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Abstract Constant dimension codes are subsets of the finite Grassmann variety. The study of these
codes is a central topic in random linear network coding theory.

Orbit codes represent a subclass of constant dimension codes. They are defined as orbits of a
subgroup of the general linear group on the Grassmannian.

This paper gives a complete characterization of orbit codes that are generated by an irreducible
cyclic group, i.e. a group having one generator that has no non-trivial invariant subspace. We show
how some of the basic properties of these codes, the cardinality and the minimum distance, can be
derived using the isomorphism of the vector space and the extension field. Furthermore, we investigate
the Plücker embedding of these codes and show how the orbit structure is preserved in the embedding.
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1 Introduction

In network coding one is looking at the transmission of information through a directed graph with
possibly several senders and several receivers [1]. One can increase the throughput by linearly com-
bining the information vectors at intermediate nodes of the network. If the underlying topology of the
network is unknown we speak about random linear network coding. Since linear spaces are invariant
under linear combinations, they are what is needed as codewords [7]. It is helpful (e.g. for decoding)
to constrain oneself to subspaces of a fixed dimension, in which case we talk about constant dimension

codes.
The set of all k-dimensional subspaces of a vector space V is often referred to as the Grassmann

variety (or simply Grassmannian) and denoted by G(k, V ). Constant dimension codes are subsets of
G(k,Fn

q ), where Fq is some finite field.
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The general linear group GL(V ) consisting of all invertible transformations acts naturally on the
Grassmannian G(k, V ). If G ≤ GL(Fn

q ) is a subgroup then one has an induced action of G on the finite
Grassmannian G(k,Fn

q ). Orbits under the G-action are called orbit codes [12]. Orbit codes have useful
algebraic structure, e.g. for the computation of the distance of an orbit code it is enough to compute
the distance between the starting point and any of its orbit elements. This is analogous to linear block
codes where the minimum distance of the code can be derived from the weights of the non-zero code
words.

Orbit codes can be classified according to the groups used to construct the orbit. In this work
we characterize orbit codes generated by irreducible cyclic subgroups of the general linear group and
their Plücker embedding.

The paper is structured as follows: The second section gives some preliminaries, first of random
network coding and orbit codes. Then some facts on irreducible polynomials are stated and the
representation of finite vector spaces as Galois extension fields is explained in 2.2. In part 2.3 we
introduce irreducible matrix groups and give some properties, with a focus on the cyclic ones. The
main body of the paper are Section 3 and 4. In the former where we study the behavior of orbit codes
generated by these groups and compute the cardinality and minimum distances of them. We begin
by characterizing primitive orbit codes and then study the non-primitive irreducible ones. Section 4
deals with the Plücker embedding of cyclic irreducible orbit codes. Finally we give a conclusion and
an outlook in Section 5.

2 Preliminaries

2.1 Random Network Codes

Let Fq be the finite field with q elements, where q is a prime power. For simplicity we will denote
the Grassmannian G(k,Fn

q ) by Gq(k, n) and the general linear group, that is the set of all invertible
n× n-matrices with entries in Fq, by GLn. Moreover, the set of all k × n-matrices over Fq is denoted
by Matk×n.

Let U ∈ Matk×n be a matrix of rank k and

U = rs(U) := row space(U) ∈ Gq(k, n).

One can notice that the row space is invariant under GLk-multiplication from the left, i.e. for any
T ∈ GLk

U = rs(U) = rs(TU).

Thus, there are several matrices that represent a given subspace. A unique representative of these
matrices is the one in reduced row echelon form. Any k × n-matrix can be transformed into reduced
row echelon form by a T ∈ GLk.

The set of all subspaces of Fn
q , called the projective geometry of Fn

q , is denoted by PG(Fn
q ). The

subspace distance is a metric on it, given by

dS(U ,V) =dim(U) + dim(V)− 2 dim(U ∩ V)

for any U ,V ∈ PG(Fn
q ). It is a suitable distance for coding over the operator channel [7].

