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Abstract Motivated by a problem in computer architecture we introduce
a notion of the perfect distance-dominating set, PDDS, in a graph. PDDS s
constitute a generalization of perfect Lee codes, diameter perfect codes, as
well as other codes and dominating sets. In this paper we initiate a systematic
study of PDDS s. PDDS s related to the application will be constructed and
the non-existence of some PDDS s will be shown. In addition, an extension of
the long-standing Golomb-Welch conjecture, in terms of PDDS, will be stated.
We note that all constructed PDDS s are lattice-like which is a very important
feature from the practical point of view as in this case decoding algorithms
tend to be much simpler.
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1 Introduction

We introduce a generalization of perfect Lee codes and other dominating no-
tions, motivated by the following problem in computer architecture, see e.g.
[4]. Processing elements in a supercomputer communicate through a network
that has the topology of the Cartesian product of cycles. It is desirable to place
the Input/Output devices into the network in such a way that the communi-
cation of all elements in the network is optimized; each element of the network
should be at distance at most t from at least one I/O device, ideally from
exactly one I/O device. It is not difficult to see that perfect error correcting
Lee codes, if any, provide the optimal placement.

Unfortunately, the perfect t-error correcting Lee codes of block length n over Z,
and over Zq, q ≥ 2n+1, shortly PLC(n, t) and PLC(n, t, q)codes, respectively,
have been constructed only for n = 1, 2, and any t, and for n ≥ 3 and t = 1.
Moreover, as suggested by the well-known and long-standing conjecture of
Golomb and Welch [16], PLC(n, t) codes and PLC(n, t, q), q ≥ 2n + 1, codes
do not exist in other cases. To remedy this obstacle, perfect Lee codes have
been generalized in several ways, see e.g. [3], where the quasi-perfect Lee codes
have been introduced. A weakness of the quasi-perfect Lee codes is that some
words cannot be decoded in a unique way, and so far the quasi-perfect Lee
codes have been found only for n = 2.

In order to offer a new approach to the placement problem we will introduce yet
another generalization of Lee codes. Instead of defining it only for the Cartesian
product of cycles and the Cartesian product of two-way infinite paths, denoted
by Λn (= infinite graph whose vertex set is Zn with two vertices being adjacent
if their Euclidean distance is 1), we introduce the new concept for an arbitrary
graph. However, having in mind the application we will mainly focus on the
Cartesian product of cycles and Λn. As usual, [S] stands for the subgraph
induced by S, and the distance d(v, C) of a vertex v ∈ V to C is given by
d(v, C) = min{d(v, w);w ∈ C}.

Definition 1 Let t ≥ 1 and Γ = (V,E) be a graph. A set S ⊂ V will be
said to be a t-perfect distance-dominating set in Γ , a t-PDDS in Γ, if, for each
v ∈ V , there is a unique component Cv of [S], so that for the distance d(v, Cv)
from v to Cv it is d(v, Cv) ≤ t, and there is in Cv a unique vertex w with
d(v, w) = d(v, Cv).

The first condition guaranties that to each element v of the network there is
at least one I/O device at the distance at most t from v, while the second
condition, that in Cv there is a unique vertex w with d(v, w) = d(v, Cv),
guarantees that to each element v in the communication network, there is a
uniquely determined I/O device with which v will communicate.

Now we describe how the new domination concept of PDDS relates to other
coding theory and graph domination notions. First of all we note that
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PLC(n, t, q) codes and PLC(n, t) codes are t-PDDS s in the Cartesian product
of cycles and in Λn, respectively, with all components of t-PDDS being isolated
vertices. A notion of a diameter perfect code has been introduced in [1]. For
d odd, the diameter-d perfect Lee code in Λn coincides with the perfect d−1

2 -
error correcting Lee code. It follows from [2,14] that, for d even, diameter-
d perfect Lee code in Λn exists if and only if there is a d−2

2 -PDDS in Λn

whose each component consists of two adjacent vertices. In [6] Biggs extended
the concept of the perfect code from a metric space to a graph. A perfect
t-code in a graph Γ = (V,E) is a set C ⊂ V such that t-neighborhoods
Nt(c) = {u ∈ V ; d(c, u) ≤ t} with c ∈ C form a partition of V . Clearly, a
t-perfect code C in Γ is a t-PDDS in Γ with all vertices in C being isolated.
Further, Weichsel [28] defined a notion of the perfect dominating set, or PDS.
In our terminology a PDS is a 1-PDDS. PDS s were studied in the hypercube
graphs [28,13,11], in the star graphs [12], in Λ2, and in toroidal grids [10,9].
In addition, Klostermeyer and Goldwasser [20] defined the total perfect code
in a graph to be a subset of its vertex set with the property that each vertex is
adjacent to exactly one vertex in the subset. The NP-completeness of finding
a 1-perfect code of Γ and that of finding a minimal perfect dominating set in
a planar graph were established in [5,21], and in [15], respectively.

Now we prove a statement related to the structure of PDDS s in Λn. It turns out
that the choice of components of a t-PDDS in Λn is quite limited. To facilitate
our discussion we introduce some notation. If no ambiguity is possible, n-tuples
representing elements of Zn will be written without external parentheses or
commas. O will stand for the element 00 . . . 0 and e1 = 10 . . . 0, e2 = 010 . . .0,
. . ., en = 00 . . . 1.

Theorem 1 If S is a t-PDDS in Λn then each component of S is the Carte-

sian product of (possibly infinite) paths.

Proof Let S0 be a component of S in Λn. Assume that S0 is not a product
of paths. Then wlog we may assume that O, e1 + e2 ∈ S0, and e1 /∈ V (S0).
Now, d(e1, S0) = d(e1, O) = d(e1, e1 + e2) = 1. That is, the vertex v is at the
minimum distance 1 from two different vertices of S, a contradiction.

