumeration of switching classes of tournaments, Electron. J. Combin. 7 (2000).
[6] T. Beth, D. Jungnickel and H. Lenz, Design Theory. Cambridge University Press, Cambridge, 1999.
[7] M. Buratti, Constructions for point-regular linear spaces, J. Statist. Plann. Inference 94 (2001), 139-146.
[8] M. Buratti, 1-rotational Steiner triple systems over arbitrary groups, J. Combin. Des. 9 (2001), 215-226.
[9] M. Buratti and F. Zuanni, On singular 1-rotational Steiner 2-designs, J. Combin. Theory Ser. A 86 (1999), 232-244.
[10] C. J. Colbourn and A. Rosa, Triple Systems. Clarendon Press, Oxford, 1999.
[11] L.E. Dickson, Linear groups with an exposition of the Galois field theory Dover Publications, Inc., New York, 1958.
[12] J.H. Dinitz, Starters, Handbook of Combinatorial Designs, Second Edition, C.J. Colbourn and J.H. Dinitz (Editors), Chapman \& Hall/CRC, Boca Raton, FL, 2006, 622-628.
[13] J. Doyen, A note on reverse Steiner triple systems, Discrete Math. 1 (1972), 315-319.
[14] D. Gorenstein, Finite groups. Harper and Row, New York, 1968.
[15] M. Mishima, The spectrum of 1-rotational Steiner triple systems over a dicyclic group, Discrete Math. 308 (2008), 2617-2619.
[16] K.T. Phelps and A. Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981), 57-66.
[17] A. Rosa, On reverse Steiner triple systems, Discrete Math. 2 (1972), 61-71.
[18] M. Suzuki, Group theory I. Springer-Verlag, Berlin, 1982.
[19] L. Teirlinck, The existence of reverse Steiner triple systems, Discrete Math. 6 (1973), 301-302.

[^0]: *Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, via Amendola, Italy. email: simona.bonvicini@unimore.it
 ${ }^{\dagger}$ Dipartimento di Matematica e Informatica, Università di Perugia, via Vanvitelli 1 email: buratti@mat.uniroma1.it
 ${ }^{\ddagger}$ Dipartimento di Scienze e Metodi dell’Ingegneria, Università di Modena e Reggio Emilia, via Amendola, Italy. email: rinaldi.gloria@unimore.it
 ${ }^{\S}$ Dipartimento di Matematica, Università Sapienza di Roma, Piazzale Aldo Moro 5, email: traetta@mat.uniroma1.it

[^1]: ${ }^{1}$ The dicyclic group of order $4 n$ has presentation $<x, y \mid x^{2 n}=1, y^{2}=x^{n}, x y=y x^{-1}>$

[^2]: ${ }^{2}$ An additive group G is sequenceable if there is a permutation ($a_{0}=0, a_{1}, \ldots, a_{|G|-1}$) of its elements such that all the partial sums $\sum_{i=0}^{j} a_{i}$ are pairwise distinct. A binary additive group G is symmetrically sequenceable if there is a permutation as above with $a_{\frac{|G|}{2}-i}=-a_{\frac{|G|}{2}+i}$ for $0 \leq i \leq \frac{|G|}{2}$. We have analogous definitions in multiplicative notation.

