
Speeding Up Elliptic Curve Discrete Logarithm

Computations with Point Halving ⋆

Fangguo Zhang and Ping Wang

School of Information Science and Technology,
Sun Yat-sen University, Guangzhou 510006, China

isszhfg@mail.sysu.edu.cn

Abstract. Pollard rho method and its parallelized variants are at present
known as the best generic algorithms for computing elliptic curve dis-
crete logarithms. We propose new iteration function for the rho method
by exploiting the fact that point halving is more efficient than point ad-
dition for elliptic curves over binary fields. We present a careful analysis
of the alternative rho method with new iteration function. Compared
to the previous r-adding walk, generally the new method can achieve a
significant speedup for computing elliptic curve discrete logarithms over
binary fields. For instance, for certain NIST-recommended curves over
binary fields, the new method is about 27% faster than the previous best
methods in single-instance Pollard rho method. When running several
instances of Pollard rho method concurrently, and computing the inver-
sions using the simultaneous inversion algorithm by Peter Montgomery,
the new method is about 12-17% faster than the previous best methods.

Keywords: Pollard rho method, elliptic curve discrete logarithm, point halv-
ing, random walk.

1 Introduction

Public-key cryptography based on elliptic curves over finite fields was proposed
by Koblitz [22] and Miller [23] in 1985. Since then, elliptic curves over finite fields
have been used to implement many cryptographic systems and protocols, such
as the Diffie-Hellman key agreement scheme [2] [13], the elliptic curve variant
of the Digital Signature Algorithm [1] [25], etc. In elliptic curve cryptography,
the major security consideration is the intractability of the elliptic curve discrete

logarithm problem (ECDLP).
Let E be an elliptic curve defined over a finite field Fq. Let P ∈ E be a point

of prime order n, and let 〈P 〉 be the prime order subgroup of E generated by
P . If Q ∈ 〈P 〉, then Q = kP for some integer k, 0 ≤ k < n. The problem of
finding k, given P,Q, and the parameters of E, is known as the ECDLP. ECDLP

⋆ This work is supported by the National Natural Science Foundation of China (No.
61070168).



is the foundation of the security of ECC, so solving it means breaking the ECC
ciphers, therefore it has received a lot of attention.

For ECDLP, Pollard rho method and its modifications by Gallant, Lambert
and Vanstone [16], and Wiener and Zuccherato [35] are to date known as the
most efficient general algorithms. Van Oorschot and Wiener [34] showed that
the modified Pollard rho method can be parallelized with linear speedup.

Pollard rho method is a randomized algorithm for computing discrete log-
arithms based on the Birthday Paradox. More precisely, an iteration function
F : G → G is used to define a pseudo-random sequence Yi by Yi+1 = F (Yi) for
i = 0, 1, 2, ..., with some starting value Y0. The sequence Y0, Y1, Y2, . . . represents
a walk in the group G. Because the order of the group is finite, the sequence will
ultimately reach an element that has occurred before. This is called a collision

or a match. The advantage of this method is that the space requirements can be
small if one uses a clever method to detect the collision.

The basic assumption for the analysis of the expected run time of the rho
method is that the walk Yi behaves as a random walk. By this we mean that
the iteration function F : G → G is a random mapping in the sense that for any
Yi ∈ G the function F map Yi to each element in G with the same probability
1
|G| . However, in practice the iteration function F : G → G is not a truly random

mapping, which always results in more iteration requirements. The problem of
efficient simulation of a random walk in Pollard rho method is the central topic
of this paper. Here, “efficient” means that the corresponding iteration function
should require essentially no more than one group operation and use only con-
stant or polynomial (in the input size of the ECDLP) storage.

In [32, 33], Teske proposed the efficient r-adding walk by applying more ad-
dition rules to the iteration function. Teske also proposed and analyzed the so
called r + s-mixed walk, which introduce doubling steps to the r-adding walk.
However, the r + s-mixed walk generally reduces certain randomness, and dou-
bling is not much efficient than addition in the affine coordinate for elliptic
curves. Therefore, the introduction of doubling steps does not lead to a signifi-
cantly better performance.

Erik Knudsen [20] and Richard Schroeppel [30] independently proposed a new
method for scalar multiplication of non-supersingular elliptic curves over binary
fields. The idea is to replace all point doublings in double-and-add methods
with a potentially faster operation called point halving. Knudsen [20] presented
certain rough analysis which suggests that scalar multiplication with halvings
could be 39% faster than scalar multiplication with doublings ([31] claims a 50%
improvement). Bessalov [9] firstly used the idea of halving (he called division
of points by two) to ECDLP, however, there was no detailed analysis for his
approach.

In this paper, we design new iteration function for Pollard rho method by
exploiting the fact that point halving is more efficient than point addition for
elliptic curves over binary fields. We also present a careful analysis of the alter-
native rho method with new iteration function. Generally the new method can
achieve a significant speedup for computing elliptic curve discrete logarithms over



binary fields compared to the previous r-adding walk. Particularly, for certain
NIST-recommended curves over binary fields, the new method is about 12-17%
faster than the previous best methods.

The rest of this paper is organized as follows. We recall the Pollard rho
method for elliptic curve discrete logarithm computation, and the concept and
algorithms of point halving in section 2. In section 3, we propose the new it-
eration function, and present a careful analysis. We describe and analysis our
experiments in section 4 and discuss the application to Koblitz curves in section
5. Finally, we conclude the paper in section 6.

