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Abstract We investigate in this paper the security of HFE and Multi-HFE schemes as well as their minus and em-
bedding variants. Multi-HFE is a generalization of the well-known HFE schemes. The idea is to use a multivariate
guadratic system — instead of a univariate polynomial in HFE — over an extension field as a private key. According
to the authors, this should make the classical direct algebraic (message-recovery) attack proposesr&yafdug

Joux on HFE no longer efficient against Multi-HFE. We consider here the hardness of the key-recovery in Multi-
HFE and its variants, but also in HFE (both for odd and even characteristic). We first improve and generalize the
basic key recovery proposed by Kipnis and Shamir on HFE. To do so, we express this attack as matrix/vector
operations. In one hand, this permits to improve the basic Kipnis-Shamir (KS) attack on HFE. On the other hand,
this allows to generalize the attack on Multi-HFE. Due to its structure, we prove that a Multi-HFE scheme has
much more equivalent keys than a basic HFE. This induces a structural weakness which can be exploited to adapt
the KS attack against classical modifiers of multivariate schemes such as minus and embedding. Along the way,
we discovered that the KS attack as initially described cannot be applied against HFE in characteristic 2. We have
then strongly revised KS in characteristic 2 to make it work. In all cases, the cost of our attacks is related to the
complexity of solving MinRank. Thanks to recent complexity results on this problem, we prove that our attack is
polynomial in the degree of the extension field for all possible practical settings used in HFE and Multi-HFE. This
makes then Multi-HFE less secure than basic HFE for equally-sized keys. As a proof of concept, we have been
able to practically break the most conservative proposed parameters of multi-HFE in few days (256 bits security
broken in 9 days).

Keywords Hidden Field Equations, MinRank, Gbner bases

1 Introduction

The problem of finding a low rank linear combination of matrices is a basic linear algebra problem [12] known as
MinRank in cryptography [16]. This problem is NP-hard [12] and was used to design a zero-knowledge authen-
tication scheme [16]. More generally, it appears that MinRank is underlying the security of several cryptographic
schemes [35, 15]. A well known example is the key recovery attack of the multivariate scheme HFE [41] (Hidden
Field Equations) proposed by Kipnis and Shamir [35] who showed that the security of HFE can be reduced to the
difficulty of MinRank. Their technique is usually called Kipnis-Shamir’s attack, or KS attack. They also proposed
a general algorithm to solve MinRank. The idea is to map an instance of MinRank to an algebraic system. They
then proposed an “ad-hoc” technique to solve such polynomial systems.

Later, Faugre, Levy-dit-Vehel and Perret [27] improve Kipnis-Shamir’s attack by usirip@er bases [9, 10,
11] techniques. In particular, they noticed that the system arising in Kipnis-Shamir’s attack has a very specific
structure: it is bilinear”. This means that each equation of the system is the product of linear forms with distinct
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variables. Soon after, Faeg, Safey El Din and Spaenlehauer [29] presented a detailed study of the complexity of
solving bilinear systems with @bner bases. In particular, [29] proved that (generic or random) bilinear systems
are much easier to solve than (generic) algebraic systems of the same size.

However, it seems reasonable to believe that polynomial systems occurring in cryptographic applications (such
as in MinRank) are likely not generic; motivating then a dedicated analysis for important cases. In [28], MinRank
instances occurring in authentication schemes have been further studied. In this paper, we consider instances of
MinRank occurring in the cryptanalysis of multivariate public-key schemes.

Multivariate Public-Key Cryptography (MPKC) is the set of asymmetric schemes using the NP-hardness of
solving a quadratic system of multivariate algebraic equations [32]. Multivariate schemes are often considered
as possible “low-cost” alternatives [39] to number theory based public key schemes. Their encryption/decryption
procedures are very efficient and can be done in constrained environments [7, 13]. The main drawback is that
the public key is rather large. Indeed, the one-way function is defined by a setqofadratic polynomials
(01(X1, -, %n), -+, Om(X1, - - -, Xn)) € K[Xq,...,%n)™. Namely, the public operation is the application

4 (Vi,...,Vn) € K" (92(V1,---,Vn), -+, Om(V1, ..., Vn)) € K™

To introduce a trapdoor, we choose a transformatidwiven by a system of algebraic equatiqs, ..., fm) €
K[xq,...,X]™ Thanks to a well chosen structure, the system is easy to solve. l€KGhe the group of invertible
linear transformations and let AffK) ~ GL(K) x K" be the group of invertible affine transformations. This
structure is hidden by two affine transformatio#fse Aff 5(K) and.7 € Aff n(K) represented by matric&and

T. The public key is then:

Y=F0F o0
(91,-,09m) = (f1 (X1, %) S), -+, T ((X1,...,%) S)) T.

In such schemes, the transformatiafs .7 and (usually)# are kept secret ard is made public.
To encrypt a message= (my,...,m,) € K", we compute:

C= (Clv--->cm) = (gl(ml;--'anh)a--->gm(m17-">m’])) EKm-

To decrypt, the owner of the secret key inverts separately each componefit, A5and.# are easy to invert,
this is done efficiently. The first multivariate scheme C* was introduced by Matsumoto and Imai [37] and broken
by Patarin [40]. After that, several trapdoor functions were proposed in this framework [41, 36, 38, 44]. HFE
probably remains the most famous one. In this paper we focus on the HFE and Multi-HFE structure introduced
in [41, 6, 14].

In the original HFE [41], the secret inner system is the representation of a univariate polynomial over some
extension of degree € N of a finite fieldFq. This polynomial is chosen to be easy to solve (low degree) and has
a special structure that allows to have only quadratic polynomials in its (multivariate) small field representation.
A practical message recovery attack [24, 26] and a theoretical key recovery [35] undermined the security of this
scheme. To tackle these attacks, a generalization of HFE that uses a sydtemguaitions irN variables (instead
of one univariate polynomial) in an extension field of degdelkas been proposed in [6] and in [13]. In this
paper, we call this construction Multi-HFE. The basic HFE scheme is then an instantiation of Multi-HFE with
N=1d=n.

1.1 Main results

First, we propose an improved key recovery attack against HFE in odd-characteristic. To do so, we have improved
and adapted the “classical” Kipnis-Shamir (KS) attack [35]. The KS attack reduces to a MinRaifigorelated

to the public key. In contrast to the KS attack, we show that the MinRank can be expressed in the small field
and directly on the quadratic forms of the public k@&, ...,gn) € Fq[X1,...,%n]". This allows to considerably

speed up the solving step (for instance we have a speedup factor of 44 f&it andn = 19) and also simplifies

the KS attack. Due to its simpler description, we are able to generalize our attack to MultiNHFEL) in odd-
characteristic. These results were first published in [5] and concern only odd-characteristic fields. In characteristic
2, there is no symmetric quadratic form representing a quadratic polynomial, and contrary to what was stated
in [35], the KS attack does not work as initially described (more specifically the second part of the attack given in
[35]). Using the specificity of the problem in characteristic 2 and the possibility to add the field equations, we give



two methods for adapting our attack in characteristic 2 depending on the parity of the target rank of the MinRank.
Note that our adaptation applies to both for HFE and Multi-HFE.

The MinRank problems which occur here are very specific. First, a certain degree of freedom is left for its
solving. This is related to a large amount of equivalent keys in HFE/Multi-HFE. We isolated two kind of trans-
formations allowing to build equivalent keys. These transformations generalize those given in [46, 47] for HFE.
We show that an equivalent key has a canonical representation in terms of these transformations. As a direct
consequence, we give a lower bound on the number of equivalent keys for Multi-HFE, more precise than the
one given in [5]. Second, the MinRank considered are greatly over-determined. Thanks to recent results on Min-
Rank [27, 28], bilinear systems [29] and a new expression of the Hilbert function using orthogonal polynomials,
we provide a precise complexity analysis of our attack. For all proposed parameter sets, we prove that the attack
is polynomial ind, the degree of the extension and linear in(kpgjust as we conjectured in [5].

Another consequence of equivalent keys is the possibility to attack two variants of Multi-HFE, namely Multi-
HFE and Multi-HFE with embedding. In Multi-HFE several polynomials are removed from the public keys.

We show that only(n— N) matrices are needed to solve the MinRank problem instead TifieseN degrees of
freedom in the MinRank problem allow to perform our key recovery with no additional cost as the rank property
still holds as long as the number of removed equations does not eXcéeamt the embedding variant, the public
polynomials have less variables leading to matrices with fewer rows and columns. However, a low rank linear
combination of the quadratic forms can still be found. In this case, the n&{darresponding to the change of
variable) recovered is rectangular. In order to make it invertible, we need to extend this matrix in a special way to
keep the shape oF unchanged.

All'in all, for the same size of keys, the Multi-HFE family seems to be less secure than the original HFE
(N = 1). As a proof of concept, we provide a practical key recovery on the most conservative parameters (256-bit
security) proposed in [14] in less than 10 days.

1.2 Organization of the Paper

The paper is organized as follows. After this introduction, we present in Sect. 2 the necessary material regarding the
MinRank problem and the algorithmic tools to solve it. We also review previous known attacks against HFE, and
more particularly the KS attack on which ours is based. Section 3 is devoted to the presentation of our key recovery
attack on both HFE and Multi-HFE. Equivalent keys are an important feature for our attack. They are discussed in
Sect. 4 and the consequences are presented in Sect. 5. We use the degrees of freedom induced by equivalent keys
to enhance the solving step by fixing some variables. After that, we unroll our attack on an example in Sect. 6. In
this section, we also describe how to adapt our attack in characteristic 2. The complexity analysis of our attack is
given in Sect. 7, and in Sect. 8 we devise how to extend our attack for the minus and the embedding variants of
HFE/Multi-HFE. Finally, as a conclusion we show in Sect. 9 that Multi-HFE is less secure than HFE.

2 Preliminaries

Let K be a field. Throughout this paper, we use the following conventions: an underlined letter denotes a vector,
e.g.v=(vi,...,vy) € K". A capital bold font letter denotes a matrix, eMy.€ .#nxn (K) where.#,.n (K) denotes

the set ofn x n matrices whose entries lie IK. We also writeM = [m; ;] to denote that théi, j)-th coefficient

of the matrixM ism; j € K for 0 < i, j < n. We will also indifferently use keiM ) to denote the left kernel d¥l

or (more often) a matrix whose rows form a basis of its left kernel. A calligraphic capital letter denotes a general
mapping, e.g%. The set of invertible matrices o/, (K) is denoted by GK(K). The group of affine invertible
transformations is denoted by AfK) ~ GLn(K) x K"

2.1 Multi-HFE

The parameters considered dgN,d,D) € N*. Here,q denotes the size of the ground fielg, d is the de-

gree of the extension fielfi ¢, N is the number of variables and equations of the secret polynomials in the ring
Fyo [X1,...,Xn], andD their degree. In the rest of the paper, we use capital letters for elements relative to the
extensionIqu (a.k.a. “big field” in this paper), e.§y; € Foa, F € Fa [X1,...,Xn], @and small letters for elements



relative toFq (a.k.a. “small field”), e.gy; € Fq, fi € Fq[X1,...,Xa]. To build the trapdoor functior#, we use the
following transformation over the big field

F* (Vi W) € (BN = (Fa(Va, o W), (Ve W) € (o)™

with R/ € qu [X1,...,Xxn], ¥k, 1 < k< N, and dedF) < D. In addition, the polynomialb;, . .., Fy are constructed
in a specific way. For ak,1 <k < N:

u \" u

R= 5 35 AWXTXT+ 5 5 BauXT 4G
1<i<]<N o<uv<d InY 1<T<N 0<u<d
q'+9'<D q'<D

whereA; y ,Bkiu,Ck € Iqu,Vi, j,1<i,j <N,Vu,v,0 < u,v < d. From now on, we say that such systems have
o
(multi-)HFE-shape. For convenience, we denote N d. Let ¢ be a morphism fron@]qu)N to IFg. The transfor-

mation.# uses the small field representation of the secret polynon#als, gy o F#* o ¢,gl with
F 1 (V1,- 5, Vn) €Fg = (ha(Ve,. . Vi), Bn(va, . V) € T

Due to the HFE-shape, each polynontfiglfori,1 <i < nhas total degree 2.

The original HFE scheme [41] is mostly used o®rand always with a single univariate polynomial as a
secret map. It is then an instantiation of multi-HFE with= 2 andN = 1. The construction PHFE [20] (for
projected HFE) is an odd characteristic univariate HFE that uses the embedding modifier (see Sect. 8.2). The
scheme IFS [6] (for Intermediate Field System) is a multi-HFE in characteristic 2 and THFE [14] is a multi-HFE
in odd characteristic (possibly with embedding maodifier). To make the decryption efficient, all instances of multi-
HFE with N > 1 use quadratic polynomials as internal secret transformations. In Table 1, we provide sample of
parameters from the literature.

Table 1 Parameters of various Multi-HFE instances found in seveagers.

qg N d D  security
HFE [41] 2 1 128 513 128
PHFE [20] 7 1 67 56 201
IFS [6] 2 8 16 2 128
THFE[14] 31 3 10 2 150

We briefly review known attacks against HFE/multi-HFE.

2.2 Direct Algebraic Attack

Let (cy,...,Cn) € Fg be a ciphertext. A message-recovery attack in a multivariate scheme reduces to solving a
system of quadratic equations, if@; —c1 =0,...,0n — ¢y = 0}, where theg;’s are the public polynomials. A
classical way to solve algebraic systems is to computetdo@r basis [9, 10, 11, 1, 17]. The historical method

for computing such bases has been proposed by Buchberger in his PhD thesis [9]. The algorifp2isakd

Fs [23] by Faugre permit to improve the basic Buchberger’s algorithm. A good measure of the complexity for
Grobner bases is the so-calledegree of regularityof a system. This can be viewed as the maximum degree of
the polynomials appearing during the computation (see [2, 3]).

It appeared [24, 26] that inverting the public key of the original HFE is much easier than expected (i.e. in com-
parison to a random system of the same size). For original HFE, the degree of regularity has been experimentally
shown to be roughly lagD) (see [26]). This makes the attack sub-exponential in the number of variables. Further
analysis [33] confirmed this result. Note that the field equations>(j.e.x1 =...=X1— X%, = 0) are mandatory
to achieve this complexity. Their role is to force the solutions to be only in the basdffjelb prevent a direct
algebraic attack, it has been proposed [20] to use a field with a bigger characteristic. Durin@linerGrasis
computation, field equations only intervene in degree at lgalibte that the hybrid approach described in [4]
has been especially designed to solve such systems (for “intermediate” fields). As an example, X8rand
q = 31 the complexity of the hybrid approach #2It is better than a direct solving ¥¥) but the attack remains
impractical.



More specifically, a HFE system with> n is very hard to solve with a direct approach such as in [26]r{for
sufficiently big). This intuition has been recently confirmed in [21] where the authors extend the analysis of [33]
for all fields. After this, [19] produces an explicit bound on the degree of regularity which is

(a-1logD)]

We remark that this bound is linear@n This makes the cost of a direct@mer basis computation exponential in
g and then useless for a big enough field. For example, HFE with paramete28, D = 1058 andch = 120, the
(upper) bound on the degree of regularity according to [19] is 35. The corresponding cost for mounting a direct
message-recovery attack is theéfiZbperations. For a comparison, the key-recovery attack presented in this paper
will need 28 operations for the same parameters.

