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Abstract. We give a complete characterization both in terms of security and design of all cur-
rently existing group homomorphic encryption schemes, i.e., existing encryption schemes with a
group homomorphic decryption function such as EIGamal and Paillier. To this end, we formalize
and identify the basic underlying structure of all existing schemes and say that such schemes are
of shift-type. Then, we construct an abstract scheme that represents all shift-type schemes (i.e.,
every scheme occurs as an instantiation of the abstract scheme) and prove its IND-CCA1 (resp.
IND-CPA) security equivalent to the hardness of an abstract problem called Splitting Oracle-
Assisted Subgroup Membership Problem, SOAP (resp. Subgroup Membership Problem, SMP).
Roughly, SOAP asks for solving an SMP instance, i.e., for deciding whether a given ciphertext
is an encryption of the neutral element of the ciphertext group, while allowing access to a cer-
tain oracle beforehand. Our results allow for contributing to a variety of open problems such
as the IND-CCAL security of Paillier’s scheme, or the use of linear codes in group homomorphic
encryption.

Furthermore, we design a new cryptosystem which provides features that are unique up to now:
Its IND-CPA security is based on the k-linear problem introduced by Shacham, and Hofheinz
and Kiltz, while its IND-CCA1 security is based on a new k-problem that we prove to have the
same progressive property, namely that if the k-instance is easy in the generic group model, the
(k 4+ 1)-instance is still hard.

Keywords: Foundations, Homomorphic Encryption, Public-Key Cryptography, IND-CCA1 Se-
curity, Subgroup Membership Problem, k-Linear Problem

1 Introduction

1.1 Motivation

Homomorphic encryption schemes support computation on encrypted data. Such schemes are
of particular interest for various applications, such as Outsourcing of Computation [19], Elec-
tronic Voting [3, 10,12, 13], Private Information Retrieval [33], Oblivious Polynomial Evalu-
ation [39], or Multiparty Computation [11].

The most prominent homomorphic encryption schemes, e.g., ElGamal [18], Paillier [42],
Damgard-Jurik [16], are homomorphic with respect to a single algebraic operation. That
is, the plaintext space forms a group (G, o) and, given encryptions of m,m’ € G, one can
efficiently and securely compute an encryption of m o m’ without revealing m and m/. We
will call such schemes group homomorphic encryption schemes. Although fully homomorphic
schemes [9, 49, 20, 21, 47], i.e., schemes that allow one to evaluate any circuit over encrypted
data without being able to decrypt, provide a much higher flexibility compared to group
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homomorphic schemes, the investigation of the latter still represents an important research
topic:

1. The majority of existing homomorphic schemes are group homomorphic and there are
still many open questions regarding these schemes.

2. For practical applications there is currently no alternative to such schemes.

3. Many constructions of schemes that support more than a single algebraic operation are
in particular group homomorphic as well (e.g., [1,5]).

4. A comprehensive understanding of group homomorphic schemes leads to a better under-
standing of schemes that are homomorphic in a more general sense, since the underlying
structures are very similar.

4

Over the last decades, a variety of different approaches (and according hardness assumptions
and proofs of security) has been investigated for constructing group homomorphic schemes,
such as the Quadratic Residuosity Problem [26], the Higher Residuosity Problem [3], the
Decisional Diffie-Hellman Problem [18,44], and the Decisional Composite Residuosity Class
Problem [42, 16]. All these schemes have been investigated separately, resulting in the fact that
some of them are better understood than others. In particular, much effort has been devoted to
proving existing homomorphic schemes IND-CCA1 secure (being the highest possible security
level for a homomorphic scheme). For example, since the introduction of Damgard’s ElGamal
[15] in 1991, many works addressed the problem of characterizing its IND-CCA1 security [25,
50]. Similarly, while an IND-CPA security characterization of ElGamal was given in 1998 (see
[48]), the quest for a characterization of its IND-CCAL security has been in the focus for many
years. Only in 2010, the quest concerning these two schemes has finally found an end due
to [36]. Finding similar characterizations for remaining homomorphic schemes, e.g., Paillier’s
scheme, is still an open problem.

1.2 Contribution

In this work, we present a unified view both in terms of security and design on all currently
existing group homomorphic encryption schemes®. On the one hand, this helps to access the
kind of challenges mentioned above more easily (and in fact, to answer open questions) and
on the other hand provides a systematic procedure for designing new schemes based on given
problems. Our concrete contributions are as follows:

Abstract Security Characterization First, we identify and formailze the underlying
structure of all existing group homomorphic encryption schemes and say that group ho-
momorphic schemes with this structure are of shift-type. This particular structure allows us
to construct an abstract scheme that represents all shift-type group homomorphic encryp-
tion schemes and prove its IND-CCA1 security equivalent to the hardness of a new abstract
problem, called the Splitting Oracle-Assisted Subgroup Membership Problem (SOAP), mean-
ing that every scheme occurs as an instantiation of the abstract scheme being IND-CCA1

* For example, the most efficient implementation [22] of [21] states that the largest variant (for which a
security level similar to RSA-1024 is assumed) has a public key of 2.4 GB size and requires about 30
minutes to complete certain operations.

5 A precise definition will be given in Section 2.2.
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secure if and only if the according instantiation of SOAP is hard. This abstract scheme is
similar to other existing abstract schemes [17, 21, 23| but is necessarily more general in order
to be a representative of all shift-type group homomorphic schemes. For a proper subclass of
shift-type homomorphic schemes, a proof that if an abstract Subgroup Membership Problem
(SMP) is hard, then the scheme is IND-CPA secure was given in [23]. Our result applies to
a larger class of homomorphic schemes, namely to all shift-type schemes, considers a higher
security level (IND-CCA1 instead of IND-CPA) and shows IND-CCA1 security equivalent to
the hardness of SOAP. In fact, a characterization of IND-CPA security through SMP is an
immediate byproduct of our results.

Concrete Security Characterization Our abstract security characterizations can be ap-
plied to concrete homomorphic schemes by looking at the according instantiations. For ex-
ample, several results such as the IND-CPA security of ElGamal [48], the IND-CCA1 security
of Damgard’s ElGamal [15, 25, 36, 50] and the recently proved IND-CCA1 security of ElGamal
[36] can be easily derived from our characterizations. Additionally, we use the IND-CCA1 char-
acterization to approach the long standing open question, whether Paillier’s homomorphic
encryption scheme [42] is IND-CCAL secure. Clearly, similar concrete security characteriza-
tions can be given for all other group homomorphic schemes that are of shift-type.
Furthermore, we derive two impossibility results. First, we show that no group homomor-
phic scheme with a prime ordered ciphertext group can be IND-CPA secure. Second, we prove
that under certain conditions an IND-CPA group homomorphic scheme where the ciphertexts
form a linear subspace of F" for some prime field F, can never be of shift-type. This partly
answers an open question whether using linear codes as ciphertext spaces yield more efficient
constructions (see [21]) in the sense that the construction cannot be of shift-type.

Systematic Design Approach Another utilization of our results is a systematic approach
for constructing provably secure group homomorphic schemes. By using our abstract scheme
and a concrete instantiation of SOAP resp. SMP, one can directly specify a homomorphic
scheme that is IND-CCA1 resp. IND-CPA secure if and only if the respective problem is hard.

As an example, we consider the k-linear problem [29,45] which is an alternative to DDH
in groups where DDH is easy, e.g., in bilinear groups [30]. After its introduction, many works
addressed the problem of constructing cryptographic protocols whose security is based on the
k-linear problem (e.g., [4,27,29, 31, 35,40, 45]). Continuing this line of research, we present
the first homomorphic scheme that is based on the k-linear problem for £ > 2 (k = 1 is
ElGamal [18], k¥ = 2 is Linear Encryption [4]). In addition, we introduce a new k-problem
(an instantiation of SOAP) that we prove to be hard in the generic group model and to have
the same progressive property as the k-linear problem. This result might be of independent
interest as it can be used to construct new cryptographic protocols with unique features. For
instance, we give the first homomorphic scheme that can be instantiated with groups where
DDH is easy (e.g., bilinear groups) and is nevertheless provably secure in terms of IND-CCA1.