A constant dimension code C is simply a subset of the Grassmannian Gq(k, n). The minimum dis-
tance is defined in the usual way. A code C ⊂ Gq(k, n) with minimum distance dS(C) is called an
[n, dS(C), |C|, k]-code. Different constructions of constant dimension codes can be found in e.g. [3,6,7,
9,11,12].
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In the case that k divides n one can construct spread codes [9], i.e. optimal codes with minimum
distance 2k. These codes are optimal because they achieve the Singleton-like bound [7], which means

they have qn−1
qk−1

elements.

Given U ∈ Matk×n of rank k, U ∈ Gq(k, n) its row space and A ∈ GLn, we define

UA := rs(UA).

Let U, V ∈ Matk×n be matrices such that rs(U) = rs(V ). Then one readily verifies that rs(UA) =
rs(V A) for any A ∈ GLn. The subspace distance is GLn-invariant, i.e. dS(U ,V) = dS(UA,VA) for
A ∈ GLn.

This multiplication with GLn-matrices defines a group operation from the right on the Grassman-
nian:

Gq(k, n)×GLn −→ Gq(k, n)
(U , A) 7−→ UA

Let U ∈ Gq(k, n) be fixed and G a subgroup of GLn. Then

C = {UA | A ∈ G}

is called an orbit code [12]. It is well-known that

Gq(k, n) ∼= GLn/StabGLn
(U),

where StabGLn
(U) := {A ∈ GLn | UA = U}. There are different subgroups that generate the same

orbit code. An orbit code is called cyclic if it can be defined by a cyclic subgroup G ≤ GLn.

2.2 Irreducible Polynomials and Extension Fields

Let us state some known facts on irreducible polynomials over finite fields [8, Lemmas 3.4 - 3.6] :

Lemma 1 Let p(x) be an irreducible polynomial over Fq of degree n, p(0) 6= 0 and α a root of it. Define

the order of a polynomial p(x) ∈ Fq[x] with p(0) 6= 0 as the smallest integer e for which p(x) divides xe−1.
Then

1. the order of p(x) is equal to the order of α in Fqn\{0}.
2. the order of p(x) divides qn − 1.
3. p(x) divides xc − 1 if, and only if the order of p(x) divides c (where c ∈ N).

There is an isomorphism between the vector space F
n
q and the Galois extension field Fqn

∼= Fq[α],
for α a root of an irreducible polynomial p(x) of degree n over Fq. If in addition p(x) is primitive, then

Fq[α]\{0} = 〈α〉 = {αi | i = 0, ..., qn − 2}

i.e. α generates multiplicatively the group of invertible elements of the extension field.

Lemma 2 If k|n, c := qn−1
qk−1

and α a primitive element of Fqn , then the vector space generated by 1, αc, ..., α(k−1)c

is equal to {αic | i = 0, ..., qk − 2} ∪ {0} = Fqk .

Proof Since k|n it holds that c ∈ N. Moreover, it holds that (αc)q
k−1 = αqn−1 = 1 and (αc)q

k−2 =
α−c 6= 1, hence the order of αc is qk − 1. It is well-known that if k divides n the field Fqn has exactly
one subfield Fqk . Thus the group generated by αc has to be Fqk\{0}, which again is isomorphic to F

k
q

as a vector space. ⊓⊔
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2.3 Irreducible Matrix Groups

Definition 1 1. A matrix A ∈ GLn is called irreducible if F
n
q contains no non-trivial A-invariant

subspace, otherwise it is called reducible.
2. A subgroup G ≤ GLn is called irreducible if Fn

q contains no G-invariant subspace, otherwise it is
called reducible.

3. An orbit code C ⊆ Gq(k, n) is called irreducible if C is the orbit under the action of an irreducible
group.

A cyclic group is irreducible if and only if its generator matrix is irreducible. Moreover, an invertible
matrix is irreducible if and only if its characteristic polynomial is irreducible.

Example 1 Over F2 the only irreducible polynomial of degree 2 is p(x) = x2+x+1. Since their charac-
teristic polynomial has to be p(x), the irreducible matrices in GL2 must have trace and determinant
equal to 1 and hence are

(

0 1
1 1

)

and

(

1 1
1 0

)

.