For multi-HFE, there are less results. In characteristic 2, multi-HFE can still be attacked similarly to HFE as
pointed in [6]. This confirms that the algebraic attack is somehow “optimal” Byeowever, as for basic HFE,
the direct algebraic attack does not affect instantiations of multi-HFE with bigger odd characteristic.

2.3 Original Kipnis-Shamir Attack

We now describe the key recovery attack proposed in [35] against the original HFE sdiiemE 1t = d). The
starting idea is to remark that the polynomials of the public key — as well as the transformafiafis— can
be viewed as mappinggé*,.”/*, . 7" : Fqn — Fqn and represented by the univariate polynom@l§, T € Fqn[X]
respectively. The public key relation then becomes

G=9"(X) = T (F*(7*(X))).

Kipnis and Shamir [35] proposed interpolation to recover a univariate representation of the public key. We present
a more efficient and simpler way in Sect. 3 to perform this step.

Kipnis and Shamir [35] also showed that the univariate polynomials can be writt@oasstandard quadratic
forms'. For instance, we have:

n—-1n-1 no1

G= Z)Z)gi,jxc“qj — XGX!, whereX = (X, X9,..., x4 ™)
i=0 =

andG = [gj j] € #nxn(Fqgn). Note that this representation does not work in characteristic 2. In this section and
in Sect. 3, we assume then thpis odd. The characteristic 2 case is addressed in Sect. 6.3. Similarly, we define
F = [fi,j] € #n«n(Fq) as the symmetric matrix representation of the secret univariate polynomial.

The Kipnis-Shamir attack is based on the remark that the rafki®bounded, namely Rar(l?) < logq (D).
Indeed, the degree of the secret polynomial is smaller Ehvand the entried; j in F are non-zero only if, j <
logy (D). In addition, we write7*~(X) = $i-3tX® and.#* (X) = 35X

The equation?*(X) = 7*(#*(.7*(X))) implies the so-called Fundamental Equatidh(see [35] for the
proof):

n-1 P

S 4G =G’ = WFW!, 1)
K=0
whereW = [Wi,j] € #nxn (Fqn) is a specified invertible matrix such that; = S?;,i)

modn: Toralli, j,0<i, j<n.

Finally, for a givenk,0 < k < n, G* is the matrix whosdi, j)-th entry isggik) modn.(j_k) modn: OF all i,},0.<

i, j <n.Asthe rank of is bounded, so is the rank &. Recovering th&’s reduces to solve a MinRank problem.
Once thety's of (1) are known, thes’s are recovered by solving a linear system. From (1), we see that

ker(G') = ker(WF) and thus keiG')W = ker(F). Let £ = [logy(D)], we recall that only the upper leftx ¢

submatrix ofF has non-zero coefficients. Thus, afty— ¢) x n matrix K whose first! columns are 0 ensures

KF = 0. Furthermore, if Ranl) = ¢ and the rows oK are chosen linearly independent, then their rows form a
basis of kefF).



In any case, this is enough to ensure that#tfiest columns of ke(rG’)W are zero. This gives rise to a linear
system oveFq of £(n— ¢) equations in th&? coefficients oW. In addition,W has the following shape:

VT/QQ W%l o Wo,n,z V~\Io_’n,l
Wg.,n—l Woo Woi1 -+ <o Won o

VNan—IZ Wﬂn—-z Wﬂnl—z an—z

N 0o,n—2 O,nfll O,Ol 0,1 N
- g1 g o
W1 oo e Won o Won g vv&0

This is due to the fact thafi1 j.1 = s?}ill
terpret the equations ov&g. This givesn/ (n— /) equations in onlyi? variables ovelfy. Solving this overdeter-
mined system completes the key recovery. The main (and more difficult) part of the attack is to solve the so-called

MinRank problem. In the next section, we present the problem as well as the tools to solve it.

i q
— (M —gd inni i i
)= (i+1) = (s<j7i)) = W;';. Thus, Kipnis and Shamir proposed to rein-

2.4 The MinRank Problem
The (square) MinRank problem over a finite fiédds defined as follows:
MinRank (MR)

Input: n,r,ke NandMg,M1,...,My € #nxn(K).
Question Find — if any — ak-tuple (A1, ..., Ax) € KK such that:

k
Rank AM;—Mg | <r.
(é
We review below known algebraic techniques to solve this problem.

2.4.1 Kipnis-Shamir Modeling

Kipnis and Shamir [35] proposed to formulate MinRank as a multivariate polynomial system of equations. With
the previous notations, solving MinRank over a finite filds equivalent to solving the algebraic system of
n(n—r) equations i (n—r) + Kk variables given by the entries of the matrix

(3h0-w).

Solving this system is equivalent to find a left kernel (in echelon for )§f=1/\i Mi—Myg |. This left kernel can

1 X311 .- Xir

IXnr1... Xnorr

be written in such a systematic form with high probability over a finite field. Initially, relinearization [35] has been
used to solve this algebraic system. The authors of [27] proposed instead todlseQrases tools to solve this
system. In addition, [27] noticed that the system has a specific structure: it is formed by bilinear equations [29].

2.4.2 Minors Modeling

Alternatively, MinRank is equivalent to finding a vectpts,...,Ax) € KX vanishing on all the minors of size

r + 1 of the matrix(zik:l)\i M; —Mp) are zero. We have then to solve a multivariate polynomial syste(r;ﬁg)z
equations irk variables as pointed in [27, 28]. The system has more equations and less variables than the Kipnis-
Shamir modeling but the degree of the equations ldowever, it seems that this approach is more efficient [28]

(at least for MinRank instances used in the authentication scheme [16]). In addition, precise complexity bounds
can be derived for this modeling [28].



2.4.3 Complexity.

We recall the complexity of thegralgorithm as given in [2, 3].

Theorem 1 The complexity of computing a &ner basis of a zero-dimensional (i.e. with a finite number of
solutions in the algebraic closure of the coefficient field) polynomial system of m equations in n variables with F

is
("))
dreg
where Geg is the degree of regularity of the ideal a@d< w < 3 the linear algebra constant.

Informally, dreg is the maximum degree reached during a@l@rer basis computation. For random instances of
square(m = n) quadratic systems, it holds thdtg = n+ 1 (see [2]). It has to be noticed that if the degree of
regularity does not depend on the number of variables, the complexity then becomes polynomial in

We consider now MinRank systems obtained by the minors modeling. Corollary 3 of [28] gives a bound on
the degree of regularity of these particular systems.

Proposition 1 (Faugere, Safey El Din, Spaenlehauer [28])et (n,r,k) be the parameters of a MinRank instance.

LetA(t) = [a j(t)] be the(r x r)-matrix defined by g (t) = z?;g‘ax(i’j) (") (";)t’. The degree of regularity of
MinRank polynomial systems is bounded from abové-byleg(HS(t)) whereHS(t) is the polynomial obtained

from the first positive terms of the series

2 detA )
(1-1) 0

As explained in [28], the proof is valid under the assumption that a variant of ihigeFg conjecture [31] is

true. More recently [30], the same result was proved wkien(n — r)? without using any variant of Bberg’s
conjecture. However, in the overdetermined case (that is to say kvhem — r)?) the conjecture is still needed.

The Fidberg conjecture states that some property (the rank of some linear map is maximal) holds on a Zariski open
subset’ when the characteristic & is 0. Hence, we can find a polynomiala) in Z[a] which does not depend

on the fieldK such thah(a) # 0= a € ¢. WhenK is a finite field the notion of Zariski open set is meaningless

but the following lemma can be used:

Lemma 1 (Schwartz, Zippel, DeMillo, Lipton [18, 48, 42])LetK be a field and Rz K|[x1,...,%n] be a non-
zero polynomial. Selecty...,rn uniformly at random from a finite subsét™ of K. Then, the probability that
P(r1,...,rn) = 0is less thardegP) /| Z"|.

The lemma states that if we choose uniformly at randoffigithe coefficient of the polynomials occuring in the
Froberg conjecture then the probability tiék) = 0 is upper bounded by dég /g and therefore tends to 0 when
g goes to infinity. This means that if thed®erg conjecture is true in characteristic 0 then it is also true Byer
with a good probability when is big enough. In addition, the &lberg conjecture (even ovEs) is well supported
by computer experiments.

Note that the bound given by Proposition 1 is also an upper bound for the degree of regularity of the Kipnis-
Shamir modeling [28]. In Sect. 7, we will see that Proposition 1 is useful to bound the complexity of MinRank
problems coming from HFE/multi-HFE.

3 Improvement and Generalization of the MinRank Attack

To generalize the MinRank attack proposed by Kipnis and Shamir [35], it is convenient to interpret it as ma-
trix/vector operations. In what follows, we denote by Fytite function raising all the components of a vector (or

a matrix) to the powegX in any fieldK of characteristiaj. For example, for a vectar= (vy,...,Vm) € K™, we

have FroR(v) = (v‘fk, e ,vﬁqk) € K™. For a matrixA = [a; j] € .#n«n (K), we have Frop(A) = [aﬂi;] € Mnxn (K).

In this section, we will suppose that the characteristic of the figles different than two. This particular case is
addressed in Sect. 6.3.



3.1 Improving the Univariate Case

To express the KS attack as matrix/vector operation, we introduce the following change of basis matrix.

Proposition 2 Let (64,...,6h) € (Fqn)" be a vector basis dfq» over Fq and My, € .#n.n (Fgn) be the matrix
whose columns are the Frobenius powers of the basis elements, i.e.:

0,00 07"
v | 8
6, 6f o
We can express the morphigm: Fq — IFg as
Vs (VI v Mt

and its inversep; * : F§ — Fpn as
(V1,---,Vn) = ((V1,...,Vn) Mp)[1],
((vl, V)M n) [1] denating the first component of the vecter, . .., v,) M. More generally, we have

n—1

(Vl,...,Vn)Mn:(V,Vq7...,vq )

Proof Let (v1,...,V) € Fg be the decomposition &f € Fqn as a vector inﬁg. Thatis,V =3 1vi6 € Fgp. By
construction:

(V1,...,Vn)Mp = (ivieiqo,...,ivieiqrw) _ (iw&)q - (_iw&)qn

—1

As a consequence:
¢1_1(V15 ce 7Vn) = ((V17 e 7Vn) M n) [1] = V

My being invertible, we have fap;:

O

The matrixM, allows to go back and forth from the big fieldn to the vector-spaciy. It can be used to compute

the univariate representation of the public key in a simpler way than in [35]. Namely, we replace interpolation
by a matrix multiplication. For the sake of simplicity, we consider from now on only linear transformations and
homogeneous polynomials. This is not a restriction since what follows can easily be adapted to the affine case (as
already pointed in [35]).

k
Let F* € #nxn (Iqu) be the matrix whoséi, j)-th entry is fiqfkjik (indexes are modula). The matrix
F* is in fact the “matrix representation” of thg-th power of the univariate polynomi&. Indeed, sincé =
i) Z?;é fi ;X9+9 we have

Kk
n—1n-1 n—1+kn—1+k

q
k n-in-l i1 qi K qitk gi+k K i1 qi
_ - _ q Itk q J
F9 = <Z§ Z)fl,JX(Hq = Z) Z)fi.jxq = Z( Zk i X
i=0 j= i=0 j= i= =



The sums can be divided as follows:

« n—1+k i n—1+k /n—-1+k P
_ |+ it
F9 = Z( Zk fl k,j— kxq a Z zk fl k,j— kXq a
i=n—1+1
_ — —1+k
k_ qk j k i
F9 = Z((Zji Kj— XA z il X+
= |= j=n—1+1
n—1+k n—1 qk 1 n—1+k k i
+ +
+ zka kXq &+ z ki I(xq a

i=n—1+1 j= 1+1

Kk i i qn+i
F9 = Z((Zkfl Kj— X+ +Zof| ket X T )
q n+i | i n+| n+j
+Zj<zkfn+| K, j— kxq +q Z)fm—l k,n+j— kX +q )

Remark thaXd" = X. By reducing the indexes df j modulon, we get:

K n-1/n-1 L k=1 P
F = Z{ Ekficik.jkaqJrq +Zoficik.jkaq+q
2\ L ik &k
S k1 o
B g )
J:

Grouping the sums back together, we obtain
n—1n-1 J

AR 1 X = XPRX, @
Thanks to Proposition 2, we deduce a useful property on these matrices.
Lemma 2 LetMy, € .#n.n(Fgn) be the matrix defined in Proposition 2. We consider also the symmetric matri-
ces(Hu,...,Hn) € (#nxn(Fq))" associated to the secret quadratic polynomials in the small field .., hy) €
(Fglx1,..., %), i.e. h = xHix! for alli, 1 <i < n. It holds that:

(Hi,...,Hn) = (MaFOMYL, . M FIME) M2
Proof By construction, for all/ = (v1,...,vn) € Fg:
(he(V),....hn (V) = ¢1 (F (617 (v)))-

Using the matrix definition o1, we express this relation as follows:

n—-1

(M (V). hn (V) = ¢1(F (vMy)) = (qu (YMp),...,F1 (yMn)) Mt

We recall that the matrix representationﬁjf is F*K. Thus for allv € Fg:

(VH1V, ., VHo V) = (VWM FOMG I, L M P M V) Mt
(Hi,....,Hn) = (MaFOMt o Mo P IME) ML

O

We consider now the symmetric matricéSy,...,Gp) € (///nxn(IFq)) associated to the public polynomials
(G1,---,Gn) € (FqX,-...%])", i.e.gi = xGix for all i, 1< i < n. We want to bind the public matrices; in the



small field to the secret matri in the big field. To do that, the equatiéh= .7 o % o0 .% can also be interpreted
as matrix/vector operations.

G(X) = T 0T 0.7 (X)
(91(X),---, (X)) = (h1(xS),...,h(x9)) T
(XxG1X,...,XGpX) = (XSH1S'X,... . xSH S X) T
(G1,...,Gn) (SHl .,SHnSt)T

Thanks to Lemma 2:
(G1,...,Gn) = (SMaFOMLS,....SMF ML S ) Mt
As T andM,, are invertible, we have
(G,...,Gn) T My = (SMFOMLS, ..., SMF - IMLS). (3)

In other words, we have a direct relation between the polynomials of the public key written as quadratic forms and
the secret polynomidf or more precisely its matricds”, for alli,0 <i < n.
Notice that Equation (3) involves left products of a matrix WwiR. This product has an interesting property.

Proposition 3 LetA = [g; j| € #nxn(Fq), andB = [bj j] = AM, € Anxn (Fgn). We have:
bij=b;_;, foralli,j,0<i,j<n.

Thatis, each column is obtained from the previous one using a Frobenius application. As a consequence, the whole
matrix B = [bj j| = AM can be defined with any of its columns.