2 Preliminaries

In this section, we recall the Pollard rho method for elliptic curve discrete loga-
rithm computation, and discuss the concept and algorithms of point halving.

2.1 Pollard rho Method

Pollard [27] proposed an elegant generic algorithm for the discrete logarithms
based on the Birthday Paradox and called it the rho method, which is an im-
provement over the well-known “baby-step giant-step” algorithm, attributed to
Shanks [12]. Shanks’ method allows one to compute discrete logarithms in a
cyclic group G of order n in deterministic time O(

√
n) and space for

√
n group

elements. Pollard rho method also has time complexity O(
√
n) with only negli-

gible space requirements; it is thus preferable.
Pollard rho method works by first defining a sequence of elements that will

be periodically recurrent, then looking for a match in the sequence. The match

will lead to a solution of the discrete logarithm problem with high probability.
The two key ideas involved are the iteration function for generating the sequence
and the cycle-finding algorithm for detecting a match.

If G is any finite set and F : G → G is a mapping and the sequence (Xi) in
G is defined by the rule:

X0 ∈ G, Xi+1 = F (Xi)

this sequence is ultimately periodic. Hence, there exist unique integers µ ≥ 0
and λ ≥ 1 such that X0, ..., Xµ+λ−1 are all distinct, but Xi = Xi+λ for all i ≥ µ.
A pair (Xi, Xj) of two elements of the sequence is called a match if Xi = Xj

where i 6= j. We call µ the preperiod and λ the period of the sequence (Xi). For
the expected values of µ and λ, we have the following theorem:

Theorem 1. [19] For any finite set D, under the assumption that an iteration

function F : D → D behaves like a truly random mapping and the initial value

X0 is a randomly chosen group element, the expected values for µ and λ are
√

π|D|/8. The expected number of evaluations before a match appears is E(µ+

λ) =
√

π|D|/2 ≈ 1.25
√

|D|.



Pollard [26] first applied this result to obtain an efficient and simple algorithm
for factoring. Then in [27] he found an algorithm that uses the rho method to
compute discrete logarithms in the multiplicative group Z

∗
p (p prime) in the

expected run time of O(
√
p) group operations. This algorithm can be easily

generalized to compute discrete logarithms in arbitrary finite abelian groups,
such as in groups of points of elliptic curves over finite fields.

Now we explain how the rho method for computing elliptic curve discrete
logarithms works. Let P be a point of prime order n on an elliptic curve E over
finite field, and let G be the subgroup of E generated by P . For any Q ∈ G,
to compute k such that Q = kP , the rho method divides the group G into 3
subsets: S1, S2 and S3 of roughly equal size, and defines the iteration function
F : G → G as follows:

Yi+1 = F (Yi) =











Yi + P Yi ∈ S1

2Yi Yi ∈ S2

Yi +Q Yi ∈ S3

Let the initial value Y0 = a0P+b0Q where a0 and b0 are two random numbers
in [0, n− 1]. Then each Yi has the form aiP + biQ, and the sequence (ai) (and
similarly for (bi)) can be computed as follows:

ai+1 =











ai + 1 (mod n) Yi ∈ S1

2ai (mod n) Yi ∈ S2

ai (mod n) Yi ∈ S3

This implies that while computing (Yi), we can easily keep track of the corre-
sponding sequences of exponents, (ai) and (bi), such that Yi = aiP +biQ. Hence,
as soon as we find a match (Yi, Yj), we have the following equation:

aiP + biQ = ajP + bjQ

Since Q = kP , this gives

ai + bik ≡ aj + bjk (mod n)

Now, if gcd(bi − bj, n) = 1, we have k = (aj − ai)(bi − bj)
−1 mod n.

Theorem 1 makes the assumption of true randomness. However, it has been
shown empirically that this assumption does not hold exactly for Pollard iter-
ation function [32]. The actual performance is worse than the expected value
given in Theorem 1.

There are better iteration functions by applying more arbitrary multipliers.
Assume that we are using r partitions (multipliers). We generate 2r random
numbers,

mj, nj ∈ {0, 1, · · · , n− 1}, for j = 1, 2, · · · , r.
Then we precompute r multipliers M1,M2, · · · ,Mr where,

Mj = mjP + njQ, for j = 1, 2, · · · , r.



Define a hash function,
v : G → {1, 2, · · · , r}

Then the iteration function F : G → G defined as,

Yi+1 = F (Yi) = Yi +Mj , where j = v(Yi)

Then each Yi has the form aiP + biQ, and the sequences of (ai) and (bi) can be
updated as follows,

ai+1 = ai +mj (mod n) and bi+1 = bi + nj (mod n).

This r-adding walk was first introduced in [29]. Sattler and Schnorr [28]
showed that this approach is sufficiently random if r ≥ 8. Teske [32] found
experimentally that r-adding walk with r ≥ 20 perform very close to a random
walk.

The difference in performance between Pollard original walk and Teske’s r-
adding walk has been studied by [4]. We summarize the results as follows. In
prime order subgroups of Z∗

p, the value of E(µ+λ) for Pollard original walk and

Teske’s r-adding walk with r = 20 is 1.55
√

|G| and 1.27
√

|G|, while in groups of

points of elliptic curves over finite fields, the value is 1.60
√

|G| and 1.29
√

|G|,
respectively.

