Designs, Codes and Cryptography manuscript No. (will be inserted by the editor)

A Generalization of Lee Codes

C. Araujo • I. Dejter • P. Horak

Received: date / Accepted: date

Abstract

Motivated by a problem in computer architecture we introduce a notion of the perfect distance-dominating set, PDDS, in a graph. PDDSs constitute a generalization of perfect Lee codes, diameter perfect codes, as well as other codes and dominating sets. In this paper we initiate a systematic study of PDDS s. PDDS s related to the application will be constructed and the non-existence of some PDDS s will be shown. In addition, an extension of the long-standing Golomb-Welch conjecture, in terms of PDDS, will be stated. We note that all constructed PDDS s are lattice-like which is a very important feature from the practical point of view as in this case decoding algorithms tend to be much simpler.

This paper is dedicated to the memory of Lucia Gionfriddo.
Mathematics Subject Classification (2010) MSC Primary 05C69 • MSC
Secondary 94B25
Keywords error-correcting codes; and distance dominating sets; Lee metric; lattice tiling.

[^0]
1 Introduction

We introduce a generalization of perfect Lee codes and other dominating notions, motivated by the following problem in computer architecture, see e.g. [4]. Processing elements in a supercomputer communicate through a network that has the topology of the Cartesian product of cycles. It is desirable to place the Input/Output devices into the network in such a way that the communication of all elements in the network is optimized; each element of the network should be at distance at most t from at least one I/O device, ideally from exactly one I/O device. It is not difficult to see that perfect error correcting Lee codes, if any, provide the optimal placement.

Unfortunately, the perfect t-error correcting Lee codes of block length n over \mathbb{Z}, and over $\mathbb{Z}_{q}, q \geq 2 n+1$, shortly $\operatorname{PLC}(n, t)$ and $\operatorname{PLC}(n, t, q)$ codes, respectively, have been constructed only for $n=1,2$, and any t, and for $n \geq 3$ and $t=1$. Moreover, as suggested by the well-known and long-standing conjecture of Golomb and Welch [16], $\operatorname{PLC}(n, t)$ codes and $\operatorname{PLC}(n, t, q), q \geq 2 n+1$, codes do not exist in other cases. To remedy this obstacle, perfect Lee codes have been generalized in several ways, see e.g. 3], where the quasi-perfect Lee codes have been introduced. A weakness of the quasi-perfect Lee codes is that some words cannot be decoded in a unique way, and so far the quasi-perfect Lee codes have been found only for $n=2$.

In order to offer a new approach to the placement problem we will introduce yet another generalization of Lee codes. Instead of defining it only for the Cartesian product of cycles and the Cartesian product of two-way infinite paths, denoted by Λ_{n} (= infinite graph whose vertex set is \mathbb{Z}^{n} with two vertices being adjacent if their Euclidean distance is 1), we introduce the new concept for an arbitrary graph. However, having in mind the application we will mainly focus on the Cartesian product of cycles and Λ_{n}. As usual, $[S]$ stands for the subgraph induced by S, and the distance $d(v, C)$ of a vertex $v \in V$ to C is given by $d(v, C)=\min \{d(v, w) ; w \in C\}$.

Definition 1 Let $t \geq 1$ and $\Gamma=(V, E)$ be a graph. A set $S \subset V$ will be said to be a t-perfect distance-dominating set in Γ, a t-PDDS in Γ, if, for each $v \in V$, there is a unique component C_{v} of $[S]$, so that for the distance $d\left(v, C_{v}\right)$ from v to C_{v} it is $d\left(v, C_{v}\right) \leq t$, and there is in C_{v} a unique vertex w with $d(v, w)=d\left(v, C_{v}\right)$.

The first condition guaranties that to each element v of the network there is at least one I / O device at the distance at most t from v, while the second condition, that in C_{v} there is a unique vertex w with $d(v, w)=d\left(v, C_{v}\right)$, guarantees that to each element v in the communication network, there is a uniquely determined I / O device with which v will communicate.

Now we describe how the new domination concept of PDDS relates to other coding theory and graph domination notions. First of all we note that
$\operatorname{PLC}(n, t, q)$ codes and PLC (n, t) codes are t-PDDS s in the Cartesian product of cycles and in Λ_{n}, respectively, with all components of t-PDDS being isolated vertices. A notion of a diameter perfect code has been introduced in 1]. For d odd, the diameter- d perfect Lee code in Λ_{n} coincides with the perfect $\frac{d-1}{2}$ error correcting Lee code. It follows from [2,14 that, for d even, diameterd perfect Lee code in Λ_{n} exists if and only if there is a $\frac{d-2}{2}$-PDDS in Λ_{n} whose each component consists of two adjacent vertices. In [6] Biggs extended the concept of the perfect code from a metric space to a graph. A perfect t-code in a graph $\Gamma=(V, E)$ is a set $C \subset V$ such that t-neighborhoods $N_{t}(c)=\{u \in V ; d(c, u) \leq t\}$ with $c \in C$ form a partition of V. Clearly, a t-perfect code C in Γ is a t-PDDS in Γ with all vertices in C being isolated. Further, Weichsel [28] defined a notion of the perfect dominating set, or PDS. In our terminology a PDS is a 1-PDDS. PDS s were studied in the hypercube graphs [28, 13, 11, in the star graphs 12, in Λ_{2}, and in toroidal grids 10, 9 . In addition, Klostermeyer and Goldwasser 20 defined the total perfect code in a graph to be a subset of its vertex set with the property that each vertex is adjacent to exactly one vertex in the subset. The NP-completeness of finding a 1-perfect code of Γ and that of finding a minimal perfect dominating set in a planar graph were established in 5.21, and in [15], respectively.

Now we prove a statement related to the structure of PDDS s in Λ_{n}. It turns out that the choice of components of a $t-\mathrm{PDDS}$ in Λ_{n} is quite limited. To facilitate our discussion we introduce some notation. If no ambiguity is possible, n-tuples representing elements of \mathbb{Z}^{n} will be written without external parentheses or commas. O will stand for the element $00 \ldots 0$ and $e_{1}=10 \ldots 0, e_{2}=010 \ldots 0$, $\ldots, e_{n}=00 \ldots 1$.

Theorem 1 If S is a t-PDDS in Λ_{n} then each component of S is the Cartesian product of (possibly infinite) paths.

Proof Let S_{0} be a component of S in Λ_{n}. Assume that S_{0} is not a product of paths. Then wlog we may assume that $O, e_{1}+e_{2} \in S_{0}$, and $e_{1} \notin V\left(S_{0}\right)$. Now, $d\left(e_{1}, S_{0}\right)=d\left(e_{1}, O\right)=d\left(e_{1}, e_{1}+e_{2}\right)=1$. That is, the vertex v is at the minimum distance 1 from two different vertices of S, a contradiction.

A similar result, in the case when PDS of the n-dimensional cube were considered, has been proved in [28].

With respect to the application mentioned above we will confine ourselves to the most interesting case of t-PDDSs in Λ_{n} whose components are all isomorphic to a fixed finite graph H, denoted for short by t-PDDS $[H]$. It would be very useful to characterize all finite graphs H for which there is a t-PDDS[H]. This would show the strength but also limitations of the new concept for practical purposes. So far we are able to do it only for Λ_{2}.