Proof Due to the definition oM, in Proposition 2 ; = z[éai k9|?+1’

j
bﬂjfl = (Z}a kel?—‘rl > :

Asaj c [y (i.e. aﬁj = @ j) and since the Frobenius is linear, we get:

n-1 qj
by j-1= z g k( k1 ) = kzoai’kek”: bi.;.

foralli, j, 0<i,j < n. Consequently:

O

From now on, we will writeT *M, = U = [Uj ] € #nxn (Fg) andSMp =W = [W; j] € #nxn (Fqn). We then
rewrite (3) as follows:

(Gy,...,Gp)U = (WF*OWt S WEIwh), (4)
According to Proposition 3y j+1 = u andw. 1= | ., foralli,j,0<i,j <n. Thus, we only need to know
one column olJ (resp.W) to recover the whole matrix. Let thénop, ...,un-10) € (Fqn)" be the components of

the first column ofJ. We have: L
n7

Z)UK’OGM = WF* W' = WFW". (5)
K=

The equation is similar to (1), but we have not used the univariate representatibrHgfre again, as the rank
of Fis logy(D), so is the rank OWFW'. In contrast to the initial attack, th@;’s are the public matrices and not
matrices whose coefficients are in the big field. In the other hand, the solution of such MinRank(ligs)h
This leads to the following theorem.

Theorem 2 For HFE, recoveringU = T-1M, € Anxn (Fgn) reduces to solve a MinRank with=kn and r=
[logy(D)] on the public matriceGy,...,Gn) € AMnxn (Fg)" whose entries are iffg. The solutions (i.e. the
linear combinations) of this MinRank are {fign)".

Computing a Gabner basis of a polynomial system whose coefficients are over a smallerHiglds{ead of
Fqn) is faster as the cost of arithmetic operations is decreased. The expected gain is a {agthd/cost of the
multiplication of two univariate polynomials of degragover the KS attack.

In Table 2, we compare the original KS MinRank attack and the new MinRank attack onNMEEL] with
parameters| = 31,D = 31° + 31 = 992,

Our attack allows a considerable speedup over the original KS attack. It makes it practical for a wide range of
parameter whereas the original KS attack was considered theoretical. Another advantage of this new formulation
is that it can be easily extended to Multi-HFE.
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Table 2 Comparison between the original KS attack and the new attack on NFE1() with parameters = 31, D = 312 + 31 = 992 using
MAGMA [8] (V2.17-1) on a 2.93 GHz Int& Xeon® CPU. The gain (ratio) is expected to be betwaégn andn?.

n 12 13 14 15 16 17 18 19

KSattack (ins.) 390 1325 1796 2754 14434 38996 30064 138656
new attack (ins.) 3.3 6.7 126 257 54.3 107 196 327

ratio 120 197 143 107 266 366 153 424

3.2 Generalization to Multi-HFE

The Kipnis-Shamir attack uses the univariate representation of the public key. In multi-HFE, the degree of the
univariate representation of the secret key is not bounded. This was in fact the initial motivation for the design of
IFS [6]. As a consequence, there is no linear combination o6xffgnotation as in (2)) leading to a small rank,
making the MinRank attack impossible at first glance. The hidden field structure exists but it can only be unveiled
by working in the right field. To have the correct analogy with the univariate case, we introduce a new change of
basis between the “small” field vector spdtgand the “big” field vector spac(d?qd)'\‘.

The whole idea of our generalization is texpand the concepts of Sect. 3.1 8 variables. We recall that
n= Nd. Hence, ar dimensional vector over the small field can be dividedllihlocks of sized. Each such block
represents an element in the big field {fg) and has to be processed as in Sect. 3.1. The process is aplied
times, once for each block. This leads to considlifferent solutions of a MinRank problem. To this end, the
matrix defined in Proposition 2 has to be expanded. Precisely, we consider block diagonal matrices as in the next
proposition.

Proposition 4 Let(61,...,64) € (]qu)d be a vector basis df 4 overFq. LetMg € .#gxd (qu) be the matrix as
defined in Proposition 2. We construct the mavix 4 = Diag(Mg,...,Mq) € #nxn (Fgn), namely
———

N
d—
0,00 ... 6"
d—
0,09 .. 68"
Do 0
q qd—l
60 65 ... 6
Mng =
d—1
6, 67 ...6]
d—1
6,65 ...6;
0 SRR
d—1
B4 6 ... 65
We can express the morphigh : (qu)’\‘ — Fgas
q o q Hmt
(V1. W) = (VL Vv T MV MG

and its inversapy* : F§j — (Fya)N as
(V]_, . 7Vn) — (W17Wd+17 . 7Wd(N—1)+1)
where(Wy, ..., Wh) = (V1,...,Vn) M g.

Proof Once again, we recall that= N d. Hence, an dimensional vectofv,...,v,) € Fg can be divided irN
blocks of sized. Due to the construction d¥ly 4, each block ofd elements in(vy,...,v,) is multiplied by the
matrix M 4. Eventually, the matrix acts just as if we apply Proposition 2 to each ofNthéocks ofd elements.
This is then a multi-dimensional extension of Proposition 2.

11



More formally, we defin&/ = zid:lv(k,l)dﬂ 6 for all k, 1 < k< N. That is, thek-th block ofd components in
(V1,...,Vn) € Fg represents thie-th component ofVy, ..., W) € (qu)'\', forallk,1<k<N,i.e.¢n(V1,...,WN) =

(91(M1),-- -, 92(WN)) = (Va,.- -, V).
Let (WA, ..., Wh) = (v1,...,Vn) MN 4. We point out that th&-th block ofd components of the vectoW, . .. ,\Wy)

(resp.(va,...,Vn)) is (Wik_1)d+1, - ,\/\4«,) (resp.(Vik_1)d+1:-- -+ Vkd)) - Then, by construction d¥l 4:
(Wik-1)d+1:- - - Wka) = (Vik-1)d+15- - - - Vkd) M, VK, LK KON
From Proposition 2:
(Vi a1 Vi) Ma = (V& v ), vk 1<K < N.
By gathering alN blocks:

d— d—
(Wl,...7wn)=(vf°, AV AUUAVA SRR VA i
0 d—1
(V1,.. vn)MNdf(V vq TR VA SR VA I B
This proves the proposition fcmg . AsMy q is invertible, it also holds that
0 d—1 0 d—1
ViV VST M = (v ),
which proves the proposition fary. O

Note that Proposition 4 indeed generalizes Proposition 2 dWhcg = Mq. Using this definition forgy, a non-
standard representation of the secret polynomials — similar to the one of Kipnis-Shamir — can be introduced. For

a multi-HFE shaped polynomidl € Fg [X1,...,Xn], this corresponds to the matrixe .#nxn (]qu) such that

F — XFX whereX — (X1, X, defl, XN XS X,ﬂdfl). We need now to generalize th& matrices used

in Sect. 2.3.

Definition 1 LetF = [fj j] € .#nxn (]qu> be the non-standard matrix representation of a HFE-shaped polynomial
F € Fqal[X1,...,Xn]. We haven = Nd, and the matrix= can be divided iN x N blocks of sized x d. We denote
then byF* 4k € . #Zn (]qu) the matrix obtained fronk by rotating the rows and columns of eatix d blocks

from k positions and raising each components to the pafefhat is, if we denote b¥i j thed x d block of F
located at positiorfi, j), 0< i, j < N, we have:

Fofo - Fofus
F*d,k —
Fﬁllil,o Fr*\lkfl,Nfl
The definition generalizes the one l6f. As in the univariate case the matfx®¥ indeed represents thg¥-th
power of a polynomial iff g [Xa, ..., Xn].
Proposition 5 Let F Iqu [X1,...,Xn] be a HFE-shaped polynomial arfl= [f; j] € #nxn (qu> be its non-
standard matrix representatiof*4¥ is the non-standard matrix representation ofF

To prove Proposition 5, one can remark that the blBgk of the matrixF operates only on the variablés, 1
andXj 1. To apply the Frobenius action to the whole polynonfiait has to be applied to each of these blocks,
leading to the shape 6F%¥. The precise proof can be found in Appendix B.

Thanks to Proposition 5, equation (4) can be generalized for multi-HFE. To this end, we propose a multivariate
version of Lemma 2. Namely:

Lemma 3 LetMy g € #nxn (qu) be the matrix defined in Proposition 4. LIet,...,Fy be the non-standard

symmetric matrices representing the secret polynomials. EFy, and Fi*®¥ be the matrices defined in Def-
inition 1. Finally, we consider the symmetric matric@s,...,H ) (///nxn(IFq))” associated to the secret
quadratic polynomials in the small fielth, ..., hn) € (Fglxq, ... ,xn]) i.e. h =xH;x foralli, 1<i<n.Itholds
that:

4.0t dd—1pgt
(H17...7Hn):(MN7dF1*’ MN,dv”‘vMNﬂFl*’ M ERRE

d.opgt dd-1pgt 1

MNP MY g, MNP EE M ) Mg

12



Proof The proofis very similar to the proof of Lemma 2. We start from the definition of the small field polynomials
hy,...,h,. Forallve Fg,
(M (V). b (W) = on (FL (9 (V) - A (90T (W) -

Similarly, we need to express the above equation by matrix operations. We use then the defirfiticemaofits
inverse using the matrik y ¢ of Proposition 4(hy (v),...,hn(v)) =

d—1 0 d—1

(FF (vMna) s B (M) R M) RS (M) ) M

Recall from Proposition 5 tha *®I is the matrix representation &, Vi, 1 <i < N and¥j,0< j < d. We
replace the polynomials by their matrix expression and we get fgrea]]?g:

(VH1V, ..., VH V) = (VMg Fr%OMY gV, VMg Fo 9T MY gV
-, YMp gFn d=°MN,dy&...,yMN,dFN*d*dfth,dyt) Mk,

which concludes the proof. O

Now, letU = T Mg € e (qu),
andj, 0< j < d. We have the relation:

W = SMu.g € e (qu) andF;() = WFd W, with i, 1<i <N,

G(X) =T oFo 5”( )
(02(X),- -, 0n(x)) = (ha(x ha(xS)) T,
(XxG1X,.. L(Gnﬁ) (xSH15‘xt LXSHRSX) T,
(Gi,...,Gn) = (SH1 S,...,SH, I T.

Using Lemma 3:

SMNdFN*dOM d§ SMr\IdFN*dd Ml d§) NdT' (6)

MatricesT andMy g4 being invertible, we obtain:

(Ga,-,Gn) T Mg = (F1 @, R @D NGO RN,
(le'-an)UZ(Fl(0>,...,F1(d_l), ...... 7F|\|(O),...,FN(d_l)), (7)

As in the univariate case, matricésandW have a useful property.

Proposition 6 LetA = [a; j] € #nxn(Fg), andB = [bi j] = AMN g € #nxn (Iqu). Foralli,0<i<nkO<k<
N and j0< j <d, we have:
bikaj = Bleqy (1) moda)-
That s, for each group of d columns, one column is obtained from the previous one using a Frobenius application.

Each group of d columns is defined by one of them, and consequently, the whole matrix is defined by N columns,
one in each group.

The proof of Proposition 6 is similar to the proof of Proposition 3. The property comes from the fact that each
group ofd columns is processed by a mathky leading to a similar property as Proposition 3 for each group.
The precise proof can be found in Appendix B.

To get the analogy with the MinRank in the univariate case, we remarketifa? = F;. By considering the
(id)-th columns ofU for all i,0 < i < N we have

n-1 n-1
Z)Uk,onH =WF W', ..., ;uk,(Nfl)deJrl = WFyW". (8)
k= k=

The following lemma allows to bind (8) to a MinRank problem.
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Lemma4 Let(Fy,...,Fn) € (Fg[Xa,. .. ,Xn])N be polynomials having Multi-HFE shape. For allk< k < N, let

Fy € Mnxn (qu) be their non-standard symmetric matrix representation. Let D be the degree of each polynomial
Fcand/ = [log,D]. Forallk,1 <k <N
Rank(Fk) < N¢.

Furthermore, let

|0d—c¢ ld—¢| Og—rd - Od—r,d
Od—r.d ;
Knd,e = - € Mn-Nin (qu)
: Od—r¢d
Od—r.d ... Od—ed [Og—c la—e|

where0Qq_, ¢ (resp.0q_,,q) is the zero matrix witl{d — £) rows and/ (resp. d) columns, anth_, is the identity
matrix with (d — ¢) rows and columns. Then, the rows of the malitixq ( are a basis of the left kernel & with
high probability and does not depend on the entrieB,of

Proof Each polynomiaF, has degree bounded By, for k, 1 < k < N, thus each variabl¥; has at most degree
D, for alli,1 <i < N. The only non-zero entries of the matfx are the ones in the upper-left |g@) square
of eachN x N block of size(d x d). Thus,Fy has at mosN¢ non-zero rows and columns and has the following
structure

Ak0,0 AkO’N_l

Frk = : :
AN-10 A N-1N-1

where each blocl " is ad x d matrix

A{;’{)’O...A{;’{)’go ... 0
. i i
A = Ak,é,O"'Ak,é,é'

o ... ... 0

o ... ... ... ... 0

fori,j, 0<i,j < N. As the consequence, the rank of such méefgis at mostN/.

From the construction oKy g, it is clear thatKy g¢Fk = 0. As Ky g, has exactlyN(d —¢) = (n—NY)
linearly independent rows, if Ra) is exactlyN¢, which is the case with high probability, théty 4 is a
basis of the left kernel dfy. O

As in the univariate case, the problem of finding correct valuedfturns out to be a MinRank problem.

Theorem 3 For multi-HFE, recovering) =T~1M N.d € #nxn (Fgn) reduces to solve N times a MinRank problem
with k=nand r= Nlog,(D) on the public matrice$Ga,...,Gn) € #nxn (Fq)". On the other hand, the solutions
(i.e. the linear combinations) of each MinRank areFHa.

Proof TheN MinRank solutions come from (8). From Lemma 4, the rankpfs bounded by = Nflog,(D)].
SinceW is invertible, the rank ofNFyW! is equal to the rank oy for all k,1 < k < N. From Proposition 6,
knowing one column in each of thi¢ sequences af columns inU is enough to recover the whole mattix This
allows to conclude the proof. ad

Recovering the transformatioff reduces to solving a MinRank problem. Recovering the other parts of a secret
key reduces to solving linear systems. This will be discussed in Sect. 6. Before that, we study the effects of
equivalent keys. This allows to better understand the MinRank arising in HFE/Multi-HFE as well as the other
parts of the attack.
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4 About Equivalent Keys and Induced Degrees of Freedom

Two secret keys are equivalent if they lead to the the same public key. The subject has already been treated for the
original HFE [46, 45, 47]. It has been shown thaf"(q" — 1)? equivalent keys exist for HFE. This phenomena is
even amplified for multi-HFE. In this section, we exploit this fact.

Definition 2 Let (.Z*,.7,.7) be a multi-HFE private key with parameteig N, d, D) € N*. We say that the key
(¥, 7", 7") is an equivalent key if and only i¥%*' has HFE-shape, and

T'opno Fop oS =G = T opno T oyt o.” (same public key)

Wolf and Preneel [46, 47] introduced the notion of sustaining transformations which is a couple of affine transfor-
mations *, %*) such that#* o #* o &/ * preserves the “shape” of *. For HFE, the “big sustainer” (multipli-

cation in the big field), the “additive sustainer” and the “Frobenius sustainer” keep the HFE-shape unchanged. In
multi-HFE, multiplication keeps the HFE-shape. But, we also have any affine transformation rvéhniables.