We can say even more about irreducible matrices with the same characteristic polynomial. For
this, note that the definition of an irreducible matrix G implies the existence of a cyclic vector v ∈ F

n
q

having the property that
{v, vG, vG2, . . . , vGn−1}

forms a basis of Fn
q . Let S ∈ GLn be the basis transformation which transforms the matrix G into this

new basis. Then it follows that

SGS−1 =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1

−c0 −c1 . . . −cn−1















.

The matrix appearing on the right is said to be in companion form. By convention we will use row
vectors v ∈ F

n
q and accordingly companion matrices where the coefficients of the corresponding poly-

nomials are in the last row (instead of the last column).
One readily verifies that

p(x) := xn + cn−1x
n−1 + · · ·+ c1x+ c0

is the characteristic polynomial of both G and SGS−1. It follows that every irreducible matrix in GLn

is similar to the companion matrix of its characteristic polynomial. Hence all irreducible matrices with
the same characteristic polynomial are similar.

Furthermore, the order of G ∈ GLn is equal to the order of its characteristic polynomial. Hence
ord(G) = qn − 1 if and only if its characteristic polynomial is primitive.

The next fact is a well-known group theoretic result:

Lemma 3 [8, Theorem 1.15.] In a finite cyclic group G = 〈G〉 of order m, the element Gl generates a

subgroup of order m
gcd(l,m)

. Hence each element Gl with gcd(l,m) = 1 is a generator of G.

Lemma 4 [10, Theorem 7] All irreducible cyclic groups generated by matrices with a characteristic poly-

nomial of the same order are conjugate to each other.
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Example 2 Over F2 the irreducible polynomials of degree 4 are p1(x) = x4+x+1, p2(x) = x4 +x3+1
and p3(x) = x4 + x3 + x2 +x+1, where ord(p1) = ord(p2) = 15 and ord(p3) = 5. Let P1, P2, P3 be the
respective companion matrices. One verifies that 〈P1〉 and 〈P2〉 are conjugate to each other but 〈P3〉

is not conjugate to them.

One can describe the action of an irreducible matrix group via the Galois extension field isomor-
phism.

Theorem 1 Let p(x) be an irreducible polynomial over Fq of degree n and P its companion matrix. Fur-

thermore let α ∈ Fqn be a root of p(x) and φ be the canonical homomorphism

φ : Fn
q −→ Fqn

∼= Fq[α]

(v1, . . . , vn) 7−→
n
∑

i=1

viα
i−1.

Then the following diagram commutes (for v ∈ F
n
q ):

v
·P
✲ vP

v′

φ
❄

·α
✲ v′α

φ
❄

If P is a companion matrix of a primitive polynomial the group generated by P is also known as
a Singer group. This notation is used e.g. by Kohnert et al. in their network code construction [2,6].
Elsewhere P is called Singer cycle or cyclic projectivity (e.g. in [4]).

3 Irreducible Cyclic Orbit Codes

The irreducible cyclic subgroups of GLn are exactly the groups generated by the companion matrices
of the irreducible polynomials of degree n and their conjugates. Moreover, all groups generated by
companion matrices of irreducible polynomials of the same order are conjugate.

The following theorem shows that is sufficient to characterize the orbits of cyclic groups generated
by companion matrices of irreducible polynomials of degree n.

Theorem 2 Let G be an irreducible matrix, G = 〈G〉 and H = 〈S−1GS〉 for an S ∈ GLn. Moreover, let

U ∈ Gq(k, n) and V := US. Then the orbit codes

C := {UA | A ∈ G} and C′ := {VB | B ∈ H}

have the same cardinality and minimum distance.

Proof Trivially the cardinality of both codes is the same. It remains to be shown that the same holds
for the minimum distance.

Since
V(S−1GS)i = VS−1GiS = USS−1GiS = UGiS

and the subspace distance is invariant under GLn-action, it holds that

dS(U ,UG
i) = dS(V,UG

iS)

hence the minimum distances of the codes defined by G and by H are equal. ⊓⊔
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3.1 Primitive Generator

Let α be a primitive element of Fqn and assume k|n and c := qn−1
qk−1

. Naturally, the subfield Fqk ≤ Fqn

is also an Fq-subspace of Fqn . On the other hand, Fqk = {αic | i = 0, ..., qk − 2} ∪ {0}.