A similar result, in the case when PDS of the n-dimensional cube were con-
sidered, has been proved in [28].

With respect to the application mentioned above we will confine ourselves
to the most interesting case of t-PDDS s in Λn whose components are all
isomorphic to a fixed finite graph H , denoted for short by t-PDDS[H ]. It
would be very useful to characterize all finite graphs H for which there is
a t-PDDS[H ]. This would show the strength but also limitations of the new
concept for practical purposes. So far we are able to do it only for Λ2.

Remark 1 We point out that if R is a t-PDDS[H ], H = (V,E), then R can be
seen as a tiling of Zn by the graph H∗ = (V ∗, E∗) where H∗ is the indunced
subgraph of Λn on the set V ∗,where v ∈ V ∗ if and only if d(v, V ) ≤ t.
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As usual Pk will stand for the path on k vertices. Hence, P1 is an isolated ver-
tex. Further, the cartesian product of graphs G and H is denoted by G�H. At
the moment we do not have enough evidence to conjecture when a t-PDDS[H ]
exists in a general case. However, if H is a product of at most two paths then
we strongly believe that:

Conjecture 1 Let H be a finite path or a Cartesian product of two finite paths.
Then a t-PDDS[H ] in Λn exists if and only if either (i) t = 1, n ≥ 2, and
H = Pk, k ≥ 1; or (ii) t ≥ 1, n = 2, and H = Pk, k ≥ 1; or (iii) t ≥ 1, n = 2,
and H = P2�Pk, k ≥ 2; or (iv) t = 1, n = 3r + 2, r ≥ 0, and H = P2�P2; or
(v) t = 2, n = 3, and H = P2.

We note that (i) and (ii) extend Golomb-Welch conjecture as well as a conjec-
ture raised in [14] by Etzion. For k = 1, the existence of a t-PDDS[Pk] in (i)
and (ii) was shown by several authors in terms of PLC codes, see e.g. Golomb
and Welch [16], and, for k = 2, by Etzion [14] in terms of diameter perfect
Lee codes. The existence of a 2−PDDS[P2] in Λ3 follows from a Minkowski’s
tiling [22].

The next theorem constitutes one of the main results of the paper.

Theorem 2 A t-PDDS[H ] exists for all graphs H described in Conjecture 1.

The following theorem provides additional supporting evidence for Conjecture
1.

Theorem 3 If 3 ≤ s ≤ r then there is no t-PDDS[Ps�Pr] in Λ2 for t ≥ 1.

Corollary 1 A t-PDDS[H ] in Λ2 exists if and only if either t ≥ 1, and H =
Pk, k ≥ 1, or t ≥ 1, and H = P2�Pk, k ≥ 2.

To show that a t-PDDS[H ] exists also in the case when H is the Cartesian
product of at least three paths we offer the following theorem:

Theorem 4 There is a 1-PDDS[Q3] in Λ3, where Q3 = P2�P2�P2 is the

3-dimensional hypercube.

Recently we learnt that Buzaglo and Etzion proved that a 1-PDDS[Qn] exists
if and only if n = 2k − 1, or n = 3k − 1, c.f. [7]. They proved the statement in
terms of tilings by crosses; see Remark 1.

All t-PDDS s constructed in this paper are lattice-like, which is a very impor-
tant feature from the practical point of view as in this case decoding algorithms
tend to be much simpler. As the notion of lattice-like PDDS is a key one we
provide a formal definition. Let H = (V,E) be a subgraph of Λn, and let
z ∈ Z

n. Then H+z denotes the graph H ′ = (V ′, E′), where V ′ = V +z = {w;
there exists v ∈ V,w = v + z}, and uv ∈ E if and only if (u+ z)(v + z) ∈ E′.
Let R be a t-PDDS[H ] and D ≃ H be a component of R. Then R will be
called lattice-like if there exists a lattice L such that D′ is a component of R
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if and only if there is z ∈ L so that D′ = D+ z. We recall, see Remark 1, that
a t-PDDS[H ] can be seen as a tiling. Thus a notion of a lattice-like tiling will
be understood in the same way as a lattice-like PDDS.

All desired t-PDDS in Λn will be constructed by the same algebraic method.
A PDDS constructed this way is lattice-like, which in turn implies that such
a PDDS is periodic as well. That is, a suitable restriction of this PDDS con-
stitutes a PDDS in the Cartesian product of cycles. This is the case of main
interest because of the placement problem discussed above. We recall that a
set S ⊂ Z

n is periodic if there are integers p1, . . . , pn such that v ∈ S implies
v ± piei ∈ S for all i = 1, . . . , n, where ei is the unit vector in the direction of
the i-axis. We recall that each lattice-like t-PDDS is periodic, but the converse
is not true in general.

Now we describe a construction of a partition (tiling) of Λn. As far as we
know Stein in [26] was the first one to use a group homomorphism to con-
struct a lattice-like tiling; he did it in the case of a tiling by different types
of crosses. Several variations of Stein’s construction can be found through-
out the literature, see e.g. [26,23,27,25,17,8,24,18]. For the reader’s conve-
nience we provide a detailed description of this generalization. Let (Zn,+) be
the (component-wise) additive group on Z

n. Consider a lattice L in (Zn,+),
i.e. a subgroup of (Zn,+), generated by elements u1, . . . , un ∈ Z

n; hence
L = {α1u1 + . . . + αnun;αi ∈ Z, i = 1, . . . , n}. We denote by F the factor
group (Zn,+)/L. Furthermore, let a set T of vertices in Z

n contain one ele-
ment from each coset of (Zn,+)/L. Then, T = {T + u; u∈L} constitutes a
partition of Zn into parts of size |F | and, for each u ∈ L, we have that [T +u],
the subgraph of Λn induced by T +u, is isomorphic to [T ]. Clearly, for a given
lattice L, we can partition the vertex set of Λn into parts such that the corre-
sponding induced subgraphs have different shapes depending on the choice of
T .