Remark 1 We point out that if R is a t - $\operatorname{PDDS}[H], H=(V, E)$, then R can be seen as a tiling of \mathbb{Z}^{n} by the graph $H^{*}=\left(V^{*}, E^{*}\right)$ where H^{*} is the indunced subgraph of Λ_{n} on the set V^{*}, where $v \in V^{*}$ if and only if $d(v, V) \leq t$.

As usual P_{k} will stand for the path on k vertices. Hence, P_{1} is an isolated vertex. Further, the cartesian product of graphs G and H is denoted by $G \square H$. At the moment we do not have enough evidence to conjecture when a t - $\operatorname{PDDS}[H]$ exists in a general case. However, if H is a product of at most two paths then we strongly believe that:

Conjecture 1 Let H be a finite path or a Cartesian product of two finite paths. Then a t-PDDS[H] in Λ_{n} exists if and only if either (i) $t=1, n \geq 2$, and $H=P_{k}, k \geq 1$; or (ii) $t \geq 1, n=2$, and $H=P_{k}, k \geq 1$; or (iii) $t \geq 1, n=2$, and $H=P_{2} \square P_{k}, k \geq 2$; or (iv) $t=1, n=3 r+2, r \geq 0$, and $H=P_{2} \square P_{2}$; or (v) $t=2, n=3$, and $H=P_{2}$.

We note that (i) and (ii) extend Golomb-Welch conjecture as well as a conjecture raised in 14 by Etzion. For $k=1$, the existence of a t - $\operatorname{PDDS}\left[P_{k}\right]$ in (i) and (ii) was shown by several authors in terms of PLC codes, see e.g. Golomb and Welch [16], and, for $k=2$, by Etzion [14] in terms of diameter perfect Lee codes. The existence of a $2-\operatorname{PDDS}\left[P_{2}\right]$ in Λ_{3} follows from a Minkowski's tiling [22].

The next theorem constitutes one of the main results of the paper.
Theorem 2 At-PDDS[H] exists for all graphs H described in Conjecture 1 .
The following theorem provides additional supporting evidence for Conjecture 1

Theorem 3 If $3 \leq s \leq r$ then there is no $t-\operatorname{PDDS}\left[P_{s} \square P_{r}\right]$ in Λ_{2} for $t \geq 1$.
Corollary $1 A t$-PDDS[$H]$ in Λ_{2} exists if and only if either $t \geq 1$, and $H=$ $P_{k}, k \geq 1$, or $t \geq 1$, and $H=P_{2} \square P_{k}, k \geq 2$.

To show that a $t-\operatorname{PDDS}[H]$ exists also in the case when H is the Cartesian product of at least three paths we offer the following theorem:

Theorem 4 There is a 1-PDDS $\left[Q_{3}\right]$ in Λ_{3}, where $Q_{3}=P_{2} \square P_{2} \square P_{2}$ is the 3-dimensional hypercube.

Recently we learnt that Buzaglo and Etzion proved that a 1-PDDS $\left[Q_{n}\right]$ exists if and only if $n=2^{k}-1$, or $n=3^{k}-1$, c.f. [7]. They proved the statement in terms of tilings by crosses; see Remark 1 .

All t-PDDS s constructed in this paper are lattice-like, which is a very important feature from the practical point of view as in this case decoding algorithms tend to be much simpler. As the notion of lattice-like $P D D S$ is a key one we provide a formal definition. Let $H=(V, E)$ be a subgraph of Λ_{n}, and let $z \in \mathbb{Z}^{n}$. Then $H+z$ denotes the graph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V+z=\{w ;$ there exists $v \in V, w=v+z\}$, and $u v \in E$ if and only if $(u+z)(v+z) \in E^{\prime}$. Let R be a $t-P D D S[H]$ and $D \simeq H$ be a component of R. Then R will be called lattice-like if there exists a lattice L such that D^{\prime} is a component of R
if and only if there is $z \in L$ so that $D^{\prime}=D+z$. We recall, see Remark $\mathbb{1}$ that a t-PDDS $[H]$ can be seen as a tiling. Thus a notion of a lattice-like tiling will be understood in the same way as a lattice-like PDDS.

All desired t-PDDS in Λ_{n} will be constructed by the same algebraic method. A PDDS constructed this way is lattice-like, which in turn implies that such a PDDS is periodic as well. That is, a suitable restriction of this PDDS constitutes a PDDS in the Cartesian product of cycles. This is the case of main interest because of the placement problem discussed above. We recall that a set $S \subset \mathbb{Z}^{n}$ is periodic if there are integers p_{1}, \ldots, p_{n} such that $v \in S$ implies $v \pm p_{i} e_{i} \in S$ for all $i=1, \ldots, n$, where e_{i} is the unit vector in the direction of the i-axis. We recall that each lattice-like t-PDDS is periodic, but the converse is not true in general.

Now we describe a construction of a partition (tiling) of Λ_{n}. As far as we know Stein in 26] was the first one to use a group homomorphism to construct a lattice-like tiling; he did it in the case of a tiling by different types of crosses. Several variations of Stein's construction can be found throughout the literature, see e.g. [26, 23, 27, 25, 17, 8, 24, 18]. For the reader's convenience we provide a detailed description of this generalization. Let $\left(\mathbb{Z}^{n},+\right)$ be the (component-wise) additive group on \mathbb{Z}^{n}. Consider a lattice L in $\left(\mathbb{Z}^{n},+\right)$, i.e. a subgroup of $\left(\mathbb{Z}^{n},+\right)$, generated by elements $u_{1}, \ldots, u_{n} \in \mathbb{Z}^{n}$; hence $L=\left\{\alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n} ; \alpha_{i} \in \mathbb{Z}, i=1, \ldots, n\right\}$. We denote by F the factor group $\left(\mathbb{Z}^{n},+\right) / L$. Furthermore, let a set T of vertices in \mathbb{Z}^{n} contain one element from each coset of $\left(\mathbb{Z}^{n},+\right) / L$. Then, $\mathcal{T}=\{T+u ; u \in L\}$ constitutes a partition of \mathbb{Z}^{n} into parts of size $|F|$ and, for each $u \in L$, we have that $[T+u]$, the subgraph of Λ_{n} induced by $T+u$, is isomorphic to [T. Clearly, for a given lattice L, we can partition the vertex set of Λ_{n} into parts such that the corresponding induced subgraphs have different shapes depending on the choice of T.

Example. Set $L=\left\{\alpha_{1}(13,0)+\alpha_{2}(3,2) ; \alpha_{i} \in \mathbb{Z}, i=1,2\right\}$. Then, $\left(\mathbb{Z}^{2},+\right) / L=$ Z_{13}. There are many options how to choose the graph $[T]$,e.g., $[T]$ might be a path of length 12 , or a Lee sphere of radius 2 , see the figure below where the both options are depicted in bold font. The numbers at the vertices of Λ_{2} are elements of $Z_{13}=\left(\mathbb{Z}^{2},+\right) / L$.