Lemma 5 For every β ∈ Fqn the set

β · Fqk = {βαic | i = 0, ..., qk − 2} ∪ {0}

defines an Fq-subspace of dimension k.

Proof Since Fqk is a subspace of dimension k and

ϕβ : Fqn −→ Fqn

u 7−→ βu

is an Fq-linear isomorphism, it follows that ϕβ(Fqk) = β · Fqk is an Fq-subspace of dimension k. ⊓⊔

Theorem 3 The set

S =
{

αi · Fqk | i = 0, . . . , c− 1
}

is a spread of Fqn and thus defines a spread code in Gq(k, n).

Proof By a simple counting argument it is enough to show that the subspace αi · Fqk and αj · Fqk

have only trivial intersection whenever 0 ≤ i < j ≤ c− 1. For this assume that there are field elements
ci, cj ∈ Fqk , such that

v = αici = αjcj ∈ αi · Fqk ∩ αj · Fqk .

If v 6= 0 then αi−j = cjc
−1
i ∈ Fqk . But this means i − j ≡ 0 mod c and αi · Fqk = αj · Fqk , which

contradicts the assumption. It follows that S is a spread. ⊓⊔

We now translate this result into a matrix setting. For this let φ denote the canonical homomor-
phism as defined in Theorem 1.

Corollary 1 Assume k|n. Then there is a subspace U ∈ Gq(k, n) such that the cyclic orbit code obtained

by the group action of a a primitive companion matrix is a code with minimum distance 2k and cardinality
qn−1
qk−1

. Hence this irreducible cyclic orbit code is a spread code.

Proof In the previous theorem represent Fqk ⊂ Fqn as the row space of a k× n matrix U over Fq and,
using the same basis over Fq, represent the primitive element α with its respective companion matrix
P . Then the orbit code C = rs(U)〈P 〉 has all the desired properties. ⊓⊔

Example 3 Over the binary field let p(x) := x6+x+1 be primitive, α a root of p(x) and P its companion
matrix.

1. For the 3-dimensional spread compute c = 63
7 = 9 and construct a basis for the starting point of

the orbit:

u1 = φ−1(α0) = φ−1(1) = (100000)

u2 = φ−1(αc) = φ−1(α9) = φ−1(α4 + α3) = (000110)

u3 = φ−1(α2c) = φ−1(α18) = φ−1(α3 + α2 + α+ 1) = (111100)
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The starting point is

U = rs





1 0 0 0 0 0
0 0 0 1 1 0
1 1 1 1 0 0



 = rs





1 0 0 0 0 0
0 1 1 0 1 0
0 0 0 1 1 0





and the orbit of the group generated by P on U is a spread code.
2. For the 2-dimensional spread compute c = 63

3 = 21 and construct the starting point

u1 = φ−1(α0) = φ−1(1) = (100000)

u2 = φ−1(αc) = φ−1(α21) = φ−1(α2 + α+ 1) = (111000)

The starting point is

U = rs

[

1 0 0 0 0 0
1 1 1 0 0 0

]

= rs

[

1 0 0 0 0 0
0 1 1 0 0 0

]

and the orbit of the group generated by P is a spread code.

The following fact is a generalization of Lemma 1 from [6].

Theorem 4 Assume U = {0, u1, . . . , uqk−1} ∈ Gq(k, n),

φ(ui) = αbi ∀i = 1, . . . , qk − 1

and d be minimal such that any element of the set

D := {bm − bl mod qn − 1 | l,m ∈ Zqk−1, l 6= m}

has multiplicity less than or equal to qd−1, i. e. a quotient of two elements in the field representation appears

at most qd − 1 times in the set of all pairwise quotients. If d < k then the orbit of the group generated by

the companion matrix P of p(x) on U is an orbit code of cardinality qn − 1 and minimum distance 2k− 2d.