Example. Set L = {α1(13, 0) + α2(3, 2);αi ∈ Z, i = 1, 2}. Then, (Z2,+)/L =
Z13. There are many options how to choose the graph [T ],e.g., [T ] might be a
path of length 12, or a Lee sphere of radius 2, see the figure below where the
both options are depicted in bold font. The numbers at the vertices of Λ2 are
elements of Z13 = (Z2,+)/L.

❛

❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛

❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛

❛ ❛ ❛ ❛ ❛ ❛

❛ ❛ ❛ ❛ ❛ ❛

❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛

0 1 2 3 4 5 6 7 8 9 a b c 0

5 6 7 8 9 a b c 0 1 2 3 4 5

5 6 7 8 9 a

0 1 2

0 1 2 3 4 5 6 7 8 9 a b cc

0 1 2 3 4a b c

2 3 4 5 6 7 8 9 a b c

7 8 9 a b c 0 1 2 3 4 5 6 7

❛

❛ ❛ ❛

❛ ❛ ❛ ❛ ❛
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tt

tt

tt

t

t

t

t

t

t t

tt tt t q q q q qtt tt t q q qq q qt t t

However, for our purpose, we will utilize an “inverse” process. Given an in-
duced subgraph D = (V,E) of Λn, find a partition (tiling) of Λn into copies



6 C. Araujo et al.

of D. Here we mean partitioning of the vertex set of Λ only, see Remark 1.
Hence we need to find a suitable lattice L that would allow the required choice
of the set T , i.e. [T ] = D. It turns out that to do so one does not have to find
the lattice L explicitly. We will show that the following construction leads
to the desired tiling of Λn. We claim that if there exists an Abelian group
(G,+) of order |V | and elements g1, . . . , gn of G such that the restriction of
the homomorphism Φ : Zn → G, Φ((a1, . . . , an)) = a1Φ(e1) + . . .+ anΦ(en) =
a1g1 + . . .+ angn, to V is a bijection then there exists a partition of Λn into
copies of D. In other words, we need to find an Abelian group G of order |V |
and assign elements g1, . . . , gn of G to the vertices e1, . . . , en of Λn so that
Φ((a1, . . . , an)) = a1Φ(e1)+ . . .+anΦ(en) = a1g1+ . . .+angn, is a bijection on
V . It is well known, that the ker of a homomorphism φ : A → B is a subgroup
of A. Thus, the elements w of Zn for which Φ(w) = 0 form a lattice L in
(Zn,+). In addition, (Zn,+)/L = G and the vertex set V comprises exactly
one element from each coset of (Zn,+)/L; thus we can set T = V .

As the above method is the main tool in this paper, we summarize it as
Corollary 2 (to Theorem 5 below)

Theorem 5 [19] Let D = (V,E) be a subgraph of Λn. Then there is a lattice-
like tiling of Λn by copies of D if and only if there is an Abelian group (G, ◦)
and a homomorphism Φ : Z

n → G, so that the restriction of Φ to V is a
bijection.

If the restriction of Φ to V is an injection, then Theorem 5 (in which D need
not be connected) produces a packing of Λn by copies of D. This idea has been
used in several papers, see e.g. [25,17,24]. The following corollary of Theorem
5 is tailored to our present needs:

Corollary 2 Let t ≥ 1 and let H be a subgraph of Λn. Further, let H∗ be

an induced supergraph of H such that a vertex v belongs to H∗ if and only if

d(v,H) ≤ t; let D = (V,E) be a copy of H∗ or a copy of a disjoint union of

finitely many copies of H∗ that contains vertices O, e1, . . . , en. Then, there is

a t-PDDS[H ] if there exists an Abelian group G of order |V | and a homomor-

phism Φ : Zn → G such that the restriction of Φ to V is a bijection.

Remark 2 We will always choose D to contain vertices O, e1, . . . , en. This is
not a necessary condition but it will be added to simplify the exposition. A t-
PDDS[H ] constructed by means of Corollary 2 is lattice-like if D is isomorphic
to H∗. If D consists of more copies of H∗, then we get a lattice tiling of Zn

by D but this will not constitute a lattice-like t-PDDS[H ].

The rest of the paper is organized as follows. Section 2 contains a proof of
Theorem 2, while a proof of (i) of Theorem 3 will be given in Section 3.
Theorem 4 will be proved in Section 4. To demonstrate the strength of the
construction, in Section 5 we present a periodic 1-PDDS in Λ2 that is not
lattice-like.
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2 Existence of t-PDDS s

In this section we prove Theorem 2, that is we prove the existence of t-PDDS s
as described in Conjecture 1. For the sake of completeness we note that a
Minkowski’s tiling that proves part (v) can be obtained by Corollary 2 using
the group G = Z38 and the homomorphism given by Φ(e1) = 1, Φ(e2) = 11
and Φ(e3) = 7.

2.1 Part (i)

Here we deal with the case when each component of a 1-PDDS is isomorphic
to a path Pk of length k − 1, where k ≥ 2. We start with the case when
each component of a t-PDDS is an isolated vertex. Each 1-PDDS[P1] in Λn

corresponds to a perfect 1-error correcting Lee code, PLC(n, 1). The existence
of such codes has been showed independently by several authors. Kárteszi
asked whether there exists a PLC(3, 1). Feller, for n = 3, and then Korchmáros,
and Golomb and Welch [16] showed that there is a PLC(n, 1) for all n ≥ 2.
The following stronger theorem has been proved by Molnár [23].

