
ar
X

iv
:1

00
1.

50
77

v2
  [

m
at

h.
C

O
] 

 2
 A

pr
 2

01
1

PROOFS OF TWO CONJECTURES ON THE DIMENSIONS OF

BINARY CODES

JUNHUA WU

Abstract. Let L and L0 be the binary codes generated by the column F2-null spaces of
the incidence matrices of external points versus passant lines and internal points versus
secant lines with respect to a conic in PG(2, q), respectively. We confirm the conjectures
on the dimensions of L and L0 using methods from both finite geometry and modular
representation theory.

1. Introduction

Let Fq be the finite field of order q, where q = pe, p is a prime and e ≥ 1 is an integer.
Let PG(2, q) denote the classical projective plane of order q represented via homogeneous
coordinates. Namely, a point P of PG(2, q) can be written as (a0, a1, a2), where (a0, a1, a2)
is a non-zero vector of V , and a line ℓ as [b0, b1, b2], where b0, b1, b2 are not all zeros. The
point P = (a0, a1, a2) lies on the line ℓ = [b0, b1, b2] if and only if

a0b0 + a1b1 + a2b2 = 0.

A non-degenerate conic in PG(2, q) is the set of points satisfying a non-degenerate
quadratic form. It is well known that the set of points

O = {(1, t, t2) | t ∈ Fq} ∪ {(0, 0, 1)}, (1.1)

which is also the set of projective solutions of the non-degenerate quadratic form

Q(X0,X1,X2) = X2
1 −X0X2 (1.2)

over Fq, gives rise to a standard example of a non-degenerate conic in PG(2, q). It can
be shown that every non-degenerate conic must has q + 1 points and no three of them
are collinear, which forms an oval (see [8, P. 157]). In the case where q is odd, Segre [16]
proved that an oval in PG(2, q) must be a non-degenerate conic. In this paper, q = pe is
always assumed to be an odd prime power. For convenience, we fix the conic in (1.1) as
the “standard” conic. A line ℓ is passant, tangent, or secant accordingly as |ℓ ∩ O| = 0,
1, or 2, respectively. It is clear that every line of PG(2, q) must be in one of these classes.
A point P is an internal, absolute, or external point depending on whether it lies on 0,
1, or 2 tangent lines to O. The sets of secant, tangent, and passant lines are denoted by
Se, T and Pa, respectively; the sets of external and internal points are denoted by E and

I, respectively. The sizes of these sets are |Se| = |E| = q(q+1)
2 , |Pa| = |I| = q(q−1)

2 , and
|T | = q + 1 (see (2.2)). Moreover, it can be shown that the quadratic form Q in (1.1)
induces a polarity σ, a correlation of order 2, under which E and Se, O and T , and I and
Pa are in one-to-one correspondence with each other, respectively.

Let C be a 0-1 matrix; that is, C is a matrix whose entries are either 0 or 1. Note that
C can be viewed as a matrix over any ring with 1. The p-rank of C, denoted by rankp(C),
is defined to be the dimension of the column space of C over a field F of characteristic p.

Key words and phrases. Block idempotent, Brauer’s theory, character, conic, general linear group,
incidence matrix, low-density parity-check code, module, 2-rank.
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The column null space of C over F determines a linear code whose dimension is defined
to be the dimension of the corresponding column null space of C over F .

Let A be the (q2 + q+1)× (q2 + q+1) point-line incidence matrix of PG(2, q); namely,
A is a 0-1 matrix and the rows and columns of A are labeled by the points and lines of
PG(2, q), respectively, and the (P, ℓ)-entry of A is 1 if and only if P ∈ ℓ. It can be shown

that the 2-rank of A is q2 + q [9] and the p-rank of A is
(
p+1
2

)e
[1], where q = pe. The

binary linear code generated by the column F2-null space of A has dimension 1. Therefore,
it is not useful for any practical purpose.

In [5], Droms, Mellinger and Meyer partitioned A into the following 9 submatrices:



A11 A12 A13

A21 A22 A23

A31 A32 A33


 (1.3)

where the block of rows for (A11,A21,A31) are labeled by the absolute, internal, and
external points, respectively, and the block of columns for (A11,A12,A13) are labeled by
the tangent, passant, and secant lines, respectively. They used the column null spaces of
the submatrices Ai,j for 2 ≤ i, j ≤ 3 over F2 to construct four low-density parity-check
(LDPC) codes. Based on computational evidence, they made a conjecture on the dimen-
sions of these codes. For convenience, we denote A23 and A32 by B and B0, respectively.
From (1.3), it follows that B and B0 are the incidence matrices of internal points ver-
sus secant lines and external points versus passant lines, respectively. Note that B is a
q(q+1)

2 × q(q−1)
2 matrix and B0 is a q(q−1)

2 × q(q+1)
2 matrix. The purpose of this article is to

confirm the following conjecture on the dimensions of the LDPC codes L and L0 arising
from the column F2-null spaces of B and B0, respectively.

Conjecture 1.1. (Droms, Mellinger and Meyer [5]) Let L and L0 be the F2-null spaces

of B and B0, respectively. Then

dimF2(L) =
{

q2−1
4 − q, if q ≡ 1 (mod 4),

q2−1
4 − q + 1, if q ≡ 3 (mod 4);

and

dimF2(L0) =

{
q2−1
4 , if q ≡ 1 (mod 4),

q2−1
4 + 1, if q ≡ 3 (mod 4).

Suppose that P1,..., Pq(q+1)/2 and ℓ1,..., ℓq(q−1)/2 are indexing the rows and columns of
B, respectively. Then we permute the rows and columns of B0 to obtain a new matrix C

such that the rows and columns of C are indexed by ℓ1,..., ℓq(q−1)/2 and P1,..., Pq(q+1)/2,

respectively. The matrix C is indeed equal to B⊤, where B⊤ is the transpose of B. This
implies that B and B0 have the same 2-rank. Therefore, in order to find the dimensions
of the F2-null spaces of B and B0, it suffices to calculate the 2-rank of either B or B0.
Recall that the subgroup G of PGL(3, q) fixing O is isomorphic to PGL(2, q) [8, p. 158].
Further, G has an index 2 normal subgroup H isomorphic to PSL(2, q). It is known [7]
that H acts transitively on E and I as well as on Se, T and Sk.

In [17], Sin, Wu and Xiang calculate the 2-rank of A33 (i.e. the incidence matrix of
external points and secant lines) using a combination of techniques from finite geometry
and modular representation of H. In this article, we compute the 2-rank of B using similar
representation theoretic results obtained in [17] and different geometric results. Therefore,
between the current article and [17], the reader will expect to see some overlaps in the
results and statements on modular representation of H as well as the basic geometric facts
about conics.



DIMENSIONS OF BINARY CODES 3

Let F be an algebraic closure of F2. Let F I and FE be the free F -modules whose
standard bases consist of the characteristic column vectors of I and those of E, respectively.
The actions of H on I and E make the free F -modules F I and FE into FH-permutation
modules. We define a map

φB : F I → FE (1.4)

as follows: specify the images of the basis elements of F I under φB first, i.e.

φB(GP) =
∑

Q∈P⊥∩E

χQ

for each P ∈ I, and then extend φB linearly to F I , where ⊥ is the polarity induced by
the quadratic form Q, GP and χQ are the characteristic column vectors of the internal
point P with respect to I and the external point Q with respect to E, respectively. The
matrix of φB is a 0-1 matrix of size |E|×|I|. Up to permutations of the rows and columns,
B regarded as a matrix over F , is the matrix of φB with respect to the standard bases
of F I and FE . Moreover, φB(x) = Bx for x ∈ F I . It can be shown that φB is an
FH-homomorphism. Hence, the column space of B over F is equal to Im(φB), which is
also an FH-submodule of FE . This point of view enables us to use results from modular
representation of H to determine the dimension of Im(φB) and thus the 2-rank of B. We
remark that in the calculation of the 2-rank of A33 the authors of [17] view A33 as the
matrix of an FH-homomorphism φ from FE to FE under which the characteristic vector
of an external point P is mapped to the sum of the characteristic vectors of the external
points on P⊥.

Our idea of calculating dimF (Im(φB)) is to find a decomposition of Im(φB) into a direct
sum of its submodules whose dimensions can be computed easily. To this end, we apply
Brauer’s theory and compute the decomposition of Im(φB) into blocks. The silmilar
idea was used in [17] to compute the decomposition of Ker(φ) into blocks as well as
dimF (Ker(φ)). Nevertheless, there are two major differences between the current article
and [17]: (1) the geometric results used to compute the decomposition of Im(φB) into
blocks are essentially different from these used to compute the decomposition of Ker(φ);
(2) the summands of Im(φB) in its block decomposition are more complicated than these
of Ker(φ), which indicates that more efforts are required to find dimF (Im(φB)).

In the following we will give a brief overview of this article. In Section 2, we first review
the basic facts about O and then prove several crucial geometric results. From them,
in Section 5, we show that the 2-rank of the incidence matrix D of external points and
NPa,E(P) for P ∈ I (the set of external points on the passant lines through P) is either
q or q− 1, depending on q. The character of the complex permutation module CI and its
decomposition into a sum of the irreducible ordinary characters of H were calculated in
[19]; the decomposition of the characters of H into 2-blocks was given by Burkhardt [3]
and Landrock [13]. From them we see that CI is a direct sum of CH-modules consisting
of one simple module from each block of defect zero, and some summands from blocks of
positive defect. According to Brauer’s theory, Im(φB) is the direct sum

Im(φB) =
⊕

B

Im(φB)eB (1.5)

where eB is a primitive idempotent in the center of FH. The block idempotents eB are
elements of FH and were computed in [17]. In order to compute Im(φB)eB for each 2-
block B, we need detailed information concerning the action of group elements in various
conjugacy classes on various geometric objects and on the intersections of certain special
subsets ofH with various conjugacy classes ofH. These computations are made in Sections
3 and 4. These information also tell us that (i) Im(φB)eB0 is equal to the column space of
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D over F , or this space plus an additional trivial module, depending on q, where B0 is the
principal 2-block of H, and (ii) block idempotents associated with non-principal 2-blocks
of positive defect annihilate Im(φB) (Lemma 6.2). Since the B-component of F I is the
mod 2 reduction of the B-component of CI , using (i) and (ii), and the block decomposition
of CI , we show that Im(φB) is equal to the direct sum of the column space of D and
the simple modules lying in the 2-blocks of defect 0, or this sum plus an additional trivial
module, depending on q. Then the dimension formula of Im(φB) follows instantly as a
corollary.

2. Geometric Results

Recall that a collineation of PG(2, q) is an automorphism of PG(2, q), which is a bijection
from the set of all points and all lines of PG(2, q) to itself that maps a point to a line and
a line to a point, and preserves incidence. It is well known that each element of GL(3, q),
the group of all 3 × 3 non-singular matrices over Fq, induces a collineation of PG(2, q).
The proof of the following lemma is straightforward.

Lemma 2.1. Let P = (a0, a1, a2) (respectively, ℓ=[b0, b1, b2]) be a point (respectively, a

line) of PG(2, q). Suppose that θ is a collineation of PG(2, q) that is induced by D ∈
GL(3, q). If we use Pθ and ℓθ to denote the images of P and ℓ under θ, respectively, then

Pθ = (a0, a1, a2)
θ = (a0, a1, a2)D

and

ℓθ = [b0, b1, b2]
θ = [c0, c1, c2],

where c0, c1, c2 correspond to the first, the second, and the third coordinate of the vector

D−1(b0, b1, b2)
⊤, respectively.