However, for our purpose, we will utilize an "inverse" process. Given an induced subgraph $D=(V, E)$ of Λ_{n}, find a partition (tiling) of Λ_{n} into copies
of D. Here we mean partitioning of the vertex set of Λ only, see Remark \square Hence we need to find a suitable lattice L that would allow the required choice of the set T, i.e. $[T]=D$. It turns out that to do so one does not have to find the lattice L explicitly. We will show that the following construction leads to the desired tiling of Λ_{n}. We claim that if there exists an Abelian group $(G,+)$ of order $|V|$ and elements g_{1}, \ldots, g_{n} of G such that the restriction of the homomorphism $\Phi: \mathbb{Z}^{n} \rightarrow G, \Phi\left(\left(a_{1}, \ldots, a_{n}\right)\right)=a_{1} \Phi\left(e_{1}\right)+\ldots+a_{n} \Phi\left(e_{n}\right)=$ $a_{1} g_{1}+\ldots+a_{n} g_{n}$, to V is a bijection then there exists a partition of Λ_{n} into copies of D. In other words, we need to find an Abelian group G of order $|V|$ and assign elements g_{1}, \ldots, g_{n} of G to the vertices e_{1}, \ldots, e_{n} of Λ_{n} so that $\Phi\left(\left(a_{1}, \ldots, a_{n}\right)\right)=a_{1} \Phi\left(e_{1}\right)+\ldots+a_{n} \Phi\left(e_{n}\right)=a_{1} g_{1}+\ldots+a_{n} g_{n}$, is a bijection on V. It is well known, that the ker of a homomorphism $\phi: A \rightarrow B$ is a subgroup of A. Thus, the elements w of \mathbb{Z}^{n} for which $\Phi(w)=0$ form a lattice L in $\left(\mathbb{Z}^{n},+\right)$. In addition, $\left(\mathbb{Z}^{n},+\right) / L=G$ and the vertex set V comprises exactly one element from each coset of $\left(\mathbb{Z}^{n},+\right) / L$; thus we can set $T=V$.

As the above method is the main tool in this paper, we summarize it as Corollary 2 (to Theorem 5 below)

Theorem 519 Let $D=(V, E)$ be a subgraph of Λ_{n}. Then there is a latticelike tiling of Λ_{n} by copies of D if and only if there is an Abelian group (G, \circ) and a homomorphism $\Phi: \mathbb{Z}^{n} \rightarrow G$, so that the restriction of Φ to V is a bijection.

If the restriction of Φ to V is an injection, then Theorem 5 (in which D need not be connected) produces a packing of Λ_{n} by copies of D. This idea has been used in several papers, see e.g. [25, 17, 24]. The following corollary of Theorem 5 is tailored to our present needs:

Corollary 2 Let $t \geq 1$ and let H be a subgraph of Λ_{n}. Further, let H^{*} be an induced supergraph of H such that a vertex v belongs to H^{*} if and only if $d(v, H) \leq t$; let $D=(V, E)$ be a copy of H^{*} or a copy of a disjoint union of finitely many copies of H^{*} that contains vertices O, e_{1}, \ldots, e_{n}. Then, there is a t-PDDS[H] if there exists an Abelian group G of order $|V|$ and a homomorphism $\Phi: \mathbb{Z}^{n} \rightarrow G$ such that the restriction of Φ to V is a bijection.

Remark 2 We will always choose D to contain vertices O, e_{1}, \ldots, e_{n}. This is not a necessary condition but it will be added to simplify the exposition. A t $\operatorname{PDDS}[H]$ constructed by means of Corollary 2 is lattice-like if D is isomorphic to H^{*}. If D consists of more copies of H^{*}, then we get a lattice tiling of \mathbb{Z}^{n} by D but this will not constitute a lattice-like t - $\operatorname{PDDS}[H]$.

The rest of the paper is organized as follows. Section 2 contains a proof of Theorem 2 while a proof of (i) of Theorem 3 will be given in Section 3. Theorem 4 will be proved in Section 4. To demonstrate the strength of the construction, in Section 5 we present a periodic 1-PDDS in Λ_{2} that is not lattice-like.

2 Existence of t-PDDS s

In this section we prove Theorem 2 that is we prove the existence of t-PDDS s as described in Conjecture (1) For the sake of completeness we note that a Minkowski's tiling that proves part (v) can be obtained by Corollary 2 using the group $G=\mathbb{Z}_{38}$ and the homomorphism given by $\Phi\left(e_{1}\right)=1, \Phi\left(e_{2}\right)=11$ and $\Phi\left(e_{3}\right)=7$.

2.1 Part (i)

Here we deal with the case when each component of a 1-PDDS is isomorphic to a path P_{k} of length $k-1$, where $k \geq 2$. We start with the case when each component of a t-PDDS is an isolated vertex. Each 1-PDDS $\left[P_{1}\right]$ in Λ_{n} corresponds to a perfect 1 -error correcting Lee code, $\operatorname{PLC}(n, 1)$. The existence of such codes has been showed independently by several authors. Kárteszi asked whether there exists a $\operatorname{PLC}(3,1)$. Feller, for $n=3$, and then Korchmáros, and Golomb and Welch 16 showed that there is a $\operatorname{PLC}(n, 1)$ for all $n \geq 2$. The following stronger theorem has been proved by Molnár [23].

Theorem 6 The number of non-congruent lattice-like PLC($n, 1$) codes equals the number of Abelian groups of order $2 n+1$.

To illustrate our method we prove the theorem. The following proof is shorter than the original one due to Molnár. Since in this case H is an isolated vertex, the graph H^{*} is of order $2 n+1$. We choose a copy of $D=(V, E)$ of H^{*} such that $V=\left\{ \pm e_{i} ; i=1, \ldots, n\right\} \cup\{O\}$. Let G be an Abelian group of order $2 n+1$. Choose a set $K=\left\{g_{1}, \ldots, g_{n}\right\}$ formed by n distinct elements of G such that K contains exactly one element from each pair g, g^{-1}; formally, $g \in K$ if and only if $g^{-1} \notin K$. Since no element of G is of order 2 , the set K is well defined. Clearly, the restriction of the homomorphism $\Phi: \mathbb{Z}^{n} \rightarrow G$ given by $\Phi\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\Phi\left(e_{1}\right)^{a_{1}} \circ \ldots \circ \Phi\left(e_{n}\right)^{a_{n}}$ to V is a bijection. Thus, each Abelian group of order $2 n+1$ generates a $\operatorname{PLC}(n, 1)$; this code is a periodic code where $p_{i} \mathrm{~s}$ are orders of elements of G. It is not difficult to check that non-isomorphic groups generate non-congruent $\operatorname{PLC}(n, 1)$ codes.

We note that Szabó [27] constructed, in the case when $2 n+1$ is not a prime, the first non-lattice-like $\operatorname{PLC}(n, 1)$ code. This code is periodic though. In 18, for the same case, the first non-periodic $\operatorname{PLC}(n, 1)$ code has been found. It has also been shown in [18] that there is a unique $\operatorname{PLC}(n, 1)$ code for $n=2,3$.

The existence of 1-PDDS[P_{2}] (called total perfect codes in [20]) has been proved in 14 in terms of diameter perfect codes.

Theorem 7 A 1-PDDS $\left[P_{k}\right]$ in Λ_{n} exists for each $n \geq 2$ and each $k \geq 1$.