Thus, the two first sustainers can be generalized as follows.

Proposition 7 Let(#*,., ) be a multi-HFE private key with parametgig N, d, D). For any invertible affine

transformationg.«”*, 28*) € Affy(Fa) x Aff N (Fga), We sete/ = gy oo/ oyt and # = ¢y o 2" o ¢ *. Then
(B 0T o, o roS, ToBl)

is an equivalent key.

Proof First, we show that?* o .7 * o &#* has HFE-shape. This is due to the fact that the only exponents occurring
in a variableX; is a power ofg. The transformatiors™* mixes the variableXs, ..., Xy by affine combinations. By
linearity of the Frobenius, no other exponents can appear and the system keeps its HFE-shape. Trizélly, as
only performs affine combinations of the polynomi&ls. ..,y the shape is also unchanged. To conclude, we
notice that

G=Topno T opylos
G = (yO¢NO%*7lO¢N71)O¢NO(<@*O§*Oﬂ*)O¢,\TlO(¢NOJZ{*710¢,Q]'OL§/)
G = (foz%’*l)0¢N0(%*0§*od*)o¢,\l’lo(ﬂ’loy),
O

The following proposition provides the structure of a transformation used in Proposition 7 in the linear case (it has
to be slightly adapted in the affine case).

Proposition 8 LetA* = [a; j] € #nxN (]qu) be the matrix associated to a linear transformatiofi over(]qu)N.
The transformation™ can be represented in the figlg as:

A= MN,dA\;M ,q]a € -/%nxn(IFq)a

whereMy 4 € #nxn (qu) is the matrix of Proposition 4 and* ¢ Mnxn (]F
blocks of Frobenius powers of element\df i.e.

qd> is a matrix composed of NN

0,0 aoN-1
q q
) BN-1
d-1 d-1
q q
) B N-1
A* =
an-1,0 aN-1,N-1
q q
aN-1,0 aN-1N-1
d-1 d-1
q q
aN-10 aN_1N-1
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Proof Let (V1,...,W) € (Fq)N. We set:

N-1 N-1
(Zl,...,ZN) Z%*(Vl,...,VN) = &’0\A+1,..., ai’N71\4+1 .
2 2

According to Proposition 4, we need to compute the Frobenius imag&s,of.,Zy) to split it to the small field.
For allk,0 < k < d, we have:

k k N-1 k k N-1 k k
(Zg IR Zl’:\1| ) = (20 alq,O\/ii—l’ (AR 20 alq,N—l\/ij-l> '
1= 1=

We notice thaTZi‘]|k is obtained only from thyjqk’s for j, 1< j < N. This explains intuitively the shape oF We
constructed the matri&* such that:

qd—l

d— d—1 —~ d—
Ve VST v v A = @28 eS8 . )
Let A € #n«n(Fq) be the small field representation.ef*, we now prove that = MN7dﬁM N}d'

First, let (vi,...,vn) € Fg (resp.(zi,...,zn) IS IFQ) be the small field representation 0f;,...,Vn) (resp.
(Z1,...,2n)). It holds that

(V]_,...,Vn)A - (Zla"'azn)'
From Proposition 4, we know that

d—1

d—1 _
(V1 V) Mg = (Vi, Ve VT VG G- V),
d—1 d—1
(z1,....2)MNg = (Z1,2],....Z] ..., 20,20, 2 ).
By replacing in (9), we get
(Vl»--me)MN,dA‘; = (Zl7”'7Zm)MNAd
(V1. V) Mg AT MGy = (22, Zm).
Then,A=M NtdAV*M ﬁld is the small field representation of*. a
We consider now the Frobenius transformation.
Proposition 9 Let(%*,.7,.7) be a multi-HFE private key with parameteig N, d, D) € N4 Forallk,0< k< d:
(Frobco.Z* oFrobyx, @noFrobopyto”, 7 o¢noFrobykopy?)
is an equivalent key.

Proof For anyk,0 < k < d, the polynomials of

_ — 13
d—k qdk

(Frobxo.Z* o Froby.) (X1,..,Xn) = (Z5 (X7 ..., %8 )"

have the same monomials &' (Xy,...,Xy) but their coefficients are raised to the poweghfThis is explained
in (2). As a consequence,.#*(Xy,...,Xn) has HFE-shape, so {§rob o.#* o Froly.k) (X1, ..., Xn). In addition:

G =TopnoF opylos
G = (fo N OFrObj_kO¢ﬁ1) o (¢N oFroho.%* o Frobj_kod),\jl) o (¢N o Frob<o¢N*105ﬂ) .

As the Frobenius application is linearliy, the transformations” o ¢y o Frohy.i o¢,\‘11 and ¢y o Frob, o¢,\jl 0
remain affine. Finally, Fraln.Z* o Frohy.x has HFE-shape, proving Proposition 9. O

We introduce also the matrix representation of a Frobenius application.
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Proposition 10 Let Froby € .#nxn(Fq) be the matrix representing the linear transformatigg o Frob ogy*
overFg. Then

Froby =M N,dPN,d,kM ,g]a
wherePy gk = Diag(Ra .- - -, Rd k) andRq is the dx d matrix of a k positions left-rotation, that is
| N

Proof Let (V1,...,W) € (Fga)N. We set
o o
Frob(Va,...,W) = (V{' ..., W) = (Z1,-.., Zn).

In the big field, a lefk-rotation of(V, V9, ... ,Vq‘H) is the application of Frabto such vector. Indeed,
Frob<(V,Vq,...7qufl) = (qu,...,qufl,V,...,qufl). More generally, the matriRy 4 x makes this rotation on
eachN components in the big field. That is

Ve v v v Puak=
(qukP. 7quou7 1q0, .,ka—17 | ,ﬂk, ,V,f]‘d 1,\/,307 7Vl9‘k—1)
We have then:
v v v v Y Pnak= Lz, (10)

As in the proof of Proposition 8, I, ..., vn) € g (resp.(zl, coyZn) € Fg) be the small field representation of
(V1,..., W) (resp.(Zy,...,2n)). According to Proposition 4, it holds that

d—1 d—1
(Vi V) Mg = (VL VoV V),
d— d—
(2@, z)Mg = (20,290,282 2,
By replacing in (10):
(V1,.--,Vm)MndPndk = (215, Zn)Mn g
(V1, -, Vm) MNa Pnd MN?& = (2,...,Zm).
Then,My gPnakM gld is indeed the small field representation of Frob a

According to Proposition 9, we can deriyg— 1) other equivalent keys from any valid private key. This refers to

the so-called Frobenius sustainer of [46, 47]. To count the number of equivalent keys introduced by Proposition 7
and 9, we need to know how many different keys they generate. To do that, we will show that any equivalent key
obtained from the Frobenius and affine sustainers has a unique representation.

Lemma5 Let.e/” € Affn(Fya). Forallk, 0 < k < d, there exists? ™ € Affn(Fqq) such thatFroloo7* = 7" o
Frob.

Proof As Frohy.ko Frohy is the identity, it holds that
Froly o.o7* = Froly o7 o Froly.x o Froh.
Now we prove thaty*' = Frol o7 * o Frohy.k is an affine transformation. L€X;, ..., Xn) € (]qu)N:
*/ * % qd—k qd—k
o (Xq,...,Xxn) = Frobco.s/* o Froly (Xe...., Xx) = Froboo/ (xl XS )
. B d—k B d-k
! (X, X) =Fro (NG AoXTy + Ao 3G AN T+ Aw)
. N d—k ok B dk Gl
uQ{*/ (Xl, . ,XN) = <(ZiNolAi,0Xicll +AO) gy (ziNzolAi,Nflxi(ll +AN) )
gk k 4K d k
A (K- XN) = (Zi'\lzolAﬁoK(ilJfA& yeo »Zi,\l:olAufq,NA)(i(il*Aﬂl )
K K K k
! (K, X0) = (NG ATX 1+ AL S AT X+ AT )
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The transformationz*' is indeed an affine transformation with the same coefficients’4saised to the power

<. O

Lemma 5 shows that the Frobenius and the affine transformation somehow commute. This will be useful to write
uniquely an equivalent key.

Lemma 6 Let (7%, /") € Affn(Fqa) x Affn(Fqa) be two invertible affine transformations. Froby oo/ =
Frohys oe7*, for k. K',0 < kK < d, thenes* = &* and K = k.

Proof First, it is straightforward to see thatkf= k', then
Frob o.e7* = Frol o.7* < Frohy.xo Frob o.e7* = Froly.xo Frob oo™ < o7* = o7 .

Then, we have only to prove that Fioho* = Froh, o«7* = k =k'. Assume for a contradiction that there exists
k andk’ such that Fropo.27* = Froh, o.o7* andk’ # k. Then, we can writé = k+ £, with £ £ 0:

Frob o.e/* = Froly oe7™
Frob o.e7* o Froky.x = Frob. ¢ o.27* o Frohy.x
Froby o.27* o Frohy.x = Froly o Frob o.27* o Froly..
According to Lemma 5% = Frob, o2 o Frohky.« and.o/* = Frob, oo7* o Frohy.x are also affine transformations.
We write: - -
o* = Frobyoga/*.
As ¢ +#£ 0, the transformation Fr@b?%v*’ has degreq’. That s, each polynomial in the representation of Emjﬁv*’
has the form(Zi’\'zlAlquiqé +A31) with Ay € Fga. As o/ is invertible, at least one term of degrgleis non-zero.

Thus, Frobo.s/* cannot be equal ta/* which is an affine transformation and has maximal degree 1. This proves
that Frolg o.&7* = Frohy o.&/* = k=K and«* = & O

Together with Lemma 5, Lemma 6 is used to derive a canonical representation of equivalent keys.

Theorem 4 Let(.#*,.7,.7) be amulti-HFE private key with parameteig N, d, D) € N*, Leto/*, #* € Affy (Fga)
be affine transformations in the big field an@k k < d be an integer. Each Multi-HFE equivalent Ke§’, ', ")
obtained using Proposition 7 and 9 can be written uniquely

F' =Frolo%* 0. F* o.a/* o Frohy.«
" = pnoFrohoa Lo tos
T = T o PN o%*floFrOQj.kOqﬂql.

Proof Let (#',.,7") and(#,.%,7) be equivalent keys. By hypothesis, a equivalent key has been obtained
by composition of several Frobenius and affine transformations. According to Lemma 5, the transformations can
be reordered. Hence, any equivalent key can then be written as

ﬁ/:Frob<lo---oFrol:kroﬁio---o%ﬁboﬁ*o;afn’;o---O%*OFrObj_kFO---OFrobj_kl
" = pnoFroly, o---oFrol, oa to -0 topytos
T = yO(pNOgg;;lo"'OﬁiilOFrOQj_krO'"OFrObj_klod),ql.

The composition of two affine transformations is an affine transformation, and the composition of two Frobenius
transformations is a Frobenius transformation. This can then be simplified as

F' = Frolo%* o F* o a/* o Frohy.x
S = ¢NoFroh(oM*_1o¢,\_llo5’
T =T odn o@*floFrobj.ko(Pﬁl.

To show the uniqueness of this representation, suppose that there£Xis#” € Affy(Fyo) andk’ € N,0< k<d
leading to the same equivalent key. Then, by considefifigwe get:

¢n o Frobo? Lo dyto.” = ¢noFroby o/ Lo pyto.s
N N
Frohoa/*~* = Frohy o7*' 1.

According to Lemma 6, this implies thkit=k and.cz*~1 = o7*~1. Similarly for 7', we show thatg*'~1 = %1,
i.e. the representation is unique, proving the theorem. O
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We are finally able to count the total number of equivalent keys coming from Proposition 7 and Proposition 9.

Theorem 5 Let (.#*,.7,.7) be a multi-HFE private key with paramete(sg, N, d, D) € N*. There are exactly

B 2
d <qu NI—!:L(qu o qdi)>

equivalent keys coming from affine transformations and Frobenius transformations.

Proof According to Theorem 4, each equivalent key is uniquely defined by two invertible affine transformations
(o, ") € Affn(Fqa) x Affn(Fge) and an integek, 0 < k < d. The number of equivalent keys is the number of
elements in

GLN(Fg) X (Fea)N x GLn(Fa) X (Fea)N x Z/d Z.

There are exactly]¥ ' ()N — (g)') invertible matrices in#xn (]qu) . Thus, we obtain the expected number
of keys. O

5 Weaknesses of HFE/multi-HFE Induced by Equivalent Keys

We show here that the high number of equivalent keys turns out to be a weakness for HFE/Multi-HFE schemes.
For example, an interesting property of the MinRank arising in HFE/Multi-HFE is that the kernel of the matrices
in (8) is independent of the equivalent key used up to Frobenius transforms. To show this result (Theorem 6), we
first need to prove the property for a single private key.

Lemma 7 Let(.Z*,.,.7) be amulti-HFE private key with parameteig N, d, D) € N*. We denote b§Gy, ..., Gp) €
(Mo (Fq))" the matrices associated to the public k8y= 7 o F o . LetS € Mnxn (Fq) andT € Mnxn (Fq)

be the matrix representation of and .7, respectively. Finally, led = T-IMy 4 = (Ui j] € Anxn (qu), and
K =ken(3" 3 uioGit1). Thenvt,k,0<t <N,0<k<d,

n—1
ker(_zo Ui,td+kGi+1> = Frob (K) .

Proof Lett,0 <t < N andk, 0 < k < d be two integers. Using equation (6) it holds tlﬁt;()luiythrkGiH =
SM aFt" MY S . As SandMy 4 are invertible, we have that

n-1
ker Z)ui,tmkGiH — ker(SMN,dFt*d’k)
i&
n—-1
ker Zoui,td+kGi+1 SMyg = ker(Ft*‘*k)
=
n-1 »
ker % ui1td+kGi-~-l = ker(Ft* ) )Mﬁijs—l.

Recall that = [log, (D)]. With high probability, ketFt) = ker(F1) = Kn.ane, ¥, 1<t <N (see Lemma 4). From
Definition 1, the non-zero columns & *%X are the ones of; after rotating the columns of eachx d blocks
from k positions. Then, rotating accordingly the columnXefy n, leads to a basis of ke K). This rotation

is exactly the one performed by the matfix 4« defined in Proposition 10. Then, K&¢*¥) = Ky aneP.d. k-
As Py gk is @ permutation matrix, its inverse is simgy 4 (the rotation is done the other way). Finally we
obtain

ker (30 Uit kGi+1) = KnanePrng, kMy5S™?
-1
ker (573 ixa+4Giv1) = Knane (MnaPR ) S

ker (g Ui td+kGit1) = Knane (M N,dPN,d,k)71571~
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The matrixMy ¢Pn d « iS obtained fromMy 4 by rotating the columns of eachx d block to the left. Due to the
construction oMy g, this is equal to FrafMy q). Then:

ker (S 2 Ui kGis1) = Kn.ane Frob (Myg) *S2
ker(zl";ol ui’thrkGiJrl) = KN,d,Né‘ Froby (M Nld) Sﬁl .

As the coefficients o6 andKy g,n¢ lie in the fieldFy, this is equal to
ker <n§:Ui td+kGi+l> = Frohy (KN d.neM ﬁldsil> :
i
Finally, asK y a.n¢ = ker(F1) = ker(F1*%0), we conclude:
n—-1 n-1
ker(;} Ui,td+kGi+1> = Froh (ker(Fl*dD)M gi,S*l) = Froh (ker(iZj ui,oGiH)) = Frob (K).