Theorem 6 The number of non-congruent lattice-like PLC(n, 1) codes equals
the number of Abelian groups of order 2n+ 1.

To illustrate our method we prove the theorem. The following proof is shorter
than the original one due to Molnár. Since in this case H is an isolated vertex,
the graph H∗ is of order 2n+ 1. We choose a copy of D = (V,E) of H∗ such
that V = {±ei ; i = 1, . . . , n} ∪ {O}. Let G be an Abelian group of order
2n+1. Choose a set K = {g1, . . . , gn} formed by n distinct elements of G such
that K contains exactly one element from each pair g, g−1; formally, g ∈ K
if and only if g−1 /∈ K. Since no element of G is of order 2, the set K is well
defined. Clearly, the restriction of the homomorphism Φ : Zn → G given by
Φ((a1, . . . , an)) = Φ(e1)

a1 ◦ . . .◦Φ(en)
an to V is a bijection. Thus, each Abelian

group of order 2n+1 generates a PLC(n, 1); this code is a periodic code where
pi s are orders of elements of G. It is not difficult to check that non-isomorphic
groups generate non-congruent PLC(n, 1) codes.

We note that Szabó [27] constructed, in the case when 2n+ 1 is not a prime,
the first non-lattice-like PLC(n, 1) code. This code is periodic though. In [18],
for the same case, the first non-periodic PLC(n, 1) code has been found. It has
also been shown in [18] that there is a unique PLC(n, 1) code for n = 2, 3.

The existence of 1-PDDS[P2] (called total perfect codes in [20]) has been
proved in [14] in terms of diameter perfect codes.

Theorem 7 A 1-PDDS[Pk] in Λn exists for each n ≥ 2 and each k ≥ 1.
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Proof We will construct the desired PDDS by applying Corollary 2. Set H =
Pk. We place the graph D = (V,E) that is isomorphic to H∗ in such a way
that V comprises the vertices O, e1, 2e1, . . ., (k−1)e1 of the path Pk and their
2nk − 2k + 2 neighbors, namely −e1, ke1 and ±ei, e1 ± ei, . . ., (k − 1)e1 ± ei
for i = 2, . . . , n. Thus, |V | = 2nk − k + 2 and D contains the vertices O and
ei, for i = 1, . . . , n, as required by Corollary 2. We choose G = Z2nk−k+2.
The element gi of G that is assigned to the vertex ei, for i = 1, . . . , n, is
gi = (i − 1)k + 1. To finish the proof, we need to show that the restriction of
the mapping Φ((a1, . . . , an)) = Φ(e1)

a1 ◦. . .◦Φ(en)
an = a1g1+. . .+angn to the

set V is a bijection. To see this, it suffices to note that Φ{O, e1, 2e1, . . . , (k −
1)e1} = {0, 1, . . . , k − 1}, Φ{−e1, ke1} = {k, 2nk − k + 1}, and Φ{±ei, e1 ±
ei, . . . , (k−1)e1±ei} = {±(i−1)k+1,±(i−1)k+2, . . . ,±(i−1)k+k−1,±ik}.

In aggregate, Φ(V ) = {0, . . . , k}∪
n⋃

i=2

{(i − 1)k + 1, . . . , ik} ∪
n⋃

i=2

{(2n − i)k +

1, . . . , (2n− i− 1)k + 2} ∪ {2nk− k + 1} = {0, . . . , 2nk − k + 1} = G. For the
reader convenience we illustrate the proof by means of three small examples
for k = 3:

< e1, e2 > < e1, e3 > < e1, e4 >

n=2 7 8 9

Z11

10 0

4
1

5
2

6
3

n=3 13 14 15 10 11 12

Z17

16 0

4
1

5
2

6
3 16 0

7
1

8
2

9
3

n=4 19 20 21 16 17 18 13 14 15

Z23

22 0

4
1

5
2

6
3 22 0

7
1

8
2

9
3 22 0

10
1

11
2

12
3

2.2 Part (ii)

In this subsection we prove the existence of a t-PDDS in Λ2 whose components
are all isomorphic to a path Pk, where t > 1 and k > 1.

Theorem 8 A t-PDDS[Pk] in Λ2 exists for each t ≥ 1 and k ≥ 1.

Proof We provide a detailed proof as we use the same approach to prove this
and the next theorem. Let H be a path Pk on vertices {O, e2, 2e2, . . . , (k −
1)e2}. Then H∗ consists of vertices of H plus all vertices at distance at most
t from H ; hence |H∗| = 2t2 + 2tk + k. Clearly, xe1 + ye2 ∈ H∗ iff

−t ≤ x < 0 and − x− t ≤ y ≤ x+ t+ k − 1

or

0 ≤ x ≤ t and x− t ≤ y ≤ −x+ t+ k − 1

We will construct the desired PDDS by applying Corollary 2 so that the graph
D = (V,E) consists of two disjoint copies of H∗; a copy described above and
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a translation of this copy by (t, t+ k). Thus, the other copy of H∗ is given by

0 ≤ x ≤ t and − x+ t+ k ≤ x+ t+ 2k − 1

or

t+ 1 ≤ x ≤ 2t and x− t+ k ≤ y ≤ −x+ 3t+ 2k − 1

In aggregate, |V | = 4t2 + 4tk + 2k, and a vertex xe1 + ye2 ∈ V iff

− t ≤ x < 0 and − x− t ≤ y ≤ x+ t+ k − 1 (1)

either (2)

0 ≤ x ≤ t and x− t ≤ y ≤ x+ t+ 2k − 1 (3)

or (4)

t+ 1 ≤ x ≤ 2t and x− t+ k ≤ y ≤ −x+ 3t+ 2k − 1 (5)

To construct the desired lattice-like PDDS we choose the cyclic group G =
Z4t2+4tk+2k and set g1 = 2t + 2k − 1, and g2 = 1. Hence Φ(xe1 + ye2) =
((2t+ 2k − 1)x+ y) mod (4t2 + 4tk + 2k).