Proof We will construct the desired PDDS by applying Corollary 2, Set $H=$ P_{k}. We place the graph $D=(V, E)$ that is isomorphic to H^{*} in such a way that V comprises the vertices $O, e_{1}, 2 e_{1}, \ldots,(k-1) e_{1}$ of the path P_{k} and their $2 n k-2 k+2$ neighbors, namely $-e_{1}, k e_{1}$ and $\pm e_{i}, e_{1} \pm e_{i}, \ldots,(k-1) e_{1} \pm e_{i}$ for $i=2, \ldots, n$. Thus, $|V|=2 n k-k+2$ and D contains the vertices O and e_{i}, for $i=1, \ldots, n$, as required by Corollary 2 We choose $G=\mathbb{Z}_{2 n k-k+2}$. The element g_{i} of G that is assigned to the vertex e_{i}, for $i=1, \ldots, n$, is $g_{i}=(i-1) k+1$. To finish the proof, we need to show that the restriction of the mapping $\Phi\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\Phi\left(e_{1}\right)^{a_{1}} \circ \ldots \circ \Phi\left(e_{n}\right)^{a_{n}}=a_{1} g_{1}+\ldots+a_{n} g_{n}$ to the set V is a bijection. To see this, it suffices to note that $\Phi\left\{O, e_{1}, 2 e_{1}, \ldots,(k-\right.$ 1) $\left.e_{1}\right\}=\{0,1, \ldots, k-1\}, \Phi\left\{-e_{1}, k e_{1}\right\}=\{k, 2 n k-k+1\}$, and $\Phi\left\{ \pm e_{i}, e_{1} \pm\right.$ $\left.e_{i}, \ldots,(k-1) e_{1} \pm e_{i}\right\}=\{ \pm(i-1) k+1, \pm(i-1) k+2, \ldots, \pm(i-1) k+k-1, \pm i k\}$. In aggregate, $\Phi(V)=\{0, \ldots, k\} \cup \bigcup_{i=2}^{n}\{(i-1) k+1, \ldots, i k\} \cup \bigcup_{i=2}^{n}\{(2 n-i) k+$ $1, \ldots,(2 n-i-1) k+2\} \cup\{2 n k-k+1\}=\{0, \ldots, 2 n k-k+1\}=G$. For the reader convenience we illustrate the proof by means of three small examples for $k=3$:

	$<e_{1}, e_{2}>$					$<e_{1}, e_{3}>$							$<e_{1}, e_{4}>$				
$\begin{aligned} & n=2 \\ & \mathbb{Z}_{11} \\ & \hline \end{aligned}$	10	7 0 4	8 1 5	$\stackrel{2}{6}$													
$\begin{aligned} & n=3 \\ & \mathbb{Z}_{17} \\ & \hline \end{aligned}$	16	13 0 4	$\begin{array}{r} 14 \\ 1 \\ 5 \\ \hline \end{array}$	15 6	3		16	10 0 7	11 1 8	9							
$n=4$ \mathbb{Z}_{23}	22	19 0 4	$\begin{array}{r} 20 \\ 1 \\ 5 \end{array}$	21 2 6	3			16 0 7	17 1 8	18 2 9		3	22	13 $\mathbf{0}$ 10	14 11 11		5 2 2

2.2 Part (ii)

In this subsection we prove the existence of a t-PDDS in Λ_{2} whose components are all isomorphic to a path P_{k}, where $t>1$ and $k>1$.

Theorem 8 A t - $\operatorname{PDDS}\left[P_{k}\right]$ in Λ_{2} exists for each $t \geq 1$ and $k \geq 1$.
Proof We provide a detailed proof as we use the same approach to prove this and the next theorem. Let H be a path P_{k} on vertices $\left\{O, e_{2}, 2 e_{2}, \ldots,(k-\right.$ 1) $\left.e_{2}\right\}$. Then H^{*} consists of vertices of H plus all vertices at distance at most t from H; hence $\left|H^{*}\right|=2 t^{2}+2 t k+k$. Clearly, $x e_{1}+y e_{2} \in H^{*}$ iff

$$
\begin{aligned}
& -t \leq x<0 \text { and }-x-t \leq y \leq x+t+k-1 \\
& \quad \text { or }
\end{aligned}
$$

$$
0 \leq x \leq t \text { and } x-t \leq y \leq-x+t+k-1
$$

We will construct the desired PDDS by applying Corollary2 so that the graph $D=(V, E)$ consists of two disjoint copies of H^{*}; a copy described above and
a translation of this copy by $(t, t+k)$. Thus, the other copy of H^{*} is given by

$$
\begin{aligned}
0 \leq & x \leq t \text { and }-x+t+k \leq x+t+2 k-1 \\
& \text { or } \\
t+1 \leq & x \leq 2 t \text { and } x-t+k \leq y \leq-x+3 t+2 k-1
\end{aligned}
$$

In aggregate, $|V|=4 t^{2}+4 t k+2 k$, and a vertex $x e_{1}+y e_{2} \in V$ iff

$$
\begin{equation*}
-t \leq x<0 \text { and }-x-t \leq y \leq x+t+k-1 \tag{1}
\end{equation*}
$$

either

$$
\begin{equation*}
0 \leq x \leq t \text { and } x-t \leq y \leq x+t+2 k-1 \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
t+1 \leq x \leq 2 t \text { and } x-t+k \leq y \leq-x+3 t+2 k-1 \tag{4}
\end{equation*}
$$

To construct the desired lattice-like PDDS we choose the cyclic group $G=$ $\mathbb{Z}_{4 t^{2}+4 t k+2 k}$ and set $g_{1}=2 t+2 k-1$, and $g_{2}=1$. Hence $\Phi\left(x e_{1}+y e_{2}\right)=$ $((2 t+2 k-1) x+y) \bmod \left(4 t^{2}+4 t k+2 k\right)$.

For fixed x, by (1), the set $I_{x}=\left\{y ; x e_{1}+y e_{2} \in V\right\}$ is an interval. Therefore, as $g_{2}=1, \Phi\left(I_{x}\right)$ comprises $\left|I_{x}\right|$ consecutive elements of the group G, where we take that 0 follows the element $4 t^{2}+4 t k+2 k-1$. To see that the mapping Φ is a bijection on V it is sufficient to show that the intervals $I_{x},-t \leq x \leq 2 t$ can be ordered in such a way that if I_{z} immediately precedes I_{v} in this order then $\Phi\left(\min I_{v}\right)=\Phi\left(\max I_{z}\right)+1$. An order with this property is given implicitly below.
(i) for each $-t \leq x \leq 0$, it is $\Phi\left(\min I_{x}\right)=\Phi\left(\max I_{x+2 t}\right)+1$;
(ii) for each $1 \leq x \leq t$, it is $\Phi\left(\min I_{x}\right)=\Phi\left(\max I_{x-1}\right)+1$;
(iii) for each $t+1 \leq x \leq 2 t$, it is $\Phi\left(\min I_{x}\right)=\Phi\left(\max I_{-2 t-1+x}\right)+1$.

It is easy to prove (i)-(iii) by using (11) and simple calculations. For the readers convenience we work out details of (i). If $-t \leq x \leq 0$, then, from the first line of (1), $\Phi\left(\min I_{x}\right)=\Phi\left(x e_{1}+(-x-t) e_{2}\right)=(x(2 t+2 k-1)+(-x-t)) \bmod$ $\left(4 t^{2}+4 t k+2 k\right)=$ $(2(t+k-1) x-t) \bmod \left(4 t^{2}+4 t k+2 k\right)$.