This proves the lemma. ad

In other words, the kernel is unique up to Frobenius transformation. This property is used to prove the following
theorem for any equivalent key.

Theorem 6 Let(.#*,.7, 7) and(F*,.7",.7") be equivalent multi-HFE private keys af@s,...,Gn) € (#nxn (Fg))"
be the matrices of their associated public key. (tT) € #nxn (Fq) X Anxn (Fq), and (S, T') € Mnxn (Fq) ¥
AMnxn (Fq) be the matrix representation ¢f, 7), and (.#/, 7") respectively. Let) = T My 4 = [uij] €

Mren (F ) andK = ker( 13ty oGi1). Similarly, etV =T/ My g = [Uf ] € Apn (Foo ) andK' = ker(S1-3 1 oGi-1).
Then3k, 0 < k < d, such that:
K’ = Froly (K).

Proof From Theorem 4, we can writ€’ = .7 o ¢y o 7* L o Frohy. o¢,ql. Each of these application has a matrix
representation (see Proposition 4, 8 and 10). The matrix correspondifigsahenT’ =My g PN,dﬁd,kA**lM ﬁ_ldT,
whereA* has the shape of Proposition 8. Its inverse is the matrit = T~1M N’dAv*Pgld_dko Ny We have

U=T"Myg=T'M N7d§P,gi,’d7kM NaMna = UA*Py dk-

LetAV*PN,d’k = (& j] € #nxn (qu> , we have:

n-1
U= Z)ui,tam-,Vi,j,Og i,j<n.
t=

Due to the shape o andPy 4k, &,j is non-zero ifand only if = j —k modd. Then, we haveli’7j = zt'\‘:},l Ui td+(j—k modd) 8t d-+(j—k m
foralli, j,0<i,j < n. Therefore

n-1 n—-1 /N—1
/
i; Ui oGit1= iZD tZO Ui td-+(—k modd) @ d+(—k modd),0 | Gi+1
N-1 -
— tZO & d+(—k modd),0 i; Uit (—kmodd)Gis1 | -

We denote by,  the matrix(z{‘;o1 Ui td-(—k modd)Gi+1). One can see that the kernel of this matrix is the same
forallt,0 <t < N. Indeed, according to Lemma 7:

ker (m k) = Frolg (.« mod ¢ mod d(K) = Frobk mod a(K) ¥t,0 <t <N.
As
n-1 N—1
20 U oGiy1= ZO 3 d+(—k modd),0m,—k
i= t=
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is a linear combination o#; _y fort,0 <t < N, then ker(-t,_k) - ker(zi”;ol Ui/,oGi+1>- As U’ is an equivalent
key, there exists — according to (8) — a matfi% such that

n—-1

Z} U oGir1 =W F W",

i=
so that the rank of "} U ¢Giy1is Rank(Fy).

Similarly from (7), we gem _« = 37" Ui td(—kmodd)Gi+1 = WF1*% W', whereW is invertible. As
rotating rows and columns of a matrix does not change its rank, it holds that

n-1
Rank(m ) = Rank(FtH*df’k) = Rank(Fy,1) = Rank(Fy) = Rank( Z)Ui/,oGiH) .
i=

Thus, we get kefm; ) = ker(z{‘z‘ol Ui/,oGiH) = K'. Finally, K’ = Froly mog d(K ), proving the theorem. 0

With Theorem 6, we know that the matrices of (8) have the same kernel (up to Frobenius transform), independently
on the equivalent key chosen.

Equivalent keys allow also to further slightly improve the MinRank attack. We consider an instance of HFE
with parametersg,N,d, D) € N*, and/ = [logD]. We have to solve the MinRank problem on tine< n)-matrices
G1,...,Gn whose entries lie ifi"y with target rankN/. Using the Kipnis-Shamir modeling described in [35, 27,

28], we have to solve the algebraic system of thén — N/¢)) quadratic equations itNZ(n— N¢) + n) variables

given by the entries of the matrix
1 X171 X17Ng n
. )\iGi . (11)
(30)

1 Xn-Net - Xn—NeNe

Note that we are looking for solutions yq rather than ir¥q. From now on, and similarly to [27], these equations
are called the KS (Kipnis-Shamir) equations. We denote by

1<j<N/¢
fKS € Fq[{xhj}lgijgan(?/\L e 7)\n]

)NZ(n—Ne)Jrn

the ideal generated by the KS equations #Rg C (]qu the corresponding variety.

Theorem 7 The MinRank problem associated to HFE (resp. multi-HFE) can be solved by fixing one (resp. N)
coefficient(s) to a random non-zero value (resp. to random non all zero valugg).ilihat is, the variety’ks has

at least § — 1 (resp. ¢N — 1) solutions.

Proof We know that the first column dff = T—IM Nd € Anxn (qu) is in Yks. Let A* € Maxn (]qu) be an

invertible matrix as described in Proposition 8 and € GLn(Fqa) be the induced transformation. According to
Proposition 7,&7* can be used to build an equivalent key. Let thigfi,.#’, 7') be an equivalent key such that
T't =/ o T 1 with of = pyo.a7* o py* . Consider now the matrix representatibin® of 7/~L. It holds that

T-1= T*lM,\Ldﬁ Mﬁ,ld- Being an equivalent key, the first columndf = T'"My g € #nxn (qu) is also in
“#ks. Using the construction of ~1, U’ = T*lMN,dAV* M ﬁij Mng = UA*. Each column ofA* can have at most
N non-zero entries. ThH non-zero entries of the first coylumnfe\f: areap0,ad0,---,dN-1)d,0- 1he first column
of UA* is then

N-1 n—-1
A= > Uokddo:--- ) Un-1kdBdo | -
&o K=o

n—1 n—-1
A=(Ar,...; ) = <Z Up k8,0, - - - z Unl,kakA,O)
o
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Consider the firsN components oA . This gives rise to a linear systemNfequations:

N-1 N-1
AL= 3 Uokd¥do: --- »AN= ) UNkd3do-
&o K=o

For any fixedAs,...,An not all zero, this linear system has then one solutionatgy; ..., an-1)q,0 With high
probability. This allows to choosl coefficientsA; arbitrarily and still obtain a valid solution (equivalent key).
The variety¥ks has then at leasfN — 1 solutions. O

This means that for valid value{yi,j}iéjgﬂw in (11), there aréq®)N vectors(Ay,. .., An) such that the kernel

of (zi”:l)\iGi) is the one induced by the j's. Therefore, the values & components (sayy,...,An) can be
randomly chosen. The new system still liagn— N¢)) equations but onlyN/¢ (n— N¢) +n— N) variables.

As described in Sect. 3.1, the coefficients of the polynomial system are in the smalF{iele keep this
property, we fix variables with values over the small field. Experimentally, fixing one variable to 1 (or any value
from Fq) and the(N — 1) others to O gives the best results. Aftévariables(Ay,...,An) have been fixed?ks
has at leastl elements. This property already noticed in [34] for HFE is a direct consequence of Theorem 6, i.e.
Frobenius images of the kernel are also valid.

The MinRank allows to recover a kernel that is central to our attack. ®neeker(y_; AkGy), it is used to
recover the different parts of the private key as described in the next section.

6 Full Key Recovery

In this part, we detail all the steps of a key-recovery attack against multi-HFE.

6.1 Roadmap of the attack

Let (Z*,.,.7) be a multi-HFE private key with parametérgN, d, D) € N* (as defined in Sect. 2.1). The attack
is divided in 3 steps.

6.1.1 Recovering the Transformation on the Polynomials

This part of the key-recovery corresponds to the MinRank problem described in Sect. 3. Solving the MinRanks of
(8) allow to recover a kernel matri related to the private key and consequently the transformafiomhere are
N MinRanks to be solved but we show that this has to be done only once to reZover

Theorem 8 For multi-HFE, recoveringU = [u; j] = T*lMN‘,d € Mnxn (]qu) reduces to solving N-1 linear
systems ofn(n—N¢)) equations in(n— N) variables inF s once one column df is known.

Proof Assume w.l.0.g. that the first column bfis known i.e. after solving one of the MinRank of (8). We can
compute the matriK =ker (31 ui 0Gi1). According to Lemma 7, we also have that= ker (315 Ui tg+0Gi+1) ,
Vvt,0<t < N. Thus, for allt,0 <t < N, it holds that

K- (310 Uitd+0Git1) =0.

This is a linear system where tlig4.0's are unknown. Solving this system gives another column of the matrix
U. This has to be dond — 1 times in order to recoved — 1 other columns obl. According to Proposition 6, this
is enough to recover the entire mattix ad

6.1.2 Recovering the Transformation on the Variables

Kipnis and Shamir [35] originally proposed a method for recovering the transformation on the variables by solving
an overdetermined system @f¢ (n—¢)) linear equations im? variables ovelfgq with £ = [logy (D)]. Applied

to multi-HFE, this would give(n/(n— N/)) equations im? variables oveiy. We propose here an alternative
method which reduces the number of variables and equations by a da€orthe other hand, it operates on the

big field.
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Theorem 9 For multi-HFE, recoveringV = [wi j| = SMn g € #nxn (qu) reduces to solve a linear system of

(NZ(n—N¢)) equations in(N n) variables inF onceU = T IMnNg € nxn (Iqu) is known.

Proof Let K = ker(zﬂ;é uk7on+1). To find the coefficientsv; ; of W, it is enough to remark that according
to (8), KW = ker(F;) for all i,1 < i < n. According to Lemma 4, we know that k@) hasN¢ columns set
to zero. Moreover, we know that only columns are needed to build the whole mawtk(see Proposition 6).
We construct the corresponding linear systenﬁl\b(n— NZ)) equations i\ n variables. However, If > 1, the

system is underdetermined. To circumvent this issue, we will use Lemma 7(ikjch ker(zﬂ;cl) Ukid+] Gk+1) =
ker (WF;*&IWt) = ker(WF;*®J). Finally:

ker(Fi*dJ) = Froh (K)W. (12)

Forallj, 0< j < d, ker(F;*®}) hasN/ columns set to zero (see Lemma 4). Moreover,jfdd —¢+1) < j < d,
each matrix keff;*%1) hasN common zero-columns with kg *4-?). We may then add thid (n — N¢) equations
induced by (12) for eacl, (d —¢+1) < j < d. All in all, the system hagN/¢(n— N¢)) linear equations. This
allows to recovelV and thus?. ad

Recovering” amounts then to solve the linear system given by the entries of
Frob. 1) (K)Wiy) = -+ = Frobg.g) (K)W/{y, = KWy, =0, (13)

whereW’ is unknown ano\N;N) denotes theN columns submatrix ofV corresponding to the common zero
columns of kefF;*®0) ... ker(F;*#9-1) for anyi,1 <i < N.

6.1.3 Recovering the Inner Polynomial System

As soon as the matriceb = MN7dU*l andS=WM g}d are recovered, we only need to reconstruct a private

(inner) transformation. This is done simply by computi#fg = ¢,gl 07104 0.7 1o ¢n. By construction of
its components, the transformatiofi* respects the HFE-shape (as defined in Sect. 2.1).

6.1.4 A Step by Step Example

To illustrate our attack, we consider a small odd characteristic example. For the sake of simplicity, we use ho-
mogeneous polynomials and linear transformations. Once again, our attack can be adapted to the affine case as
explained in Sect. 6.2.

We consider the parametegs= 7,N = 2,d = 4, andD = 14. We denoté& = Nd = 8, and/ = [log,(D)| = 2.
We consideif,s = F7[x]/ < x* +5%% + 4x+ 3 >. Finally, let 8 be a primitive root of the defining irreducible
polynomial.

Key Generation.We chooséN random polynomials having a “multi-HFE shape” of degree less than or eqDal to
as well as two invertiblén x n) matricesS andT. To visualize the rank property, we give in Fig. 1 the symmetric
matricesk; associated to the polynomidis i.e.:

d-1 d-1
Fi = XFiX' whereX = (Xg, X7, ..., X[ o X X X8 )

The public key of this multi-HFE instance is a setrofluadratic polynomial$gs, ..., dn). We give in Fig. 2 the
symmetric matrix representati@s of eachg;, i.e.:

g = (X1,..., %) Gi (Xg,...,%n)".
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F= 92097X]:!'4+ 92150)(32_3 + 61623X17X27 + 9481)(17)(2 + 91131)(%
+ 6% X + 01771 X + 0940x 34+ B107% 1 91220x2,
F= 91586)(;[[4+ 9899)(]? + 91078XZX27 + 9554XZX2 + 9260)(%
+ 91709x1X27 + 91971)(1)(2 + 91090)(214+ 9287X§ + 9179)(22‘

9260 g9 (o g 1171 g9 g
999 61586 00 92154 9278 00

91131 91350 00 9979 91683 00
91350 92097 00 92081 9823 00

0 0 00 0O 0 00 0 0 00 O 0 00
0 0 00 O 0 00 0O 0 00 O 0 00
Fi=| gore g2081  g1220 9275 g | 'F2= | 1172 g2154 5 g 170 2887
91683 9823 00 6275 9940 00 9909 6278 00 91887 61090 00
0 0 00 0O 0 00 0 0 00 O 0 00
0 0 00 0O 0 O 0 0 00 0O 0 O
0053644 2234616
56201661 46613014
55164531 60311536
s_|34143506 +_|10051243
12212260|° 50336433
12353033 06550460
13362100 15406323
4030002 0222260
Fig. 1 Private key of the Multi-HFE example withh=7,N =2,d = 4, andD = 14.
30065113 3564662§ 3524142
03314644 51605405 55133550
03453554 66616316 21441042
G, _|61522442 . 140143000 . (43461246
1754321044727 |65636251|"3 13110542
16540122 64302532 45025146
14544201 20105300 25444446
14424217 65601208 4026266
1500310§ 4266265 2026242
55532114 23422530 06023615
05533420 64604365 20246061
G, |03343655 ~ 162002525 . 62402001
47132333514 °%7|22421402/°7%7 23624314’
11465640 65354020 46003646
01251403 53620230 21601451
64054035 50552003 35114617
6220401 6134543
24263231 10153666
22151044 31301064
G 06515645 - (45065050
"= 143151244787 |53156615|"
02062546 46006242
13444435 36651422
4145465 6640522

Fig. 2 Public key (given as matrices) of the Multi-HFE example considered qvith7, N = 2,d = 4, andD = 14.

Recovering an Equivalent . Tr;e first step is to solve a MinRank problem. By construction, there exists a non-
zero vector(Ay,...,Ap) € (qu> such that Ranky ' ; AiGj) = N/ (Theorem 3). According to Sect. 5, we can
randomly fixN variables to have a zero-dimensional ideal.