A correlation of PG(2, q) is a bijection from the set of points to the set of lines as well
as the set of lines to the set of points that reverses inclusion. A polarity of PG(2, q) is a
correlation of order 2. The image of a point P under a correlation σ is denoted by Pσ ,
and that of a line ℓ is denoted by ℓσ. It can be shown [8, p. 181] that the non-degenerate
quadratic form Q(X0,X1,X2) = X2

1−X0X2 induces a polarity σ (or ⊥) of PG(2, q), which
can be represented by the matrix

M =




0 0 −1
2

0 1 0
−1

2 0 0


 . (2.1)

Lemma 2.2. ([10, p. 47]) Let P = (a0, a1, a2) (respectively, ℓ = [b0, b1, b2]) be a point

(respectively, a line) of PG(2, q). If σ is the polarity represented by the above non-singular

symmetric matrix M, then

Pσ = (a0, a1, a2)
σ = [c0, c1, c2]

and

ℓσ = [b0, b1, b2]
σ = (b0, b1, b2)M

−1,

where c0, c1, c2 correspond to the first, the second, the third coordinate of the column vector

M(a0, a1, a2)
⊤, respectively.

For example, if P = (x, y, z) is a point of PG(2, q), then its image under σ is Pσ =
[z,−2y, x].

For convenience, we will denote the set of all non-zero squares of Fq by ✷q, and the set
of non-squares by 6✷q. Also, F

∗
q is the set of non-zero elements of Fq.

Lemma 2.3. ([8, p. 181–182]) Assume that q is odd.
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(i) The polarity σ above defines three bijections; that is, σ : I → Pa, σ : E → Se,
and σ : O → T are all bijections.

(ii) A line [b0, b1, b2] of PG(2, q) is a passant, a tangent, or a secant to O if and only

if b21 − 4b0b2 ∈ 6✷q, b
2
1 − 4b0b2 = 0, or b21 − 4b0b2 ∈ ✷q, respectively.

(iii) A point (a0, a1, a2) of PG(2, q) is internal, absolute, or external if and only if

a21 − a0a2 ∈ 6✷q, a
2
1 − a0a2 = 0, or a21 − a0a2 ∈ ✷q, respectively.

The results in the following lemma can be obtained by simple counting; see [8] for more
details and related results.

Lemma 2.4. ([8, p. 170]) Using the above notation, we have

|T | = |O| = q + 1, |Pa| = |I| = q(q − 1)

2
, and |Se| = |E| = q(q + 1)

2
. (2.2)

Also, we have the following tables:

Table 1. Number of points on lines of various types

Name Absolute points External points Internal points

Tangent lines 1 q 0

Secant lines 2 q−1
2

q−1
2

Passant lines 0 q+1
2

q+1
2

Table 2. Number of lines through points of various types

Name Tangent lines Secant lines Skew lines

Absolute points 1 q 0

External points 2 q−1
2

q−1
2

Internal points 0 q+1
2

q+1
2

2.1. More geometric results. Let G be the automorphism group of O in PGL(3, q)
(i.e. the subgroup of PGL(3, q) fixing O setwise). Then G is the image in PGL(3, q) of
O(3, q) = SO(3, q)×〈−1〉, hence also the image of SO(3, q), to which it is isomorphic. For
our computations, we will describe G in a slightly different way. The map τ : GL(2, q) →
GL(3, q) sending the matrix

(
a b
c d

)
to




a2 ab b2

2ac ad+ bc 2bd
c2 cd d2


 (2.3)

is a group homomorphism. The image of τ(GL(2, q)) in PGL(3, q) lies in G. Now, whether
or not the group τ(GL(2, q)) contains SO(3, q) depends on q. Nevertheless, τ(GL(2, q))
always contains a subgroup of index 2 in O(3, q) whose image in PGL(3, q) is G. Thus,
the induced homomorphism τ : PGL(2, q) → PGL(3, q) maps PGL(2, q) isomorphically
onto G.

Let H = τ(SL(2, q)), the group of matrices of the form (2.3) such that ad − bc = 1.
Since the kernel of τ is 〈−I2〉, it follows that H ∼= PSL(2, q) and that H is isomorphic to
its image H in PGL(3, q). In fact, we have H = Ω(3, q).
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Since

PGL(2, q) = PSL(2, q) ∪
(
1 0
0 ξ−1

)
· PSL(2, q),

our discussion shows that
H ∪ d(1, ξ−1, ξ−2) ·H (2.4)

is a full set of representative matrices for the elements of G. In our computations, it will
often be convenient to refer to elements of G by means of their representatives in the set
(2.4). Additionally, a group element in (2.3) has the inverse equal to




d2 −bd b2

−2cd ad+ bc −2ab
c2 −ac c2


 . (2.5)

Moreover, the following holds.

Lemma 2.5. [7] The group G acts transitively on I and Pa as well as on E and Se.

We will refer to this lemma frequently in the rest of this section.

Lemma 2.6. [17, Lemma 2.9] Let P be a point not on O, ℓ a non-tangent line, and P ∈ ℓ.
Using the above notation, we have the following.

(i) If P ∈ I and ℓ ∈Pa, then P⊥ ∩ ℓ ∈ E if q ≡ 1 (mod 4), and P⊥ ∩ ℓ ∈ I if q ≡ 3
(mod 4).

(ii) If P ∈ I and ℓ ∈Se, then P⊥ ∩ ℓ ∈ I if q ≡ 1 (mod 4), and P⊥ ∩ ℓ ∈ E if q ≡ 3
(mod 4).

(iii) If P ∈ E and ℓ ∈Pa, then P⊥ ∩ ℓ ∈ I if q ≡ 1 (mod 4), and P⊥ ∩ ℓ ∈ E if q ≡ 3
(mod 4).

(iv) If P ∈ E and ℓ ∈Se, then P⊥ ∩ ℓ ∈ E if q ≡ 1 (mod 4), and P⊥ ∩ ℓ ∈ I if q ≡ 3
(mod 4).

Next we define ✷q − 1 := {s− 1 | s ∈ ✷q} and 6✷q − 1 := {s− 1 | s ∈ 6✷q}.
Lemma 2.7. [18] Using the above notation,

(i) if q ≡ 1 (mod 4), then |( ✷q−1)∩ ✷q| = q−5
4 and |( ✷q−1)∩ 6✷q| = |( 6✷q−1)∩ ✷q|

= |( 6✷q − 1)∩ 6✷q| = q−1
4 ;

(ii) if q ≡ 3 (mod 4), then |( 6✷q−1)∩ ✷q| = q+1
4 and |( ✷q−1)∩ ✷q| = |( ✷q−1)∩ 6✷q|

= |( 6✷q − 1)∩ 6✷q| = q−3
4 .

Definition 2.8. Let P be a point not on O and ℓ a line. We define Eℓ (respectively, Iℓ) to
be the set of external (respectively, internal) points on ℓ, PaP (respectively, SeP) the set

of passant (respectively, secant) lines through P, and TP the set of tangent lines through

P. Also, NPa,E(P) (respectively, NSe,E(P)) is defined to be the set of external points on

the passant (respectively, secant) lines through P.

In the following lemma, we list the sizes of the above defined sets as well as the action
of G on these sets. Also, we adopt standard notation from permutation group theory. For
instance, if W ⊆ I, then W g := {wg | w ∈ W}, GP is the stabilizer of P in G, and for
M ⊆ G, Mg is the conjugate of M under g.

Lemma 2.9. Using the above notation, if P ∈ I, we have

(i) |EP⊥ | = |SeP| = q+1
2 ,

(ii) |IP⊥ | = |PaP| = q+1
2 ,

(iii) |NPa,E(P)| = |NSe,E(P)| = (q+1)2

4 ;

moreover, if P is not a point on O, ℓ is a non-tangent line, and g ∈ G, we have
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(iv) Igℓ = Iℓg and PagP = PaPg ,

(v) Eg
ℓ = Eℓg and SegP = SePg ,

(vi) Hg
P = HPg ,

(vii) Ng
Pa,E(P) = NPa,E(P

g) and Ng
Se,E(P) = NSe,E(P

g),

(viii) (P⊥)g = (Pg)⊥, where ⊥ is the polarity of PG(2, q) defined as above.

Proof: The above (i) - (iii) follow from from Tables 1 and 2 and simple counting, and
(iv) - (vii) follow from the fact that G preserves incidence. �

By the defintion of G, it is clear that the following two lemmas are true.

Lemma 2.10. Let P be a point of PG(2, q). Then the polarity ⊥ defines a bijection

between IP⊥ and PaP, and also a bijection between EP⊥ and SeP.

Lemma 2.11. Let W be a subgroup of G. Suppose that g ∈ G and P is a point of

PG(2, q). Then

(W g)Pg = W g
P.

Proposition 2.12. Let P be a point not on O and set K = GP. Then K is transitive on

each of IP⊥ , EP⊥ , PaP, and SeP. Moreover, if P ∈ E, then K is also transitive on TP.

Proof: The case where P ∈ I is Proposition 2.11 in [19]; the case where P ∈ E or O is
Lemma 2.11(iii) in [17]. �

Lemma 2.13. [17, Corollary 2.16] Let P be a point of PG(2, q) and let ⊥ be the polarity

of PG(2, q) defined above. Then for g ∈ GP we have P⊥ = (P⊥)g. Consequently, P⊥ is

fixed setwise by GP. Moreover, GP⊥ = GP.

Lemma 2.14. Assume that P ∈ I and ℓ = P⊥. Let Q ∈ Eℓ and ℓ∗ ∈ TQ. Suppose that

P1 and P2 are two distinct external points on ℓ∗ and let ℓ1 and ℓ2 be the tangent lines

different from ℓ∗ through P1 and P2, respectively. Then ℓ1 and ℓ2 meet in an external

point on a secant line through P if and only if one of the following two cases occurs:

(i) P1 and P2 are on two passant lines through P;

(ii) P1 and P2 are on two secant lines through P.

Proof: Since G is transitive on I and preserves incidence, without loss of generality, we
may assume that P = (1, 0,−ξ), and thus ℓ = [1, 0,−ξ−1]. Since K := GP is transitive on
Eℓ by Proposition 2.12, we can assume that Q = (0, 1, 0). Let ℓ∗ = [1, 0, 0] be a tangent
line through Q. It is clear that

Eℓ∗ = {(0, 1,m) | m ∈ Fq}.
Let P1 = (0, 1,m1) and P2 = (0, 1,m2) be two distinct external points on ℓ∗. Then
the tangent lines through P1 and P2 different from ℓ∗ are ℓ1 = [m2

1,−4m1, 4] and ℓ2 =
[m2

2,−4m2, 4], respectively. So we have that P3 := ℓ1 ∩ ℓ2 = (1, m1+m2
4 , m1m2

4 ) ∈ E. Thus
the line through P and P3 is

ℓP,P3 =

[
m1 +m2,−4

(
m1m2

4ξ
+ 1

)
,
m1 +m2

ξ

]
,

which is a secant line if and only if

16

(
m1m2

4ξ
+ 1

)2

− 4(m1 +m2)
2

ξ
=

(m2
1 − 4ξ)(m2

2 − 4ξ)

ξ2
∈ ✷q

if and only if either m2
i − 4ξ ∈ 6✷q for i = 1, 2 or m2

i − 4ξ ∈ ✷q for i = 1, 2. Since the

line through P and Pi (i = 1 or 2) is ℓP,Pi
= [1,−mi

ξ , 1ξ ], and its discrimnant is
m2

i−4ξ
ξ2

, we
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conclude that ℓP,P3 is a secant line if and only if either (i) P1 and P2 are on two passant
lines through P or (ii) P1 and P2 are on two secant lines through P. �

Definition 2.15. Let N ⊆ E. We define χN to be the characteristic (column) vector

of N with respect to E; that is, χN is a column vector of length |E| whose entries are

indexed by the external points such that if P ∈ N then the entry of χN indexed by P is 1,
0 otherwise. For a line ℓ, if no confusion occurs, we shoule use χℓ to replace ℓEℓ

. Also, if

N = {P} is a singleton set, we will frequently use χP to replace χ{P}.