Proof In field representation the elements of the orbit code are:

C0 ={αb1 , αb2 , ..., αb
qk−1} ∪ {0}

C1 ={αb1+1, αb2+1, ..., αb
qk−1

+1} ∪ {0}

...

Cqn−2 ={αb1+qn−2, ..., αb
qk−1

+qn−2} ∪ {0}

Assume without loss of generality that the first qd − 1 elements of Ch are equal to the last elements
of Cj :

αb1+h = αb
qk−qd

+j ⇐⇒ b1 + h ≡ bqk−qd + j mod qn − 1

...

αb
qd

+h = αb
qk−1

+j ⇐⇒ bqd + h ≡ bqk−1 + j mod qn − 1

To have another element in common there have to exist y and z such that

bqk−qd − b1 ≡ bz − by mod qn − 1.
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But by condition there are up to qd − 1 solutions in (y, z) for this equation, including the ones from
above. Thus the intersection of Ci and Cj has at most qd − 1 non-zero elements. On the other hand,

one can always find h 6= j such that there are qd − 1 solutions to

by + h ≡ bz + j mod qn − 1,

hence, the minimum distance is exactly 2k − 2d. ⊓⊔

Proposition 1 In the setting of before, if d = k, one gets orbit elements with full intersection which means

they are the same vector space.

1. Let m(a) denote the multiplicity of an element in the respective set and D′ := D \ {a ∈ D | m(a) =
qk − 1}. Then the minimum distance of the code is 2k − 2d′ where d′ := logq(max{m(a) | a ∈ D′}).

2. Let m be the least element of D of multiplicity qk − 1. Then the cardinality of the code is m− 1.

Proof 1. Since the minimum distance of the code is only taken between distinct vector spaces, one
has to consider the largest intersection of two elements whose dimension is less than k.

2. Since
UPm = U =⇒ UP lm = U ∀l ∈ N

and the elements of D are taken modulo the order of P , one has to choose the minimal element of
the set {a ∈ D | m(a) = qk − 1} for the number of distinct vector spaces in the orbit.

⊓⊔

3.2 Non-Primitive Generator

Theorem 5 Let P be an irreducible non-primitive companion matrix, G the group generated by it and

denote by vG and UG the orbits of G on v ∈ F
n
q and U ∈ Gq(k, n), respectively. If U ∈ Gq(k, n) such that

v 6= w =⇒ vG 6= wG ∀ v, w ∈ U ,

then UG is an orbit code with minimum distance 2k and cardinality ord(P ).

Proof The cardinality follows from the fact that each element of U has its own orbit of length ord(P ).
Moreover, no code words intersect non-trivially, hence the minimum distance is 2k. ⊓⊔

Note that, if the order of P is equal to qn−1
qk−1

, these codes are again spread codes.

Example 4 Over the binary field let p(x) = x4 + x3 + x2 + x+1, α a root of p(x) and P its companion
matrix. Then F24 \ {0} is partitioned into

{αi | i = 0, . . . , 4} ∪ {αi(α+ 1) | i = 0, . . . , 4} ∪ {αi(α2 + 1) | i = 0, . . . , 4}.

Choose

u1 =φ−1(1) = φ−1(α0) = (1000)

u2 =φ−1(α3 + α2) = φ−1(α2(α+ 1)) = (0011)

u3 =u1 + u2 = φ−1(α3 + α2 + 1) = φ−1(α4(α2 + 1)) = (1011)

such that each ui is in a different orbit of 〈P 〉 and U = {0, u1, u2, u3} is a vector space. Then the orbit
of 〈P 〉 on U has minimum distance 4 and cardinality 5, hence it is a spread code.
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Proposition 2 Let P and G be as before and U = {0, v1, . . . , vqk−1} ∈ Gq(k, n). Let l = qn−1
ord(P ) and

O1, ..., Ol be the different orbits of G in F
n
q . Assume that m < qk − 1 elements of U are in the same orbit,

say O1, and all other elements are in different orbits each, i.e.

viG = vjG = O1 ∀ i, j ≤ m,

vi 6= vj =⇒ viG 6= vjG ∀ i, j ≥ m.