We fix for instanceA; = 1 andA, = 0. Using the notations of Sect. 2.4, we have to solve a MinRank with
(Mg=—-G1, My,...,Mg=Gg,...,Gg) withn=Nd=8k=n—N=6,r = N¢ = 4. We haved = 4 solutions
given by the vector

A(]') _ (1 0 6110 92215 9830 91958 91889 92363)
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as well as its Frobenius images Fjr@b(l)) forall j,0< j < d. Thisis a direct consequence of Proposition 9 from
Sect. 4. The kerne{ of (z{‘:l/\i(l) G;) can be computed, and we get the matrix

1000 9828 91612 9530 9108
0100 9502 9134 61450 6566
K=1001 001981 g1755 51660 2059

0001 9870 9963 92276 9425

This matrix is then used to recovBrcolumns ofU’ = T’*lMN,d according to Theorem 8. In our example, we
need only one more column &= 2. This amounts to solve the linear syst&y{' ; AiGj) = 0. As pointed
again in Theorem 8, this is enough to recover the whole méatriXo have independent columns, we Aix=0
andA; = 1. Solving this linear system gives

A(Z) _ (O, 1, 915877 921507 9597 911117 910937 91656).

The matrixU’ is finally reconstructed by taking the Frobenius of these ve@@?sandA @,

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1
@110 770 @590 g1730 g1587 g1509 963 1941

, Q2215 g1105 g535 Q1345 2150 g650 2150 650
U = 9830 g1010 92270 1490 g59 Q413 Q491 1037
Q1958 g1706 92342 91994 g1111 g577 Q1639 1873
1889 01223 1361 2327 1093 Q451 Q757 P499
0 0 0 0 6 0 6 0
Q2363 g2141 587 1709 g1656 91992 91944 01608

The secret matriX’ =M N‘,dU’*l has been recovered at this step:

10000004
55503331
62050055
05611245
01000000
13244264
30133526
16635203

Recovering an Equivalen?”. We follow the method explained in Sect. 6.1.2 to recover a valid m&lttix=
S'My 4. Even if the matrice§, andF, of the private key are unknown, we know due to the HFE-shape that in
echelon form we have for alll 1 <i < N:

0010000 0100000
 |oo0010000 @) [00100000
ker(Fi)=100000010|" R(H )_ 00000100

0000000 0000001

These two matrices have both théid)-th columns set to zero for € i < N (i.e. columns 0 and 4). We now
construct a linear system df(n— N/¢) equations in th& nvariablesy; 1,...,yin,..., W.1,--., W,n from

Vi1 Yea Vil Yen
K- ¢+ @ | =0, Froby.4(K)- | ¢ : [ =0
Yin Y2n Yin ¥2n

The system hasqd)N solutions. This is again a consequence of equivalent keys explained in Sect. 4. We then
randomly setN variables in each one of thd columns to arbitrary values. For this example, we take =
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Lyi2=0,51=0,)2 =1 (the columns have to be linearly independent). This linear system has one solution
providing two vectors:

W(l) — (1, 07 975’ 966, 6314, 91327 913087 92017)7

W(Z) — (07 1, 95057 91673’ 91960) 91947’ 9733, 61788).
As for U, the rest of the matrix is built by raising the first columns to the powey pfor all j, 0 < j < d.

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1
@75 @525 1275 gl725 g505 gl135 745 Q415

966 6462 9834 91038 91673 62111 6377 9239
9314 92198 9986 92102 91960 61720 940 9280
9132 6924 91668 92076 91947 61629 91803 9621
61308 91956 91692 92244 9733 9331 92317 91819
62017 92119 9433 9631 91788 9516 91212 91284

W/

The matrixS = W'M N}d’ which is part of a private key has been then recovered:

1000000
00001000
34165220
16505330
04306350[°
33542314
20640403
6312430

Recovering an Equivalen¥. To conclude the attack, we have to recover a valid inner transformation. From the
knowledge ofS andT’, we compute:

F = to T oG oS oy
In terms of matrix/vector operations, we first compute the small field representatiBi of
F' =T oot
(Hi',...,Hy) = (S71G;S,...,S71G, s H T L.
Then, we recover the transformation on the big field using the mislitkjy of Proposition 4.
T =pyto T oy
(Fa',...,FN') = (P1,Pas1,- -, Pano1)41)
where(Py,...,Py) = (M g}dHl’M gfd,...,Mg}dHn’M ) M-
From the definitions of matricdd’ andW’, it is equivalent (and simpler) to directly compute
F'=¢yto T oG o o gy
(F1',....,FN') = (P1,Pds1, .-, Pan_1)+1)
where(Py,....Py) = (W lGW't, ... w'-ig,whHu'.
With the matrices=,’,...,Fn’, we recover a set of HFE-shaped polynomials. In our example, we obtain

9784 915990 0 9173 920890 0
91599 91581 00 959 9709 00
0O 0000 0 00
0O 0000 0 00
6173 659 00 9157 917240 0
62089 6709 00 61724 61791 00
0O 0000 0 00
O 0000 0 0¢

'I'I
'_‘\
Il

26



62277 9375 00 6321 91681 00
9375 6749 00 9665 9227 00
0 0 00 O 0 00
0 0O 00 O 0 00
@321 665 g @1384 510 g g | -
91681 227 5 o @510 g1556 (g o
0O 0 00 O 0 00
0O 0000 0 00

Thus

Fl/ _ 91581X114+ 92399)(f + 91509)(17)(27 + 9859X17X2 + 9784)(12
+ 6%, X] + 897Xy Xo + O1OX) A+ 0129% D + 615X

F2/ _ 9749X114—|— 91175x18 + 91027X17X27 + 91465)(17)(2 + 92277)(12
+ 681X, XF + 81X X, + 819°0K3 + 61310K + 61383

The attack is now complete and a full valid private key has been recovered.

6.2 Affine Transformations

So far, we have only considered linear transformations and homogeneous polynomials. However, HFE or multi-
HFE can use affine transformations and non-homogeneous polynomials. We describe here how to generalize our
approach to the affine case.

6.2.1 Representation

The starting idea of our attack is to represent the polynomials in a matrix form. If the HFE-shaped polynomial
F e qu [X1,...,Xxn] is not homogeneous, then there exists a magrix //<n+1>x(n+1) (qu) such thaf; = XF;X!
whereF; is symmetric anK = (X1, X{, ... ,defl, XN X ,Xﬂdfl,l). Similarly, if a quadratic polynomial
i € Fg[x1,...,Xn] is not homogeneous, then we can wite= XG;x' whereG; € M (ni1)x(n+1) (Fq) IS sSymmetric
andx = (x1,...,%n, 1).

The matrixMy 4 — allowing to change basis — given in Proposition 4 simply becomes

0
MnN,d
0 --- 1
The matrix representations of the secret polynontrls. ., Ry have howevefn—+ 1) rows and columns instead
of n. The rank of such matrices {§l¢+ 1) (one row and column have been added). In our attack, we then try to

find an affine combination of the public polynomials such that the rank of its corresponding matrix representation
is (N¢+1).

6.2.2 MinRank attack

To adapt the MinRank attack, we remark that it is possible to find a linear combination of the matrices instead of
an affine combination. Thanks to equivalent keys (cf. Sect. 4) such linear combination exists. The problem is then
to find (ug,0, . ..,Un-10) € (]qu)” such that

n-1
Rank< %Uk,on+1> =N/{+ 1.
K=
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We recover in this way a matrif) € #n«n (qu) as explained in 6.1. For the second step, the madrix
ker(zﬂ;}, uk,onH) has(n+ 1) columns. To have an analogous property, the last colunttisfset to zero i.e.

10...... 0 koo ... kon O
K 01 :
O...... 0 1kn—N,0 kn—N,N 0

The firstn columns ofK can be used to perform the second step of the attack just as in Sect. 6.
The method described above is the most straightforward and natural. However, there are at least two other
ways of performing the MinRank attack.

Take the homogeneous pafthe idea is to ignore the affine part. Namely, we perform the MinRank attack on the
homogeneous part of the polynomials. That is, we try to firg, .. ., un—1,0) € (Fq)" such that

n-1
Rank( S ukAonHh) =N¢
k=0

whereG" € . #nyn (qu) is the matrix of the homogeneous partgp{i.e. the matrixG; without the last row and
column).

Since the rank of3 ;-3 uk_ronHh) is N, (SR-3ukoGk+1) is of rankN/ -+ 1. We added one more row and
column. The attack is completed as we have found a linear combination such that the R#hk 1s From a
practical point of view, this method turns to be less efficient than the first one. This is probably due to the fact that
the information coming from the non-homogeneous part is not used.

Add a constant polynomiaM/e consider a third strategy. We look for a private equivalent key suchZhist
homogeneous. This way, the rank of their matriceNdsnstead of(N¢ + 1). We are then looking for an affine
combination of the public polynomials. Namely, we compigy, ... ,Uno) € (]qu)’“rl such that

n-1
Rank( ZOUk’OGk+1 + Un,0|> =N/
K=

wherel is the matrix of the constant polynomial 1 (iléi, j] = 1 if i = j = n+1 and 0 otherwise).

In this case, we try to cancel the affine part(gﬂ;é Uk,OGk+1) such that its rank N/ instead ofNZ + 1.
Note that in this method, we move the affine part of the inner polynomials to the nihtixd try to find an
homogeneous internal transformation. Note that using only theafasmponentgug o, . . ., Un—1,0) of the solution
leads back to the first method as the linear combination is of {iliik- 1) (only one entry is modified).

Experimentally, this method is the most efficient for the non-homogeneous case. This can be explained by the
fact that the rank is lower and the affine part is taken into account.

6.3 Key Recovery in Characteristic 2

Our attack uses the matrix representation of the public and secret polynomials. This representation has to be
symmetric in order to keep a canonical representation of the quadratic forn#s Hesh matrix representing some
guadratic form. The symmetric representation is obtained by compéﬁﬁé. In characteristic 2, such a matrix
would be zero.

In their original paper, Kipnis and Shamir [35] suggest to use insfeadA!. Whilst the first step of the
attack (MinRank) works indeed similarly, it appears that the second step of the attack — reco¥erifails with
the method described in Sect. 6.1. In characteristic 2, the two steps are not independent and cannot be treated
separately. We now discuss how to adapt our attack in characteristic 2. For reasons which will be explained, our
adaptation depends on the parity of the rank. Thus, the section is divided in two parts. From now on, we denote
by r = N/ the target rank of the MinRank. A toy example of our attack is given in Appendix A.
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6.3.1 Even Rank.

The first part of the attack is to find a linear combination of the public matrices whose rankads HFE, any
solution(As,...,An) € (Fga)" of the MinRank leads to another soluti(xm/\iql yee ,)\ﬁ'), foranya e IFad, and any

i,0<i <d. This is due to equivalent keys as detailed in Sect. 4.

In characteristic 2, it has been noticed [34] thi@, B) € Fyq x F, avectorr (AT ... AT) +B(/\fl+l, .. ,)\ﬁlﬂ)
is also solution ifr is even. As a consequence, the ideal generated by the MinRank equations izle®en has
dimension at least 1 (we can fix any value )t

Assume then that we fix a random value fqr Even after that, the MinRank problem hgs— 1 solutions
(and their Frobenius images). Thatd$q® — 1) in total. To decrease the number of solutions (i.e. to have dnly
solutions), we can try to fix one more variable as suggested in [34]. A mEtdan be computed, but there is an
issue on the second step of the attack (recoveBihgThe linear system allowing to recovgt has no solution,
which means that th& computed is not valid. This suggests a relation between the different steps of the attack in
characteristic 2.

The problem is that only solutions wifh= 0 are actually equivalent keys. The solutions coming g 0
are not equivalent keys obtained from the affine and Frobenius transformations as described in Sect. 4. They appear
to be spurious solutions. Thus, if we fix another variable as in [34], it is very likely that the rTatirat will be
recovered does not lead to an equivalent secret key. In the other hand, not fixing another variable leads to an ideal
of dimension at least 1 with an exponential number of solutions. As a consequence, the two parts of the attack
cannot be treated separately. Recall that[log,(D)|. We need both

Rank(S 4 AiGi) = N/ and ke, AiGi) W' =ker(Fy).

LetK be the unknown kernel dfs{ ; AiG;j), and IetW’(N) be theN columns matrix obtained fro/’ according
to Sect 6.1.2. Thanks to (13), we have to solve:

Frolyg 1) (K)W(y, =0,

K-(5",AG;)=0 and :
(2 AG) Frob(d_l)(K)W( ):o
KW/, = 0.

In our caseK is unknown, thus the Frobenius transforms add equations of degreegfip’tdTo avoid this, for
anyk,0 < k < d we use that

Frohy. (FroQ(K)W’(N)) = Froby.x (Frob (K)) Froby«(Wiy,) = K Froby«(Wiy,)-
As Froh<(K)W’(N) =0, we haveK Frohj_k(W’m)) = Frohy.x(0) = 0. Thus, we use instead the following equations:

K Froby.q (W’(N)) =0,

K-(31,1AiGi)=0 and

K Froby (W ))
KWin)

We use also the representation of the entrieg/6fis a vector oveF, using the mappingn. As W’ = SMy g,
we havew | = -1 k(@ ™) '8 41j/a 1k With §; € F2 for 0< i, j < n. Since the Frobenius transform is linear

overFy, the degree does not increase. The field equatﬁns §.j = 0 can also be added.

Finally, the system to be solved is the union of two overdetermined bi-linear systems [29]. The system has
r (n—r) variables coming fronk , n coming from the);’s, andd N ncoming fromS'. There aren(n—r) equations
coming fromK - (3.4 AiGj) = 0, /N (n—r) coming fromK Frob<(W’<N)) = 0 andn? from the field equations.

There is a total of (n—r) +¢N (n—r) +n? equations i (n—r) +n+ n? variables.

On various small examples, we observed that the degree of regularity of such systifiis Iy and does not
depend ord when growing the size al. This value matches the degree of regularity of the MinRank attack (see
Sect. 7 for the complexity analysis). Hence, our variant seems to have asymptotically the same complexity as the
attack in odd characteristic.

0,
0.
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6.3.2 Odd Rank.

We now consider the case where the target raskiN/ is odd. Here, the first step of the attack can be performed
as expected and we recover the mafriXand consequently’ = T'~My ), as well as a kerné{. Thus, we can
assume now that the matricé§ U’ andK are known.

The second step of the attack is to reco8erTo do that in characteristig 2, we had to solve the system

KW' = ker(F;), whereW' € .#«n (]qu> is unknown. The success of this step is based on the remark that

ker(F;) is independent of the actual valueffand is equal t& y 4, as described in Lemma. 4. In characteristic

2, this property does not hold. Recall that the mafishould be a symmetric matrix of ratN¢. In characteristic

2, this matrix has zero entries in its diagonal by following Kipnis-Shamir. The rank of such symmetric matrix
cannot be odd (see for instance [34]. Thus, in characteristic 2FKe# K 4., and cannot be used for the second
step of our attack. To fix our attack, one shall not consider the symmetric foRm@bnsider the relation between

the components of an equivalent public/private key:

ﬂ’oq’)Noﬁ*'od),\Tloj’/:%
g;*lo¢'\jloy1 _ ¢N710 y/flog'

Recall thatW’ = S' My 4. When we consider the matrix representation, we obtain
(W’Fl’*d’OW’t OWEE W W Rt W’FN’*dvdflw“) = (Gy,...,Gn) U

The matricesG; for i,1 < i < n are the public matrices and the matti% has been recovered during the first
step of our attack. Hence, the right hand side of this equation is known. Even if we do not know the value of the
matricesF; fori,1 <i < N, we know the “shape” of these matrices. Indeed, dibg(D)] x [log(D)] elements
are non-zero, and we know the positions of these elements (see proof of Lemma. 4 for instance). The key is to
use the upper triangular matrix representing this quadratic form instead of a symmetric matrix. We will use this
knowledge to recover botW’ andF;’, fori,0 <i < N.