Remark 2.16. In the rest of this section, χN for N ⊆ E will be always viewed as a

column vector over Z, the ring of integer.

Corollary 2.17. Let P ∈ I. Using the above notation, we have

χNPa,E(P) ≡
∑

ℓ∈T (P,ℓ(P))

χℓ (mod 2),

where ℓ(P) is a tangent line through an external point on P⊥, T (P, ℓ(P)) is the set of

tangent lines distinct from ℓ(P) through the external points that are on both ℓ(P) and the

passant lines through P, and the congruence means entrywise congruence.

Proof: It is clear that |T (P, ℓ(P))| = q+1
2 since there are q+1

2 passant lines through
P and each of them meets ℓ(P) in an external point. Let ℓ ∈ T (P, ℓ(P)). Then by
Lemma 2.14, any tangent line other than ℓ in T (P, ℓ(P)) meets ℓ in an external point on a
secant line through P, and if we use IE(ℓ, ℓ(P)) to denote their intersections with ℓ then
the points in Eℓ \ IE(ℓ, ℓ(P)) must be on the passant lines through P. Since

(Eℓ1 \ IE(ℓ1, ℓ(P))) ∩ (Eℓ2 \ IE(ℓ2, ℓ(P))) = ∅
for two distinct lines ℓ1, ℓ2 ∈ T (P, ℓ(P)) and

|Eℓ \ IE(ℓ, ℓ(P))| = q − q − 1

2
=

q + 1

2
,

it follows that
∑

ℓ∈T (P,ℓ(P))

|Eℓ \ IE(ℓ, ℓ(P))| =
∑

ℓ∈T (P,ℓ(P))

q + 1

2
=

(q + 1)2

4

which is the same as the size of NPa,E(P) by Lemma 2.9(iii). Consequently, we must have
⋃

ℓ∈T (P,ℓ(P))

Eℓ \ IE(P, ℓ(P)) =
⋃

ℓ∈PaP

Eℓ = NPa,E(P).

Moreover, since each point in IE(ℓ, ℓ(P)) lies on exactly two lines in T (P, ℓ(P)) and each
point in Eℓ \ IE(ℓ, ℓ(P)) doesn’t lie on any line other than ℓ in T (P, ℓ(P)), we obtain

∑

ℓ∈T (P,ℓ(P))

χEℓ
=

∑

ℓ∈T (P,ℓ(P))

χEℓ\IE(ℓ,ℓ(P)) +
∑

ℓ∈T (P,ℓ(P))

∑

Q∈IE(ℓ,ℓ(P))

χQ

=
∑

ℓ∈T (P,ℓ(P))

χEℓ\IE(ℓ,ℓ(P)) + 2
∑

Q∈M

χQ

≡
∑

ℓ∈T (P,ℓ(P))

χEℓ\IE(ℓ,ℓ(P))

=
∑

ℓ∈PaP

χℓ

= χNPa,E(P) (mod 2)

(2.6)

where M = {ℓ1 ∩ ℓ2 | ℓ1, ℓ2 ∈ T (P, ℓ(P)), ℓ1 6= ℓ2}. �



DIMENSIONS OF BINARY CODES 9

Lemma 2.18. Assume that q ≡ 1 (mod 4). Let P ∈ O. Then there exits a set M(P)
consisting of an odd number of internal points such that, for each external point Q ∈ P⊥,

the number of passant lines through Q and the points in M(P), counted with multiplicity,

is odd.

Remark 2.19. In this lemma, it is possible that Q, Q1, ..., Qk are on the same passant

line ℓ, where Q ∈ EP⊥ and Qi ∈ M(P) for 1 ≤ i ≤ k. If this circumstance occurs, then

the line ℓ should be counted k times.

Proof: Without loss of generality, we may assume that P = (0, 0, 1), and so ℓ := P⊥ =
[1, 0, 0]. Using Lemma 2.1 and (2.5), we have

K := Hℓ =








d2 −bd b2

0 1 −2b
d

0 0 1
d2



∣∣∣∣∣∣
d ∈ F∗

q, b ∈ Fq



 . (2.7)

Since 


1 −b b2

0 1 −2b
0 0 1




k

=




1 −kb (kb)2

0 1 −2kb
0 0 1


 (2.8)

for any positive integer k, it is obvious that







1 −b b2

0 1 −2b
0 0 1



∣∣∣∣∣∣
b ∈ Fq



 (2.9)

is a collineation subgroup of order q in K, which we denote by T .
For (0, 1, u1), (0, 1, u2) where u1, u2 ∈ Fq and u1 6= u2, we have

(0, 1, u1)




1 −u1−u2
2

(
u1−u2

2

)2
0 1 −(u1 − u2)
0 0 1


 = (0, 1, u2);

this implies that T is transitive on Eℓ = {(0, 1, u) | u ∈ Fq}.
Now let P1 = (1, 0,−ξ) ∈ I, set M(P) := {Pg

1 | g ∈ T} which is the T -orbit of P1, and
let Q = (0, 1, u) ∈ ℓ. Then

M(P) = {(1,−b, b2 − ξ) | b ∈ Fq}
and the lines through both Q and the points in M(P) form the multiset

L(Q) = {[b2 + ub− ξ, u,−1] | b ∈ Fq}.

Note that a line [b2+ub−ξ, u,−1] ∈ L(Q) is passant if and only if (u+2b)2

4ξ −1 ∈ ✷q. Since

the number of t ∈ 6✷q satisfying t − 1 ∈ ✷q is |( 6✷q − 1) ∩ ✷q| = q−1
4 by Lemma 2.7(i),

it follows that the number of b ∈ Fq \ {−u
2} satisfying (u+2b)2

4ξ − 1 ∈ ✷q is 2( q−1
4 ) = q−1

2 .

Moreover, when b = −u
2 ,

(u+2b)2

4ξ − 1 = −1 ∈ ✷q as q ≡ 1 (mod 4). Hence, the number

of b ∈ Fq satisfying (u+2b)2

4ξ − 1 ∈ ✷q is q−1
2 + 1 = q+1

2 . Thus, counted with multiplicity,

there are q+1
2 passant lines in L(Q). Therefore, there are an odd number of internal points

(precisely q+1
2 ) in M(P) connecting Q by a passant line as q ≡ 1 (mod 4). Since T is

transitive on both M(P) and Eℓ and preserves incidence, we conclude that the number
of passant lines through an external point on P⊥ and the points in M(P), counted with
multiplictiy, must be odd. �
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Remark 2.20. Let P ∈ O. In the rest of this article, without being further mentioned,

M(P) always denotes a set of internal points associated with P satisfying the conditions

in Lemma 2.18.

Corollary 2.21. Assume that q ≡ 1 (mod 4). Let ℓ be a tangent line. Then

χℓ =
∑

P∈M(ℓ⊥)

∑

ℓ′∈PaP

χℓ′

=
∑

P∈M(ℓ⊥)

χNPa,E(P) (mod 2)

where the congruence is entrywise congruence.

Proof: Let P ∈ M(ℓ⊥). Then from Corollary 2.17, it follows that

χNPa,E(P) =
∑

ℓ
′
∈PaP

χℓ′

≡
∑

ℓ′∈T (P,ℓ(P))

χℓ′ (mod 2),
(2.10)

where ℓ(P) is a tangent line through an external point on P⊥ and T (P, ℓ(P)) is the set of
tangent lines different from ℓ(P) through the external points that are both ℓ(P) and the
passant lines through P.

Further, if we take ℓ(P) = ℓ for each P ∈ M(ℓ⊥) and set W (P) := {ℓ ∩ ℓ1 | ℓ1 ∈ PaP},
then ∑

P∈M(ℓ⊥)

∑

ℓ′∈PaP

χℓ′ ≡
∑

P∈M(ℓ⊥)

∑

ℓ′∈T (P,ℓ(P))

χℓ′

=
∑

P∈M(ℓ⊥)

∑

Q∈W (P)

∑

ℓ
′
∈TQ\{ℓ}

χℓ′

=
∑

Q∈Eℓ

∑

ℓ′∈TQ\{ℓ}

aℓ′χℓ′

=
∑

ℓ′∈T\{ℓ}

aℓ′χℓ′

≡
∑

ℓ′∈T\{ℓ}

χℓ′ (mod 2),

(2.11)

where aℓ′ for ℓ
′ ∈ T \{ℓ} are odd. In (2.11), the second equality follows from the definition

of T (ℓ, ℓ(P)) and the third equality holds since the multiset

⋃

Q∈Eℓ

⋃

L(Q)

TQ \ {ℓ}, (2.12)

where L(Q) := {ℓP1,Q ∈ Pa | P1 ∈ M(ℓ⊥)}, is the same as the multiset

⋃

P∈M(ℓ⊥)

⋃

Q∈W (P)

TQ \ {ℓ},

and the tangent line ℓ
′

other than ℓ through an external point Q on ℓ occurs an odd
number of times in (2.12) by Lemma 2.18.



DIMENSIONS OF BINARY CODES 11

Since
∑

ℓ′∈T χℓ′ ≡ 0 (mod 2), it follows that
∑

P∈M(ℓ⊥)

∑

ℓ′∈PaP

χℓ′ ≡
∑

P∈M(ℓ⊥)

χNPa,E(P)

≡
∑

ℓ
′
∈T\{ℓ}

χℓ′

≡ χℓ +
∑

ℓ′∈T

χℓ′

≡ χℓ (mod 2).

�

Lemma 2.22. Let P ∈ E and let T1 and T2 be the two tangent lines through P. Assume

that Z ⊆ (ET1 ∪ ET2) \ {P}. Then there is a set M′

(P) consisting of an even number of

internal points such that, for any point Q ∈ Z, the number of passant lines through Q and

the points in M′

(P), counted with multiplicity, is odd, and the number of passant lines

through P and the points in M′

(P), counted with mutiplicity, is even.

Proof: Since G is transitive on E, without loss of generality, we may assume that
P = (0, 1, 0), and thus T1 = [1, 0, 0] and T2 = [0, 0, 1] are two tangent lines through P.
Let K := GP be the stabilizer of P in G. Using (2.4), we have

K =
{
d
(
d2, 1, 1

d2

)∣∣ d2 ∈ ✷q

}
∪
{
ad( 1

c2
,−1, c2)

∣∣ c2 ∈ ✷q

}

∪
{
d
(
d2, 1ξ ,

1
d2ξ2

)∣∣∣ d2 ∈ ✷q

}
∪
{
ad( 1

c2
,−1

ξ ,
c2

ξ2
)
∣∣∣ c2 ∈ ✷q

}
.

(2.13)

Let P1 = (1, 1, x), where x ∈ 6✷q (respectively, x ∈ ✷q) and 1 − x ∈ 6✷q, be an internal
point for q ≡ 3 (mod 4) (respectively, q ≡ 1 (mod 4)). (Note that such an x in the last
coordinate of P1 exists in Fq.) Then the K-orbit of P1 is

OP1 =

{(
1,

1

d2
,
x

d4

)∣∣∣∣ d2 ∈ ✷q

}
∪
{(

1,
1

ξd2
,

x

ξ2d4

)∣∣∣∣ d2 ∈ ✷q

}
.