For $-t+1 \leq x \leq 0$, by the third line of (11), we get
$\Phi\left(\max I_{x+2 t}\right)=\Phi\left((x+2 t) e_{1}+(-(x+2 t)+3 t+2 k-1) e_{2}\right)=$
$\left((x+2 t)((2 t+2 k-1)+(-(x+2 t)+3 t+2 k-1)) \bmod \left(4 t^{2}+4 t k+2 k\right)=\right.$
$\left([2(t+k-1) x-t]+\left[4 t^{2}+4 t k+2 k\right]-1\right) \bmod \left(4 t^{2}+4 t k+2 k\right)=([2(t+k-1) x-t]-1)$ $\bmod \left(4 t^{2}+4 t k+2 k\right)=\Phi\left(\min I_{x}\right)-1$.

Finally, for $x=-t$, by the second line of (1), $\Phi\left(\max I_{x+2 t}\right)=\Phi\left((x+2 t) e_{1}+\right.$ $\left.(x+2 t+t+2 k-1) e_{2}\right)=$ $(t(2 t+2 k-1)+(2 t+2 k-1)) \bmod \left(4 t^{2}+4 t k+2 k\right)=$
$\left(\left[2(t+k-1)(-t)-t+\left[4 t^{2}+4 t k+2 k\right]-1\right) \bmod \left(4 t^{2}+4 t k+2 k\right)=(2(t+k-\right.$ $1)(-t)-t) \bmod \left(4 t^{2}+4 t k+2 k\right)=\Phi(-t)-1$. The proof is complete.

For the reader's convenience, we provide two small examples for $t=2,3$ and $k=3$.

To prove the statement of this Theorem 8 just with $D=(V, E)=H^{*}$, notice that now $|V|=2 t^{2}+2 t k+k$ and choose the cyclic group $G=\mathbb{Z}_{2 t^{2}+2 t k+k}$, setting $g_{1}=1$ and $g_{2}=2 t+1$. Hence $\Phi\left(x e_{1}+y e_{2}\right)=(x+(t+1) y) \bmod \left(2 t^{2}+\right.$ $2 t k+k$) and Φ maps V bijectively onto G by sending the successive intersections of V with the lines $e_{2}=0, \ldots, r,-t, r+1,-t+1, r+2, \ldots,-1, r+t$ from left to right onto $-t g_{1}, \ldots,-g_{1}, O, \ldots,(|V|-t) g_{1}$. For the reader's convenience, we provide two small examples for $t=2,3$ and $k=3$.

2.3 Part (iii)

Here we discuss the existence of a t - PDDS in Λ_{2} whose components are isomorphic to the Cartesian product of two finite paths. The case $k=1$ of the following theorem, using a different technique, has been also proved in [14] in terms of diameter perfect codes.
Theorem 9 At-PDDS in Λ_{2} whose components are isomorphic to $P_{2} \square P_{k}$ exists for each $t \geq 1$ and $k \geq 1$.
Proof We prove this theorem using the same approach as in Theorem 8 and indicate at the end how to obtain the same result just with $D=H^{*}$. Let H be the graph $P_{2} \square P_{k}$ on vertices $\left\{r e_{2}, e_{1}+r e_{2} ; 0 \leq r \leq k-1\right\}$. Then the graph H^{*} consisting of H and all vertices at distance at most t from H is of order $2 t^{2}+2 t k+2 t+2 k$. It is easy to see that $x e_{1}+y e_{2} \in H^{*}$ iff

$$
\begin{aligned}
& -t \leq x \leq 0 \text { and }-x-t \leq y \leq x+k+t-1 \\
& \quad \text { or }
\end{aligned}
$$

$$
1 \leq x \leq t+1 \text { and } x-t-1 \leq y \leq-x+k+t
$$

We will construct the desired PDDS by applying Corollary 2 to the graph $D=(V, E)$ consisting of two disjoint copies of H^{*}; a copy described above and a translation of this copy by $(t+1, t+k)$. Thus, the other copy of H^{*} is given by $x e_{1}+y e_{2} \in H^{*}$ iff

$$
\begin{aligned}
1 \leq & x \leq t+1 \text { and }-x+t+k+1 \leq y \leq x+2 k+t-2 \\
& \text { or } \\
t+2 \leq & x \leq 2 t+2 \text { and } x+k-t-2 \leq y \leq-x+2 k+3 t+1
\end{aligned}
$$

In aggregate, a vertex $x e_{1}+y e_{2} \in V$ iff

$$
\begin{align*}
-t \leq & x \leq 0 \text { and }-x-t \leq y \leq x+k+t-1 \tag{6}\\
& \text { or } \tag{7}\\
1 \leq & x \leq t+1 \text { and } x-t-1 \leq y \leq x+2 k+t-1 \tag{8}\\
& \text { or } \tag{9}\\
t+2 \leq & x \leq 2 t+2 \text { and } x+k-t-2 \leq y \leq-x+2 k+3 t+1 \tag{10}
\end{align*}
$$

To construct the desired lattice-like PDDS we choose the Abelian group $G=$ $\mathbb{Z}_{2 t+2 k} \times \mathbb{Z}_{2 t+2}$ and set $g_{1}=(0,1)$, and $g_{2}=(1,0)$. Hence $\Phi\left(x e_{1}+y e_{2}\right)=(x$ $\bmod (2 t+2 k), y \bmod (2 t+2))$. To finish the proof we show that a restriction of Φ to V is a bijection. Let, as above, $I_{x}=\left\{y ; x e_{1}+y e_{2} \in V\right\}$. Then, for all $1 \leq x \leq t+1, \Phi\left(I_{x}\right)=\mathbb{Z}_{2 t+2 k} \times\{x\}$, as $g_{2}=(1,0)$ and I_{x} is an interval of length $2 t+2 k$.
Now, for all $t+2 \leq x \leq 2 t+2$, it suffices to realize that
$I_{x} \cup I_{x-(2 t+2)}=[(-x+(2 t+2)-t, x-(2 t+2)+k+t-1] \cup[x+k-t-$ $2,-x+2 k+3 t+1]=$
$[-x+t+2, x-t+k-3] \cup[x-t+k-2,-x+2 k+3 t+1]=[-x+t+2,-x+2 k+3 t+1]$. Thus, $I_{x} \cup I_{x-(2 t+2)}$ is an interval of length $2 t+2 k$ as well. This in turn implies, as $x \equiv x-(2 t+2) \bmod (2 t+2)$, that $\Phi\left(I_{x} \cup I_{x-(2 t+2)}\right)=\mathbb{Z}_{2 t+2 k} \times\{x\}$ also in this case. The proof is complete. However, after a pair of examples, we say how to make out with $D=H^{*}$.

For the reader's convenience, we illustrate the proof with some small examples. For $t=2$ and $k=1,2$, we take $G=\mathbb{Z}_{4+2 k} \times \mathbb{Z}_{6}$ and Φ assigned as follows:

To prove the statement of this Theorem 9 just with $D=(V, e)=H^{*}$, note that $|V|=2(t+1)(t+k)$ and denote $m=\operatorname{gcd}(t+1, t+k)$. Then take:

1. $G=\mathbb{Z}_{2(t+1)(t+k)}, g_{1}=t+1$ and $g_{2}=t+k$, if $m=1$;
2. $G=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$, where $n=\frac{2(t+1)(t+k)}{m} \quad$, if $m \neq 1$; now take:
(a) $g_{1}=(1, n)$
and $g_{2}=(0,1)$
, if $m \mid t+k$;
(b) $g_{1}=\left(1, \frac{n}{2(2 t+1)}\right)$ and $g_{2}=\left(1, \frac{2 t+1}{m}\right)$, otherwise.