1.3 Separation from Other Related Work

Aside from the related work that we have already mentioned in the previous sections, there
is a substantial number of papers on the construction of IND-CPA (respectively, IND-CCA1,
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IND-CCA2) secure encryption schemes. In this regard, we would particularly like to mention
the work by Cramer and Shoup [14] who give a generic construction of IND-CPA (respectively,
IND-CCA1, IND-CCA2) secure encryption schemes through smooth (respectively, 1-universal,
2-universal) hash proof systems. Furthermore, Peikert and Waters [43] introduce the notion
of Lossy Trapdoor Functions (LTFs) and give a generic construction of IND-CCA1 secure en-
cryption schemes from such functions, while Hemenway and Ostrovsky [28] give a generic con-
struction of IND-CCA1 secure group homomorphic encryption schemes through homomorphic
hash proof systems, which are known to be constructable, e.g., from the Quadratic Residuos-
ity Problem, the Decisional Diffie-Hellman Problem or the Decisional Composite Residuosity
Problem. A somewhat different approach to the construction of IND-CCA1 secure group ho-
momorphic encryption was presented by Prabhakaran and Rosulek [44]. Therein, they build
group homomorphic encryption schemes that are secure in an even stronger sense than just
being IND-CCA1, namely “homomorphic-CCA” secure.

All these works have in common that they build IND-CCA1 secure schemes from non-
interactive assumptions, while we show the IND-CCA1 security equivalent to the hardness of
SOAP which then naturally has to be an interactive problem, as IND-CCA1 is. Therefore, we
stress that we give characterizations of the security of group homomorphic schemes. For all the
above mentioned schemes this means that the underlying non-interactive assumption either
implies SOAP, or is equivalent to it. In the former case, breaking the underlying assumption
would not necessarily break the security of the scheme in question as it is actually equivalent to
SOAP which might still be a hard problem. We do not give a generic construction of IND-CCA1
secure group homomorphic schemes from non-interactive assumptions. Concerning IND-CPA
security on the other hand, this is a different story, as we propose an abstract scheme that
encompasses all shift-type group homomorphic encryption schemes and hence is a also a
generic way to construct IND-CPA secure group homomorphic schemes from non-interactive
assumptions. The latter is due to the fact that the corresponding SMP instance is always
non-interactive.

1.4 Outline

Throughout the paper, we use standard notation and definitions that are summarized in Sec-
tion 2. Therein, we also formally define the class of group homomorphic encryption schemes,
and recall standard security notions for such schemes. In Section 3, we introduce the notion
of shift-type group homomorphic encryption, construct an abstract scheme and prove that it
represents all shift-type group homomorphic schemes. We define certain subgroup problems
(e.g., SOAP and SMP) in Section 4 and use them to prove the desired security characteri-
zations. Next, we instantiate these problems to analyze the security of existing schemes in
Section 5, to show certain impossibility results in Section 6, and to design a new scheme in
Section 7.

2 Preliminaries

2.1 General Definitions and Notation

We write x «— X if X is a random variable or distribution and « is to be chosen randomly

from X according to its distribution. In the case where X is solely a set, x & X denotes
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that 2 is chosen uniformly at random from X. For an algorithm A we write x +— A(y) if
A outputs x on fixed input y according to A’s distribution. If A has access to an oracle O,
we write A®. Sometimes, we need to specify the randomness of a probabilistic algorithm A
explicitly. To this end, we interpret A4 as a deterministic algorithm .4(y, r), which has access to
values r that are chosen uniformly at random from some randomness space. Furthermore, if X
and Y are random variables taking values in a finite set S, we define the statistical difference
between X and Y as Dist(X,Y) := 1 -3 o |Pr[X = s] — Pr[Y = s]|. If Dist(X,Y) < ¢, we
say that X and Y are e-close.

For a group G, we denote the neutral element by 1, and denote the binary operation on G
by “”, i.e., G is written in multiplicative notation. We recall that a subgroup N of a group G
is said to be normal if z-n- 27! € N for all z € G,n € N. In particular, this means that if G
is an abelian group, then every subgroup N is normal. For a finite (not necessarily abelian)
group G, a non-trivial, proper normal subgroup N of G, and a fixed system of representatives
R C G of G/N, we recall the following fact:

Fact 1 Let T be the restriction to R of the canonical surjection G — Q/N,z — z-N. Now
since R is a system of representatives of G/N, every z € G can be uniquely written as z =r-n
with r € R and n € N. Therefore, T is a bijection and there is a group structure on R that
is inherited from G/N: For r,r' € R, we define r © v := 771 (7(r) - 7(r')). We denote the
element in R that corresponds to the neutral element in G/N by 1. It is easy to verify that
with the defined operation ©, R becomes a group with neutral element 1. In addition, we
know that RNN =1, since R C G is a system of representatives of G/N .

If f: X — Y is a mapping between two sets X and Y, we write dom(f) = X for the domain of
fand im(f) for its image. In addition, we write f|g for the restriction of f to a subset S C X,
ie. flg: S = Y with f|s(s) := f(s) for all s € S. If X and Y are groups (multiplicatively
written), and f is a group homomorphism, we write ker(f) := {z € X | f(z) = 1} for the
kernel of f. If f is surjective, we write f~1(y) := {x € X | f(x) = y} for the preimage of y
under f for y € Y. Surjective group homomorphisms are also called group epimorphisms.

We describe computational problems P through experiments ExpiG(/\) for given proba-
bilistic algorithms .4 and G that run in time polynomial in a given parameter A. The output
of Expi’G()\) is always defined to be a single bit. We then say that problem P is hard (relative
to G ) if for all probabilistic polynomial time (PPT) algorithms A there exists a negligible
function negl such that

1
Pr[ExpiG(A) =1] - 5 < negl(\).

2.2  Group Homomorphic Public Key Encryption

The central notion in this paper is that of group homomorphic encryption. Basically, a public
key encryption scheme is called group homomorphic, if its decryption algorithm is a group
homomorphism. Since there are some subtleties to take care of, the following definition gives
a precise formalization of this notion.

Definition 1 (Group Homomorphic Encryption). A public key encryption scheme & =
(G,E,D) is called group homomorphic, if for every output (pk, sk) of G(A), the plaintext
space P and the ciphertext space C are (written in multiplicative notation) non-trivial groups
such that
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— the set of all encryptions C := {c € CA\ ¢ +— Ep(m), m € P} is a non-trivial subgroup of
C

— the restricted decryption DY := Dglc is a group epimorphism, i.e.
D%, is surjective and Ve, d € C : Dgi(c- ') = Dg(c) - Dg(c)
— sk contains an efficient decision function & : C — {0,1} such that
0(c)=1 < ceC
— the decryption on 5\ C returns the symbol L.

Remark 1. All “classical” homomorphic encryption schemes [15, 16, 18,23, 24, 26, 38, 41, 42]
are indeed group homomorphic in terms of Definition 1. We note that for almost all these
schemes, we have C = C which lets the decision function be trivial. In these cases, the
decryption function is a group epimorphism on the whole of C and the special symbol L
is not needed. In fact, we only introduced the decision function to encompass Damgard’s

ElGamal [15].

Remark 2. Furthermore, we note that it is straightforward to extend all of our results in
this paper to ring homomorphic encryption schemes, which are defined in precisely the same
way as group homomorphic schemes, except that every occurrence of the notion “group” is
replaced by “ring” in Definition 1.

We show that the set of encryptions of 1 € P has a certain group-theoretic structure. For
this, we define

Cm :={c€C| Dglc)=m}
as the set of all encryptions of m € P.

Lemma 1. Let € = (G, E, D) be a group homomorphic encryption scheme that does not
necessarily have a decision function 6. Then,

1. Cp = Epi(m, 1) - C1 for all m € P and all random r. It follows that the set {Epp(m,r) |
m € P} for a fized r is a system of representatives of C/Cq
2. C1 is a proper normal subgroup of C such that |C1| = |Cy,| for all m € P.

Proof. We fix a random r and m € P. Let ¢ € Cp, and set ¢; := ¢ - Epk(m,r)_l. Then,
Dgilcr) =m-m~t =1, i.e. ¢ € Cy. Therefore, ¢ = Epg(m,r) - ¢1 € Epr(m,r)-Cy. Conversely,
let ¢; € Ci. Then, Dg(Epr(m,r)-c1) =m-1=m,ie. Ey(m,r)-c1 € Cyp,. The first statement
of the lemma follows immediately.