To prove the first part of the lemma, we need only show that it holds for

Z = (ET1 ∪ ET2) \ {P}.
Let Q = (0, 1, 1) ∈ Z. Using (2.13), we have that KQ only contains the identity
collineation. So K is transitive on Z as |Z| = |K| = 2(q − 1). The lines through Q

and the points in OP1 form the multiset

L(Q) = {[x− d2, d4,−d4] | d2 ∈ ✷q} ∪ {[x− d2ξ, d4ξ2,−d4ξ2] | d2 ∈ ✷q}.
A line in L(Q) is passant if and only if

(d2 − 2)2

4(1 − x)
− 1 ∈ ✷q

or
(d2ξ − 2)2

4(1− x)
− 1 ∈ ✷q,

where d2 ∈ ✷q. The number of d2 satisfying either of the above two equations is equal

to that of t ∈ F∗
q satisfying (t−2)2

4(1−x) − 1 ∈ ✷q since F∗
q = ✷q ∪ ✷qξ, where ✷qξ =

{d2ξ | d2 ∈ ✷q}. For the case where q ≡ 3 (mod 4), since the number of t ∈ Fq satisfying
(t−2)2

4(1−x) −1 ∈ ✷q is equal to 2|( 6✷q−1)∩ ✷q| = 2( q+1
4 ) = q+1

2 by Lemma 2.9(ii) and t = 0 is

one of them, we see that the number of passant lines in L(Q), counted with multiplicity, is
q−1
2 which is odd since q ≡ 3 (mod 4). For the case where q ≡ 1 (mod 4), since the number
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of t ∈ Fq \ {2} satisfying (t−2)2

4(1−x) − 1 ∈ ✷q is equal to 2|( 6✷q − 1) ∩ ✷q| = 2( q−1
4 ) = q−1

2 by

Lemma 2.9(i), t = 0 is not one of the solutions and t = 2 also satisfies (t−2)2

4(1−x) −1 ∈ ✷q, we

see that the number of passant lines in L(Q), counted with multiplicity, is q+1
2 , which is

odd as q ≡ 1 (mod 4). Now we set M′

(P) := OP1 , and so |M′

(P)| = q− 1 is even. Since

K is transitive on both Z = (ET1 ∪ ET2) \ {P} and the points in M′

(P), the number of

passant lines through a point in Z and the points in M
′

(P), counted with multiplicity,
must be odd.

The lines through P and the points in M′

(P) form the multiset
{[

1, 0,−d4

x

]∣∣∣∣ d2 ∈ ✷q

}
∪
{[

1, 0,−d4ξ2

x

]∣∣∣∣ d2 ∈ ✷q

}
,

each or none of which is a passant line accordingly as q ≡ 3 (mod 4) or q ≡ 1 (mod 4).
Hence, we conclude that the number of passant lines through P and the points in M(P),
counted with multiplicty, is even. �

Remark 2.23. Let P ∈ E. In the following discussion, without being further mentioned,

M′

(P) will always denote a set consisting of an even number of internal points that satisfy

the conditions with Z = ET1 \{P} in the above lemma, where T1 is one of the two tangent

lines through P.

Corollary 2.24. Let P ∈ E and let T1 and T2 be the two tangent lines through P. Then

χT1 + χT2 ≡
∑

Q∈M′ (P)

∑

ℓ∈SeQ

χℓ

≡
∑

Q∈M′ (P)

χNSe,E(Q) (mod 2),

where the congruence means entrywise congruence.

Proof: Let Q ∈ M′

(P). Then Corollary 2.17 gives

χNPa,E(Q) ≡
∑

ℓ′∈PaQ

χℓ′

≡
∑

ℓ′∈T (Q,ℓ(Q))

χℓ′ (mod 2),
(2.14)

where ℓ(Q) is a tangent line through an external point on Q⊥ and T (Q, ℓ(Q)) is the set
tangent lines through the external points that are on both ℓ(Q) and the passant lines
through Q. Let 1 be the all-one column vector of length |E|. Since

1+ χNPa,E(Q) ≡ χNSe,E(Q) (mod 2) (2.15)

and |M′

(P)| is even, we have
∑

Q∈M
′
(P)

∑

ℓ∈SeQ

χℓ ≡
∑

Q∈M
′
(P)

(1+ χNPa,E(Q))

≡
∑

Q∈M′(P)

1+
∑

Q∈M′ (P)

χNPa,E(Q)

≡
∑

Q∈M′(P)

χNPa,E(Q)

≡
∑

Q∈M′(P)

∑

ℓ∈T (Q,ℓ(Q))

χℓ (mod 2).

(2.16)
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Further, if we set ℓ(Q) := T1 for each Q ∈ M′

(P) and set W
′

(Q) := {T1 ∩ ℓ1 | ℓ1 ∈ PaQ},
since the multiset ⋃

P1∈ET1

⋃

L
′
(P1)

TP1 \ {T1},

where L
′

(P1) = {ℓP1,P2 ∈ Pa | P2 ∈ M′

(P)}, is the same as the multiset
⋃

Q∈M′ (P)

⋃

P1∈W
′(Q)

TP1 \ {T1}, (2.17)

and the tangent line ℓ other than T1 through an external point P1 6= P (respectively,
P1 = P) on T1 occurs an odd (respectively, even) number of times in (2.17) by Lemma 2.22,
we obtain ∑

Q∈M′ (P)

∑

ℓ∈T (Q,ℓ(Q))

χℓ ≡
∑

Q∈M′ (P)

∑

P1∈W
′(Q)

∑

ℓ∈TP1
\{T1}

χℓ

=
∑

P1∈ET1

∑

ℓ∈TP1
\{T1}

bℓχℓ

= bT2χT2 +
∑

ℓ∈T\{T1,T2}

bℓχℓ

≡
∑

ℓ∈T\{T1,T2}

χℓ (mod 2),

(2.18)

where bℓ for ℓ ∈ T \ {T1, T2} are all odd integers and bT2 is an even integer.
Using (2.16), (2.18), and the fact that

∑
ℓ∈T χℓ = 0 (mod 2), we have

χT1 + χT2 ≡
∑

χ∈T\{T1,T2}

χℓ

≡
∑

Q∈M ′ (P)

∑

ℓ∈PaQ

χℓ

≡
∑

Q∈M
′
(P)

χNPa,E(Q) (mod 2).

�

3. The Conjugacy Classes and Intersection Parity

In this section, we review the conjugacy classes of H and study their intersections with
some special subsets of H.

3.1. Conjugacy classes. Recall that

H =








a2 ab b2

2ac ad+ bc 2bd
c2 cd d2



∣∣∣∣∣∣
a, b, c, d ∈ Fq, ad− bc = 1





is the subgroup of G that is isomorphic to PSL(2, q). If we define T = tr(g) + 1, where
g ∈ H and tr(g) is the trace of g, then the conjugacy classes of H can be read as follows.

Lemma 3.1. [17, Lemma 3.2] The conjugacy classes of H are given as follows.

(i) D = {d(1, 1, 1)};
(ii) F+ and F−, where F+ ∪ F− = {g ∈ H | T (g) = 4, g 6= d(1, 1, 1)};
(iii) [θi] = {g ∈ H | T (g) = θi}, 1 ≤ i ≤ q−5

4 if q ≡ 1 (mod 4), or 1 ≤ i ≤ q−3
4 if q ≡ 3

(mod 4), where θi ∈ ✷q, θi 6= 4, and θi − 4 ∈ ✷q;

(iv) [0] = {g ∈ H | T (g) = 0};
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(v) [πk] = {g ∈ H | T (g) = πk}, 1 ≤ k ≤ q−1
4 if q ≡ 1 (mod 4), or 1 ≤ k ≤ q−3

4 if

q ≡ 3 (mod 4), where πi ∈ ✷q, πk 6= 4, and πk − 4 ∈ 6✷q.

Remark 3.2. The set F+∪F− forms one conjugacy class of G, and splits into two equal-

sized classes F+ and F− of H. For our purpose, we denote F+ ∪ F− by [4]. Also, each

of D, [θi], [0], and [πk] forms a single conjugacy class of G. The class [0] consists of all

the elements of order 2 in H.

In the following, for convenience, we frequently use C to denote any one of D, [0], [4],
[θi], or [πk]. That is,

C = D, [0], [4], [θi], or [πk]. (3.1)

3.2. Intersection properties.

Definition 3.3. Let P ∈ I, Q ∈ E, ℓ ∈ Pa. We define

HP,Q = {h ∈ H | (P⊥)h ∈ PaQ} and SP,ℓ = {h ∈ H | (P⊥)h = ℓ}.
That is, HP,Q consists of all the elements of H that map the passant line P⊥ to a passant

line through Q and SP,ℓ is the set of elements in H that map P⊥ to the passant line ℓ.

Using the above notation, since G preserves incidence, for g ∈ G, P ∈ I, and ℓ ∈ Pa,
we have

Hg
P,Q = HPg,Qg , Sg

P,ℓ = SPg,ℓg . (3.2)

The following corollary is apparent.

Corollary 3.4. Let g ∈ G and C be given in (3.1) and let P and Q be two external points.

Then (C ∩HP,Q)
g = C ∩HPg ,Qg .

Next the size of the intersection of each conjugacy class of H with K which stabilizes
an element of I in H is calculated.

Corollary 3.5. Let P ∈ I and K = HP. Then we have

(i) |K ∩D| = 1;
(ii) |K ∩ [4]| = 0;
(iii) |K ∩ [πk]| = 2 for each k;
(iv) |K ∩ [θi]| = 0 for each i;

(v) |K ∩ [0]| = q+1
2 or q−1

2 accordingly as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).

Proof: Let Q = (1, 0,−ξ) and K1 = HQ. Since H is transitive on I, it follows Qg = P

for some g ∈ H. By Lemma 2.11, we have Kg
1 = K. Consequently,

|K ∩ C| = |(K1 ∩C)g|.
Therefore, to prove the corollary, it is enough to consider P = Q. It is clear that |D∩K| =
1. Let g ∈ K ∩ C. Then the quadruples (a, b, c, d) determining g satisfy the following
equations

bd− acξ = 0
b2 − a2ξ = −ξ(d2 − c2ξ)
ad− bc = 1
a+ d = s,

(3.3)

where s2 = 0, 4, πk, θi. The equations in (3.3) give (1) a = d = s
2 , c

2 = s2−4
4ξ , b2 = (s2−4)ξ

4

and (2) a = −d, s = 0, c2ξ − 1 = a2. From Case (1), we see that |K ∩ [πk]| = 2 for each
[πk] and |K ∩ C| = 0 for C = [θi], [4]; moreover, if q ≡ 3 (mod 4), we obtain one group
element ad(−ξ,−1, ξ−1) ∈ K ∩ [0] in Case (1). Since the number of t ∈ 6✷q satisfying

t− 1 ∈ ✷q is q−1
4 or q−3

4 accordingly as q ≡ 1 (mod 4) or q ≡ 3 (mod 4) by Lemma 2.9,



DIMENSIONS OF BINARY CODES 15

the number of c ∈ F∗
q satisfying c2ξ − 1 ∈ ✷q is 2|( 6✷q − 1) ∩ ✷q| which is q−1

2 or q−3
2

accordingly as q ≡ 1 (mod 4) or q ≡ 3 (mod 4). When q ≡ 1 (mod 4), c = 0 also satisfies

c2ξ − 1 ∈ ✷q. Therefore, Case (1) and Case (2) give q+1
2 or q−1

2 different group elements
in K ∩ [0] depending on q. Now the corollary is proved. �

In the following lemma, we investigate the parity of |HP,Q ∩ C| for each C 6= [0] and
P ∈ I, Q ∈ E. Recall that ℓP,Q is the line through P and Q.