2.2 Point Halving

A non-supersingular elliptic curve E over F2m defined by the parameters a, b ∈
F2m , b 6= 0, is the set of all solutions (x, y) to the equation

y2 + xy = x3 + ax2 + b, where x, y ∈ F2m ,

together with an extra point O, the point at infinity.
Let H = (x1, y1) ∈ E be a point with x1 6= 0. Then Q = 2H = (x2, y2) can

be computed as follows:

x2 = λ2 + λ+ a (1)

y2 = x2
1 + (λ+ 1)x2 (2)

λ = x1 +
y1
x1

(3)

Point halving is the reverse operation of point doubling: given Q = (x2, y2),
compute H , 1

2Q = (x1, y1) such that Q = 2H . One can compute point halving
as follows: solve (1) for λ, (2) for x1 and finally (3) for y1. That is, solve λ

2+λ =
x2 + a for λ, and x2

1 = y2 +(λ+1)x2 for x1, and finally compute y1 = x2
1 +λx1.

Let |E(F2m)| = 2kn, where n is odd. Let P be a point of odd order n on E.
It is obvious that point doubling and point halving are automorphisms of 〈P 〉.
Therefore, given a point Q ∈ 〈P 〉, one can always find a unique point H ∈ 〈P 〉
such that Q = 2H .



We say that the curve E has minimal 2-torsion if k = 1. Let c ∈ F2m , we

define the trace of c as Tr(c) =
m−1
∑

i=0

c2
i

. Then the property of E has minimal

2-torsion is equivalent to Tr(a) = 1. Note that the NIST-recommended random
curves [14] over binary fields have Tr(a) = 1.

For the curve E with Tr(a) = 1, one can compute point halving as follows.
Solve the quadratic equation λ2 + λ = x2 + a for λ. Let the two solutions be λ′

and λ′ + 1, one corresponds to λ and H and the other one to λ+ 1 and H + T ,
where T is the point of order 2. In fact only H can be halved but not H + T .
Therefore, λ′ corresponds to λ and H = (x1, y1) if and only if the equation
x2 + x = x1 + a has a solution in F2m , that is, if and only if Tr(x1 + a) = 0.
Further, we have Tr(x1 + a) = Tr(x2

1 + a2).
Hence, one first computes w = x2(λ

′ + 1) + y2, which is a candidate for
x2
1. If Tr(w + a2) = 0 then λ = λ′ and x1 =

√
w. Otherwise, λ = λ′ + 1 and

x1 =
√
w + x2. More precisely, we summarize the above steps in the following

Algorithm 1 [3].

Algorithm 1 Point Halving

Input: Q = (x2, y2) ∈ 〈P 〉.
Output: H = (x1, y1) ∈ 〈P 〉, where Q = 2H .
1: compute λ such that λ2 + λ = x2 + a.
2: w← x2(λ+ 1) + y2.
3: if Tr(w + a2) = 0 then

4: x1 ←
√
w, y1 ← x1(x1 + λ).

5: else

6: x1 ←
√
w + x2, y1 ← x1(x1 + λ+ 1).

7: end if

Note that to make use of point halving in the iteration function for ECDLP
computations, we will focus on the affine representation of point in point halving
rather than the λ-representation mentioned in [15]. Further, one can generalize
Algorithm 1 to the case of curve E with Tr(a) = 0, that is |E(F2m)| = 2kn with
k > 1 and n odd. In this case [20], it is necessary to solve k equations, perform
k + 1 multiplications, one test, and k or k + 1 square root computations to find
(x1, y1).

Fong et al. [15] provided a careful analysis of the actual efficiency of point
halving for elliptic curves over binary fields with polynomial basis, such as the
NIST-recommended random binary curves over F2m [14]. We summarize the
results as follows. Let M , S and I denote the cost of field multiplication, squaring
and inversion respectively. Then experimentally, the cost of solving the quadratic
equation is approximately in the range 1

2M to 2
3M , and the cost of computing

square roots in F2m is expected to be in the range 1
8M to 1

2M . As a result,
the cost of a point halving with affine representation is roughly in the range
of [ 218 M, 19

6 M ]. While point addition and doubling in affine coordinates need



approximately the same costs: I + 2M + S. A careful analysis of the software
implementation of multiplication and inversion in F2m is necessary for a fair
comparison of halving and addition. Extensive experiments from [15] suggest
that a realistic estimate of the ratio I/M of inversion to multiplication cost is 8
(or higher). Thus the cost of point addition or doubling in affine coordinates is
generally larger than 10M .

3 New Alternative Iteration Function

Iterative evaluations are the main operations of the Pollard rho method. We
focus on how to design efficient iteration function in this section. For efficiency,
generally we have the following criteria: a) for each iteration, the corresponding
iteration function F : G → G should require essentially no more than one group
operation, b) the iteration function F behaves like or close to a truly random
mapping and c) the method use only constant or polynomial (in the input size
of the ECDLP) storage.

3.1 Iteration Function

Since point halving is much more efficient than point addition for elliptic curve
over binary fields, we can introduce point halving into the random walk, replace
certain point additions with point halvings, to speed up the iteration for the rho
method. Therefore we propose the following r + h-mixed walk.