With respect to the second claim, we show by contradiction that C; # C. Therefore,
assume that C; = C. Since the decryption D7, is surjective, this means that P is a trivial
group, which contradicts the definition of a homomorphic scheme. Now, by looking at the
definition of Cy, we see that C; = ker(D?,). Therefore, C; is a normal subgroup of C (e.g., [34,
p. 13]). The last claim is an immediate consequence of the equality C,, = Epr(m,7) - Cy.

O
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2.3 Security Notions for Public Key Encryption Schemes

We briefly recall the three security notions indistinguishability under chosen-plaintext attack
(IND-CPA), indistinguishability under (non-adaptive) chosen-ciphertext attack (IND-CCAL)
and indistinguishability under adaptive chosen-ciphertext attack (IND-CCA2) for public key
encryption schemes (cf. [2, Definition 2.1]) and explain their role in the group homomorphic
case.

Let £ = (G, E, D) be a public key encryption scheme. We will write O;(-) = €, where
i € {1,2}, for an oracle function that always returns the empty string  on any input. For
atk € {cpa,ccal,cca}, a given algorithm A = (A, A2) and parameter A\, we consider the
following experiment:

Experiment Expij‘%&tk (N):

(pk, sk) «— G())

(mo,m1,s) <— A?l(')(pk) where mg,m; € P and s a state of A

Choose b < {0,1} and compute ¢ +— Ep(mp)

d+— A;QZ(')(mo,ml, s,c) where d € {0,1}

The output of the experiment is defined to be 1 if d = b and 0 otherwise,
if atk = cpa then O,(-) =¢ and Oy(-) = ¢

where if atk = ccal then O;(-) = Dg(-) and Oy() = ¢
if atk = cca2 then O () = Dg(-) and Oy () = Dg().

If atk = cca2, we further require that A5 is not allowed to ask its oracle to decrypt the
challenge ciphertext c.
We say that £ is IND-ATK secure (relative to G) if the advantage

Gl W=

- 1
Pr[Expﬂ%atk()\) =1]— 3 is negligible for all PPT algorithms A,

where ATK € {CPA, CCA1, CCA2}. Bellare et al. [2] show that IND-CCA2 is strictly stronger
than IND-CCAL, which in turn is strictly stronger than IND-CPA.
For reasons of completeness, we prove the following well-known result.

Theorem 1 (No IND-CCA2 Security). Any group homomorphic encryption scheme £ =
(G,E,D), that does not necessarily have a decision function 0, is insecure in terms of
IND-CCA2.

Proof. On input the public key pk, the adversary A; outputs two non-zero randomly chosen
plaintexts mg,my € P with mg # my. The challenger chooses a random bit b € {0,1} and
computes the challenge ciphertext ¢ <— Epi(my). Upon receiving the challenge, A; computes
ci +— (¢ Epp(m;)™1) for i € {0,1}, and asks the decryption oracle for the decryptions of cg
and ¢p. By definition, one of these decryptions is 1, and A outputs the index d € {0,1} of
the decryption that corresponds to 1. Therefore, the advantage of A in the IND-CCA2 game
is %, which is non-negligible. O

Due to this Theorem, we know that IND-CCA1 is the strongest of the three security notions
for group homomorphic encryption schemes.
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We remark that there exist three additional, standard security notions: Non-malleability
with respect to CPA, CCAL and CCA2. For details on these, we refer to [2] and note that, for
obvious reasons, no group homomorphic encryption scheme can be secure in terms of these
notions. Therefore, we do not consider these non-malleability notions. Also, we note that
non-standard variants, e.g., [7,44], lie outside of the scope of this paper.

3 Shift-Type Group Homomorphic Encryption

When looking at all the currently existing group homomorphic encryption schemes (see Sec-
tion 5 for examples), one notices a certain structure in the encryption procedure that all these
schemes have in common. Roughly speaking, the encryption procedure takes a plaintext and
adds some “noise” — this noise happens to be an encryption of 1. Formally, this intuition is
captured in the following definition.

Definition 2. A group homomorphic encryption scheme & = (G, E, D) is said to be of shift-
type, if the encryption algorithm satisfies the following equation for all random r and all
plaintexts m € P:

Epk(ma T) = Epk(m7 p) ' Epk(17 T)7
where p is a public value from the randomness space such that Epi(1,p) = 1.

This definition allows us to define an abstract scheme that we prove to be shift-type group
homomorphic. Additionally, we show that this abstract scheme encompasses all shift-type
group homomorphic schemes and thereby all ezisting group homomorphic schemes. We note
that in previous works, similar abstract schemes have been defined [17, 21, 23]. However, none
of the previous schemes is general enough to encompass all existing group homomorphic
schemes. Therefore, we introduce our new scheme, which we call GIFT (Generic shlFt-Type)
due to its generality in terms of Definition 2.

Definition 3 (GIFT scheme). GIFT is a public key encryption scheme Eq = (G, E, D) with

Key Generation: G takes a security parameter X as input and outputs a tuple (pk, sk) where
pk is the public key that contains descriptions of
— a non-trivial group P of plaintexts and a non-trivial group C of ciphertexts together
with a non-trivial subgroup C < C that will act as the set of encryptions
— a non-trivial, proper normal subgroup N of C such that |C/N| = |P|
— an efficient isomorphism ¢ : P — R where R C C (not necessarily a subgroup but
certainly a group, cf. Remark 1) is a system of representatives of C/N,

and sk is the secret key that contains

— an efficient description of ¢! o v with the epimorphism v : C — R such that v(c) is

the unique representative r € R with ¢ = r-n for some n € N.
— an efficient function & : C — {0,1} such that §(c) =1 < c€C.
Encryption: FE takes the public key pk and a message m € P as input and outputs the
ciphertext ¢ := p(m) -n € C where n «— N.
Decryption: D takes the secret key sk and a ciphertext c € C as input. If 5(c) = 0, it outputs
L, otherwise it outputs the plaintext ¢~ (v(c)) € P.
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Remark 3. In GIFT we know that 1 € N.,% so

Ci={ceCly (W) =1} ={ceC|v()=1}
={ceC|1-cteN} =N,

i.e. N is the group of all encryptions of 1.

Next, we prove that GIFT indeed is a shift-type group homomorphic encryption scheme, and
that every such scheme can be described in terms of GIFT.

Theorem 2 (Generality). Every shift-type group homomorphic encryption scheme can be
described in terms of GIFT, and vice versa.

Proof. We start by proving that GIFT &g = (G, E, D) fulfills Definition 1. By the definition
of £q, it suffices to show the correctness of the scheme and that D7, is a group epimorphism.

The correctness can be readily seen, since we know by definition that v(r) = r for all
r € R which implies v(¢(m)) = ¢(m) and v(n) =1 for all m € P and all n € N. Using that
v and ¢ are homomorphisms, this yields for all m € P :

P (v(p(m) -n)) = ¢~ (v(e(m)) -v(1)) = ¢~ p(m) - 1) = m.

Clearly, D}, = ¢ Yo v is an epimorphism since it is the composition of two epimorphisms

with im(v) = dom(¢™1). It is trivial to see that g is of shift-type.

Conversely, let £ = (G, E, D) be a shift-type group homomorphic scheme and let (pk, sk)
be an output of G(A\) (pk includes value p). We define N := Cy, which is a proper normal
subgroup of C by Lemma 1. We consider the algorithm ¢(-) := Epi(-, p) that takes messages
m € P as input. Then, ¢ is an isomorphism on P since its inverse ¢! is given by the epimor-
phism Dg|g where R := im(y). By Lemma 1, we know that R is a system of representatives
of C/N. Then, we also know that |P| = |R| = |C/N|. Next, we define a PPT algorithm
E that takes the same inputs as F, i.e., the public key pk and a message m € P (written
deterministically it also takes a random” value z as input), and then does the following:

1. Compute n := E,;(1, 2).
2. Output ¢ := ¢(m) - n.

We show that E—pk is an encryption algorithm as required in GIFT:

1. By definition, we have n € N = (i, meaning that we use E,;(1,-) as the sampling
algorithm for N'.
2. The output ¢ of Ep(m) has the form ¢(m) - n with n € N, as required.

Since £ is of shift-type, we know that Fpk and F,; have the same output.