Lemma 3.6. Assume that q ≡ 1 (mod 4). Let P ∈ I and Q ∈ E. Suppose that C = D,

[4], [πk] (1 ≤ k ≤ q−1
4 ), [θi] (1 ≤ i ≤ q−5

4 ).

(i) If ℓP,Q ∈ SeP, then |HP,Q ∩C| is even for each C.

(ii) If ℓP,Q ∈ PaP and Q ∈ P⊥, then |HP,Q ∩C| is odd if and only if C = D.

(iii) If ℓP,Q ∈ PaP and Q /∈ P⊥, for each class [πk] with 1 ≤ k ≤ q−1
4 , there are

two different points Q1, Q2 ∈ EℓP,Q
such that |[πk] ∩ HP,Qj

| is odd for j = 1, 2;
moreover, the two points associated with one class [πk1 ] are different from those

associated with the other class [πk2 ], where [πk1 ] 6= [πk2 ].

Proof: Since G acts transitively on I and preserves incidence, without loss of generality,
we may assume that P = (1, 0,−ξ). From (2.4), it follow that

K := GP =






d2 cdξ c2ξ2

2cd d2 + c2ξ 2cdξ
c2 cd d2



∣∣∣∣∣∣
d, c ∈ Fq, d

2 − c2ξ = 1





⋃







d2 −cdξ c2ξ2

2cd −d2 − c2ξ 2cdξ
c2 −cd d2



∣∣∣∣∣∣
d, c ∈ Fq,−d2 + c2ξ = 1





⋃







d2 cd c2

2cdξ−1 d2 + c2ξ−1 2cd
c2ξ−2 cdξ−1 d2



∣∣∣∣∣∣
d, c ∈ Fq, d

2ξ − c2 = 1





⋃







d2 −cd c2

2cdξ−1 −d2 − c2ξ−1 2cd
c2ξ−2 −cdξ−1 d2



∣∣∣∣∣∣
d, c ∈ Fq,−d2ξ + c2 = 1



 .

(3.4)

Since K is transitive on both PaP and SeP by Proposition 2.12 and

|HP,Q ∩C| = |(HP,Q ∩ C)g| = |HP,Qg ∩ C|
by Corollary 3.4, we may assume that Q is on either ℓ1 or ℓ2, where ℓ1 = [1, 0, ξ−1] ∈ PaP
and ℓ2 = [0, 1, 0] ∈ SeP.

Case I. Q ∈ ℓ1 and Q /∈ P⊥.
In this case, Q = (1, x,−ξ) for some x ∈ F∗

q and x2 + ξ ∈ ✷q, and

PaQ = {[1, s, (1 + sx)ξ−1] | s ∈ Fq, s
2 − 4(1 + sx)ξ−1 ∈ 6✷q}.

Using (3.4), we obtain that

KQ = {d(1, 1, 1),ad(1,−ξ−1, ξ−2)}.
It is apparent that d(1, 1, 1) fixes each line in PaQ. From

ad(1,−ξ−1, ξ−2)−1(1, s, (1 + sx)ξ−1)⊤ = ((1 + sx)ξ,−sξ, 1)⊤,

it follows that [1, s, (1 + sx)ξ−1] ∈ PaQ is fixed by KQ if and only if s = 0 or s =
−2x−1. Therefore, KQ has two orbits of length 1 on PaQ, i.e. {ℓ1 = [1, 0, ξ−1]} and



16 WU

{ℓ3 = [1,−2x−1,−ξ−1]}, and all other orbits, whose representatives are R1, have length
2. From

|HP,Q ∩ C| = |SP,ℓ1 ∩ C|+ |SP,ℓ3 ∩ C|+ 2
∑

ℓ∈R1

|SP,ℓ ∩C|,

it follows that the parity of |HP,Q ∩C| is determined by that of |SP,ℓ1 ∩C|+ |SP,ℓ3 ∩C|.
Here we used the fact that |SP,ℓ ∩ C| = |S

P,ℓ
′ ∩C| if {ℓ, ℓ′} is an orbit of KP on PaQ. It

is clear that |SP,ℓ ∩D| = |SP,ℓ3 ∩D| = 0.
Note that the quadruples (a, b, c, d) that determine group elements in SP,ℓ1 ∩ C satisfy

the following equations

−2cd+ 2abξ−1 = 0
c2 − a2ξ−1 = (d2 − b2ξ−1)ξ−1

a+ d = s
ad− bc = 1

(3.5)

where s2 = 4, πk, θi. The first two equations in (3.5)give c = ±
√
−1cξ−1 and a =

±
√
−1d. Combining them with the last two equationsin (3.5), we obtain 0, 4 or 8

quadruples (a, b, c, d) satisfying the above equations, among which, both (a, b, c, d) and
(−a,−b,−c,−d) do appear at the same time. Therefore, |SP,ℓ1 ∩ C| is 0, 2, or 4. Partic-
ularly, in [0], there might be only 2 elements satisfying the above conditions.

Similarly, the quadruples (a, b, c, d) that determine a group element in SP,ℓ3 ∩C satisfy
the following equations

−2cd+ 2abξ−1 = −2x−1(d2 − b2ξ−1)
c2 − a2ξ−1 = −ξ−1(d2 − b2ξ−1)

a+ d = s
ad− bc = 1,

(3.6)

where s2 = 4, πk, θi. The first two equations in (3.6) give

d2 − b2ξ−1 = ±A, (3.7)

where

A =

√
1

(x2 + ξ−1)ξ
. (3.8)

From (3.7), c2 − d2 = ∓Aξ−1 and a2 + d2 = s2 − 2− 2bc, it follows that

(bξ−1 + c)2 = −(±2A+ 2− s2)ξ−1. (3.9)

Hence, if (3.6) determines an odd number of group elements, then

−(±2A+ 2− s2)ξ−1 /∈ 6✷q.

If −(±2A+2−s2)ξ−1 ∈ ✷q and we set B(±) :=
√

−(±2A+ 2− s2)ξ−1, by c2−d2ξ−1 =

±Aξ−1 and a2 − b2ξ−1 = ∓Aξ−1, we have

d =
1

2s
[s2 + (ξB2

(±) − 2B(±)b)]

(
or d =

1

2s
[s2 + (ξB2

(±) + 2B(±)b)]

)
(3.10)

and thus

a =
1

2s
[s2 − (ξB2

(±) − 2B(±)b)]

(
or a =

1

2s
[s2 − (ξB2

(±) + 2B(±)b)]

)
. (3.11)

Combining b = (±B(±) − c)ξ−1 and ad− bc = 1, we have
(
ξ −

B2
(±)ξ

2

s2

)
c2 +

(
ξB3

(±)ξ
2

s2
−B(±)ξ

)
c+

(
s2

4
−

B4
(±)ξ

2

4s2
− 1

)
= 0 (3.12)
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or (
ξ −

B2
(±)ξ

2

s2

)
c2 −

(
ξB3

(±)ξ
2

s2
−B(±)ξ

)
c+

(
s2

4
−

B4
(±)ξ

2

4s2
− 1

)
= 0. (3.13)

The discriminant of (3.12) or (3.13) is

∆ = ξ2

(
ξB2

(±)ξ

s2
− 1

)(
s2

ξ
− 4

ξ
−B2

(±)

)
=

4x2ξ

(x−2 + ξ−1)s2
∈ ✷q. (3.14)

From (3.10), (3.11), (3.12), (3.13), and (3.14), it follows that (3.6) produces 2 or 4 group
elements; that is, |SP,ℓ3 ∩ C| = 2 or 4.

If −(±2A+ 2− s2)ξ−1 = 0, then s2 is one of 2A+ 2 and −2A+ 2 since

(2A+ 2)(−2A + 2) =
4x2

x2 + ξ−1
∈ 6✷q.

Therefore, in this case, we have |[s2] ∩ SP,ℓ3 | = 1. It is also clear that, for the same [s2],

|[s2] ∩ SP,P⊥

1
|

is odd, where P1 = (1,−x,−ξ) ∈ Eℓ3 . Moreover, when x runs over

L := {x ∈ F∗
q | x2 + ξ ∈ ✷q}

once, each [πk] with 1 ≤ k ≤ q−1
4 appears exactly twice in the multiset

{
2

√
1

(x−2 + ξ−1)ξ
+ 2

}⋃{
−2

√
1

(x−2 + ξ−1)ξ
+ 2

}
.

Note that

± 2√
(x−2

1 + ξ−1)ξ
+ 2 = ± 2√

(x−2
2 + ξ−1)ξ

+ 2

if and only if x1 = ±x2. Therefore, for each class [πk] with 1 ≤ k ≤ q−1
4 , there are two

different points Q1, Q2 ∈ EℓP,Q
such that |[πk] ∩ HP,Qj

| is odd for j = 1, 2; further,
the two points associated with one class [πk1 ] are different from those associated with the
other class [πk2 ], where [πk1 ] 6= [πk2 ]. The proof of (iii) is completed.

Case II. Q = ℓ1 ∩P⊥.
In this case, Q = (0, 1, 0). From (3.4), it follows that

KQ = {d(1, 1, 1),ad(−1, 1,−1),d(−1,−ξ−1 ,−ξ−2),ad(1,−ξ−1, ξ−2)}.
Since PaQ = {[1, 0,−x] | x ∈ 6✷q}, it follows that the passant lines through Q that are
fixed by KQ are ℓ1 = [1, 0, ξ−1] and ℓ4 = [1, 0,−ξ−1]. Thus, KQ has two orbits of length
1 on PaQ and all the other orbits, whose representatives are R2, have length 2. By

|HP,Q ∩ C| = |SP,ℓ1 ∩ C|+ |SP,ℓ4 ∩ C|+ 2
∑

ℓ∈R2

|SP,ℓ ∩C|,

we obtain that the parity of |HP,Q ∩C| is determined by that of |SP,ℓ1 ∩C|+ |SP,ℓ4 ∩C|.
From the discussions in Case I, we know that |SP,ℓ1 ∩C| always even. Since ℓ4 = P⊥ and
GP = GP⊥ by Lemma 2.13, it follows from Corollary 3.5 that |SP,ℓ4 ∩ C| is odd if and
only if C = D. The proof of (ii) is completed.

Case III. Q ∈ ℓ2.
In this case , Q = (1, 0,−y) for some y ∈ ✷q. Using (3.4), we see that

KQ = {d(1, 1, 1),d(−1, 1,−1)}.



18 WU

Moreover, all the orbits of KQ on PaQ = {[1, s, y−1] | s ∈ F∗
q, s

2− 4y−1 ∈ 6✷q} have length
2, then |HP,Q ∩C| is even for each C. Part (i) is proved.

�

Lemma 3.7. Assume that q ≡ 3 (mod 4). Let P ∈ I and Q ∈ E. Suppose that C = D,

[4], [πk] (1 ≤ k ≤ q−3
4 ), [θi] (1 ≤ i ≤ q−3

4 ).

(i) If ℓP,Q ∈ SeP and Q /∈ P⊥, for each class [θi] with 1 ≤ i ≤ q−3
4 , there are

two different points Q1, Q2 ∈ EℓP,Q
such that |[θi] ∩ HP,Qj

| is odd for j = 1, 2;
moreover, the two points associated with one class [θi1 ] are different from those

associated with the other class [θi2 ], where [θi1 ] 6= [θi2 ].
(ii) If ℓP,Q ∈ SeP and Q ∈ P⊥, then |HP,Q ∩ C| is odd if and only if C = D.