We leave the details of the proof of this approach of Theorem 9 to the reader and just give three small examples of it, for $(t, k)=(2,2),(2,4),(3,3)$, where $G=\mathbb{Z}_{24}, \mathbb{Z}_{3} \times \mathbb{Z}_{12}, \mathbb{Z}_{2} \times \mathbb{Z}_{24}$, respectively:

2.4 Part (iv)

In this subsection we discuss the existence of t - $\operatorname{PDDS} \mathrm{s}$ in Λ_{n} whose components are isomorphic to $P_{2} \square P_{2}$. Note that for $n=2$ this case overlaps with the previous part.

Theorem 10 Let $n=3 k+2$, where $k \geq 0$. Then, there exists a lattice-like 1-PDDS in Λ_{n} whose components are isomorphic to $P_{2} \square P_{2}$.

Proof We will construct the desired PDDS by applying Corollary 2, Set $H=$ $P_{2} \square P_{2}$. We place the graph $D=(V, E)$ that is isomorphic to H^{*} in such a way that V comprises the vertices O, e_{1}, e_{2} and $e_{1}+e_{2}$ and their $24 k+8$ neighbors; namely, $-e_{1}, 2 e_{1}, e_{2}-e_{1}, e_{2}+2 e_{1},-e_{2}, 2 e_{2}, e_{1}-e_{2}, e_{1}+2 e_{2}$, and, if $k>0$, then also vertices $\pm e_{i}, e_{1} \pm e_{i}, e_{2} \pm e_{i}$ and $e_{1}+e_{2} \pm e_{i}$ for $i=3, \ldots, 3 k+2$. Thus, $|V|=24 k+12$, and D contains the vertices O and e_{i}, for $i=1, \ldots, n$, as required by Corollary 2 We set $G=\mathbb{Z}_{24 k+12}$. The elements g_{i} of G that are assigned to the vertices e_{i}, for $i=1, \ldots, n$, are: $g_{1}=2+4 k, g_{2}=3+6 k$, and, if $k>0$, then $g_{2+i}=2+4 k+i, g_{2+k+i}=2+4 k-i$ and $g_{2+2 k+i}=6+11 k+i$, for $i=1, \ldots, k$. To finish the proof, we need to show that the restriction of the mapping $\Phi\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\Phi\left(e_{1}\right)^{a_{1}} \circ \ldots \circ \Phi\left(e_{n}\right)^{a_{n}}=a_{1} g_{1}+\ldots+a_{n} g_{n}$ to the set V is a bijection. To see this, it suffices to check the table below (broken into two parts to be pasted together horizontally) that shows that each element of $\mathbb{Z}_{24 k+12}$ belongs to the set $\Phi(V)$. In the table the symbol $[a, b]$ stands for the set $\{a, a+1, a+2, \ldots, b\}$. In all cells of the table, the index i runs through the interval $[1,12+24 k]$, where $12+24 k \equiv 0$ in $G=\mathbb{Z}_{24 k+12}$ and integers on the columns corresponding to G shown in increasing order from left to right, line
by line, and then from top to bottom:

V	$\Phi(V)$	G	
$e_{1}-e_{2+k+i}$	i	$[1, k]$	\cdots
$e_{2}-e_{2+k+i}$	$1+2 k+i$	$[2+2 k, 1+3 k]$	
e_{1+k+i}	$2+4 k+i$	$[3+4 k, 2+5 k]$	\cdots
$e_{1}+e_{2}-e_{2+k+i}$	$3+6 k+i$	$[4+6 k, 3+7 k]$	
$e_{1}+e_{2+i}$	$4+8 k+i$	$[5+8 k, 4+9 k]$	\cdots
$e_{2}+e_{2+i}$	$5+10 k+i$	$[6+10 k, 5+11 k]$	\cdots
$-e_{2+2 k+i}$	$7+13 k-i$	$[7+12 k, 6+13 k]$	\cdots
$e_{1}+e_{2}+e_{2+i}$	$7+14 k+i$	$[8+14 k, 7+15 k]$	\cdots
$e_{2}+e_{2+k+i}$	$9+17 k-i$	$[9+16 k, 8+17 k]$	\cdots
$e_{2}-e_{2+2 k+i}$	$10+19 k-i$	$[10+18 k, 9+19 k]$	\cdots
$-e_{2+k+i}$	$10+20 k+i$	$[11+20 k, 10+21 k]$	\cdots
$e_{1}+e_{2}-e_{2+2 k+i}$	$12+23 k-i$	$[12+22 k, 11+23 k]$	\cdots

	V	$\Phi(V)$	G	V	$\Phi(V)$	G
\ldots	$e_{2}-e_{2+i}$	$1+2 k-i$	$[k+1,2 k]$	$e_{2}-e_{1}$	$1+2 k$	$1+2 k$
\ldots	e_{2+k+i}	$2+4 k-i$	$[2+3 k, 1+4 k]$	e_{1}	$2+4 k$	$2+4 k$
\ldots	$e_{1}+e_{2}-e_{2+i}$	$3+6 k-i$	$[3+5 k, 2+6 k]$	e_{2}	$3+6 k$	$3+6 k$
\ldots	$e_{1}+e_{2+k+i}$	$4+8 k-i$	$[4+7 k, 3+8 k]$	$2 e_{1}$	$4+8 k$	$4+8 k$
\ldots	$e_{2}+e_{2+k+i}$	$5+10 k-i$	$[5+9 k, 4+10 k]$	$e_{1}+e_{2}$	$5+10 k$	$5+10 k$
\ldots	$e_{2+2 k+i}$	$5+11 k+i$	$[6+11 k, 5+12 k]$	$2 e_{2}$	$6+12 k$	$6+12 k$
\ldots	$e_{1}+e_{2}+e_{2+k+i}$	$7+14 k-i$	$[7+13 k, 6+14 k]$	$2 e_{1}+e_{2}$	$7+14 k$	$7+14 k$
\ldots	$e_{1}+e_{2+2 k+i}$	$7+15 k+i$	$[8+15 k, 7+16 k]$	$e_{1}+2 e_{2}$	$8+16 k$	$8+16 k$
\ldots	$e_{2}+e_{2+2 k+i}$	$8+17 k+i$	$[9+17 k, 8+18 k]$	$-e_{2}$	$9+18 k$	$9+18 k$
\ldots	$-e_{2+i}$	$10+20 k-i$	$[10+19 k, 9+20 k]$	$-e_{1}$	$10+20 k$	$10+20 k$
\ldots	$e_{1}+e_{2}+e_{2+2 k+i}$	$10+21 k+i$	$[11+21 k, 10+22 k]$	$e_{1}-e_{2}$	$11+22 k$	$11+22 k$
\ldots	$e_{1}-e_{2+i}$	$12+24 k-i$	$[12+23 k, 11+24 k]$	O	$12+24 k$	$12+24 k$

As usual at the end of the proof we provide three small examples for $n=2,5$, and 8 , to illustrate it.