Let P be a point of prime order n on an elliptic curve E over binary field, and
let G be the subgroup of E generated by P . For any Q ∈ G, to compute k such
that Q = kP , we divide the group G into r+h subsets: S1, S2, . . . , Sr, Sr+1, . . . ,
and Sr+h of roughly equal size, and we generate 2r random numbers,

mj, nj ∈ {0, 1, · · · , n− 1}, for j = 1, 2, · · · , r.

Then we precompute r multipliers M1,M2, · · · ,Mr where,

Mj = mjP + njQ, for j = 1, 2, · · · , r.

Define a hash function,

v : G → {1, 2, · · · , r + h}.

The iteration function F : G → G is called r + h-mixed walk if F defined as,

Yi+1 = F (Yi) =

{

Yi +Mv(Yi) v(Yi) ∈ {1, . . . , r}
1
2Yi v(Yi) ∈ {r + 1, . . . , r + h}

Let the initial value Y0 = a0P+b0Q where a0 and b0 are two random numbers
in [0, n − 1]. Then each Yi has the form aiP + biQ, and the sequence (ai) and



(bi) can be computed as follows,

ai+1 =











ai +mv(Yi) (mod n) v(Yi) ∈ {1, . . . , r}
1
2ai (mod n) ai even and v(Yi) ∈ {r + 1, . . . , r + h}
1
2 (ai + n) (mod n) ai odd and v(Yi) ∈ {r + 1, . . . , r + h}

bi+1 =











bi +mv(Yi) (mod n) v(Yi) ∈ {1, . . . , r}
1
2 bi (mod n) bi even and v(Yi) ∈ {r + 1, . . . , r + h}
1
2 (bi + n) (mod n) bi odd and v(Yi) ∈ {r + 1, . . . , r + h}

Correspondingly, once we find a match (Yi, Yj), we have the following equa-
tion:

aiP + biQ = ajP + bjQ

Then, if gcd(bi − bj, n) = 1, we have k = (aj − ai)(bi − bj)
−1 mod n.

It is clear that the randomness of Teske’s r-adding walk is better than that of
the original Pollard walk, and the performances of both the r-adding walk and
original walk are worse than what would expected by a truly random process
[32]. Further, Teske [32] has given experimental evidence that introduce certain
doubling rules into r-adding walk may lead to poor performance. Since point
halving is the reverse operation of point doubling, we conjecture that the ex-
pected time for the proposed new random walk reach a collision is worse than
what would be expected by r-adding walk.

The original Pollard rho method, the r-adding walk and the new r+h-mixed
walk for finding discrete logarithms are based on a pseudo-random approxima-
tion to a Markov chain on a cycle group G. For each step of the new iteration,
we have Yi = aiP +biQ = (ai+bik)P , where ai and bi are updated by the above
rules. Further, we define the sequence (ui) by

ui = ai + bik (mod n). (4)

Thus the mapping,

Yi ∈ G 7→ ui ∈ Zn,

is a one-to-one bijection between the new random walks (Yi) on G and the
walks (ui) on the integers mod n. Since we want to produce sequences (Yi) with
expected preperiods and periods as close as possible to the case of the truly
random walk, it is desirable that the distributions of the ui generated by our
iteration function get as close as possible to the uniformly distributed on the
integers mod n.

Therefore, instead of studying the new random walks on G, we may restrict
ourselves to walks of the form (4). Assuming v is a random hash function, then
the corresponding walk (ui) is a random walk on Zn, and such walks have been
extensively studied in the literature.



3.2 Analysis

To estimate the running time until a collision is reached, we make the heuristic
assumption that the above hash function v : G → {1, 2, · · · , r+h} is a sufficiently
random mapping.

Certain heuristics for analyzing the randomness in the iteration function of
Pollard rho method have been widely discussed, and one can refer to the papers
[6, 8, 10, 11] for details. In fact, point halving is the reverse operation of point
doubling, therefore, the previous result can be easily applied to the new iteration
function.

The new iteration function is a mixed iteration function: every step maps an
intermediate value Yi to Yi+1 = Fk(Yi), where k ∈ {1, 2, . . . , r+h}. Let pi be the
probability that the ith rule is used with 1 ≤ i ≤ r, and pH be the probability
that the point halving is used, and p1+p2+ . . .+pr+pH = 1. Then the average
number of iterations before the first collision is reached is approximately

√

πn

2(1− p2H −∑r

i=1 p
2
i )
.

That is, for the random walk that maps Y to Fi(Y ) with probability pi and
pH as above, the reductions of randomness increase the expected number of
iterations by a factor of 1/

√

1− p2H −
∑r

i=1 p
2
i , which is very close to 1 in most

cases. There is a trade-off between the use of point halving and the randomness
of the new walk. That is, the more point halvings we use, which leads to more
efficient iteration function, the worse the randomness of the walk. Hence, we
need to find the optimal ratio that point halvings should account for to achieve
the best performance.

For instance, the cases (r, h) = (20, 20) and (128, 128) correspond to using
halving with probability 1

2 and using addings with probability 1
40 and 1

256 re-
spectively. The factor in these cases is 1.164 and 1.155 respectively. Moreover,
this value tends to 2√

3
= 1.154 as r goes to infinity. Hence, one expects a walk

that uses halvings with probability 1
2 should require about 1.154 many group

operations as only adding walks, when one uses very large values for r and works
in very large groups (so that other effects that influence the “randomness” of
walks are less significant).