(iii) If ℓP,Q ∈ PaP, then |HP,Q ∩ C| is even for each C.

Proof: The proof is essentially the same as the one of Lemma 3.6. We omit the
details. �

4. Group Algebra FH

4.1. 2-Blocks of H. In this section we recall several results on the 2-blocks of H ∼=
PSL(2, q). We refer the reader to [14] or [2] for a general introduction on this subject.

Let R be the ring of algebraic integers in the complex field C. We choose a maximal
ideal M of R containing 2R. Let F = R/M be the residue field of characteristic 2, and
let ∗ : R → F be the natural ring homomorphism. Define

S = { r
s | r ∈ R, s ∈ R \M}. (4.1)

Then it is clear that the map ∗ : S → F defined by ( rs)
∗ = r∗(s∗)−1 is a ring homomorphism

with kernel P = { r
s | r ∈ M, s ∈ R \M}. In the rest of this article, F will always be the

field of characteristic 2 constructed as above. Note that F is an algebraic closure of F2.
Let Irr(H) and IBr(H) be the set of irreducible ordinary characters and the set of

irreducible Brauer characters of H, respectively. In the following, we deduce the 2-blocks
of H from the known results on the 2-blocks of PSL(2, q). For baisc results on blocks of
finite groups, we refer the reader to Chapter 3 of [14].

The character tables of PSL(2, q) were obtained by Jordan and Schur independently;
see[11], [12], or [15] for the detailed discussions. The irreducible characters of H can be
read off from the character tables of PSL(2, q) as follows.

Lemma 4.1. ([11], [12], [15]) The irreducible ordinary characters of H are:

(i) 1 = χ0, γ, χ1, ..., χ q−1
4
, β1, β2, φ1, ..., φ q−5

4
if q ≡ 1 (mod 4), where 1 = χ0 is

the trivial character, γ is the character of degree q, χs for 1 ≤ s ≤ q−1
4 are the

characters of degree q − 1, φr for 1 ≤ r ≤ q−5
4 are the characters of degree q + 1,

and βi for i = 1, 2 are the characters of degree q+1
2 ;

(ii) 1 = χ0, χ1, ..., χ q−3
4
, β1, η2, η1, ..., φ q−3

4
if q ≡ 3 (mod 4), where 1 = χ0 is

the trivial character, γ is the character of degree q, χs for 1 ≤ s ≤ q−1
3 are the

characters of degree q − 1, φr for 1 ≤ r ≤ q−3
4 are the characters of degree q + 1,

and ηi for i = 1, 2 are the characters of degree q−1
2 ;

The following lemma tells us how the irreducible ordinary characters of H are parti-
tioned into 2-blocks.

Lemma 4.2. [17, Lemma 4.1] First assume that q ≡ 1 (mod 4) and q − 1 = m2n, where
2 ∤ m.
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(i) The principal block B0 of H contains 2n−2 + 3 irreducible characters

χ0 = 1, γ, β1, β2, φi1 , ..., φi(2n−2−1)
,

where χ0 = 1 is the trivial character of H, γ is the irreducible character of degree

q of H, β1 and β2 are the two irreducible characters of degree q+1
2 , and φik for

1 ≤ k ≤ 2n−2 − 1 are distinct irreducible characters of degree q + 1 of H.

(ii) H has q−1
4 blocks Bs of defect 0 for 1 ≤ s ≤ q−1

4 , each of which contains an

irreducible ordinary character χs of degree q − 1.
(iii) If m ≥ 3, then H has m−1

2 blocks B
′

t of defect n − 1 for 1 ≤ t ≤ m−1
2 , each of

which contains 2n−1 irreducible ordinary characters φti for 1 ≤ i ≤ 2n−1.

Now assume that q ≡ 3 (mod 4) and q + 1 = m2n, where 2 ∤ m .

(iv) The principal block B0 of H contains 2n−2 + 3 irreducible characters

χ0 = 1, γ, η1, η2, χi1 , ..., χi(2n−2−1)
,

where χ0 = 1 is the trivial character of H, γ is the irreducible character of degree

q of H, η1 and η2 are the two irreducible characters of degree q−1
2 , and χik for

1 ≤ k ≤ 2n−2 − 1 are distinct irreducible characters of degree q − 1 of H.

(v) H has q−3
4 blocks Br of defect 0 for 1 ≤ r ≤ q−3

4 , each of which contains an

irreducible ordinary character φr of degree q + 1.
(vi) If m ≥ 3, then H has m−1

2 blocks B
′

t of defect n − 1 for 1 ≤ t ≤ m−1
2 , each of

which contains 2n−1 irreducible ordinary characters χti for 1 ≤ i ≤ 2n−1.

Moreover, the above blocks form all the 2-blocks of H.

Remark 4.3. Parts (i) and (iv) are from Theorem 1.3 in [13] and their proofs can be

found in Chapter 7 of III in [2]. Parts (ii) and (v) are special cases of Theorem 3.18 in

[14]. Parts (iii) and (vi) are proved in Sections II and VIII of [3].

4.2. Block Idempotents. Let Bl(H) be the set of 2-blocks of H. If B ∈ Bl(H), we
write

fB =
∑

χ∈Irr(B)

eχ,

where eχ = χ(1)
|H|

∑
g∈H χ(g−1)g is a central primitive idempotent of Z(CH) and Irr(B) =

Irr(H) ∩ B. For future use, we define IBr(B) = IBr(H) ∩B. Since fB is an element of
Z(CH), we may write

fB =
∑

C∈cl(H)

fB(Ĉ)Ĉ,

where cl(H) is the set of conjugacy classes of H, Ĉ is the sum of elements in the class C,
and

fB(Ĉ) = 1
|H|

∑

χ∈Irr(B)

χ(1)χ(x−1
C ) (4.2)

with a fixed element xC ∈ C.

Theorem 4.4. Let B ∈ Bl(H). Then fB ∈ Z(SH). In other words,fB(Ĉ) ∈ S for each

block of H.

Proof: It follows from Corollary 3.8 in [14]. �

We extend the ring homomorphism ∗ : S → F to a ring homomorphism ∗ : SH →
FH by setting (

∑
g∈H sgg)

∗ =
∑

g∈H s∗gg. Note that ∗ maps Z(SH) onto Z(FH) via

(
∑

C∈cl(H) sCĈ)∗ =
∑

C∈cl(H) s
∗
CĈ. Now we define

eB = (fB)
∗ ∈ Z(FH),
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which is the block idempotent of B. Note that eBeB′ = δBB′ eB for B, B
′ ∈ Bl(H), where

δBB′ equals 1 if B = B′, 0 otherwise. Also 1 =
∑

B∈Bl(H) eB .

All the block idempotents of the 2-blocks of H are given in the following lemma; see
[17] for the detailed calculations.

Lemma 4.5. [17, Lemma 4.4] First assume that q ≡ 1 (mod 4) and q − 1 = m2n with

2 ∤ m.

1. Let B0 be the principal block of H. Then

(a) eB0(D̂) = 1.

(b) eB0(F̂
+) = eB0(F̂

−) ∈ F .

(c) eB0([̂θi]) ∈ F , eB0([̂0]) = 0.

(d) eB0([̂πk]) = 1.
2. Let Bs be any block of defect 0 of H. Then

(a) eBs(D̂) = 0.

(b) eBs(F̂
+) = eBs(F̂

−) = 1.

(c) eBs([̂0]) = eBs([̂θi]) = 0.

(d) eBs([̂πk]) ∈ F .

3. Suppose m ≥ 3 and let B
′

t be any block of defect n− 1 of H. Then

(a) e
B

′

t
(D̂) = 0.

(b) e
B

′

t
(F̂+) = e

B
′

t
(F̂−) = 1.

(c) eB′

t
([̂θi]) ∈ F , eB′

t
([̂0]) = 0.

(d) eB′

t
([̂πk]) = 0.

Now assume that q ≡ 3 (mod 4). Suppose that q + 1 = m2n with 2 ∤ m.

4. Let B0 be the principal block of H. Then

(a) eB0(D̂) = 1.

(b) eB0(F̂
+) = eB0(F̂

−) ∈ F .

(c) eB0([̂θi]) = 1.

(d) eB0([̂0]) = 0, eB0([̂πk]) ∈ F .

5. Let Br be any block of defect 0 of H. Then

(a) eBr(D̂) = 0.

(b) eBr(F̂
+) = eBr(F̂

−) = 1.

(c) eBr([̂0]) = eBr([̂πk]) = 0.

(d) eBr([̂θi]) ∈ F .

6. Suppose that m ≥ 3 and let B
′

t be any block of defect n− 1 of H. Then

(a) e
B

′

t
(D̂) = 0.

(b) e
B

′

t
(F̂+) = e

B
′

t
(F̂−) = 1.

(c) e
B

′

t
([̂θi]) = 0.

(d) eB′

t
([̂0]) = 0, eB′

t
([̂πk]) ∈ F .

The following corollary will be used in the proof of Lemma 6.2.

Corollary 4.6. Let Bs (1 ≤ s ≤ q−1
4 ) or Br (1 ≤ r ≤ q−3

4 ) be the blocks of defect 0 of H
depending on whether q ≡ 1 (mod 4) or q ≡ 3 (mod 4). Using the above notation,

(i) if q ≡ 1 (mod 4), for each Bs, there is a class [πk] such that eBs([̂πk]) 6= 0;

(ii) if q ≡ 3 (mod 4), for each Br, there is a class [θi] such that eBr([̂θi]) 6= 0.
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Proof: First we assume that q ≡ 1 (mod 4). From Theorem 8.9 in [12], we have

χs(gk) = −δ(2k)s − δ−(2k)s for 1 ≤ k ≤ q−1
4 , where χs is the irreducible ordinary character

lying in Bs, gk ∈ [πk], and δ is a primitive (q + 1)-th root of unit in C. Note that

fBs([̂πk]) = 1
|H|

∑

χs∈Bs

χs(1)χs(g
−1
k )

= − q−1
|H| (δ

(2k)s + δ−(2k)s).

Since
(q−1)/4∑

k=1

eBs([̂πk]) = (− q−1
|H|

(q−1)/4∑

k=1

δ(2k)s + δ−(2k)s)∗

= ( δ
2s−δ

q+3
2 s

1−δ2s
+ δ−2s−δ−

q+3
2 s

1−δ−2s )∗

= ( δ
2s−δ

q+3
2 s

1−δ2s
+ δ−2s−δ

q−1
2 s

1−δ−2s )∗

= ( δ
2s−δ

q+3
2 s

1−δ2s + 1−δ
q+3
2 s

δ2s−1 )∗

= 1,

we conclude that eBs([̂πk]) 6= 0 for some k. Part (i) is proved.
Part (ii) can be proved in the same fashion using Theorem 8.11 in [12]; we omit the

details. �

Let M be an SH-module. We denote the reduction M/PM , which is an FH-module,
by M . Then the following lemma is apparent.

Lemma 4.7. Let M be an SH-module and B ∈ Bl(H). Using the above notation, we

have

fBM = eBM,

i.e. reduction commutes with projection onto a block B.

5. Linear Maps and Their Matrices

Let F be the algebraic closure of F2 defined in Section 4. From now on, χN for N ⊆ E
will be always regarded as a vector over F . Recall that for P ∈ I, NPa,E(P) (respectively,
NSe,E(P)) is the set of external points on the passant (respectively, secant) lines throughP.