$<$	e_{1},	e_{2}	$>$
10	9	11	
1	$\mathbf{0}$	$\mathbf{2}$	4
$\mathbf{3}$	$\mathbf{5}$	7	
	6	8	

$<e_{1}, e_{2}>$	$+e_{3}$	$-e_{3}$	$+e_{4}$	$-e_{4}$	$-e_{5}$	$+e_{5}$
(1)27 33 30 $\mathbf{0}$ $\mathbf{6}$ 12	713	2935	511	311	1723	1925
$\begin{array}{cccc}3 & \mathbf{9} & 15 & 21 \\ & 18 & 24 & \end{array}$	1622	28	1420	410	2632	2834

$<e_{1}, e_{2}>$	$+e_{3}$	$-e_{3}$	$+e_{5}$	$-e_{5}$	$-e_{7}$	$+e_{7}$
${ }^{4} \begin{array}{rrrrr}45 & 55 & \\ 50 & \mathbf{0} & \mathbf{1 0} & 20\end{array}$	1121	4959	919	511	2939	3141
5 $\mathbf{1 5}$ $\mathbf{2 5}$ 35 30 40	2636	414	2434	616	4454	4656
	$+e_{4}$	$-e_{4}$	$+e_{6}$	$-e_{6}$	$-e_{8}$	$+e_{8}$
	$\begin{array}{ll}12 & 22 \\ 27 & 37\end{array}$	$\left\|\begin{array}{rr} 48 & 58 \\ 3 & 13 \end{array}\right\|$	$\left\|\begin{array}{rr} 8 & 18 \\ 23 & 33 \end{array}\right\|$	$\left\|\begin{array}{rr} 52 & 2 \\ 7 & 17 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} 28 & 38 \\ 43 & 53 \end{array}\right.$	$\left\lvert\, \begin{array}{ll} 32 & 42 \\ 47 & 57 \end{array}\right.$

3 Proof of Theorem 3

In this section we prove Theorem 3

Proof Suppose that there is a t-PDDS R in Λ_{2} whose components are isomorphic to $P_{k} \square P_{s}$, where $k \geq s \geq 3$. Let H^{*} be an induced subgraph of Λ_{n} comprising the vertices of a copy H of $P_{k} \square P_{s}$ and all vertices at distance at most t from H. Clearly R generates a decomposition of \mathbb{Z}^{2} into copies of H^{*}. Although R is not necessarily lattice-like, all components of R have to be either "parallel" to the x-axis, or to be "parallel" to the y-axis. Assume wlog that R contains a component $P_{k} \square P_{s}$ comprising vertices (x, y), where $1 \leq x \leq k, t+1 \leq y \leq t+s$; see the figure below for examples of this situation for $k=6, s=3$ and $t=3$. Consider a set of vertices $A=\{(x, 0), 1 \leq x \leq k\}$. We will show that the vertices of A cannot be covered by vertex-disjoint copies of H^{*}. Assume that a copy of H^{*} covers only vertices $(x, 0), 1 \leq x \leq m, m<k$, see the left example below, where $m=4$. Then the vertex $(m+1,0)$ cannot be covered in R. However, if all vertices in A are covered in R by the same copy of H^{*} (in this case the two copies of H^{*} have to be "parallel" as $k \geq s$), then the vertices $(k+1,0)$ and $(k+1,1)$ can be covered only if $s=2$, a contradiction as we consider the case $s \geq 3$. See the right example in the figure.

4 Proof of Theorem 4

Proof We will construct the desired PDDS by applying Corollary 2 Set $H=$ Q_{3}. We place the graph $D=(V, E)$ that is isomorphic to H^{*} in such a way that V comprises the vertices $O, e_{1}, e_{2}, e_{3}, e_{1}+e_{2}, e_{1}+e_{3}, e_{2}+e_{3}$ and $e_{1}+e_{2}+e_{3}$ of Q_{3} and their 24 neighbors. Thus, $|V|=32$, and D contains the vertices O and e_{i}, for $i=1,2,3$, as required by Corollary 2. We choose $G=\mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$. The elements g_{i} of G that are assigned to the vertices e_{i} are: $g_{1}=1,3,3, g_{2}=0,1,0$ and $g_{3}=0,0,1$. To finish the proof, we need to show that the restriction of the mapping $\Phi\left(\left(a_{1}, a_{2}, a_{3}\right)\right)=\Phi\left(e_{1}\right)^{a_{1}} \circ \Phi\left(e_{2}\right)^{a_{2}} \circ \Phi\left(e_{3}\right)^{a_{3}}=a_{1} g_{1}+a_{2} g_{2}+a_{3} g_{3}$ to the set V is a bijection. For the reader's convenience we provide all values of Φ on V in a table below. It suffices to note that all these values are distinct. The
vertices in V are given in the left-hand side of the table, the corresponding values of Φ in the right-hand side.

	$\left\lvert\, \begin{aligned} & -e_{3} \\ & e_{2}-e_{3} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & e_{1}-e_{3} \\ & e_{1}+e_{2}-e_{3} \end{aligned}\right.$			$\left\lvert\, \begin{aligned} & 0,0,3 \\ & 0,1,3 \end{aligned}\right.$	$\left\|\begin{array}{l} 1,3,2 \\ 1,0,2 \end{array}\right\|$	
$\begin{aligned} & -e_{1} \\ & e_{2}-e_{1} \end{aligned}$	$\begin{array}{\|l} \hline-e_{2} \\ O \\ e_{2} \\ 2 e_{2} \\ \hline \end{array}$	$\begin{aligned} & \hline e_{1}-e_{2} \\ & e_{1} \\ & e_{1}+e_{2} \\ & e_{1}+2 e_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 e_{1} \\ & 2 e_{1}+e_{2} \end{aligned}$	$\begin{aligned} & 1,1,1 \\ & 1,2,1 \end{aligned}$	$\begin{aligned} & 0,3,0 \\ & 0,0,0 \\ & 0,1,0 \\ & 0,2,0 \end{aligned}$	$\begin{aligned} & 1,2,3 \\ & 1,3,3 \\ & 1,0,3 \\ & 1,1,3 \end{aligned}$	$\left\|\begin{array}{l} 0,2,2 \\ 0,3,2 \end{array}\right\|$
$\left\lvert\, \begin{aligned} & e_{3}-e_{1} \\ & e_{2}+e_{3}-e_{1} \end{aligned}\right.$	$\begin{aligned} & e_{3}-e_{2} \\ & e_{3} \\ & e_{2}+e_{3} \\ & 2 e_{2}+e_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} e_{1}-e_{2}+e_{3} \\ e_{1}+e_{3} \\ e_{1}+e_{2}+e_{3} \\ e_{1}+2 e_{2}+e_{3} \end{array} \end{aligned}$	$\left\lvert\, \begin{aligned} & 2 e_{1}+e_{3} \\ & 2 e_{1}+e_{2}+e_{3} \end{aligned}\right.$	$\begin{aligned} & 1,1,2 \\ & 1,2,2 \end{aligned}$	$\begin{aligned} & 0,3,1 \\ & 0,0,1 \\ & 0,1,1 \\ & 0,2,1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,2,0 \\ & 1,3,0 \\ & 1,0,0 \\ & 1,1,0 \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} 0,2,3 \\ 0,3,3 \end{array}\right\|$
	$\left\lvert\, \begin{aligned} & 2 e_{3} \\ & e_{2}+2 e_{3} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & e_{1}+2 e_{3} \\ & e_{1}+e_{2}+2 e_{3} \end{aligned}\right.$			$\left.\begin{aligned} & 0,0,2 \\ & 0,1,2 \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l} 1,3,1 \\ 1,1,0 \end{array}\right\|$	