Consider the NIST-recommended random curves [14] over binary fields F2233 ,
with reduction trinomial f(x) = x233 + x74 + 1. Experimentally, the cost of a
point halving with affine representation needs approximately 21

8 M . Under the
assumption that the ratio I/M of inversion to multiplication cost is 8, point
addition in affine coordinates needs more than 10M . Compare the r + h-mixed
walk (set r = 20, h = 20) with the r-adding walk, it is obvious that the new
method is about

10− 1.154 ∗ (12 ∗ 10 + 1
2 ∗ 21

8 )

10
≈ 27%

faster than the r-adding walk. On the other hand, from a pessimistic point of
view, if the cost of a point halving with affine representation needs 19

6 M , then



the new method is about 24% faster than the r-adding walk. Generally, one may
choose the ratio h

r+h
according to the actual cost of point halving and point

addition over certain binary fields.
In practice, most typical choice when instantiating Pollard rho method to

solve ECDLP is to run several walks in parallel and to compute the inversions
using the simultaneous inversion algorithm by Peter Montgomery [24]. We follow
standard practice of handling m iterations in parallel and batching mI into
1I + (3m− 3)M , where m is the number of processors. Then m point additions
processed in parallel costs 1I+(5m−3)M+mS. Hence, the average cost of point
addition becomes 5M + S + 1

m
(I − 3M). Note that, with a polynomial basis,

according to [17], S ≈ 1/7.5M for F2163 and 1/9M F2233 . Taking into account the
costs of memory operations and communications among processors, the average
cost of point addition is roughly equal to 6M . In this case, the new method is
about

6− 1.154 ∗ (12 ∗ 6 + 1
2 ∗ 21

8 )

6
≈ 17%

faster than the r-adding walk. However, by some simple calculations it is clear
that the optimal choice in this case is to set pH = 0.56, then the new method is
about

6− 1√
1−p2

H

∗ ((1 − pH) ∗ 6 + pH ∗ 21
8 )

6
≈ 17.3%

faster than before. Correspondingly, if the cost of a point halving needs 19
6 M ,

then the new method is about 12% faster than before with pH = 1
2 .

4 Experiments

To explore the optimal performance for the new random walk, we implement the
alternative rho using the new iteration functions with different parameters, and
compare their performances with the r-adding walk. In this section, we describe
these experiments and analysis the results.

For our experiments, we briefly introduce the elliptic curve group over binary
fields and the notation we use in the following. Let a, b ∈ F2m , b 6= 0. Then the
elliptic curve Ea,b over F2m is defined through the equation

Ea,b : y
2 + xy = x3 + ax2 + b, where x, y ∈ F2m .

Let P ∈ Ea,b(F2m) be a point of prime order n, let G denote the subgroup of
Ea,b generated by P . Given Q ∈ G, determine the integer 0 ≤ k < n such that
Q = kP .

Let W = (x, y) be any point of G, here we interpret x as an integer. We
define the partition of G into r + h subsets S1, S2, · · · , Sr+h as follows. First
we compute a rational approximation A of the golden ratio (

√
5 − 1)/2, with a

precision of 2 + ⌊log10(q(r + h))⌋ decimal places. Let

v∗ : G → [0, 1), (x, y) →
{

Ax− ⌊Ax⌋ if W 6= O
0 if W = O

(5)



where Ax− ⌊Ax⌋ is the non-negative fraction part of Ax. Then let

v : G → {1, 2, · · · , r + h}, v(W ) = ⌊v∗(W ) · (r + h)⌋+ 1

and
Si = {W ∈ G : v(W ) = i}

This method is originally from Knuth’s multiplicative hash function [21] and
suggested by Teske [33]. From the theory of multiplicative hash functions we
know that among all numbers between 0 and 1, choosing A as a rational ap-
proximation of (

√
5 − 1)/2 with a sufficiently large precision leads to the most

uniformly distributed hash values, even for non-random inputs.

Algorithm 2 Experiments for the r-adding walk and the new r+h-mixed walk

Input: Different iteration functions F : G → G (the r-adding walk and the new
r + h-mixed walk with different r and h).

Output: The average ratio R = (number of steps until reach the collision)/
√
n.

1: for i = 30 to 32 do

2: for j = 1 to 20 do

3: m← i+ 1.
4: repeat

5: Choose two random numbers a, b ∈ F2m , where b 6= 0 and Tr(a) = 1.

6: n ← |Ea,b|

2
.

7: until n is prime and 2i < n < 2i+1

8: Choose a random point W ∈ Ea,b, where the order of W equal to |Ea,b|.
9: P ← 2W (then P is the generator of G).
10: t← 40000

2i−30 .
11: for l = 1 to t do
12: Choose a random number c ∈ [0, n− 1], Q← c ∗ P .
13: Choose a random point in G be the initial point Y0.
14: k ← 1.
15: repeat

16: Yk ← F (Yk−1).
17: Check whether Yk is a distinguished point.
18: until Reach the collision
19: Rl ← k/

√
n.

20: end for

21: Rj ← (
∑t

l=1
Rl)/t.

22: end for

23: Ri ← (
∑20

j=1
Rj)/20.