We defineD (respectively, D
′

) to be the incidence matrix of E and NPa,E(P) (respectively,

NSe,E(P)) for P ∈ I. Namely, the columns of D andD
′

can be viewed as the characteristic
vectors of NPa,E(P) and NSe,E(P), respectively. In the following, we always regard both

D and D
′

as matrices over F .

Definition 5.1. For P ∈ I, we define GP to be the column characteristic vector of P

with respect to I, i.e. GP is a 0-1 column vector of length |I| with entries indexed by the

internal points; the entry of GP is 1 if and only if it is indexed by P.

Let k be the complex field C, the algebraic closure F of F2, or the ring S in (4.1).
Let kI and kE be the free k-modules with the bases {GP | P ∈ I} and {χP | P ∈ E},
respectively. If we extend the actions of H on the bases of kI and kE , which are defined
by χP · h = χPh and GQ · h = GQh for P ∈ I, Q ∈ E, and h ∈ H, linearly to kI and kE

respectively, then both kI and kE are kH-permutation modules. Since H is transitive on
I, we have

kI = IndHK(1k),

where K is the stabilizer of an element of I in H and IndHK(1k) is the kH-module induced
by 1k.
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The decomposition of 1 ↑HK , the character of IndHK(1k), into a sum of the irreducible
ordinary characters of H is given as follows.

Lemma 5.2. [19, Lemma 5.2] Let K be the stabilizer of an internal point in H.

Assume that q ≡ 1 (mod 4). Let χs, 1 ≤ s ≤ q−1
4 , be the irreducible ordinary characters

of degree q − 1, φr, 1 ≤ r ≤ q−5
4 , irreducible ordinary characters of degree q + 1, γ the

irreducible of degree q, and βj , 1 ≤ j ≤ 2, irreducible ordinary characters of degree q+1
2 .

(i) If q ≡ 1 (mod 8), then

1 ↑HK= 1 +

(q−1)/4∑

s=1

χs + γ + β1 + β2 +

(q−9)/4∑

j=1

φrj ,

where φrj , 1 ≤ j ≤ q−9
4 , may not be distinct.

(ii) If q ≡ 5 (mod 8), then

1 ↑HK= 1 +

(q−1)/4∑

s=1

χs + γ +

(q−5)/4∑

j=1

φrj ,

where φrj , 1 ≤ j ≤ q−5
4 , may not be distinct.

Next assume that q ≡ 3 (mod 4). Let χs, 1 ≤ s ≤ q−3
4 , be the irreducible ordinary

characters of degree q − 1, φr, 1 ≤ r ≤ q−3
4 , the irreducible ordinary characters of degree

q + 1, γ the irreducible character of degree q, and ηj, 1 ≤ j ≤ 2, the irreducible ordinary

characters of degree
q−1
2 .

(iii) If q ≡ 3 (mod 8), then

1 ↑HK= 1 +

(q−3)/4∑

r=1

φr + η1 + η2 +

(q−3)/4∑

j=1

χsj ,

where χsj , 1 ≤ j ≤ q−3
4 , may not be distinct.

(iv) If q ≡ 7 (mod 8), then

1 ↑HK= 1 +

(q−3)/4∑

r=1

φr +

(q+1)/4∑

j=1

χsj ,

where χsj , 1 ≤ j ≤ q+1
4 , may not be distinct.

Corollary 5.3. Using the above notation,

(i) if q ≡ 1 (mod 4), then the character of IndHK(1C) · fBs is χs for each block Bs of

defect 0;
(ii) if q ≡ 3 (mod 4), then the character of IndHK(1C) · fBr is φr for each block Br of

defect 0.

Proof: The corollary follows from Lemma 4.2 and Lemma 5.2. �

Since H preserves incidence, the following corollary is obvious.

Corollary 5.4. Let P ∈ I. Using the above notation, we have

χNPa,E(P) · h = χNPa,E(Ph), χNSe,E(P) · h = χNSe,E(Ph)

for h ∈ H.
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In the rest of the article, we always view GP as a vector over F . Consider the maps φB,
φD, and φD

′ from F I to FE defined by extending

GP 7→ χP⊥ ,GP 7→ χNPa,E(P),GP 7→ χNSe,E(P)

linearly to F I , respectively. Then it is clear that as F -linear maps, the marices of φB, φD,
and φD

′ are B, D, and D
′

, respectively, and for x ∈ F I , φB(x) = Bx, φD(x) = Dx and

φD
′ (x) = D

′

x. Moreover, we have the following result.

Lemma 5.5. The maps φB, φD, and φ
D

′ are all FH-module homomorphisms from F I

to FE.

Proof: Let GP be a basis element of F I . Then φ(GP · h) = φ(GP) · h since

φB(GP · h) = χ(Ph)⊥ = χ(P⊥)h = χP⊥ · h = φB(GP) · h.
By linearity of φB, we have φB(x) · h = φB(x · h) for each x ∈ F I . The proof of the map
φB being FH-homomorphism is completed.

The proofs of the other two maps being homomorphisms are similar since

χNPa,E(P) · h = χNPa,E(Ph), χNSe,E(P) · h = χNSe,E(Ph)

for h ∈ H and P ∈ I by Corollary 5.4. We omit the details. �

For convenience, we use colF (C) to denote the column space of the matrix C over F .

Corollary 5.6. Using the above notation, we have Im(φB) = colF (B), Im(φD) = colF (D),

and Im(φD
′ ) = colF (D

′

).

Now we define M1 := 〈χℓ | ℓ ∈ T 〉F and M2 := 〈χℓi + χℓj | ℓi 6= ℓj ∈ T 〉F to be the
spans of the corresponding characteristic vectors over F .

Lemma 5.7. The dimensions of M1 and M2 over F are dimF (M1) = q and dimF (M2) =
q − 1, respectively. Moreover, the all-one column vector 1 of length |E| is neither in M1

nor in M2.

Proof: Since
∑

ℓ∈T χℓ = 0, where 0 is the zero column vector of |E|, it follows that {χℓ |
ℓ ∈ T} is linearly dependent over F , i.e. dimF (M1) ≤ q. Now let T

′ ⊂ T with |T ′ | = q

and suppose that {χℓ | ℓ ∈ T
′} is linearly dependent over F . Then

∑
ℓ∈T ′ aℓχℓ = 0, where

aℓ ∈ F and aℓ1 6= 0 for some ℓ1 ∈ T
′

. Since there are q external points on ℓ1 and there are

only q−1 tangent lines other than ℓ1 in T
′

, some external point on ℓ1 must be passed only
by ℓ1 among the tangent lines in T

′

, which forces aℓ1 = 0, a contradiction. This shows

that T
′

must be linearly independent over F , and so dimF (M1) = q. Moreover, if T
′ ⊂ T

and |T ′ | = q, then {χℓ | ℓ ∈ T
′} must be a basis for M1.

Next if ℓ1 is a tangent line, then M2 = 〈χℓ1 + χℓ | ℓ ∈ T \ {ℓ1}〉F since χℓi + χℓj =

(χℓ1+χℓi)+(χℓ1+χℓj). As
∑

ℓ∈T\{ℓ1}
(χℓ1+χℓ) = 0, dimF (M2) ≤ q−1. Let T

′ ⊂ T \{ℓ1}
with |T ′ | = q− 1 and suppose that {χℓ1 +χℓ | ℓ ∈ T

′} is linearly dependent over F . Then∑
ℓ∈T

′ aℓ(χℓ1 + χℓ) =
∑

ℓ∈T
′ aℓχℓ = 0 since |T ′ | is even, where aℓ ∈ F and aℓ2 6= 0 for

some ℓ2 ∈ T
′

. By applying the same argument in the first paragraph of this proof, again,
we obtain that aℓ2 = 0 which is a contradiction. Therefore, {χℓ1 + χℓ | ℓ ∈ T

′} is linearly

independent over F , and so dimF (M2) = q−1. Moreover, if T
′ ⊂ T \{ℓ1} and |T ′ | = q−1,

then {χℓ1 + χℓ | ℓ ∈ T
′} must be a basis for M2.

Now we assume that 1 ∈ M1 and {χℓ | ℓ ∈ T
′} with T

′ ⊂ T and |T ′ | = q is a basis

for M1. Then
∑

ℓ∈T ′ aℓχℓ = 1, where aℓ ∈ F for ℓ ∈ T
′

and aℓk 6= 0 for some ℓk ∈ T
′

.

Since |T ′ \ {ℓk}| = q − 1, some external point on ℓk must be only passed by ℓk among all
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the tangent lines in T ′; this forces aℓk = 1. For each ℓ ∈ T ′ \ {ℓk}, we have aℓk + aℓ = 1,
that is, aℓ = 0 for each ℓ ∈ T ′ \ {ℓk}. Thus χℓk = 1, which is impossible. Consequently,
1 /∈ M1. Similarly, we can show that 1 /∈ M2. We omit the details. �

Lemma 5.8. If q ≡ 1 (mod 4), then colF (D) = M1; if q ≡ 3 (mod 4), then colF (D) =
M2.

Proof: Assume that q ≡ 1 (mod 4). Let χNPa,E(P) be the column of D indexed by
P. Then χNPa,E(P) is an F -linear combination of the generating elements of M1 by
Corollary 2.17. Now if χℓ is a generating element of M1, then it is an F -linear combination
of the columns of D by Corollary 2.21. Therefore, colF (D) = M1.

Now we assume that q ≡ 3 (mod 4). Let χNPa,E(P) be the column of D indexed by P.

Suppose that ℓ(P) is a tangent line through an external point on P⊥ and T (P, ℓ(P)) is
the set of tangent lines through the external points on ℓ(P) that are also on the passant

lines through P. Then by Corollary 2.17 and the fact that |T (P, ℓ(P))| = q+1
2 is even, we

have

χNPa,E(P) =
∑

ℓ∈T (P,ℓ(P))

χℓ

=
∑

ℓ∈T (P,ℓ(P))

(χℓ + χℓ(P));

that is, χNPa,E(P) ∈ M2. Now let χℓ1 +χℓ2 be a generating element of M2. Then we have

χℓ1 + χℓ2 =
∑

Q∈M
′
(P)

χNPa,E(Q)

by Corollary 2.24, where P = ℓ1 ∩ ℓ2. Hence, colF (D) = M2. �

Corollary 5.9. If q ≡ 1 (mod 4), rank2(D) = q; if q ≡ 3 (mod 4), rank2(D) = q − 1.

Proof: It follows from Lemmas 5.7 and 5.8. �

Further, we have the following decomposition of colF (D
′

).

Lemma 5.10. If q ≡ 3 (mod 4), then colF (D
′

) = 〈1〉 ⊕ colF (D) as FH-modules, where

〈1〉 is the trivial FH-module generated by the all-one column vector 1.

Proof: Since each row of D
′

has (q−1)2

4 1s, then

∑

P∈I

χNSe,E(P) = 1.

For h ∈ H,

1 · h = (
∑

P∈I

χNSe,E(P)) · h =
∑

P∈I

χNSe,E(Ph) =
∑

P∈I

χNSe,E(P) = 1 ∈ colF (D).

Consequently, 〈1〉 is indeed a trivial submodule of colF (D
′

).

It is clear that colF (D
′

) = 〈1〉 + colF (D) since χNSe,E(P) ∈ colF (D
′

) if and only if

χNSe,E(P) = 1+χNPa,E(P) ∈ 〈1〉+colF (D). Further, 〈1〉∩colF (D) = 0 since colF (D) = M2

and 1 /∈ M2 by Lemmas 5.7 and 5.8. Therefore, colF (D
′

) = 〈1〉 ⊕ colF (D). �
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6. Statement and Proof of Main Theorem

The main theorem is given as follows.