All remaining compontents of GIFT are given as follows: By considering v : C — R as
v = ¢ o Dglc, one easily sees that Dy (c) = p~(v(c)), if ¢ € C. Otherwise, i.e. if §(c) = 0,
we have Dg;(c) = L. Hence, we have successfully described £ in terms of GIFT. 0

This description of all shift-type group homomorphic schemes allows us to restrict our atten-
tion to GIFT. We will make use of this fact in the next sections.
6 Recall that we denoted the representative in R of 1- A by 1.

" Recall that we interpret PPT algorithms as deterministic algorithms by given them an additional input z
that is chosen uniformly at random from some randomness space (cf. Section 2).
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4  On the Security of Group Homomorphic Encryption Schemes

4.1 Subgroup Problems

In [23], Gjosteen introduces a computational problem, called Splitting Problem, together
with a related decisional problem, called Subgroup Membership Problem. We recall these
two problems and start with the former. For our results on the characterization of group
homomorphic schemes in Section 4.2, we need to extend Gjgsteen’s definition of the Splitting
Problem, as we will explain momentarily.

Let C7 be a finite (not necessarily abelian) group, G a non-trivial subgroup of QA, N a
non-trivial, proper normal subgroup of G, and R C § a fixed system of representatives of
G/N. Furthermore, we let 6 : G — {0,1} with §(z) =1 <= z € G be an efficient decision
function.®

We recall that every z € G can be uniquely written as 2 =7 -n with r € R and n € N/
and that there is a natural group structure on R that is inherited from G/N (cf. Remark 1).
Moreover, we notice that the following map is a bijection:

R x N — G given by (r,n) — r-n.

We denote its inverse by o and call o the splitting map for (G,N,R).

Informally, the Splitting Problem SP for (G,N,R) is to compute o(z) for a randomly
given z € G. Before we give a formal definition of SP, we note that our definition extends
Gjosteen’s in that it considers a system of representatives that need not be a subgroup of
G, while Gjgsteen always assumes it to be a subgroup. In addition, we allow G to be a
non-abelian group, while Gjgsteen only considers the abelian case. Now let G be a PPT
algorithm that takes a security parameter A as input and outputs (G, N, R) where G, N and
‘R are descriptions of the respective groups defined above. Consider the following experiment
for given algorithms G, A and parameter \:

Experiment Expi'?G (N):

1. (G,N,R) +— G(N)

2. (r,n) +— A(G,N,R,z) where r € R,n € N and z dog
3. The output of the experiment is defined to be 1 if z = r - n and 0 otherwise.

This experiment defines the Splitting Problem SP (relative to G).

Next, we recall the Subgroup Membership Problem. Let G be a PPT algorithm that
takes a security parameter A as input and outputs descriptions (G, N) of a non-trivial, proper
subgroup N of a (not necessarily abelian) finite group G. Consider the following experiment
for a given algorithm G, algorithm A and parameter A:

Experiment Expi'\’/g (N):

1. (G,N) «— G(\)
2. Choose b <2 {0,1}. If b= 1: z +— G. Otherwise: z +— A"
3. d+— A(G,N,z) where d € {0,1}

8 In the following two definitions, we do neither need the decision function nor the group @\ The importance
of these two objects will become clear later when we define the new problem SOAP.
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4. The output of the experiment is defined to be 1 if d = b and 0 otherwise.

This experiment defines the Subgroup Membership Problem SMP (relative to G) which, in-
formally, states that given (G,N,z) where z «— G, one has to decide whether 2 € N or
not.

It is easy to see that if one can efficiently solve the Splitting Problem for (G, N, R) one
can also solve the Subgroup Membership Problem for (G,N): Let z € G be the challenge of
the SMP for (G, ). By using the SP solver, we can compute o(z) = (r,n) and we have the
relation that z € N if and only if r = 1. So deciding whether z € N amounts to deciding
whether » = 1 which is easy since the neutral element 1 of R is always included in the
description of R (cf. Section 2).

To mention just one of the many concrete instantiations of these two problems, we note
that the Computational Diffie-Hellman Problem is an instance of the Splitting Problem,
while the corresponding Decisional Diffie-Hellman Problem is an instance of the Subgroup
Membership Problem. Further details and other famous examples can be found in Section
5. Also, we want to mention that some other interesting complexity-theoretic results on the
SMP can be found in [23, Section 2.1].

At this point, we are in a position that allows us to define a new abstract problem of
which two very special cases occur in [36]. Therein, it is proven that the hardness of one
of these problems is equivalent to the IND-CCAL security of ElGamal, while the other’s is
equivalent to that of Damgard’s ElGamal. Informally, the new problem that we will call
the Splitting Oracle-Assisted Subgroup Membership Problem (SOAP) is situated in the same
setting as the Splitting Problem (recall the groups ,C’ZQ,N ,R and the decision function )
and consists of two phases. In the first phase the adversary is given access to an oracle

Ogﬁg,/\/ﬂz,&(') that either solves the Splitting Problem for (G,N,R) or outputs the special
symbol L if the input was not an element of G. In the second/challenge phase, the adversary
has to solve the Subgroup Membership Problem for (G, ). Before we define this problem
formally, we remark that it will allow us to deduce characterizations of IND-CCA1 security of
all group homomorphic encryption schemes in Section 4.2. In particular, the characterizations
for ElGamal and Damgard’s ElGamal [36] immediately derive from our generic results.

We let G be a PPT algorithm that takes a security parameter A as input and outputs
descriptions (é,g,N ,R,d) of a non-trivial, proper normal subgroup N of a group G that
is itself a subgroup of a finite group é, a system of representatives R C G of G/N, and a
decision function § : G — {0,1} given by 8(z) =1 <= 2 € G. We consider the following
experiment for a given algorithm G, algorithm A = (A;,.4s) and parameter A:

Experiment Expi?ép()\):

. (G,G,N,R,8) +— G(\)
Oé,g,N,R,é

S s AP (')(QA,Q,N, R,§) where s is a state of A;

1
2
3. Choose b <,\L {0,1}. If b =1: z +— G. Otherwise: z +— N
4. d+— A3(G,G,N,R,6,s,z) where d € {0,1}

5. The output of the experiment is defined to be 1 if d = b and 0 otherwise.

This experiment defines the Splitting Oracle-Assisted Subgroup Membership Problem (relative
to G), denoted by SOAP. We note that the splitting oracle Oglsg’N’R’é(-) does not solve a
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random instance of SP, rather it solves the Splitting Problem for (G,N,R) which are the
parameters of the corresponding SMP the adversary has to solve in the challenge phase.
Therefore, we say that the splitting oracle solves the static Splitting Problem (SSP), while
“static” in this context refers to the SMP instance the adversary has to solve in the SOAP
game. This is why we sometimes denote SOAP by SMPSSP following the notation of [36].

Examples of concrete instantiations of all just described subgroup problems can be found
in Section 5.1. In particular, we refer to Section 7, where we introduce new instantiations of
these problems which we use to construct new group homomorphic schemes with interesting
properties.

4.2 Security Characterization

Our aim is to characterize all shift-type group homomorphic encryption schemes in terms
of the three standard security notions IND-CPA, IND-CCAL and IND-CCA2 for public key
encryption schemes (cf. Section 2.3). Recall that by Theorem 1, we know that for group
homomorphic encryption schemes IND-CCA1 is the strongest of the three security notions.
Therefore, characterizing shift-type group homomorphic schemes in terms of this notion is
highly desirable.

Theorem 3 (Characterization of IND-CCA1 Security). Let £ = (G, E, D) be a shift-type
group homomorphic encryption scheme. Then:

€ is IND-CCAL secure (relative to G) <= SOAP is hard (relative to G).

Proof. “<”: By Theorem 2, we know that we can restrict our attention to the GIFT scheme.
Therefore, we think of £ being a particular instance of GIFT and assume that £ is not
IND-CCAL secure, i.e. there exists a PPT algorithm Al = (Al A58l that breaks the
security with non-negligible advantage f(\). We derive a contradiction by constructing a
PPT algorithm A% = (A" AF*P) that successfully solves SOAP with advantage % fN).