24: end for

The purpose of our experiments is to evaluate the expected numbers of steps
until a match is found using the r-adding walk and the new r + h-mixed walk
with different parameter settings for r and h. Generally, we set the integer m in
certain range. Then we randomly choose the parameters a and b where a, b ∈ F2m

and Tr(a) = 1, which determine the unique elliptic curve Ea,b over F2m . We will



check whether
|Ea,b(F2m )|

2 is a prime number within a certain range. If not, repeat
the above procedures until we get a prime order subgroup G of Ea,b(F2m) with
minimal 2-torsion. Then we set the generator P of G and choose a random
point Q of G. When using the r-adding walk and the new r + h-mixed walk
with different r and h to compute this discrete logarithm, we count the number
of steps we perform until find a match. Then we determine the ratio R of the
number of steps and

√
n. We repeat these steps a couple of times with the same

P but several randomly chosen Q. Furthermore, for practical reasons, we do the
above procedures with a couple of groups where the group order n between 230

and 232. Therefore, We have Algorithm 2.

More precisely, for each i ∈ [30, 32], we generate 20 elliptic curves, where
each of them have a subgroup G of prime order n, such that n ∈ [2i, 2i+1]. Then
for each group G, we generate 10000 to 40000 DLPs with the same generator
P but randomly generated Q. The number of elliptic curves and instances of
DLPs computed is given in Table 1. For each DLP, we use Teske’s r-adding walk
and the new r + h-mixed walk for iteration function, and find the match using
distinguished point method. Once reaching a match, we compute the ratio Rl as
(the number of steps until match is found)/

√
n. Then we compute the average

ratio Rj of all DLPs over the same elliptic curve. Finally, we count the average
ratio R of all DLPs with the same i, where i ∈ [30, 32] and n ∈ [2i, 2i+1].

Table 1. Number of elliptic curves and instances of DLPs

Bits #Elliptic Curves #DLPs per Curve

30 20 40000

31 20 20000

32 20 10000

Now, let us explain the parameters for distinguishing property in more detail.
For example, if i = 32, which means n, the order of G, is a 32 bits prime number.
According to [32], we are expected to take 1.292

√
n iterations before reaching

a match. We define the distinguishing property as the Hamming weight of x-
coordinate of the point less than or equal to 9. Each point has probability almost
exactly (

(

32
0

)

+
(

32
1

)

+· · ·+
(

32
9

)

)/232 ≈ 2−6.64 of being a distinguished point. That
is, to find a collision it is expected to compute 1.292 ∗ 2−6.64

√
n distinguished

points.

For the r-adding walk, we set r = 20 and r = 128 (with h = 0), the typical
value suggested by the literature, and for the new r + h-mixed walk, we set
r = 20, h = 10; r = 20, h = 20; r = 128, h = 64; r = 128, h = 128 and r = 64,
h = 128; respectively. The experiment results are given in Table 2. It shows that
introducing point halving into the iteration rules indeed reduce the randomness
of the random walk, consistent with our conjecture. However, the efficient point
halving computation still improve the whole performance of the alternative rho



by properly setting parameters r and h. Moreover, Table 2 also shows that set
r = 128 rather than 20 does not lead to a significantly better performance.

Table 2. Performances for the r-adding walk and the new r + h-mixed walk

Bits #DLPs
r 20 20 20 128 128 128 64
h 0 10 20 0 64 128 128

30 800000 1.301 1.349 1.397 1.297 1.350 1.403 1.833

31 400000 1.280 1.352 1.414 1.291 1.354 1.401 1.842

32 200000 1.296 1.357 1.401 1.284 1.349 1.392 1.919

Average 1400000 1.294 1.351 1.402 1.293 1.351 1.401 1.848

5 Application to Koblitz Curves

In fact, besides the general elliptic curves over binary fields, the new method
can also be applied to speed up computations of ECDLP on Koblitz curves with
Frobenius endomorphism.

For Koblitz curves, the map φ : E(F2m) → E(F2m) defined by φ(x, y) =
(x2, y2) is called the Frobenius endomorphism. There exists an integer λ such
that φ(P ) = λP for all points P in G. Hence, one can define the equivalence
relation ∼ by combining the Frobenius endomorphism and the negation map
to get a speedup of

√
2m [16] [35]. We denote the set of equivalence classes by

E/ ∼.
Based on Harley’s work on ECC2K-95/ECC-2K108 [18] and [16], Bailey et

al. [6] proposed an efficient and practical alternative iteration function for the
rho method as follows,

Yi+1 = Yi + φl(Yi) (6)

where l is a function defined on the equivalence classes, which ensure that points
from the same equivalence class have the same value l. For example, [6] define it
as l = ((HW(xYi

)/2) mod 8)+ 3, where HW(xYi
) is the Hamming weight of the

x-coordinate of Yi. The variant iteration function is well defined on equivalence
classes, and can combine with the distinguished points technique to achieve a
speedup of

√
2m.

Note that to make use of Frobenius endomorphism, one need define the iter-
ation function via the normal basis representation [6] [18]. Let |E(F2m)| = 2kn
with k ≥ 1 and n odd. For Koblitz curves with k = 1 (have minimal 2-torsion),
the computation of point halving in normal basis is even more efficient than in
polynomial basis. Let {α, α2, . . . , α2m−1} be a normal basis of F2m . The trace of

an element c =
∑

ciα
2i = (cm−1, . . . , c0) is given by Tr(c) =

∑

ci. The square
root computation is a right rotation:

√
c = (c0, cm−1, . . . , c1). Squaring is a left

rotation, and x2 + x = c can be solved bitwise. The cost of these operations
can be neglected compared to field multiplication, so, the computation of point
halving needs only about one field multiplication.