Theorem 6.1. Let Im(φB) and Im(φD) be defined as above. As FH-modules,

(i) if q ≡ 1 (mod 4), then

Im(φB) = Im(φD)⊕ (

(q−1)/4⊕

s=1

Ms),

where Ms for 1 ≤ s ≤ q−1
4 are pairwise non-isomorphic simple FH-modules of

dimension q − 1;
(ii) if q ≡ 3 (mod 4), then

Im(φB) = 〈1〉 ⊕ Im(φD)⊕ (

(q−3)/4⊕

r=1

Mr),

where Mr for 1 ≤ s ≤ q−3
4 are pairwise non-isomorphic simple FH-modules of

dimension q+1 and 〈1〉 is the trivial FH-module generated by the all-one column

vector of length |E|.

To prove the main theorem, we need the following lemma.

Lemma 6.2. Let q − 1 = 2nm or q + 1 = 2nm with 2 ∤ m depending on whether q ≡ 1
(mod 4) or q ≡ 3 (mod 4). Using the above notation,

(i) if q ≡ 1 (mod 4), then Im(φB) · eB0 = Im(φD), Im(φB) · eBs 6= 0 for 1 ≤ s ≤ q−1
4 ,

and Im(φB) · eB′

t
= 0 for m ≥ 3 and 1 ≤ t ≤ m−1

2 ;

(ii) if q ≡ 3 (mod 4), then Im(φB) · eB0 = Im(φ
D

′ ), Im(φB) · eBr 6= 0 for 1 ≤ r ≤ q−3
4 ,

and Im(φB) · eB′

t
= 0 for m ≥ 3 and 1 ≤ t ≤ m−1

2 .

Proof: It is clear that Im(φB) is generated by {χP⊥ | P ∈ I} over F . Let B ∈ Bl(H).
Since

χP⊥ · eB =
∑

C∈cl(H)

eB(Ĉ)
∑

h∈C

χP⊥ · h

=
∑

C∈cl(H)

eB(Ĉ)
∑

h∈C

χ(P⊥)h ,

=
∑

C∈cl(H)

eB(Ĉ)
∑

h∈C

∑

Q∈(P⊥)h∩E

χQ,

we have

χP⊥ · eB =
∑

Q∈I

S(B,P,Q)χQ,

where

S(B,P,Q) :=
∑

C∈cl(H)

|HP,Q ∩ C|eB(Ĉ).

Assume first that q ≡ 1 (mod 4). If ℓP,Q ∈ SeP, then S(B,P,Q) = 0 for each B ∈
Bl(H) since |HP,Q ∩ C| = 0 in F for each C 6= [0] by Lemma 3.6(i) and eB0([̂0]) =

eBs([̂0]) = eB′

t
([̂0]) = 0 by 1(c), 2(c), 3(c) of Lemma 4.5.
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If ℓP,Q ∈ PaP and Q ∈ P⊥, then by Lemma 3.6(ii) and 1(a), 1(c), 2(a), 2(c), 3(a), 3(c)
of Lemma 4.5,

S(B0,P,Q) = |HP,Q ∩ [0]|eB0([̂0]) + |HP,Q ∩D|eB0(D̂) = 0 + 1 = 1,

S(Bs,P,Q) = |HP,Q ∩ [0]|eBs([̂0]) + |HP,Q ∩D|eBs(D̂) = 0 + 0 = 0,

S(B
′

t,P,Q) = |HP,Q ∩ [0]|eB′

t
([̂0]) + |HP,Q ∩D|eB′

t
(D̂) = 0 + 0 = 0.

If Q is on a passant line ℓ through P and Q /∈ P⊥, then by Lemma 3.6(iii) and 1(c),
1(d), 2(c), 2(d), 3(c), 3(d) of Lemma 4.5,

S(B0,P,Q) = |HP,Q ∩ [0]|eB0([̂0]) + |HP,Q ∩ [πk]|eB0([̂πk]) = 1,

S(Bs,P,Q) = |HP,Q ∩ [0]|eBs([̂0]) + |HP,Q ∩ [πk]|eBs([̂πk]) = eBs([̂πk]),

S(B
′

t,P,Q) = |HP,Q ∩ [0]|e
B

′

t
([̂0]) + |HP,Q ∩ [πk]|eB′

t
([̂πk]) = 0.

By Lemma 3.6(iii) and the fact that there are q−1
4 classes of the form [πk] and there are

q−1
2 points on ℓ that are not on P⊥, we have that for each [πk] there exist two external

points Q1 and Q2 on ℓ such that |HP,Qj
∩ [πk]| (j = 1 or 2) is odd and for each Q ∈ ℓ

and Q /∈ P⊥ there is a class [πk] such that |HP,Q ∩ [πk]| is odd. Combining the above
analysis with Lemma 4.6, we obtain that for each Bs, there is a Q and a class [πk] such

that S(Bs,P,Q) = eBs([̂πk]) 6= 0.
Therefore, we have shown that Im(φB) · eB0 = Im(φD) by definition, Im(φB) · eBs 6= 0

for each s, and Im(φB) · eB′

t
= 0. The proof of (i) is completed.

Now assume that q ≡ 3 (mod 4). If ℓP,Q ∈ PaP, then S(B,P,Q) = 0 for each
B ∈ Bl(H) since |HP,Q ∩ C| = 0 by 4(d), 5(c), 6(d) of Lemma 4.5.

Let ℓP,Q ∈ SeP and Q ∈ P⊥, then by Lemma 3.7(ii) and 4(a), 4(d), 5(a), 5(c), 5(d) of
Lemma 4.5

S(B0,P,Q) = |HP,Q ∩ [0]|eB0([̂0]) + |HP,Q ∩D|eB0(D̂) = 0 + 1 = 1,

S(Bs,P,Q) = |HP,Q ∩ [0]|eBs([̂0]) + |HP,Q ∩D|eBs(D̂) = 0 + 0 = 0,

S(B
′

t,P,Q) = |HP,Q ∩ [0]|e
B

′

t
([̂0]) + |HP,Q ∩D|e

B
′

t
(D̂) = 0 + 0 = 0.

If ℓP,Q ∈ SeP and Q /∈ P⊥, then by Lemma 3.7(i), 4(c), 4(d), 5(c), 5(d), 6(c), 6(d) of
Lemma 4.5,

S(B0,P,Q) = |HP,Q ∩ [0]|eB0([̂0]) + |HP,Q ∩ [θi]|eB0([̂θi]) = 1,

S(Bs,P,Q) = |HP,Q ∩ [0]|eBs([̂0]) + |HP,Q ∩ [θi]|eBs([̂πk]) = eBs([̂θi]),

S(B
′

t,P,Q) = |HP,Q ∩ [0]|eB′

t
([̂0]) + |HP,Q ∩ [θi]|eB′

t
([̂θi]) = 0.

From Lemma 3.7(i) and Lemma 4.6, we have that for each Bs, there is a Q and a class

[θi] such that S(Bs,P,Q) = eBs([̂θi]) 6= 0.
Therefore, we have shown that Im(φB) · eB0 = Im(φ

D
′ ) by definition, Im(φB) · eBs 6= 0

for each s, and Im(φB) · eB′

t
= 0. The proof of (ii) is completed. �

Proof of Theorem 6.1: Let B be a 2-block of defect 0 of H. Then by Lemma 4.7, we
have

F I · eB = SI · fB.
Therefore, by Corollary 5.3, F I · eb = N , where N is the simple FH-module of dimension
q − 1 or q + 1 lying in B accordingly as q ≡ 1 (mod 4) or q ≡ 3 (mod 4). It is clear that
φB(F

I) = Im(φB).
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Assume that q ≡ 1 (mod 4) and q − 1 = m2n with 2 ∤ m. Since

1 = eB0 +

(q−1)/4∑

s=1

eBs +

(m−1)/2∑

t=1

e
B

′

t
,

we have

Im(φB) = Im(φB) · eB0 ⊕ (

(q−1)/4⊕

s=1

Im(φB) · eBs)⊕ (

(m−1)/2⊕

t=1

Im(φB) · eB′

t
)

= Im(φD)⊕ (

(q−1)/4⊕

s=1

φB(F
I) · eBs)

= Im(φD)⊕ (

(q−1)/4⊕

s=1

φB(F
I · eBs))

= Im(φD)⊕ (

(q−1)/4⊕

s=1

φB(Ns))

= Im(φD)⊕ (

(q−1)/4⊕

s=1

Ms),

(6.1)

where Ns is the simple module of dimension q−1 lying in Bs for each s by the discussion in
the first paragraph and Ms := φB(Ns) for each s. In (6.1), the terms eB′

t
for 1 ≤ t ≤ m−1

2

and Im(φB) · eB′

t
for 1 ≤ t ≤ m−1

2 appear only when m ≥ 3; the second equality holds

since Im(φB) · eB′

t
= 0 for each t and Im(φB) · eB0 = Im(φD) by Lemma 6.2(i); and the

third equality holds since φB is an FH-homomorphism by Lemma 5.5 and eBs ∈ FH.
Consider the map

λS : NS → φB(Ns)

defined by λs(n) = φB(n) for n ∈ Ns, where 1 ≤ s ≤ q−1
4 . It is clear that λs is the same

as the resctriction of φB to Ns. Consequently, λs is a surjective FH-homomorphism.
Moreover, Ker(λs) is either 0 or Ns since, otherwise, Ker(λs) would be a non-trivial
submodule of Ns which is impossible. If Ker(λs) = Ns, then φB(Ns) = φB(F

I) · eBs = 0,
which is not the case by Lemma 6.2(i). Thus, we must have Ker(λs) = 0; that is, λs

is an FH-isomorphism. So we have shown that Ms := Im(Ns) ∼= Ns and thus Ms for

1 ≤ s ≤ q−1
4 are pairwise non-isomorphic simple modules of dimension q − 1. The proof

of (i) is finished.
Now assume that q ≡ 3 (mod 4). Applying the same argument as above, we have

Im(φB) = Im(φD
′ )⊕ (

(q−3)/4⊕

r=1

Mr),

where Mr for 1 ≤ r ≤ q−3
4 are pairwise non-isomorphic simple FH-modules of dimension

q + 1. Since Im(φD
′ ) = 〈1〉 ⊕ Im(φD) by Lemma 5.10, it follows that

Im(φB) = 〈1〉 ⊕ Im(φD)⊕ (

(q−3)/4⊕

r=1

Mr).

�

Now Conjecture 1.1 follows as a corollary.
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Corollary 6.3. Let L and L0 be the F2-null spaces of B and B0, respectively. Then

dimF2(L) =
{

q2−1
4 − q, if q ≡ 1 (mod 4),

q2−1
4 − q + 1, if q ≡ 3 (mod 4)

and

dimF2(L0) =

{
q2−1
4 , if q ≡ 1 (mod 4),

q2−1
4 + 1, if q ≡ 3 (mod 4).

Proof: From Theorem 6.1 and Corollary 5.9, it follows that the 2-rank of B is

rank2(B) = q +
(q − 1)2

4
or

rank2(B) = 1 + (q − 1) +
(q − 1)2

4
accordingly as q ≡ 1 (mod 4) or q ≡ 3 (mod 4). Therefore, the dimension of the F2-null
space of B is

dimF2(L) =
q(q − 1)

2
− (q +

(q − 1)2

4
) =

q2 − 1

4
− q

or

dimF2(L) =
q(q − 1)

2
− (1 + (q − 1) +

(q − 1)(q − 3)

4
) =

q2 − 1

4
− q + 1

accordingly as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).
Since rank2(B) = rank2(B0), the dimension of L0 can be calculated in the same way.

We omit the details. �
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