5 A periodic 1-PDDS[P_{2}] that is not lattice-like

Here we provide a periodic 1-PDDS[P_{2}] R that is not lattice-like. To see this it will suffice to notice that some components of R are paths P_{2} "parallel to x-axis", some "parallel to y-axis". A typical part of R consisting of four copies of P_{2} and their neighbors is provided in the figure below:

Despite the fact that R is not lattice-like we will show how it is possible to construct it by means of a slight modification of Corollary 2,

We take H^{*} to be a graph induced by the 32 vertices in the figure above. To obtain the graph $D=(V, E)$ we place H^{*} so that the four copies of P_{2} occupy vertices $(0,1)$ and $(1,1) ;(0,-2)$ and $(1,-2) ;(-2,-1)$ and $(-2,0)$; and finally $(3,-1)$ and $(3,0)$ respectively. We choose as G the group $\mathbb{Z}_{4} \oplus \mathbb{Z}_{8}$. The elements of G assigned to e_{1} and e_{2} are 0,1 and 1,1 respectively. The restriction of the homomorphism Φ to V is provided below in the matrix form. It is easy to verify from the matrix that Φ is a bijection on V.

2, 62,7
$3,53,6 \mathbf{3}, \mathbf{7} \mathbf{3}, \mathbf{0} 3,13,2$
$0,5 \mathbf{0}, \mathbf{6} 0,70,00,10,2 \mathbf{0}, \mathbf{3} 0,4$
$1,6 \mathbf{1}, 71,01,11,21,31,41,5$
$2,02,1 \mathbf{2 , 2} \mathbf{2}, \mathbf{3} 2,42,5$
$3,33,4$

Thus Corollary 2 provides a decomposition of \mathbb{Z}^{2} into parts of order 32, each of them isomorphic to H^{*}. Further, as H^{*} can be decomposed into four copies of P_{2} and its neighbors, we have constructed a $1-\operatorname{PDDS}\left[P_{2}\right] R$ that is not lattice-like. However, it is straightforward that R is periodic. Therefore we have proved:

Theorem 11 There exists a periodic non-lattice-like 1-PDDS $\left[P_{2}\right]$ in Λ_{2}.
Acknowledgement. We thank Ana Breda from the University of Aveiro for her comments that helped to improve presentation of this paper. We also thank G. Mazzuoccolo from the University of Modena, who provided an example of a 2-PDDS whose components are all isomorphic to $P_{2} \square P_{2}$.

References

1. R. Ahlswede, H.K. Audinian and L.H. Khachatrian, On perfect codes and related concepts, Designs, Codes and Cryptography, 22(2001) 221-237.
2. R. Ahlswede and V. Blinovsky, Lectures on Advances in Combinatorics, Springer-Verlag, 2008.
3. B. F. AlBdaiwi and B. Bose, Quasi-perfect Lee distance codes, IEEE Trans. Inf. Theory, 49(2003) 1535-1539.
4. B. F. AlBdaiwi and M. L. Livingston, Perfect distance d-placements in $2 d$-toroidal networks, Jour. Supercomputing, 29 (2004) 45-57.
5. D. W. Bange, A. E. Barkauskas, and P. J. Slater, Efficient dominating sets in graphs, Appl. Discrete Math, eds. R. D. Ringeisen and F. S. Roberts, SIAM, Philadelphia, 1988, 189-199.
6. N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1993.
7. S. Buzaglo and T. Etzion, Tilings by $(0.5, n)$-Crosses and Perfect Codes. Online arXiv: 1107.5706 v 1 .
8. S. I. Costa, M. Muniz, E. Agustini, and R. Palazzo, Graphs, tessellations, and perfect codes on flat tori, IEEE Transact. Inform. Th., 50(2004) 2363-2377.
9. I. J. Dejter, Perfect domination in regular grid graphs, Austral. Jour. Combin., 42(2008), 99-114.
10. I. J. Dejter and A. A. Delgado, Perfect domination in rectangular grid graphs, Jour. Combin. Math. Combin. Comput., 70(2009) 177-196.
11. I. J. Dejter and K. T. Phelps, Ternary Hamming and Binary Perfect Covering Codes, in: A. Barg and S. Litsyn, eds., Codes and Association Schemes, DIMACS Ser. Discrete Math. Theoret. Comput Sci. 56, Amer. Math. Soc., Providence, RI, 111-113.
12. I. J. Dejter and O. Serra, Efficient dominating sets in Cayley graphs, Discrete Applied Mathematics, 119(2003) 319-328.
13. I. J. Dejter and P. M. Weichsel, Twisted perfect dominating subgraphs of hypercubes, Congressus Numerantium, 94(1993) 67-78.
14. T. Etzion, Product constructions for perfect Lee Codes, to appear in IEEE Transactions in Information Theory
15. M. R. Fellows and M. N. Hoover, Perfect domination, Austral. Jour. Combin., 3(1991) 141-150.
16. S. Golomb and K. Welch, Perfect codes in the Lee metric and the packing of polyominos, SIAM J. Applied Math., 18(1970), 302-317.
17. D. Hickerson and S. Stein, Abelian groups and packings by semicrosses, Pacific J. Math., 122(1986) 96-109.
18. P. Horak and B. F. AlBdaiwi, Non-periodic tilings of R^{n} by crosses, Discrete \& Computational Geometry 47 (2012), 1-16.
19. P. Horak and B. F. AlBdaiwi, Diameter Perfect Lee Codes, to appear in IEEE Transactions in Information Theory. Online: arXiv:1109.3475
20. W. F. Klostermeyer and J. L. Goldwasser, Total Perfect Codes in Grid Codes, Bull. Inst. Comb. Appl., 46(2006) 61-68.
21. J. Kratochvil and M. Krivánek, On the Computational Complexity of Codes in Graphs, in Proc. MFCS 1988, L.N. in Comp. Sci. 324 (Springer-Verlag) 396-404.
22. H. Minkowksi, Dichteste gitterformige Lagerung kongruenter Korper, Nachrichten Ges. Wiss. Gottingen, pp. 311-355, 1904.
23. E. Molnár, Sui Mosaici dello spazio de dimensione n, Atti della Accademia Nazionale dei Lincei, Rend. Sc. Fis. Mat. e Nat., 51(1971) 177-185.
24. M. Schwartz, Quasi-cross lattice tilings with applications to flash memory, submitted.
25. S. Stein, Packings of R^{n} by certain error spheres, IEEE Trans. on Inform. Theory, 30(1984) 356-363.
26. S. Stein, Factoring by subsets, Pacific J. Mathematics, 22 (1967) 523-541.
27. S. Szabó, On mosaics consisting of mutidimensional crosses, Acta Math. Acad. Sci. Hung., 38(1981) 191-203.
28. P. M. Weichsel, Dominating Sets of n-Cubes, Jour. Graph Theory, 18(1994) 479-488.

[^0]: C. Araujo

 University of Puerto Rico, Rio Piedras, PR 00936-8377
 Tel.: +787-764-0000
 Fax: +787-281-0653
 E-mail: carlosjulio56@gmail.com
 I. Dejter

 University of Puerto Rico, Rio Piedras, PR 00936-8377
 Tel.: +787-764-0000
 Fax: +787-281-0653
 E-mail: italo.dejter@gmail.com.com
 P. Horak

 University of Washington, Tacoma, WA 98402
 Tel.:+253-692-4558
 E-mail: horak@uw.edu