Since SOAP and IND-CCA1 are both considered relative to G, A7**" can simply forward
the public key pk = (P,CA,C,N,R, ¢) of the output of G(\) to A2L. If AS@! queries the

decryption oracle for a decryption of some ciphertext ¢ € CA, A" asks the oracle Ogl’;,c’N’R’é(c)

on input ¢ which outputs the element o(c) = (r,n) € R x N if §(¢) = 1 and L otherwise. In
the former case, it is readily seen that 7 = v(c) and so A]”" forwards the correct plaintext
o7 1(r) to AL (recall that we consider GIFT). In the latter case, A}**" simply forwards L
to ASeal,

After the query phase of A2 is over, A! outputs two messages mg, m; € P to A
The SOAP challenger chooses a bit b & {0,1} and sends the challenge ¢ € C to A%*P, who

then chooses a bit d +— {0,1} and sends the challenge ¢; := E,r(mg) - ¢ to A5, Now, Ascal
outputs a bit d’ and sends it back to A" which sends b := d & d’ to the SOAP challenger.

We have the following relations: If b = 0, then ¢ € C1 and ¢q4 is a correct encryption of the
message my. Hence, AS! makes the right guess with advantage f()\), i.e. Pr[t = blb = 0] >
% + f(A). If b= 1, then ¢ € C and cq looks like a random encryption. Hence, AS®! guesses d

soap
9 -
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with no advantage, i.e. Pr[t = b|b = 1] = . We have shown:
PrlExpions ¢(A) =11 = Y Pr[t =blb = 5] - Pr[b = f]
pef0,1}
1 1 1 1 1
>-. (= “) =4+ ZF0N).
>3 (34704 3) =5+ 3700

“=": For the converse, we assume that there is a PPT algorithm A% = (AP, A3™P) that
solves SOAP with advantage f(A). Similarly to what we have done above, we construct a
PPT algorithm A°a! = (ASel ASe1) that successfully breaks the IND-CCAL security with
advantage f(\).

Similarly to the above, A forwards the part (5 ,C,N,R,0) of the output of G()) to

AP IE ATP queries the oracle Og,gc’N’R’é(c) oninput c € C, ASeal asks the decryption oracle
for a decryption of ¢ that outputs the plaintext m := Dg(c) = ¢ ' (v(c)) if 6(c) = 1 and L
otherwise. In the former case, we notice that ¢(m) € R and so A{°*! sends the correct Splitting
Problem solution (¢(m), ¢(m) - ¢c=1) to AP, In the latter case, A simply forwards L to
AP, After the query phase of A} is over, A outputs two messages mg, m; € P. The
IND-CCAL challenger chooses a bit b & {0,1} and sends the challenge ¢, <— E,;(my) to
Agcal, who then computes ¢ := ¢ - Epk(mo)_l € C and sends the challenge ¢ to A5*P. Now,
A returns a bit d' to A that then outputs b’ := d’ to the IND-CCAL challenger.

We have the following relations: If b = 0, then ¢ € C; and A" guesses b with advantage
f(A), ie. Pr[t/ =blb=0] > 1+ f(A). If b= 1, then c € C\ C; and A" guesses b again with
advantage f()), i.e. Pr[t’ = blb =1] > 3 + f(A). Therefore, we have shown:

PrExpieia(A) =1 = Y Prt/ =bb= 5] - Prb = g]
pe{0,1}

> (14 2f(0) = 5 + ).

N |

O

A careful study of the proof of Theorem 3 shows that, as a special case, we have also proven
a characterization of IND-CPA security. It is interesting to see that for this characterization
the decision function ¢ is not needed.

Theorem 4 (Characterization of IND-CPA Security). Let £ = (G, E, D) be a shift-type
group homomorphic encryption scheme that does not necessarily have a decision function §.
Then:

& is IND-CPA secure (relative to G) <= SMP is hard (relative to G).

Proof. If AP* = (AP, ASP*) is a successful adversary on IND-CPA with advantage f(\),
then the adversary A5*P from the first part of the proof of Theorem 3 successfully solves
SMP with advantage % f(\) when changing every occurrence of A2l by A2 in the proof.
Conversely, let AP be a successful adversary on SMP with advantage f(\). We consider
the adversary A2 = (A ASal) from the second part of the proof of Theorem 3. Since
here, Aﬁcal has no oracle access, it outputs two random messages mg, m; € P with mg # m;.
Then, following the proof of Theorem 3 while changing every occurrence of A%°?P by AP in
the proof, A% successfully solves IND-CPA with advantage f(\). O
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We note that in [23], Gjgsteen already proved one of the implications for a much smaller class
of group homomorphic schemes, namely that if SMP is hard, then £ is IND-CPA secure. We
stress that our result is more powerful since we consider the larger class of shift-type schemes
(that encompasses all existing group homomorphic schemes) and since we give the first proof
of the other implication which is the key ingredient for the highly desirable characterization.
Interestingly enough, compared to the IND-CCAL case, the IND-CPA characterization also
holds for shift-type group homomorphic schemes that do not have a decision function 6.

5 Security Characterization of Existing Schemes

One application of our approach is an easy characterization of IND-CPA and IND-CCA1 se-
curity of existing schemes. For example, the results on the IND-CPA resp. IND-CCA1 security
of ElGamal, given in [48] resp. [36], and for Damgard’s ElGamal, given in [15] resp. [36], are
direct consequences as the next section shows. More interesting is the application to open
problems, and as an example, we will consider the IND-CCA1 security of Paillier’s homomor-
phic encryption scheme [42] in Section 5.2.

5.1 Known Security Characterizations

We want to give two concrete instantiations of the three subgroup problems that we have
defined in Section 4.1, and instantiations of GIFT. Furthermore, we look at two schemes
whose security is based on the respective problem instantiation, namely ElGamal [18] and
Damgard’s ElGamal [15]. Finally, we analyse their security through our characterization
results, Theorems 3 and 4. Interestingly enough, the well-known security proofs of these
schemes [36, 48] immediately derive from our general results. For other famous examples of
instantiations, we refer to [23] and [24], while we refer to Sections 5.2 and 7 of this paper for
new instantiations.

ElGamal. In GIFT, we let C=¢C-= G x G be the direct produg:c of a cyclic group G (mul-
tiplicatively written) of prime order p with generator g. Since C = C, the decision function
§:C — {0,1} is trivial, i.e. always outputs 1. We set P := G and let N' = ((g,h)) be a sub-

group of C generated by (g, h) € C where h := ¢g° for a secret a G Zp. Since NNR = {(1,1)}
where R := ((1,9)) < C with |R| = p, we know that R is a system of representatives of C/N
(the isomorphism is given by (1,4") — (1,¢")-N). Trivially, we have the efficient isomorphism
¢ : P — R given by ¢g" — (1,¢"). Also, we define an efficient epimorphism v : C — R given
by (9", 9°) — (1,¢° - g~%"). We have successfully defined the ingredients of the public key pk
and the secret key sk as required in GIFT. Clearly, this instantiation of GIFT is ElGamal [18].

Next, we look at the three subgroup problems for this particular instantiation. First,
recall that a triple of elements (g1, g2,93) = (9% ¢°,¢7) € G> is called a Diffie-Hellman triple
if v = a - b. Furthermore, one can easily check that (g2, g3) € NV if and only if (h, g2, g3) is a
Diffie-Hellman triple. The Splitting Problem for (C, N, R) is the computational Diffie-Hellman
(CDH) problem for (h,c1), since the splitting map o : C — R x N is given by (c1,c2) —
((1,e2-¢7%), (c1,¢})). The Subgroup Membership Problem for (C,N) is the decisional Diffie-
Hellman (DDH) problem for (h, c1, c2), and SOAP for (CA,C,N, R, 6) is the problem DDHSCPH
where SCDH denotes the static computational Diffie-Hellman problem (cf. [36]).
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In the ElGamal instantiation, we see that Theorem 4 states that ElGamal is IND-CPA
secure if and only if DDH is hard, while Theorem 3 states that it is IND-CCA1 secure if and
only if DDH3PH is hard. The former characterization was proven in [48], while the latter was
proven in [36].