Therefore, for ECDLP over Koblitz curves, we propose the following r + h-
mixed walk to achieve a further speedup. Let l = v(Yi), the iteration function
F : E/ ∼→ E/ ∼ defined as,

Yi+1 = F (Yi) =

{

Yi + φl(Yi) l ∈ {1, . . . , r}
1
2Yi l ∈ {r + 1, . . . , r + h}

(7)

where v is a function defined on the equivalence classes. Then, each Yi has the
form aiP + biQ, and the indices ai and bi can be updated correspondingly. Now,
we explain why the new map is a well-defined map on E/ ∼. More precisely, we
have the following theorem.

Theorem 2. Let ∼ be the equivalence relation and F be the random mapping on

E/ ∼ defined as above. If Yi ∼ Yj for certain integers i and j, then Yi+1 ∼ Yj+1.

Moreover, if Yi = φl(Yj) for certain integers i, j and l, then Yi+1 = φl(Yj+1);
and if Yi = −Yj, then Yi+1 = −Yj+1.

Proof. If Yi ∼ Yj , then according to the definition of the equivalence relation,
there exist certain integers i, j and l, such that Yi = φl(Yj). Let k = v(Yi) =
v(Yj). If k ∈ {1, . . . , r}, we have

Yi+1 = Yi + φk(Yi) = (1 + λk)Yi = (1 + λk)λlYj .

Also, we know
Yj+1 = Yj + φk(Yj) = (1 + λk)Yj .

then
φl(Yj+1) = (1 + λk)λlYj .

That is, Yi+1 = φl(Yj+1) and Yi+1 ∼ Yj+1.
On the other hand, if k ∈ {r + 1, . . . , r + h}, we have

Yi+1 =
1

2
Yi =

1

2
λlYj .

and

φl(Yj+1) = φl(
1

2
Yj) =

1

2
λlYj .

Therefore, Yi+1 = φl(Yj+1) and Yi+1 ∼ Yj+1. Further, if Yi = −Yj , it is trivial
to check that Yi+1 = −Yj+1. �

Theorem 3 shows that once the random walk defined by the new iteration
function falls into the same equivalence class with certain previous value, from
that value on, the current walk and the previous walk will always fall into the
same equivalence class for each step. This feature is the key point for the variant
Pollard rho works. Then we can combine this feature with the distinguished
point method to detect the collision. Therefore, the new iteration function is a
well-defined map on E/ ∼.



Correspondingly, by introducing point halving into the iteration on equiva-
lence classes, one can expect to achieve certain further speedup for computing
ECDLP over Koblitz curves. In fact, our theoretical estimate of the speedups in
section 3.2 also applies to the Koblitz curves case.

We studied the bit-slicing technique [5–7], as mentioned in [5], binary Ed-
wards curves do not appear to save time for ECC2-X, and the implementation of
bit-slicing uses standard affine coordinates for Weierstrass curves. The bit-slicing
technique is adopted to speedup the multiplication of the underlying field, and
correspondingly the inversion operation. However, it does not change the as-
sumption of the ratio I/M of inversion to multiplication. We confirm that there
is no obstacle for the new method work with the bit-slicing technique.

6 Conclusion

In this paper, we adapt a new iteration function for the rho method to allow
efficient use of point halving for computing elliptic curve discrete logarithms over
binary fields. We discuss the new algorithm in theoretical analysis and propose
certain practical settings. Compare to the previous r-adding walk, generally the
new r + h-mixed walk can achieve a significant speedup for computing elliptic
curve discrete logarithms over binary fields. Particularly, in the case of certain
NIST-recommended curves over binary fields the new approach is about 12-17%
faster than the previous best methods. We also show that the new approach can
be applied to Koblitz curves.

References

1. ANSI X9.62-199x: Public Key Cryptography for the Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA), January 13, 1998.

2. ANSI X9.63-199x: Public Key Cryptography for the Financial Services Industry:
Elliptic Curve Key Agreement and Transport Protocols, October 5, 1997.

3. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren,
“Handbook of Elliptic and Hyperelliptic Curve Cryptography”. CRC Press, 2005.

4. S. Bai and R. P. Brent, “On the efficiency of Pollard’s rho method for discrete
logarithms”, CATS 2008 (J. Harland and P. Manyem, eds.), Australian Computer
Society, pp. 125-131, 2008.

5. D. V. Bailey, B. Baldwin, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, G.
V. Damme, G. Meulenaer, J. Fan, T. Güneysu, F. Gurkaynak, T. Kleinjung, T.
Lange, N. Mentens, C. Paar, F. Regazzoni, P. Schwabe, L. Uhsadel, “The Certicom
Challenges ECC2-X”, Cryptology ePrint Archive, Report 2009/466, 2009.

6. D. V. Bailey, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, H. Chen, C. Cheng,
G. V. Damme, G. Meulenaer, L. J. D. Perez, J. Fan, T. Guneysu, F. Gurkaynak,
T. Kleinjung, T. Lange, N. Mentens, R. Niederhagen, C. Paar, F. Regazzoni, P.
Schwabe, L. Uhsadel, A. V. Herrewege, and B. Yang, “Breaking ECC2K-130”,
Cryptology ePrint Archive, Report 2009/541, 2009.