Let uMt be the first columiJ. Recall thatF;*3° = F;, we have for instance

W F"4OW" = (Gy,...,Gp) u®!
B =Wt ((Gl,...,Gn)g(l)t> W't

Equivalently, this amounts to solving the equatiéas— W’'~1 ((Gl, el Gn)g(l)t) W/t = 0. As in the even rank

attack, we interpret the entries 0¥~ as elements iif',. By doing this, the field equations can be added.

If we gather the equations coming frdm, . .., Fyn, solving this system (one set of equations for each entry) is
enough to recoveW’ andF{ fori,1 <i < N. Note that this system is quadratic. It features equations of degree 2
in the variables fronw’ and linear in the variables frofg’. In this case again, the observed degree of regularity
is not more than the degree of regularity of the MinRank step. The overall complexity is still bounded by the
MinRank step.

7 Complexity Analysis of the MinRank Attack

In this section, we study the peculiarities of the MinRank arising in our attack, i.e. coming from (8). In [35], it

is conjectured that the basic Kipnis-Shamir attack against HFE is sub-exponential. The authors remarked that the
algebraic system to be solved is greatly overdetermined. Recent results on solving MinRank [28] allow to have a
fresher look at the complexity of MinRank-“type” key-recovery attacks against HFE and multi-HFE. For instance,
from our experiments (described in the next section), we have remarked that the degree of regularity observed
seems to be constant whengrows @ being the degree of the extension field). We explain theoretically this
behavior using the formula (recalled in Sect. 2.4) on the degree of regularity of MinRank instances given in [28].
In our case, the MinRank arising involvesnatrices of sizen x n and a target rank = N [log, (D)]. Thus, the
MinRank considered are limited to instances of paramétersn). In this particular overdetermined case, we can

get a precise bound under some conditions.

Proposition 11 If the variant of the Foberg Conjecture as defined in [28] is true, then the degree of regularity of
the MinRank problenin,r,n) is exactly +-1 when r< 4 and n> 6.
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Proof As in Proposition 1, we introduce the following polynomials:

aj(t) = n_ngi’j) (ne_i) (nz j)t“

and the correspondingx r matrix A (t) = [a j(t)]. According to Proposition 1, the index of the first negative

coefficient of the power series
n detA,(t)

t(2)
gives the degree of regularity. To show that the degree of regularity+i4, we need then to show that the

coefficient oft" 1 in (14) is the first negative coefficient. Equivalently, we show that the coefficierit bf(2) is
the first negative coefficient in

(1—t)"* (14)

He(t) = (1—1)™ %" detA, (t). (15)
We denote by,_(t) the polynomial; (t). It is straightforward to show that:

Re(t) = (1 )L (ﬁi)

whereL(X) is then-th Legendre polynomial [43].
We can compute immediately dét (t)) = Fy,_1(t) so that

Ha(t) :1+ntf%n(n372nzfn72)t2+ﬁ(t3).

The coefficients of® andt?® are clearly positive and the coefficienttdfis of the opposite sign of —2n? —n—2;
this coefficient is thusc 0 as soon as > 2.7.
To computeH;(t), we need to express »(t)(= az1(t)) in terms offF,_1.

a2a(t) = 7°2("2) (" Yt
— 5 énnaf("fftf

2 1 2 1,2 _
=372 (") - %&Z?ﬁ:o (") et
= (Fn- 1(t)—tt" D= s (Faa(®) —t" )
=Fno1(t) — 57 Fa_a (D).
Hence, we can compute:
Fn—l Fro1— ﬁ ré_]_ t 1 2
det(AZ( )) Fr1— F/ 1 Foo =F-1Fn2— (anl_ ﬁFn—l)
. _

=t+(n— 2) t2+ 1/2 (P —4n+5) (n—2)%t3+
1/36 (5n? — 16n+20) (n—2)*(n—3)*t* + & (t°).

Hence:

Ho(t) =t +nt? +1/2n(n-+1)t3 — 1/36n (n5 —6n*+13n% - 18n2 — 14n— 12) o (t5) .

Clearly all the coefficients df',t2,t2 are positive and the coefficient tffis negative as soon as> 4.2.
Whenr = 3, we have

a23(t) =Fn2— 15F1 5
t2F  +2(2-n)tF)
a13(t) = Fn 1+ %

We can compute explicitly

det(As(t)) =t3+ (n—3)%t* + % (n?—6n+10) (n—3)%t°
+% (n?—6n+10) (n?—6n+11) (n—3)*t°
1
+ g7 (230" - 242n° 1+ 1067n” — 2268n+1980) (n—3)* (n—4)°t" + 0 (%)
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and deduce that

1 1
Hs(t) :t3+nt4+§n(n+l)t5+ gn(n+2)(n+ 1)t6

1
— 5N (07— 12n° 4 58n° —144n" 1 160n° - 276n° — 2280 - 144)t7 + 0 (7).
Again the coefficients of®,t*,t> andt® are obviously positive. Since the biggest real root of the coefficiettt of
is = 5.59 then it is negative whem> 5 ad

Instead of computing all the coefficienity given by equation (15), we can simply compute the coefficient of
@) in H (t).

Proposition 12 If the variant of the Foberg Conjecture as defined in [28] is true, then the degree of regularity of
the MinRank Problenfn, r,n) is less than k1 when r< 10and n> 6.

Proof LetC; (n) be the coefficient of *2*(2) in H(t). We have:

C10= — 1s933s50553300060° - — 110n?° + 5665n1° — 1815008 -+ 4054446117 — 670751406 + 85200313011

— 85012664001+ 6760816338013 — 4322996366702+ 2232012515446 — 9309555172500°+ 31264617802396° —
84016440120800° + 177471642248560 — 299981580148804F +

3302083590917 7% — 46853203465728¢" — 130151988172806 — 586220360140806F —

411093107712000— 144850083840000.

Co = — T31e5189a20006 M — 90N 8+ 376507 — 9720016+ 173394615 — 22676220+ 225084130113 — 17319618002+
1046051438mh'! — 49893169050'°+ 188094067546° — 558407719806° +

1288998059896’ — 2330497406886° + 2826910578966° — 3910275907200 — 721132948224° —
5000541557766 — 3593557094400 — 131681894400

Cs = — 316518094304 " — 72n"°+2388n15 — 48384n'4+ 6696062 — 67042081124 50170300 — 2858555510+
1251320145° — 42154696087 + 108557798167 — 21379728384° + 28864042768° — 39461075718"* — 2881845504° —

517016908807 — 38140139520 — 1463132160n.

Cr = —temrgzaod N> — 56Nt + 1428n13 — 21952112 4 2269811 — 166756810+ 8962364° — 357333761
+105954513" — 2333822961° + 356137768° — 4904766 72% + 30217104° — 661207680” — 501500160 —
203212800n.

Co = — ssa01a00(N> — 42n*2+ 791n'1 — 8820110+ 64743° — 328986° + 11841531 — 30399605 + 53766161° —
766987* + 174585613 — 107251207 — 8372160 — 3628800 n.

Cs = — gam0(N* — 30010+ 395n° — 3000n8 + 145237 — 46715+ 100085° — 154500* + 67876n° — 2277607 —
18288 — 86400 n.

Ca = — 14550 (n® — 20n® + 170n” — 800N® + 2273n° — 4100n* + 2980n° — 6600n? — 5424n — 2880) n.

It is easy to check that the biggest real roo€gfCs,Cg,C7,Cg,Cy,C10 are approximately:
7.03,8.45,9.86,11.3,12.7,14.1,155
As a consequenc€y, Cs,Cg,C7,Cg,Cg,Cyp are all negative when > 15. ad

From the previous propositions (Proposition 11 and 12) it is natural to make the following conjecture.

Conjecture 1Let (#*,.7,.7) be amulti-HFE private key with parametétgN,d, D) € N*and let/ = [logy (D)].
The degree of regularity of the associated MinRank instances is bounded from ab@vé-y) whend is big
enough.

Note that, by Proposition 11 and 12, the conjecture is proved forall5 whenN¢ < 11, this covers all possible
practical settings for HFE and Multi-HFE. To further validate the conjecture, we have instantiated the theoretical
bound of Proposition1 with HFE/multi-HFE parameters for valuehl af 20 and? < 10. Whend is sufficiently
bigger thar¢, we always obtain a degree of regularity equaléNé+ 1). This has been verified for=Nd up to
500.

Interestingly enough, the parametkis not involved. In our context the degree of regularity depends only on
the numbeN of secret variables and the degi2®ef the secret polynomials. We have then the necessary material
to evaluate the difficulty of the MinRank involved in HFE/multi-HFE.
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Proposition 13 If the variant of the Féberg Conjecture as defined in [28] is true, wherf M 11, for N and/
fixed, the complexity of solving the MinRank arising in Multi-HF%€d<N”1>“’) (2 < w < 3 being the linear

algebra constar)tand thus polynomial in d. Moreover if Conjecture 1, the previous complexity estimate is valid
for any value of N and.

Proof According to Proposition 12, the degree of regularity is not more {N&R- 1) and thus independent of the
degree of the extensiah Whend grows to infinity and according to Theorem 1 the complexity of thélaer

. . d w ) )
basis computation i& ((N N ) ~0 ((N d)(NE+D) ‘*’) ~0 (d“\““) "’). 0
This complexity refers to the number of arithmetic operationghneeded. This makes the binary complexity
logarithmic ing. As a comparison, the complexity of a message recovery attack on HFE according to [19] is
polynomial in¢ but exponential irg.

8 Attacks on Multi-HFE Variants
8.1 Multivariate-HFE

In this section, we study a classical variant of multivariate schemes, the so-called “minus” modifier. It consists in
removing some polynomials from the public key. We recall that this construction is only suitable for signature as
the decryption is not unique.

8.1.1 Description.

Let (.7*,.7,.7) be a multi-HFE private key with parametétgN, d, D) € N* as defined in Sect. 2.1. We introduce

a new parametese N and the projectiont: (Fq)" — (Fq)"®. The public key is the mappirg = 110 .7 o ¢,\]1 o

F* o ¢n o7 viewed as(n—s) polynomials inn variables. To signs random values fronify are appended to a
digestm= (my,...,my_s) € Fg~°. The signature is generated by applying the basic decryption process to such
element. To verify a signature, we evaluate it$n

8.1.2 Attack.

The goal is to find a valid private key with only— s) public polynomials. Usually the minus modification is
enough to prevent classical attacks as some information is missing. In particular, this is the case for the basic HFE
(N = 1). However we have shown in Sect. 5 that the problemNhdsgrees of freedom. As a consequence, only
(n—N+ 1) matrices are needed to recover the (secret) kernel. This means that if the number of equation removed
sis (strictly) smaller thaiN, then the kernel matrik can be found with no additional cost. Still, the last steps of
the attack have to be adapted.

The first step is as follows. We know that there exists a ve@er...,An) € (Fg)" and symmetrign x n)-

matrices(my, . ..,ms) such that
n—s S
ker AGi+ S Anseim | =K.
(i;.. ;W.)

Them;'s are unknown matrices corresponding to the removed polynomials. According to Theorem 7, we can fix
N valuesA; and still having solutions to our polynomial system. For instance, let

(An7N+1, e ,An) == (617 . 7EN).

n—N N-—s S
K- <|Zi AGi + i; 6iGnonN+i +i;€Ns+ili> =0. (16)

The resulting system has(n — N¢) linear equations in((n—N)+s%) variables. The system is greatly

underdetermined and hence have many solutions. To find the entlgsvaf use the following remark:

We write

Proposition 14 For any j,0 < j < d, we haveFrol(K) - (2P=1Aiqui) =0
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Proof By definition, Frob(K . (Z{Ll)\iGi)) = 0. By linearity of the Frobenius, this is equal to:

Froh (K) - Froh ('ilAiGi> = Froh (K)- (.i)‘iqj Froh (Gi)) .

As eachG; has its entries iffq, we also have that FrotG;) = G;. a

Solving equations (16) together with their Frobenius images forces the entsigtdie inFq. In order to avoid

equations of degre® coming from)\iqJ ,weaddd—1)(n—N) new variable$/\l(l), ... ,A,@N, el /\l(d_l), .. ,)\ﬁf\ll)).
From Proposition 14, we get the§,0 < j < d:

n—N N-s . S ;
i J J
Froh(K) - (Z MG+ iZ: I Gn,N+i+iZ: g‘,il_w.i> —0.

The resulting system is overdetermined and has a solutigh,if. ., ¢n) # (0,...,0). We have to solvé\ times
this linear system with different values fof1, . .., n) to get a valid matriXJ as explained in Theorem 8.

8.1.3 Experimental Results

We present experimental results for the attack. It has been implementeddmM[8] (V2.16-10). MinRank
instances have been solved using the Kipnis-Shamir modeling. Our results are presented in Table 3. We mounted
our attack on a basic multi-HFE and on multi-HREth the same parameters As predicted, the minus modifier

Table 3 Comparison of each step of our attack on minus variant on multi-HFE with parantete®,N = 3,d = 8,D = 2 (= 120 bits
security) using a MGMA [8] (V2.16-10) implementation on a 2.93 GHz IrfRIXeon® CPU.

MRtime MRdeg FindingU FindingW

No variant (ref. time) 233s 3 0.01s 7.829
Minus (s=1) 23.2s 3 0.01s 16.71s
Minus (s= 2) 234s 3 0.01s 35.24s
Minus (s= 3) Notpossible

does not change the time of the MinRank attack but recovéiinig a bit slower. As a conclusion, the private
key of a multi-HFE" can be recovered with this technique almost as efficiently as the standard construction if the
number of withdrawn equations is less thah—1).

8.2 Multivariate-HFE with Embedding

In [20], it has been proposed to use a variant of HFE with embedding. This so-called PHFE construction consists
in removing/fixing few variables of the public key. This scheme is claimed to resist Kipnis-Shamir’s attack [20].
The authors of [14] use the same modification on multi-HFE and claim that it prevents a possible “big-field” based
attack. Still, for both PHFE and its multivariate version a key recovery attack is possible.

8.2.1 Description.

Let (#*,.7,.7) be a multi-HFE private key with parametdig N, d, D) € N* as defined in Sect. 2.1. We define

a new parametar € N and the embedding : (Fq)"" — (Fg)" which is part of the private key. The public key

is the mappingg = .7 o ¢,\]1 o F* oo S op. To encrypt a plaintext, we still evalua# To decrypt, as in the
standard scheme, one inverts each component separately. To simplify, we can assume w.lo.g. that the embedding
is alwayspo : (X1, ..., Xn—r) € (Fg)" " +— (X1,...,%n—r,0,...,0) € (Fg)". Indeed, from any embeddirgand any

invertible transformations”, one can find an invertible transformatioti’ such that? o p = %’ o py; this gives
equivalent keys.
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8.2.2 Attack.