For fixed x, by (1), the set Ix = {y; xe1 + ye2 ∈ V } is an interval. Therefore,
as g2 = 1, Φ(Ix) comprises |Ix| consecutive elements of the group G, where we
take that 0 follows the element 4t2+4tk+2k−1. To see that the mapping Φ is
a bijection on V it is sufficient to show that the intervals Ix,−t ≤ x ≤ 2t can
be ordered in such a way that if Iz immediately precedes Ivin this order then
Φ(min Iv) = Φ(max Iz) + 1. An order with this property is given implicitly
below.

(i) for each −t ≤ x ≤ 0, it is Φ(min Ix) = Φ(max Ix+2t) + 1;
(ii) for each 1 ≤ x ≤ t, it is Φ(min Ix) = Φ(max Ix−1) + 1;
(iii) for each t+ 1 ≤ x ≤ 2t, it is Φ(min Ix) = Φ(max I−2t−1+x) + 1.

It is easy to prove (i)-(iii) by using (1) and simple calculations. For the readers
convenience we work out details of (i). If −t ≤ x ≤ 0, then, from the first line
of (1), Φ(min Ix) = Φ(xe1 + (−x − t)e2) = (x(2t + 2k − 1) + (−x − t)) mod
(4t2 + 4tk + 2k) =
(2(t+ k − 1)x− t) mod (4t2 + 4tk + 2k).

For −t+ 1 ≤ x ≤ 0, by the third line of (1), we get
Φ(max Ix+2t) = Φ((x + 2t)e1 + (−(x+ 2t) + 3t+ 2k − 1)e2) =
((x+ 2t)((2t+ 2k − 1) + (−(x+ 2t) + 3t+ 2k − 1)) mod (4t2 + 4tk + 2k) =
([2(t+k−1)x−t]+[4t2+4tk+2k]−1)mod (4t2+4tk+2k) = ([2(t+k−1)x−t]−1)
mod (4t2 + 4tk + 2k) = Φ(min Ix)− 1.

Finally, for x = −t, by the second line of (1), Φ(max Ix+2t) = Φ((x + 2t)e1 +
(x+ 2t+ t+ 2k − 1)e2) =
(t(2t+ 2k − 1) + (2t+ 2k − 1)) mod (4t2 + 4tk + 2k) =
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([2(t+ k− 1)(−t)− t+ [4t2 +4tk+2k]− 1) mod (4t2 +4tk+2k) = (2(t+ k−
1)(−t)− t) mod (4t2 + 4tk + 2k) = Φ(−t)− 1. The proof is complete.

For the reader’s convenience, we provide two small examples for t = 2, 3 and
k = 3.

36
44
45 8 65

75
76 9

28
29

37
38

0

1

9
10

18
19 45

55
56

66
67

77
0

10
11

21
22 33

30 39
40

2

3
11
12

20
21

46
47

57
58

68
69

1

2

12
13

23
24

34
35

4
5

13
14

22
23

31
32 41

59 70
71

3
4

14
15

25
26

36
37 48

6
7

15
16

24

25

33
34

42
43

5
6

16
17

27
28

38
39

49
50

60
61 72

17 26
27

35 7
8

18
19

29
30

40

41

51
52

62
63

73
74

20 31
32

42
43

53
54

64

44

To prove the statement of this Theorem 8 just with D = (V,E) = H∗, notice
that now |V | = 2t2 + 2tk + k and choose the cyclic group G = Z2t2+2tk+k,
setting g1 = 1 and g2 = 2t+1. Hence Φ(xe1+ye2) = (x+(t+1)y) mod (2t2+
2tk+k) and Φmaps V bijectively ontoG by sending the successive intersections
of V with the lines e2 = 0, . . . , r,−t, r+1,−t+1, r+2, . . . ,−1, r+ t from left
to right onto −tg1, . . . ,−g1, O, . . . , (|V | − t)g1. For the reader’s convenience,
we provide two small examples for t = 2, 3 and k = 3.

17
13
18 19 24

18
25 26

21
3

22
4

0

5

1
6

2
7 36

30
37

31
38

32
0

33
1

34
2 3

8 9
14

10

15
11
16

12 4
11

5
12

6
13

7

14

8
15

9
16

10
17

20 19 20
27

21
28

22
29

23

35

2.3 Part (iii)

Here we discuss the existence of a t-PDDS in Λ2 whose components are iso-
morphic to the Cartesian product of two finite paths. The case k = 1 of the
following theorem, using a different technique, has been also proved in [14] in
terms of diameter perfect codes.

Theorem 9 A t-PDDS in Λ2 whose components are isomorphic to P2�Pk

exists for each t ≥ 1 and k ≥ 1.