Damgard’s ElGamal. Again, we look at a concrete instantiation of GIFT. Here, we let C=g3
be the direct product of a prime ordered cyclic group G with generator g, and set P := G.
Furthermore, we choose random secrets a, b e Zy, compute the values h := g%, s := g° and
set C := ((g,h)) x G. For a ciphertext ¢ = (c1, c2,¢3) € C we see that ¢ € C < 3 = cf.
Therefore, we have found an efficient decision function 4 : C— {0,1}. Next, we set N :=
{(g,h,s)) and R := {(1,1,9)). Since N NR = {(1,1,1)} and |R| = p, we see that R is a
system of representatives of C/N (the isomorphism is given by (1,1,¢") — (1,1,4") - N).
We immediately derive an efficient isomorphism ¢ : P — R given by ¢" — (1,1,¢9") and
define the map v : C — R by (¢",h", g") — (1,1,¢" - g7°"). We have successfully defined the
ingredients of the public key pk and the secret key sk as required in GIFT and easily see that
this instantiation is Damgard’s ElGamal [15].

By considering the Splitting Problem for (C, NV, R) in this particular instantiation, we see
that the splitting map o : C — R x N is given by (¢1,¢2,¢3) — ((1,1,¢3 - cl_b), (c1,ca,c8)).
Therefore, this Splitting Problem coincides with the CDH problem with parameters (g, s, g")
for random 7 <2~ Zp; In [36], this problem is denoted by CDEG. The Subgroup Membership

Problem for (C,N) is the DDH problem with parameters (g, s, g", g") for random r & Ly
and t € Zp; In [36], this problem is denoted by DDEG. Finally, SOAP for (CA,C,N, R,6) is the
problem DDEG®PEC where SCDEG is the static CDEG (cf. [36]).

For this instantiation, i.e. for Damgard’s ElGamal, Theorem 4 states that it is IND-CPA
secure if and only if DDEG is hard, while Theorem 3 states that it is IND-CCA1 secure if and
only if DDEG>“PE® is hard. The former characterization was proven in [15], while the latter
was very recently proven in [36].

5.2 Paillier’s Scheme

We briefly recall Paillier’s homomorphic encryption scheme [42] by plugging the appropriate
parameters into GIFT. Therefore, let n = pq be an RSA-modulus and set C := C := Z7,,
P :=Z, and N := {r" mod n? | r € Z}}. Recall the following homomorphism

Eg: Ly X Lty — T with Ey(z,y) := ¢g° - y™ mod n?

for an element g € Z*,. It is known that &; is an isomorphism if g = 1 4+ n [8] or, more
generally, if ¢ is a multiple of n [42]. In these cases, there is a unique tuple (z,y) € Z,, x Z
for each w € Z*, with &;(z,y) = w. The value x is called the n-th residuosity class of w
(with respect to g), denoted by [w]y. The problem of computing [w], for given w € Z}, and
g is called the Computational Composite Residuosity (CCR) problem. Paillier showed that
when the factorization of n is known, it is easy to compute [w], given w and g. The problem
of deciding whether = [w]y, given w, g and z, is called Decisional Composite Residuosity
(DCR) problem.

In the following, we fix g € Z, such that &, is an isomorphism and consider the subgroup
R := (h) of C generated by h := 1+ n. In [14, Section 8.2.1], it is shown that R = {1 +
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an mod n? | a € Z,} with |R| = n = |C/N| (in particular, we can efficiently solve discrete
logarithm in R due to this simple structure). In fact, R is a system of representatives of C/N:

Lemma 2. Let 7 : C — C/N be the canonical epimorphism, i.e. w(c) := c¢- N. Then, the
map p :=mw|lr : R = C/N is an isomorphism, i.e. R is a system of representatives of C/N .

Proof. Since p, as the restriction of 7, is a homomorphism and |R| = |C/N], it suffices to
show that p is injective. Therefore, let h® mod n? € ker(p) = N'N R for some a € Z,, i.e.
there exists z € Z7 such that h* = 2" (mod n?). But N is a group and so there exists an
element y € Z* such that y™- 2" = 1 (mod n?), i.e. h*-y" =1 (mod n?). This in turn implies
that &,(a,y) = 1 (mod n?). But &, is an isomorphism, i.e. (a,y) = (0,1) € Z, x Z} which
implies A* mod n? = 1 mod n? and so p is injective. O

Trivially, we have the isomorphism ¢ : P — R given by m + 1+mn mod n?. By [42, Lemma
I+Lemma 2], we know that the “class function” [-], : Z*, — Zj, is a group epimorphism
and so the mapping v : C — R given by ¢ — hlcls m°d 7 16d n? is a group epimorphism. It
can be efficiently computed when the factorization of n is known [42, Theorem 1]. Since we
can solve discrete logarithms in R very efficiently, computing v(c) is equivalent to computing
[c]y-

We have successfully defined the public key pk = (n,g) and the secret key sk = (p,q) in
GIFT. The resulting scheme is Paillier’s homomorphic encryption scheme [42]. Observe that
the splitting map o : C - R x N is given by w — ([w]g,w - g7 “ls). We immediately see
that the SP in this instantiation is the CCR problem. Furthermore, A contains by definition
all elements r™ mod n? for r € Z%. Therefore, the SMP for (C, ) is the DCR problem. As
a consequence of Theorems 3 and 4, we get the following characterizations of the security of
Paillier’s scheme:

Theorem 5 (Security Characterization of Paillier). Paillier’s scheme is IND-CCAL
(resp. IND-CPA ) secure if and only if DCRSCR (resp. the DCR problem) is hard.

We note that the DCRSR is a new (though naturally arising) problem and so a thorough
analysis of its hardness is advisable. Since such an analysis lies outside of the scope of this
paper, we leave it as an open question.

Damgard and Jurik proposed an extension of Paillier’s scheme to a generalised group
structure [16]. We stress that we can achieve a similiar characterization of the IND-CCA1
security of their scheme by applying similar thoughts as the above.

6 Impossibility Results

In this section, we show two impossibility results. The first is stated in the following easy
corollary:

Corollary 1. Let £ = (G, E, D) be a shift-type group homomorphic encryption scheme that
does not necessarily have a decision function §. If C is a group of prime order, then & is
insecure in terms of IND-CPA.

Proof. Since C has prime order, we know that C; is trivial, i.e. it is easy to decide membership
in C1. Hence, the scheme cannot be IND-CPA secure by Theorem 4. O
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Of course, this result easily extends to the general case: Whenever C; is trivial, we just choose
1 as one of the messages in the IND-CPA challenge and can then simply check whether the
challenge ciphertext is the single element in C; or not.

The second result is motivated by the question whether IND-CPA secure code-based group
homomorphic schemes exist. For instance, [1] presents a symmetric shift-type group homo-
morphic scheme (that even allows for a limited amount of multiplications) based on linear
codes. The immediate question that arises is, whether this scheme works in the public key
setting as well. In [20, p. 10], it is asked more generally, whether it is possible to construct a
fully homomorphic scheme that is code-based.

Let IF be a prime field. Recall that a linear code of length n and rank k is a linear subspace
C C F" of the vector space F" such that dim(C') = k. Theorem 4 partly answers the question
from above, when the ciphertext space C is a linear code. We need the following two Lemmata:

Lemma 3. LetU C V be a non-trivial linear subspace of a F-vector space V with dim(U) = k
and dim (V') = n. Futhermore, we assume that we can sample from U uniformly at random.

For all 1 < ¢ < k, we have: If (uy,...,uy) & U‘, then the probability that uy,...,u; are
linearly independent is Hle(l — |F)—R1.

In particular, if ¢ = k, the probability that the tuple (ui, ..., ug) FoUks linearly inde-
pendent equals Hle(l — |F|79).

Proof. The proof works by induction on 1 < ¢ < k. The case £ = 1 is trivial. So let ¢ >

1 and let (uy,...,up—1) Aoy, By the induction hypothesis, we know that this is a
linearly independent tuple with probability [J'Z{(1 — |F|**~1). Now, since dim(U) = &, U
has precisely |F|* many elements. On the other hand, there are precisely |F|*~! many vectors
in U that are linearly dependent to (uq,...,us_1), so the probability that us,...,us_1,u,s are

linearly dependent, where u, & U, is [F|*"1/|F|* = [F|*"*~1. In total this means that the
tuple (uq,...,up) is with probability Hf;ll(l — |F[=F=1) (1 — |F|FR1) = Hle(l — |F|i=F=1)
linearly independent. If ¢ = k, this value equals Hle(l — |F|79). O

This Lemma essentially says that when choosing k vectors of U uniformly at random, the
probability that these vectors are linearly dependent is negligible in the size of F, i.e. they
form a basis of U, except with negligible probability in |F|. By replacing all occurrences of the
uniform distribution in the proof by a distribution that is e-close to the uniform distribution,
we immediately see the following consequence.