The matrix representatid®; of the public key polynomials have —r) rows and columns. However, the rank of
Zin;ol Ui 0Gi+1 remains bounded byl Iogq(D) (i.e. removing rows or columns does not increase the rank).

LetK = ker (313 Ui 0Git1). As usual a matri}J’ can still be recovered by solving a MinRank. The problem
appears when trying to recover the maMx = SMy g whereS' is an equivalent matrix (for the private key).
By following the method described in Sect. 6.1.2, we get a system h&iig— r — N¢) equations with only
N (n—r —N) variables. LeWW'’ be a matrix solution of this linear system. This matrix is as follows:

d—1 d—1
q q
Woo Woo - Wo e WoN_1 \/\/8,,\,71 W‘&Nil
W/ — . . . . .
d—1 d-1
q q
Wnr0 W o Wa_rg - - W rN-1 WH_ g s Wa Nt

This matrixW’ has(n—r) rows and thus is not invertible. However, siH needs to be inverted in order to
compute a full private key.

The first idea is to build a new invertible mat\¥, by appending t&W’ a (r x n)-matrixV = [v; j] such that
vﬂj = Vi j+1. The secret inner mapping is reconstructed by compu@ifig- W, ~1G;W, . As the matrixw, %
has non-zero coefficients in itslast rows, so isG{. Recall that the MinRank was done ov@r—r x n—r)-
matrices. Therefore, when we finally compgte , ui 0Gi1’, monomials in the last variablég, 1, ...,X,) are
mixed with the other monomials. This eventually leads to polynomials that are not in HFE-shape (and then hard
to invert).

To circumvent this issue, we no longer append a “quasi” random matri%’tolnstead, we construct an
invertible matrixW, by appending vertically toV’ the matrix

O............01
z=|: Lo
O............0 1

From the way it is constructedV, is indeed invertible. The variable€%, r.1,...,X,) do not appear ifG;’ =
W, 1G;W, !, and the rank property is preserved. The only difference is that the rem‘iiOﬁ Wi j+1 only holds

foralli, 0<i < n—r. The consequence is th8t= WM Nld has coefficients in the big fieI]Eqd. But, this is not
an issueS can be inverted and a mappirg* with HFE-shape can be recovered.

8.2.3 Experimental Results

Experimental results are given in Table. 4. We compare the different steps of the attack on a basic multi-HFE to
the same attack running on multi-HFE with embedding.

Table 4 Comparison of each step of our attack on embedding variant on multi-HFE with paramet&EN = 3,d = 8 D = 2 (=~ 120 bits
security) using a MGMA [8] (V2.16-10) implementation on a 2.93 GHz IrfRIXeon® CPU.

MRtime MRdeg FindingU  FindingW

No variant (ref. time) 23.3s 3 0.01s 7.89

Embeddingi(=1) 788s 3 0.01s 6.14s
Embedding (= 2) 2811s 3 0.01s 5.25s
Embedding ( = 3) 401 s 3 0.01s 4.44

In practice, the MinRank occurring in multi-HFE with embedding takes more time to break. However, the
degree of regularity remains the same. Thus, there is only a constant factor between the complexity of solving
a regular MR occurring in multi-HFE and a MR occurring in multi-HFE with embedding. As a conclusion, the
embedding modifier does not add more security to the basic HFE/multi-HFE construction.

To further point out this weakness, we practically broke a 256 bits Multi-HFE scheme using embedding whilst
a classical HFE instance with= 256 bits is still intractable. In Table 5, we show our results on the parameters
proposed in [13] (multi-HFE with embedding= 1). The degree of regularity experimentally observed is noted
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dreg. The theoretical degree of regularity is denotedj@zo. The proposed parameters are not secure since they
are practically broken (9 days for the most conservative, i.e. 256 bits claimed security). One may get even better
results using the minors modeling of MinRank and thérfplementation available in the FGb software [25].

Table 5 MinRank attack on real-scale parameters from [13] usingasMa [8] (V2.16-10) implementation of Kipnis-Shamir modeling and
a FGb [25] implementation of the minors modeling on a 2.93 GHz fitieorf® CPU.

dtheo Time Mem. Time

g N d D security dg MAGMA MAGMA FGb Oreg
31 2 15 2 150 bits 3 2min 27s 434 MB 21.1s 3
31 3 10 2 150 bhits 4 1 h 38 min 1.5GB 24min56s 3
31 3 15 2 192 bhits 4 2days1lh 12 GB 3
31 3 18 2 256 bhits 4 9days 16 h 33GB 3

9 Weaknesses of Multi-HFE relative to HFE

In light of our results, we conclude the paper by evaluating the real security gain offered by the Multi-HFE
construction (w.r.t. basic HFE). In order to compare instances of HFE/multi-HFE with each other, we introduce
and formalize the notion of “similarity” between two instances of multi-HFE.

Definition 3 Two multi-HFE instances of respective parametegs i, di, D1) and(gz, Nz, d2, D2) aresimilar
iff

i) g1 = 2 (same base field)

i) Nid; = Nod> (same public key size)
iif) Nplogg, (D1) = Nzlogg, (D2) (same private key size)

This definition is motivated by the following fact.

Property 1 Two similar instances of multi-HFE share the same size of public key and (almost) the same size of
private key.

Proof The transformations” and.Z have the same size for two similar multi-HFE instances. Each secret polyno-
mial can be written as a non-standard quadratic form ottiepowers of the variables. As the degree is bounded
by D, we have at mostNlog,(D) +1)(Nlog,(D) + 2)/2 monomials in each polynomial. We then have to store
N (Nlog,(D) +1)(Nlogy(D) + 2)(dlog,(q)) bits. O

This definition includes HFE as it is a particular case of Multi-HFE=£ 1) To illustrate the concept of
equivalent keys, we provide in Table 6 two multi-HFE parameters proposed by [6] and [14]. The table shows the
correspondence between their similar univariate instance, as well as the complexity of solving the MinRank for
each set of parameters.

Note that this definition takes into account the size of the private key. The speed of decryption can vary a lot
between two similar instances as pointed in Table 6. A different notion of similarity with respect to the speed of
decryption could also be considered.

Table 6 Similar univariate HFE parameters for multi-HFE instances. The two sets of parameters in each line provide the same general security
(key sizes and message space) but the decryption speed and the complexity of our attatitvary a

o} N d D msg space  pub (bits)  priv (bits) decr.time  MinRamdmp.
IFS 2 8 16 2 128 bits 2130048 39042  .600s. 169 = 236w
HFE 2 1 128 192 128 bits 2130048 38018 .1Z0s. 128 = 263w
THFE 31 3 10 2 150 bits 144150 11110 <0.001s. 18w ~ 2100
HFE 31 1 30 1922 150 bits 144150 11110 ~10s. 30w ~ 2150

The KS equations of two similar instances have the same number of variables and equations as the target rank
is the sameNlog, (D). According to the complexity of the MinRank given in Proposition 13, the biggdy ke
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harder it is to mount our attack. In particular, the chlse 1 (original HFE) is the more resistant. This behavior
has also been verified experimentally. For similar keys, choddiagl seems to be the optimal value for security.
With respect to our attack, multi-HFE is then less secure than HFE.
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A Example of Key Recovery in Characteristic 2

A.1 Example for Even Rank

We consider an instance of HFE with the following parametgrs:2, N=1,d=6,D = (q+1) = 3,r = N[log, (d)] = 2. The private key
is given in Fig. 3 and the public key in Fig. 4.

Fr =037+ 6%3x7.

11111 10010
000010 000100
S— 100111 T_ 101011
110010}’ 010011}
101011 010101
10001 10100

Fig. 3 Private key for a (Multi-)HFE with parametegs=2,N=1,d = 6, andD = 3.

111101% 1101000Q 1110004
0111000 0000100 0011010
0011010 0011010 0000110
G;=]/0001110|,G6,=/0000100|,63=|0001000|,
0000010 0000110 0000010
0000000 0000000 0000010
0000000 0000000 0000000
100110 1101114 110000
0110000 0110010 0111100
0010000 0000010 0001000
G4=]0000000|,G5=/0000100|,Gg=|0000010]|.
0000010 0000010 0000100
0000010 0000010 0000000
0000000 0000000 0000000

Fig. 4 Public key for a (Multi-)HFE with parameters=2,N=1,d = 6, andD = 3.

As explained in Sect. 6.1.4, we can fix = 1. However, the MinRank problem has sti{q? — 1) = 6 x 63= 378 solutions. We can fix
one more variable as suggested in [34]. For example, wfix 6. We have now onlygl = 6 solutions, i.e.:

(1,6,6%5,6,6°,6%),(1,6,6%7,6*',6,6%),(1,6,6%,6*% 6°',6%),
(1,6,6%,6%,6%,6%),(1,6,06,6',6° 6'),(1,6,6%,6%°,6%,6).

We build the corresponding matricésandT’. In the second step — recoveri§y- the linear systentKkW = ker(F;) has no solution. The

computedl”’ is then not valid.

Using the technique described in Sect. 6.3, we have to solve a system of 68 equations in 50 variables. Affar-fixirgndw, , = 1,
the system is of dimension 0 and the solution is:

A =(1,0°6° 0% 0% 6%,

10010

100064 932 000111

K — 01006% g4 g_|001010

~ 1001061293 “|1111011]"
000 163% 921 011110
01011
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Finally, the matrixT’ can be recovered

00110
001001
110100
o0oo0011|"
100010
10101

With the matrice§” andS/, we recover a secret polynomigj = 048 Xf + 645X12 which completes the key recovery.

A.2 Example for Odd Rank

We consider an instance of HFE with the following parametgrs2, N=1,d =6,D = (¢° + 1) =5, andr =N [Iogq (D)] = 3. The private
key is given in Fig. 5 and the public key in Fig. 6.

F1 = 627X0 + 051X¢ + %6 X3 + 6%3x2.

10001 00011
000110 001101
S— 001111 T= 101011
010100’ 100101}
111111 111001
00010 01101

Fig. 5 Private key of a (Multi-)HFE with parameterg=2,N =1,d =6, andD = 3.

0000106 11111004 0101116
0100110 0111110 0011000
0010000 0001010 0000000
Gi=|0001010[,6,=/0000000|,63=[0001110],
0000010 0000100 0000100
0000010 0000000 0000010
0000000 0000000 0000000
101000 0101114 110000
0001100 0000000 0011110
0011110 0000010 0011100
Gs=[0001000[,6s=]0000010|,66=[0001010|.
0000010 0000000 0000100
0000010 0000000 0000000
0000000 0000000 0000000

Fig. 6 Public key of a (Multi-)HFE with parameterg:=2,N=1,d =6, andD = 3.

After fixing A1 = 1, the MinRank problem hassolutions. The solution are:
A(l) — (1’ 97’ 952’ 647 9337 936)
and all its Frobenius images. The maffikcan be recovered normally:

00010
110001
000110
011011
111011
00101

T =

The first step of the attack runs pretty well and we are able to contpuievertheless, one can remark that the kernel matrix aé

016°000
000100
000010]"
00000

ker(F1) =
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The matrix has 1 column set to zero instead of 3 leading to an underdetermined linear system when welbhsider(F;). We can try to
fix more variables in such system. For instance:

w(l) _ (17 0, 9317 9167 9507 65)

is a possible solution to our system. However, when we use it as in Sect. 6.1.4 to build thewHatix is not invertible, making the full key
recovery impossible. Another possible solution is

wb = 1, 65 612 936 934 96)~
In this caseW' is invertible. But, we have:
Fl = 97X133+65Xf2+ 955X117+923X116Jr esoxlgJr
961X£3+ 926X15+ 918Xf+ 959X13+ 961X12+ 631,

whose degree is not anymore boundedby
Using the method described in Sect. 6.3, we know that:

a; az 8300
Oasas 000
F_ 0 0a 000
1"[oooo0o00f"
00O0O0O0O
00O0O0O0
for some valuesy,...,a5 € ]qu. We have
956 947 950 928 917 958
0 641 914 939 954 945
0 0 912 956 944 936
(Gy,...,Gn)AM = 0 0 0 6% g5 gt
0 0 0 066
0 0 0 0 062

using the same notations as in Sect. 6.3. The resulting system
Fi=W1((Gy,....Gn)AM )W'.

has 21 quadratic equations and 36 field equations in 42 variables. After WKiny0, 0] = 1 the system has dimension 0 and it gives

6416236510 0 10110
0 6% 0 000 111001
F/_| 0 0 0000 g_|110001
1 0 0 0 o000 100001
0 0 0000 111000
0 0 000 01001

The polynomialF] = 651X3 + 626X + 623X3 + 641 X2 has HFE-shape and it can be verified that the recovered components are a valid
equivalent key.

B Proofs from Section 3.2
Proof (Proposition 5Y.etF =y g Eg;é,v:OAfvs-UvV)gqilﬁzl be a HFE-shaped polynomial and

~ d—1 d—1
X= (X, X XE XY XN )

From the definition of the non-standard matrix representation, we havé thak FX' with F = [fi ;] € .#nun (qu> and thenA suy =
frdusdiv- Assume thafF’ = XF4kX', we will prove thatF’ = F%. From Definition 1, each element 8t%X can be expressed from the

fi.;'s. By construction oF*®X, it is straightforward to show that*d* = [fgl[i/dH(Pk modd).d|j/d]+(j—k modd))- Then, the polynomiafF is:

n-1n-1 . .
q modd gl modd

_ ¢
F'= i; J; fa1i/d) +i—k modd).d /) +(j—k modd) X[i/a)+1 X} /d|+1°

We do the replacement—rd +uandj < sd+v.

N-1d-1N-1d-1

E— f o ya
- 20 zo Z) % dr+(u—k modd),d s+(v—k modd)xr+lxs+l
r=0u=0s=0v=

NLd 1 @ o

I __

F'=% > fdriu-kmodd).ds:(v—kmodd) Xr+1%si1-
r,s=0u,v=0
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We shift the indexes andv by k (i.e.u < u+k, v v+Kk). As in (2) — as the indexes being computed rdedwe have

N-1 d-1
F,: z Z fk qu+kmodd qv+kmodd
dr+(umodd),ds+(vmodd)”“r+1 1
rs=0u,v=0
N-1 d-1
QU ya¥ CI
z Z (fdr+u.ds+vxr+1xs+1)
rs=0u,v=0
Kk
N-1 d—1 q
z z AfSUer+1Xs+1
r,s=0u,v=0
F=Fd

This proves the proposition. O

Proof (Proposition 6)The proof is very similar to the proof of Proposition 3. Foj,0 < i, j < n, letm ; be the(i, j)-th element oMy 4.
According to the definition oMy ¢ in Proposition 4m j = 0iif [i/d] # | j/d]. Foralli, j, 0<i, j <n, an elemenb; j of B is then

n-1 d-1 d-1 )
bi,j = ;}mmm = Zz)ai,ti/dﬁf My j/djej = ;Oai.ww 0.5

ThUS:B; (- 1) modd) = T9-0 Bk 9z+_1 Consequently:

q
B k- ((j—1) modad) </z 8 k-0 9t+1> .

As g j € Fq(ie. aﬂj = g j) and since the Frobenius is linear, we get:

buqkd+(<J 1) modd) = /z Al ( z+1) ; A k00,1 =Dbikdrj-
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