Proof We prove this theorem using the same approach as in Theorem 8 and
indicate at the end how to obtain the same result just with D = H∗. Let H
be the graph P2�Pk on vertices {re2, e1+ re2; 0 ≤ r ≤ k− 1}. Then the graph
H∗ consisting of H and all vertices at distance at most t from H is of order
2t2 + 2tk + 2t+ 2k. It is easy to see that xe1 + ye2 ∈ H∗ iff

−t ≤ x ≤ 0 and − x− t ≤ y ≤ x+ k + t− 1

or

1 ≤ x ≤ t+ 1 and x− t− 1 ≤ y ≤ −x+ k + t
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We will construct the desired PDDS by applying Corollary 2 to the graph
D = (V,E) consisting of two disjoint copies of H∗; a copy described above
and a translation of this copy by (t+ 1, t+ k). Thus, the other copy of H∗ is
given by xe1 + ye2 ∈ H∗ iff

1 ≤ x ≤ t+ 1 and − x+ t+ k + 1 ≤ y ≤ x+ 2k + t− 2

or

t+ 2 ≤ x ≤ 2t+ 2 and x+ k − t− 2 ≤ y ≤ −x+ 2k + 3t+ 1

In aggregate, a vertex xe1 + ye2 ∈ V iff

− t ≤ x ≤ 0 and − x− t ≤ y ≤ x+ k + t− 1 (6)

or (7)

1 ≤ x ≤ t+ 1 and x− t− 1 ≤ y ≤ x+ 2k + t− 1 (8)

or (9)

t+ 2 ≤ x ≤ 2t+ 2 and x+ k − t− 2 ≤ y ≤ −x+ 2k + 3t+ 1 (10)

To construct the desired lattice-like PDDS we choose the Abelian group G =
Z2t+2k× Z2t+2 and set g1 = (0, 1), and g2 = (1, 0). Hence Φ(xe1 + ye2) = (x
mod (2t+ 2k), y mod (2t+ 2)). To finish the proof we show that a restriction
of Φ to V is a bijection. Let, as above, Ix = {y;xe1 + ye2 ∈ V }. Then, for all
1 ≤ x ≤ t + 1, Φ(Ix) = Z2t+2k × {x}, as g2 = (1, 0) and Ix is an interval of
length 2t+ 2k.
Now, for all t+ 2 ≤ x ≤ 2t+ 2, it suffices to realize that
Ix ∪ Ix−(2t+2) = [(−x + (2t + 2) − t, x − (2t + 2) + k + t − 1] ∪ [x + k − t −
2,−x+ 2k + 3t+ 1] =
[−x+t+2, x−t+k−3]∪[x−t+k−2,−x+2k+3t+1] = [−x+t+2,−x+2k+3t+1].
Thus, Ix∪Ix−(2t+2) is an interval of length 2t+2k as well. This in turn implies,
as x ≡ x − (2t + 2) mod (2t + 2), that Φ(Ix ∪ Ix−(2t+2)) = Z2t+2k × {x} also
in this case. The proof is complete. However, after a pair of examples, we say
how to make out with D = H∗.

For the reader’s convenience, we illustrate the proof with some small examples.
For t = 2 and k = 1, 2, we take G = Z4+2k × Z6 and Φ assigned as follows:

5,5
4,0
5,0

4,1
5,1 5,2 7,5

6,0
7,0

6,1
7,1 7,2

0,4 0,5
1,5

0,0
1,0

0,1
1,1

0,2
1,2

0,3
1,3 1,4

0,4
1,4

0,5
1,5

0,0
1,0

0,1
1,1

0,2
1,2

0,3
1,3

2,0 2,1
3,1

2,2
3,2

2,3
3,3

2,4
3,4

2,5
3,5 3,6

2,5 2,0
3,0

2,1
3,1

2,2
3,2

2,3
3,3

2,4
3,4 3,5

4,2 4,3
5,3

4,4
5,4

4,5 4,1
5,1

4,2
5,2

4,3
5,3

4,4
5,4

4,5
5,5

4,6
5,6

6,2 6,3
7,3

6,4
7,4

6,5

To prove the statement of this Theorem 9 just with D = (V, e) = H∗, note
that |V | = 2(t+ 1)(t+ k) and denote m = gcd(t+ 1, t+ k). Then take:
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1. G = Z2(t+1)(t+k), g1 = t+ 1 and g2 = t+ k, if m = 1;

2. G = Zm × Zn, where n = 2(t+1)(t+k)
m

, if m 6= 1; now take:

(a) g1 = (1, n) and g2 = (0, 1) , if m|t+ k;
(b) g1 = (1, n

2(2t+1) ) and g2 = (1, 2t+1
m

) , otherwise.

We leave the details of the proof of this approach of Theorem 9 to the reader
and just give three small examples of it, for (t, k) = (2, 2), (2, 4), (3, 3), where
G = Z24, Z3 × Z12, Z2 × Z24, respectively:

11
6
15

10
19 23 2,9

0,10
0,11

1,0
1,1 2,3 1,17

1,18
0,20

0,21
1,23 0,2

16
1

20
5

0

9

4

13

8
17

12
21

1,8
1,9

2,10
2,1

0,0
0,1

1,2
1,3

2,4
2,5

0,6
0,7 1,15

1,16
0,18

0,19
1,21

1,22
0,0

0,1
1,3

1,4
0,6

0,7
1,9 0,12

14 18
3

22
7

26 1,10
1,11

2,2
2,3

0,2
0,3

1,4
1,5

2,6
2,7

0,8
0,9

0,17
1,19

1,20
0,22

0,23
1,1

1,2
0,4

0,5
1,7

1,8
0,10

0,11
1,13

1,14
0,16

2,4 0,4
0,5

1,6
1,7

2,8 1,0 0,3
1,5

1,6
0,8

0,9
1,11

1,12
0,14

0,15

1,10 0,13

2.4 Part (iv)

In this subsection we discuss the existence of t-PDDS s in Λn whose compo-
nents are isomorphic to P2�P2. Note that for n = 2 this case overlaps with
the previous part.

Theorem 10 Let n = 3k + 2, where k ≥ 0. Then, there exists a lattice-like

1-PDDS in Λn whose components are isomorphic to P2�P2.