Lemma 4. LetU C V be a non-trivial linear subspace of a F-vector space V with dim(U) = k
and dim(V') = n. Furthermore, let D be a distribution on U that is e-close to the uniform
distribution. If € is negligible in |F|, then the probability that the tuple (uq,...,ux) +— Uk
(sampled according to D) is linearly dependent is negligible in |F|.

This yields the desired impossibility result:

Theorem 6. Let £ = (G, E, D) be a shift-type group homomorphic encryption scheme, that
does not necessarily have a decision function §, such that the set of encryptions C is a k-
dimensional linear subspace of F™ and such that the output distribution of the encryption
algorithm is e-close to the uniform distribution for some € that is negligible in |F|. Then, &
is insecure in terms of IND-CPA (relative to G ).
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In particular this holds if C (or the ciphertext space C )% is a linear code.

Proof. According to Theorem 4, we only have to show that SMP is not hard (relative to G).
Therefore, we show that, when given a ciphertext ¢ € C, there is an efficient algorithm that
can decide whether ¢ € Cy or not.

By using E,;, with input 0, we can efficiently sample from Cyp. By Lemma 4, this means
that we can efficiently construct a basis (ci,...,cs) of Cp, where s := dim(Cp), by sampling s
times at random from Cy. If (c1,...,cs) is linearly dependent, which happens with negligible
probability, we sample again until we get a linearly independent tuple.

Note that, since F is a prime field, Cy is actually an F-subspace of C (see [32, Theorem
2.1.8(b)]). On the other hand, the basis vectors c1,...,cs of Cy are vectors in F". Therefore,
when given an arbitrary ciphertext ¢ € C, we can efficiently compute the rank r of the matrix
(c,c1y...,¢5). If r = s, we know that ¢ € Cy, otherwise ¢ & Cy. d

We remark that the same attack also works in the following settings, making the impossibility
result more general:

1. If £ is also homomorphic with respect to the scalar multiplication in V' = F” (i.e. decryp-
tion is F-linear), we do not need the restriction that F is a prime field.

2. Theorem 6 also holds for arbitrary n-dimensional F-vector spaces V, if there is a (publicly

known) efficiently computable isomorphism from V' to F" (the inversion must be efficiently
computable as well). We note that this is not always the case, as is seen by considering
ElGamal’s encryption scheme (see Section 5.1):
Certainly, the ciphertext group C = G x G of ElGamal is a 2-dimensional F,-vector space,
where G is cyclic group of prime order p. In addition, it is easily seen that the group C;y of
all encryptions of 1 is in fact an F-subspace of C. So, if there would be a publicly known
and efficiently computable isomorphism F' : C — IFI%, Theorem 6 would break ElGamal.
Fortunately, we can prove that no such isomorphism can exist:

Claim. If there exists an efficient isomorphism F : C — IF?,, we can efficiently solve
discrete logarithms in G (which is supposed to be hard in the setting of ElGamal).

Proof. Assume that F' : C — IE‘I% is an efficiently computable isomorphism. Let 1 #£ g € G
be an arbitrary element of G, i.e., G = (g). Now, for a given h € G, we can compute
log,(h) by computing logp, 4)(F'(h, h)). This works since F' is Fp-linear (i.e., F'(h,h) =
logy(h) - F(g,9) and so logp g 4)(F(h,h)) = logy(h)) and solving discrete logarithms in
the additive group IE‘?, is easy. O

In the situation of [1], Theorem 6 implies that their scheme is, in the public key setting,
insecure in terms of IND-CPA.

7 A Homomorphic Scheme based on k-Linear

In [30], Joux and Nguyen point out the need for cryptographic protocols whose security is not
based on DDH by showing that in bilinear groups, the DDH problem is always easy. This issue

9 F is a prime field and so the notion of subgroups coincides with the notion of F-subspaces (see [32, Theorem
2.1.8(b)]). Since we assume C to be a subgroup of C, it follows that if C is a linear code, then C is a linear
code as well.
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has been addressed by Boneh, Boyen and Shacham in [4] by introducing an alternative to the
DDH problem called the decisional linear problem and describing a homomorphic encryption
scheme that is based on this new problem. Independently of each other, Hofheinz and Kiltz
[29], and Shacham [45] gave a generalization of the linear problem to the so-called decisional
k-linear problem (LPy). They prove that, in the generic group model [46], LPy; is hard
even if LPy is easy. Following the warning by Joux and Nguyen, they formulate the need for
protocols whose security is based on LPg. We note that LP; is the DDH problem, while LP is
the decisional linear problem. Since the introduction of the k-linear problem, many protocols
have been designed whose security is based on it, e.g. [4,27,29, 31, 35, 40, 45] to name just a
few. However, a homomorphic encryption scheme whose IND-CPA security is based on the
LPy for k > 2 is still missing.

In this section, we close this gap and do even more. We first recall the computational and
the decisional k-linear problem (CLPp, resp. LPj) and formulate the new problem LPiCLP’“
which is an instance of SOAP defined in Section 4.1, whereas SCLP, is the static-CLPy, i.e. it
is defined with respect to the public parameters of the underlying LPj; problem in LPiCLP’“ (cf.

Section 4.1). Trivially, we have the relation that if LPz_Cirlipk+1 is easy, then so is LPiCLP’“. In
addition, it is shown in [36] that DDHSCPH — LPi’CLP1 is hard for generic groups which proves

that LPiCLP’“ is also hard. Furthermore, we prove in the generic group model that if LPiCLP’“ is

easy, then LPzilipk“ is still hard. Thus, we have found a new problem with the same desirable

property as LPg. This result might be of independent interest as it can be used to construct
new cryptographic protocols. For instance, we introduce a homomorphic encryption scheme
whose IND-CCA1 security is based on LPiCLPk while its IND-CPA security is based on the
decisional k-linear problem. Thereby giving the first IND-CCAL secure homomorphic scheme
that can be instantiated with groups where DDH is easy, e.g., bilinear groups.

The k-Linear Problem Fix k € N. Let C := C := GF*! where G is a cyclic group of
prime order p, generated by g. Furthermore, we choose q; & Zy, for i =1,...,k and set
N = {(g‘“”,...,g“”k,gZ?:l”) | Vi =1,...,k : r; € Zp} and R := <1>k x G. Clearly,
V| = pF, IR| = pand NNR = {(1,...,1)}. Therefore, R is a system of representatives
of C/N (the isomorphism is given by (1,...,1,¢") — (1,...,1,¢4") - N). The splitting map
0:C— R xN for (C,N,R) is given by

-1
k -1 k -1
a; a;
(c1y.vyCla1) — ..., cpaq IlcZ ) cl,...,ck,”ci
i=1 1=1

Now, the CLPy is the Splitting Problem for (C, N, R) while the LP is the Subgroup Mem-
bership Problem for (C, ). As a new problem, we define LPiCLP’“ as the instance of SOAP

for (CA, C,N,R,d) where the decision function ¢ is trivial since Cc=c.

The Cryptosystem and Its Security Let 5, C, N, R, §, g and the a;’s be as in the
previous section. Furthermore, we set P := G. We have the isomorphism ¢ : P — R

given by m — (1,...,1,m) and the epimorphism v : C — R given by (c1,...,cx11)
—1

1,...,1, cpar - Hle ci_ai > We have successfully defined all the ingredients for GIFT for a

fixed k£ € N. The resulting cryptosystem can be summarized as follows:
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Key Generation: Input. Security parameter \. OQutput. sk = (a1, ...,a) and pk = (p, 9,91 :=
g, ..., gk := g™) where a; e Z, fori=1,...,k and g is a generator of a cyclic group
G of prime order p such that A is the length of the binary representation of p.

Encryption: Input. Public key pk and plaintext m € G. Output. Ciphertext ¢ with
k
c:= (g{l,...,gzk,m-gZﬁl”) where r; & Zpfori=1,... k.

Decryption: Input. Secret key sk and ciphertext ¢ = (c1,...,cry1) € GFTL. Output. Plain-

—a.

text m = cpaq - Hle c; "

When instantiated with & = 1 the above cryptosystem is ElGamal [18], while for k = 2 it is the
linear encryption scheme introduced in [4]. For the security of the introduced cryptosystem,
Theorems 4 and 3 yield:

Corollary 2. The above cryptosystem is IND-CPA secure (resp. IND-CCA1 secure) if and
only if LPy (resp. LPiCLPk) is hard.