7. D. J. Bernstein, “Batch binary Edwards”, In Crypto 2009, volume 5677 of LNCS,
pages 317-336, 2009.



8. D. J. Bernstein, T. Lange, and P. Schwabe, “On the correct use of the negation
map in the Pollard rho method”, PKC 2011 (D. Catalano, N. Fazio, R. Gennaro,
and A. Nicolosi, eds.), LNCS, vol. 6571, Springer, 2011.

9. A. V. Bessalov, “A method of solution of the problem of taking the discrete loga-
rithm on an elliptic curve by division of points by two”, Cybermetics and Systems
Analysis, Vol.37, No.6, pp.820-823, 2001.

10. J. W. Bos, T. Kleinjung, and A. K. Lenstra, “On the use of the negation map in
the Pollard Rho method”, ANTS IX (G. Hanrot, F. Morain, and E. Thomé, eds.),
LNCS, vol. 6197, Springer, pp. 66-82, 2010.

11. R. P. Brent and J. M. Pollard, “Factorization of the eighth Fermat number”,
Mathematics of Computation, 36: pp. 627-630, 1981.

12. H. Cohen, “A Course in Computational Algebraic Number Theory”, volume 138
of Graduate Texts in Mathematics. Springer-Verlag, 1993.

13. W. Diffie and M. Hellman, “New Directions in cryptography”, IEEE Transactions
on Information Theory, volume 22, pp. 644-654, 1976.

14. FIPS 186-2, “Digital signature standard”, Federal Information Processing Stan-
dards Publication 186-2, February 2000.

15. K. Fong, D. Hankerson, J. Lopez, A. Menezes, “Field Inversion and Point Halving
Revisited”, IEEE Trans. Computers 53(8): 1047-1059, 2004.

16. R. Gallant, R. Lambert and S. Vanstone, “Improving the parallelized Pollard
lambda search on binary anomalous curves”, Mathematics of Computation, Vol-
ume 69, pp. 1699-1705, 1999.

17. D. Hankerson, J. Lopez-Hernandez, and A. Menezes, “Software Implementatin of
Elliptic Curve Cryprography over Binary Fields”. In: Proceedings of CHES 2000.
LNCS 1965, pp. 1-24. Springer, 2001.

18. R. Harley, Elliptic curve discrete logarithms project, Avaliable from
http://pauillac.inria.fr/∼harley/ecdl/.

19. B. Harris, “Probability Distribution Related to Random Mappings”, Ann. Math.
Statist. 31, pp. 1045-1062, 1960.

20. E. Knudsen, “Elliptic scalar multiplication using point halving”, Advances in
Cryptology-ASIACRYPT’99, Lecture Notes in Computer Science 1716:135C149,
1999.

21. D. E. Knuth, “The Art of Computer Programming”, Vol. 3, 2nd ed, Addison-
Wesley, Reading, Mass, 1981.

22. N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, 48, pp.
203-209, 1987.

23. V. Miller, “Use of elliptic curves in cryptography”, Advances in Cryptology: pro-
ceedings of Crypto’85, LNCS 218, pp. 417-426, New York: Springer-Verlag, 1986.

24. P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of factoriza-
tion”, Mathematics of Computation 48, pp. 243-264, 1987.

25. National Institute for Standards and Technology, “Digital signature standard”,
Federal information processing standard, U.S. Department of Commerce, FIPS
PUB 186, Washington, DC, 1994.

26. J. M. Pollard, “A Monte Carlo method for factorization”, BIT 15, no. 3, pp. 331-
335, 1975.

27. J. M. Pollard, “Monte Carlo methods for index computation mod p”, Mathematics
of Computation, 32, pp. 918-924, 1978.

28. J. Sattler and C. P. Schnorr, “Generating random walks in groups”, Ann. Univ.
Sci. Budapest. Sect. Comput., 6:65-79, 1985.

29. C. P. Schnorr, H. W. Lenstra, “A Monte Carlo Factoring Algorithm with Linear
Storage”, Math. Comp. 43(167), pp. 289-311, 1984.



30. R. Schroeppel, “Elliptic curve point halving wins big”, 2nd Midwest Arithmetical
Geometry in Cryptography Workshop, Urbana, Illinois, November 2000.

31. R. Schroeppel, “Elliptic curve point ambiguity resolution apparatus and method”,
International Application Number PCT/US00/31014, filed 9 November 2000, pub-
lication number WO 01/35573 A1, 17 May 2001.

32. E. Teske, “Speeding up Pollard’s rho method for computing discrete logarithms”,
in Algorithmic Number Theory Symposium (ANTS IV), LNCS 1423, Springer-
Verlag, pp. 541-553, 1998.

33. E. Teske, “On random walks for Pollard’s rho method”, Mathematics of Compu-
tation 70(234), pp. 809-825, 2001.

34. P. van Oorschot and M. Wiener, “Parallel collision search with cryptanalytic ap-
plications”, Journal of Cryptology, 12, pp. 1-28, 1999.

35. M. Wiener and R. Zuccherato, “Faster attacks on elliptic curve cryptosystems”, Se-
lected Areas in Cryptography’98, LNCS 1556, pp. 190-120, Springer-Verlag, 1998.