Proof We will construct the desired PDDS by applying Corollary 2. Set H =
P2�P2. We place the graph D = (V,E) that is isomorphic to H∗ in such a way
that V comprises the vertices O, e1, e2 and e1+e2 and their 24k+8 neighbors;
namely, −e1, 2e1, e2 − e1, e2 + 2e1, −e2, 2e2, e1 − e2, e1 + 2e2, and, if k > 0,
then also vertices ±ei, e1 ± ei, e2 ± ei and e1 + e2 ± ei for i = 3, . . . , 3k + 2.
Thus, |V | = 24k + 12, and D contains the vertices O and ei, for i = 1, . . . , n,
as required by Corollary 2. We set G = Z24k+12. The elements gi of G that are
assigned to the vertices ei, for i = 1, . . . , n, are: g1 = 2+ 4k, g2 = 3+6k, and,
if k > 0, then g2+i = 2+4k+ i, g2+k+i = 2+4k− i and g2+2k+i = 6+11k+ i,
for i = 1, . . . , k. To finish the proof, we need to show that the restriction of the
mapping Φ((a1, . . . , an)) = Φ(e1)

a1 ◦ . . .◦Φ(en)
an = a1g1+ . . .+angn to the set

V is a bijection. To see this, it suffices to check the table below (broken into
two parts to be pasted together horizontally) that shows that each element of
Z24k+12 belongs to the set Φ(V ). In the table the symbol [a, b] stands for the
set {a, a+1, a+2, ..., b}. In all cells of the table, the index i runs through the
interval [1, 12 + 24k], where 12 + 24k ≡ 0 in G = Z24k+12 and integers on the
columns corresponding to G shown in increasing order from left to right, line
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by line, and then from top to bottom:

V Φ(V ) G
e1−e2+k+i

e2−e2+k+i

i
1+2k+i

[1,k]
[2+2k,1+3k]

...

...
e1+k+i

e1+e2−e2+k+i

2+4k+i
3+6k+i

[3+4k,2+5k]
[4+6k,3+7k]

...

...
e1+e2+i

e2+e2+i

4+8k+i
5+10k+i

[5+8k,4+9k]
[6+10k,5+11k]

...

...
−e2+2k+i

e1+e2+e2+i

7+13k−i
7+14k+i

[7+12k,6+13k]
[8+14k,7+15k]

...

...
e2+e2+k+i

e2−e2+2k+i

9+17k−i
10+19k−i

[9+16k,8+17k]
[10+18k,9+19k]

...

...
−e2+k+i

e1+e2−e2+2k+i

10+20k+i
12+23k−i

[11+20k,10+21k]
[12+22k,11+23k]

...

...

V Φ(V ) G V Φ(V ) G
...
...

e2−e2+i

e2+k+i

1+2k−i
2+4k−i

[k+1,2k]
[2+3k,1+4k]

e2−e1
e1

1+2k
2+4k

1+2k
2+4k

...

...
e1+e2−e2+i

e1+e2+k+i

3+6k−i
4+8k−i

[3+5k,2+6k]
[4+7k,3+8k]

e2
2e1

3+6k
4+8k

3+6k
4+8k

...

...
e2+e2+k+i

e2+2k+i

5+10k−i
5+11k+i

[5+9k,4+10k]
[6+11k,5+12k]

e1+e2
2e2

5+10k
6+12k

5+10k
6+12k

...

...
e1+e2+e2+k+i

e1+e2+2k+i

7+14k−i
7+15k+i

[7+13k,6+14k]
[8+15k,7+16k]

2e1+e2
e1+2e2

7+14k
8+16k

7+14k
8+16k

...

...
e2+e2+2k+i

−e2+i

8+17k+i
10+20k−i

[9+17k,8+18k]
[10+19k,9+20k]

−e2
−e1

9+18k
10+20k

9+18k
10+20k

...

...
e1+e2+e2+2k+i

e1−e2+i

10+21k+i
12+24k−i

[11+21k,10+22k]
[12+23k,11+24k]

e1−e2
O

11+22k
12+24k

11+22k
12+24k

As usual at the end of the proof we provide three small examples for n = 2, 5,
and 8, to illustrate it.

< e1, e2 >

10
9
0

11
2 4

1 3

6
5

8
7

< e1, e2 > + e3 − e3 + e4 − e4 − e5 + e5
30

27
0

33
6 12 7 13 29 35 5 11 31 1 17 23 19 25

3 9

18
15

24
21 16 22 2 8 14 20 4 10 26 32 28 34

< e1, e2 > + e3 − e3 + e5 − e5 − e7 + e7

50
45
0

55
10 20 11 21 49 59 9 19 51 1 29 39 31 41

5 15

30
25

40
35 26 36 4 14 24 34 6 16 44 54 46 56

+ e4 − e4 + e6 − e6 − e8 + e8

12

27
22
37

48
3

58
13

8

23
18
33

52
7

2
17

28

43
38
53

32
47

42
57

3 Proof of Theorem 3

In this section we prove Theorem 3.
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Proof Suppose that there is a t-PDDS R in Λ2 whose components are iso-
morphic to Pk�Ps, where k ≥ s ≥ 3. Let H∗ be an induced subgraph of Λn

comprising the vertices of a copy H of Pk�Ps and all vertices at distance
at most t from H . Clearly R generates a decomposition of Z2 into copies of
H∗. Although R is not necessarily lattice-like, all components of R have to
be either ”parallel” to the x-axis, or to be ”parallel” to the y-axis. Assume
wlog that R contains a component Pk�Ps comprising vertices (x, y), where
1 ≤ x ≤ k, t+1 ≤ y ≤ t+ s; see the figure below for examples of this situation
for k = 6, s = 3 and t = 3. Consider a set of vertices A = {(x, 0), 1 ≤ x ≤ k}.
We will show that the vertices of A cannot be covered by vertex-disjoint copies
ofH∗. Assume that a copy ofH∗ covers only vertices (x, 0), 1 ≤ x ≤ m,m < k,
see the left example below, where m = 4. Then the vertex (m+1, 0) cannot be
covered in R. However, if all vertices in A are covered in R by the same copy of
H∗ (in this case the two copies of H∗ have to be ”parallel” as k ≥ s) , then the
vertices (k + 1, 0) and (k + 1, 1) can be covered only if s = 2, a contradiction
as we consider the case s ≥ 3. See the right example in the figure.