Concerning the hardness of the new problem LPiCLPk , we start with a trivial fact:

Theorem 7 (On the Hardness of LPiCLP’c).

1. LR S

2. LP%CLPl is hard in the generic group model (see [36]) and so LPiCLPk is hard in the generic
group model (by using 1.)

is easy, then so is LPiCLP’c.

Additionally (and this is the more important result), we show the following:

Theorem 8 (LPiCLPk in the Generic Group Model). In the generic group model, we
have the following Progressive Property:

If LPiCLPk is easy, then LPii‘iPk“ is still hard.

7.1 Proof of Theorem 8

Let G be a cyclic group of prime order p. Similarly to Shacham’s proof [45] of the progres-
sive property of LPg, we prove an even stronger result than Theorem 8 by using multilin-

ear maps [6]. We call an efficient map ey : G¥ — Gr k-multilinear, if er(z1ts ... k) =
er(z1,--- ,zk)nle” for all z1,...,2z, € Gand ri,...,7% € Zp.

In what follows, we show that in generic groups featuring a (k + 1)-multilinear map
LPzCLP’c is easy, but Lpzilipk“ is hard. This result implies Theorem 8.

We make extensive use of Shacham’s paper [45], starting with a trivial consequence of one
of his results. In Lemma B.1 of [45] it is shown that when given a (k + 1)-multilinear map,
there is an efficient algorithm for deciding LPj. Immediately, this yields:

Corollary 3. Given a (k + 1)-multilinear map, there is an efficient algorithm for solving
LPYCHPe,

Next, we give an upper bound on the success probability of an LPiCLPk-adversary in the
presence of a k-multilinear map. We proof this results along the lines of [45] (wherein a

similar results is proven for LPy).
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Lemma 5. If a g-step (q > 2k) adversary A solves LPiCLPk in the generic group model
(q+2k+4)?

(featuring a k-multilinear map), then its success probability is at most L 5
Proof. First, we stress that the computational k-linear problems are all equivalent to each
other [45], and we can therefore restrict our attention to the problem LP%CDH. Now, let

go be a generator of G, and aq,...,ag,y & Zp. We set g; == gy for i € {1,...,k} and

koo
g = g§. Furthermore, let 71,...,7%,s & Zy and d & {0,1}, and set Ty := ggZizln and

Ti_q := g3. The adversary A is first given access to an SCDH oracle and then receives the
opaque representations for the elements

9079817' .. 7ggk7ggvgglrlv s 7ggkrk7T07T1- (1)

Upon reception, A outputs a bit d’ and wins, if d’ = d.

Let Q < ¢ be the number of queries made by the adversary to the SCDH oracle. In the
generic group model, the SCDH oracle is equivalent to the multiplication with the element y
(cf., [36]). So in the challenge phase, the adversary A does not only get the opaque representa-

tions for the elements in (1), but also representations of ggz, cee ggQH. As usual in the generic
group model [37], we have an algorithm B that, internally, keeps track of elements handled
by A as polynomials in the ring Zy[A1,..., A, Y, Ry, ..., R, S] and, externally, describes
these as arbitrary opaque strings in some sufficiently large domain. It maintains these two
representations in two lists {(F3,&;)} and {(Fr;, &)} for elements of G and Gr, respectively.
We assume that the domain for external representations is large enough so that, except with
negligible probability, A can only query for elements it previously obtained from B, and B
never outputs the same opaque representation for two different elements.

Now, in the challenge phase, A is provided with elements that B internally represents by
the following polynomials:

g:F=1,g:F=A, ...,q:F=A, g:F=Y, ..., g7 . F=yQ+l
andg?:F:AlRl, ...,g]:kZF:AkRk, TQZF:T(), TliF:Tl.

On these elements to which A is given opaque representations, A can perform the following
operations by using B:

— Group Action: On input two elements of G, internally represented as I} and Fy, B adds
F’ := F} + F; to the representation list of G (if not already there), and outputs with the
corresponding external representation. The group action for Gr is handled analogously.

— Inversion: On input an element of G, internally represented as F', B adds F’ := —F to
the representation list of G (if not already there), and outputs with the corresponding
external representation. The inversion for Gr is handled analogously.

— Multilinear Map: On input k elements of G (internally represented as Fi,. .., Fy) B adds
F':= Hle F; to the representation list of Gz (if not already there), and outputs with the
corresponding external representation.

We see that for all F' on the representation list for G, we have deg(F) < ¢, while for all Fr
on the representation list for G, we have deg(Fr) < 2k. After placing the remaining ¢ — @
queries (recall that A is allowed to make ¢ steps in total) to these operations, it outputs its
guess d’ for d.
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Now, B chooses a1,...,a5,Y,71,...,Tk, S g L. If we set
Al =ai, ..., Ak = ag, Y::y, Rl =T, 0.y Rk =T, (2)
Ty:=vy- Zle ri, Ti_g =8, (3)

the simulation engineered by algorithm B is consistent with these values unless there are two
distinct polynomials £} and F5 on the representation list for G or two distinct polynomials
Fr i and Frs on the representation list for Gy that take on the same value under the assign-
ment above. It remains to show that A cannot construct such a collision independently of
the choice of the random values and that the probability that the choice of random values
produces a collision is bounded. We recall that A additionally has the opaque representations
of 42,...,y®*t! due to the SCDH oracle.

Certainly, the probability that there are at least two equal values among y, 3?2, ...,y t!
is negligible in p, and since all the random values are independent of each other, except for
the value of T; = y - Zle r;, the adversary A must produce a multiple of Y - Zle R;, say
F = XY Zle R; for some non-zero X, only by using the terms in (2) and (3). Clearly,
any monomial that can be produced from A;,..., A, Y, ..., YOt ARy, ... AsRy, Ty, Ti—qg
by using the above described operations is d1v1s1ble by A if it is d1V1Slble by R; for each
i = 1,..., k. Furthermore, for every ¢, each monomial in the expansion of XY R; in F =
XY Zj:l R] must be divisible by A;, hence A; | X (a formal proof of this fact is given in
[45]). Therefore, F' is divisible by the k+ 2 monomials Ay, ..., Ag,Y and R; for some i. Since
A only knows Y and its powers Y2, ..., Y9+l and since no term A, A is known to A for any
a, b, forming F' would require taking the product of at least k+ 1 of the polynomials available
to the adversary. But the multilinear map only allows for forming the product of at most &
terms. Thus, A cannot produce F' and is hence unable to cause a collision.

Finally, we give an upper bound for the probability that a random choice of the values
a1y ,0k,Y,T1,...,Tk, S causes the same value on two distinct polynomials. Since the degrees
of the polynomials in the representation list of G are upper bounded by ¢, the probability
that two such polynomials have the same evaluation for some random values is at most %

(over the choice of values) (cf., [46, Lemma 1]). Analogously, this probability is at most 2& for
polynomials in the representation list of G since the degrees of these are upper bounded by
2k. In the challenge phase, the two representation lists consist together of 2k + @ 4+ 4 values.
When the adversary A does its remaining ¢ — () queries, the lists contain at most g + 2k + 4
values, and the success probability of A is bounded by

q+2k+4 g<q~(q+2k+4)2
2 p 2p ’

In particular, constant success probability requires ¢ = §2(/p) steps. O

Therefore, we have proven Theorem 8 by taking Corollary 3 and Lemma 5 together.

8 Conclusion

In this work, we gave a unified view on group homomorphic encryption schemes by identifying
and abstracting their most fundamental properties (in particular, by identifying the shift-
type structure). This view allowed us to give complete characterizations both in terms of
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design and security of all existing group homomorphic schemes. Beside these all-embracing
characterizations, we also deduced new theoretical insights on existing schemes and their
security (e.g., regarding Paillier’s scheme), on subgroup problems (e.g., the identification of
the naturally arising problem SOAP) and derived two impossibility results (e.g., regarding
the use of linear codes). On the practical side, our unified framework enables us to construct
new encryption schemes quite easily, which we emphasize by giving an example based on the
k-linear problem that in particular, led to the construction of a new problem with the same
desirable progressive property in the generic group model.
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