❜ ❜

r r r r r

r r r r r

r r r r r

❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜

❜

❜

❜

❜

❜ ❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜

❜

❜

❜ ❜

r r r r r

r r r r r

r r r r r

❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜

❜

❜

❜

❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜

❜

❜

❜?

❜ ❜

r r r r r

r r r r r

r r r r r

❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜

❜

❜

❜

❜

❜ ❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜

❜

❜

❜ ❜

r r r r r

r r r r r

r r r r r

❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜

❜

❜

❜

❜

❜ ❜ ❜ ❜ ❜

❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜

❜

❜

❜?

❜

❜

❜

r

r

r

r

r

r

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

r

r

r

❜

❜

❜

❜

❜

❜

❜

r

r

r

❜ ❜ ❜ ❜ ❜

❜

❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜ ❜ ❜ ❜ ❜❜

❜

❜

❜

❜

❜

❜

❜

❜ ❜ ❜ ❜ ❜ ❜

❜

❜

❜ ❜ ❜ ❜ ❜❜

❜

❜

❜

❜

❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜ ❜ ❜ ❜ ❜ ❜?❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜ ❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

4 Proof of Theorem 4

Proof We will construct the desired PDDS by applying Corollary 2. Set H =
Q3. We place the graphD = (V,E) that is isomorphic toH∗ in such a way that
V comprises the vertices O, e1, e2, e3, e1+e2, e1+e3, e2+e3 and e1+e2+e3 of
Q3 and their 24 neighbors. Thus, |V | = 32, and D contains the vertices O and
ei, for i = 1, 2, 3, as required by Corollary 2. We choose G = Z2⊕Z4⊕Z4. The
elements gi of G that are assigned to the vertices ei are: g1 = 1, 3, 3, g2 = 0, 1, 0
and g3 = 0, 0, 1. To finish the proof, we need to show that the restriction of the
mapping Φ((a1, a2, a3)) = Φ(e1)

a1 ◦ Φ(e2)
a2 ◦ Φ(e3)

a3 = a1g1 + a2g2 + a3g3 to
the set V is a bijection. For the reader’s convenience we provide all values of Φ
on V in a table below. It suffices to note that all these values are distinct. The
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vertices in V are given in the left-hand side of the table, the corresponding
values of Φ in the right-hand side.

−e3 e1−e3 0,0,3 1,3,2
e2−e3 e1+e2−e3 0,1,3 1,0,2

−e1
−e2
O

e1−e2
e1 2e1 1,1,1

0,3,0
0,0,0

1,2,3
1,3,3 0,2,2

e2−e1 e2
2e2

e1+e2
e1+2e2

2e1+e2 1,2,1 0,1,0
0,2,0

1,0,3
1,1,3

0,3,2

e3−e1
e3−e2
e3

e1−e2+e3
e1+e3 2e1+e3 1,1,2

0,3,1
0,0,1

1,2,0
1,3,0 0,2,3

e2+e3−e1 e2+e3
2e2+e3

e1+e2+e3
e1+2e2+e3

2e1+e2+e3 1,2,2 0,1,1
0,2,1

1,0,0
1,1,0

0,3,3

2e3 e1+2e3 0,0,2 1,3,1
e2+2e3 e1+e2+2e3 0,1,2 1,1,0

5 A periodic 1-PDDS[P2] that is not lattice-like

Here we provide a periodic 1-PDDS[P2] R that is not lattice-like. To see this
it will suffice to notice that some components of R are paths P2 ”parallel to
x-axis”, some ”parallel to y-axis”. A typical part of R consisting of four copies
of P2 and their neighbors is provided in the figure below:

❜ ❜

❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜ ❜

❜ ❜

s s

s s

s

s

s

s

Despite the fact that R is not lattice-like we will show how it is possible to
construct it by means of a slight modification of Corollary 2.

We take H∗ to be a graph induced by the 32 vertices in the figure above.
To obtain the graph D = (V,E) we place H∗ so that the four copies of P2

occupy vertices (0, 1) and (1, 1); ( 0,−2) and (1,−2); (−2,−1) and (−2, 0);
and finally (3,−1) and (3, 0) respectively. We choose as G the group Z4 ⊕Z8.
The elements of G assigned to e1 and e2 are 0, 1 and 1, 1 respectively. The
restriction of the homomorphism Φ to V is provided below in the matrix form.
It is easy to verify from the matrix that Φ is a bijection on V.

2, 6 2, 7
3, 5 3, 6 3,7 3,0 3, 1 3, 2

0, 5 0,6 0, 7 0, 0 0, 1 0, 2 0,3 0, 4
1, 6 1,7 1, 0 1, 1 1, 2 1, 3 1,4 1, 5

2, 0 2, 1 2,2 2,3 2, 4 2, 5
3, 3 3, 4
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Thus Corollary 2 provides a decomposition of Z2 into parts of order 32, each
of them isomorphic to H∗. Further, as H∗ can be decomposed into four copies
of P2 and its neighbors, we have constructed a 1-PDDS[P2] R that is not
lattice-like. However, it is straightforward that R is periodic. Therefore we
have proved:

Theorem 11 There exists a periodic non-lattice-like 1-PDDS[P2] in Λ2.
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