Apply the theory of Section 3.1 to the orbit O1 and find d1 fulfilling the conditions of Theorem 4. Then the

orbit of G on U is a code of length ord(P ) and minimum distance 2k − 2d1.

Proof 1. Since there is at least one orbit Oi that contains exactly one element of U , each element of
Oi is in exactly one code word. Hence the cardinality of the code is ord(G) = ord(P ).

2. In analogy to Theorem 5 the only possible intersection is inside O1, which can be found according
to the theory of primitive cyclic orbit codes.

⊓⊔

We generalize these results to any possible starting point ∈ Gq(k, n):

Theorem 6 Let P,G,U and the orbits O1, ..., Ol be as before. Assume that mi elements of U are in the

same orbit Oi (i = 1, . . . , l). Apply the theory of Section 3.1 to each orbit Oi and find the corresponding di
from Theorem 4. Then the following cases can occur:

1. No intersections of two different orbits coincide. Define dmax := maxi di. Then the orbit of G on U is

a code of length ord(P ) and minimum distance 2k − 2dmax.

2. Some intersections coincide among some orbits. Then the corresponding di’s add up and the maximum

of these is the maximal intersection number dmax.

Mathematically formulated: Assume b(i,1), . . . , b(i,ord(P )−1) are the exponents of the field representation of

the non-zero elements of U on Oi. For i = 1, . . . , l define

a(i,µ,λ) := b(i,µ) − b(i,λ),

Di := {a(i,µ,λ) | µ, λ ∈ {1, . . . , ord(P )− 1}},

and the difference set

D :=
l
⋃

i=1

Di.

Denote by m(a) the multiplicity of an element a in D and dmax := logq(max{m(a) | a ∈ D} + 1). Then
the orbit of G on U is a code of length ord(P ) and minimum distance 2k − 2dmax.

Again note that, in the case that the minimum distance of the code is 0, one has double elements
in the orbit. Then Proposition 1 still holds.

Remark 1 The theorems about the minimum distance can also be used for the construction of orbit
codes with a prescribed minimum distance. For this construct the initial point of the orbit by iteratively
joining elements αi ∈ Fqk such that the linear span of the union fulfills the condition on the differences
of the exponents.
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4 Plücker Embedding

For the remainder of this paper let p(x) =
∑n

i=0 pix
i ∈ Fq[x] be an irreducible polynomial of degree

n and α a root of it. The companion matrix of p(x) is denoted by P . F×
q := Fq \ {0} is the set of all

invertible elements of Fq.

Moreover, let A ∈ Matm×n such that m,n ≥ k. Denote by Ai1,...,ik [j1, ..., jk] the k × k submatrix
of A defined by rows i1, ..., ik and columns j1, ..., jk and A[j1, ..., jk] denotes the submatrix of A with
the complete columns j1, ..., jk.

Definition 2 We define the following operation on Λk(Fq[α]) ∼= Λk(Fn
q ) :

∗ : Λk(Fq[α])× Fq[α] \ {0} −→ Λk(Fq[α])

((v1 ∧ ... ∧ v2), β) 7−→ (v1 ∧ ... ∧ v2) ∗ β := (v1β ∧ ... ∧ vkβ).

This is a group action since ((v1 ∧ ... ∧ v2) ∗ β) ∗ γ = (v1 ∧ ... ∧ v2) ∗ (βγ).

Theorem 7 The following maps are (isomorphic) embeddings of the Grassmannian:

ϕ : Gq(k, n) −→ P
(nk)−1

rs(U) 7−→ [det(U [1, ..., k]) : det(U [1, ..., k − 1, k + 1]) : ... : det(U [n− k + 1, ..., n])]

ϕ′ : Gq(k, n) −→ P(Λk(Fq[α]))

rs(U) 7−→ (φ(U1) ∧ ... ∧ φ(Uk)) ∗ F
×
q

where φ : Fn
q → Fqn denotes the standard vector space isomorphism.

Proof First we show that ϕ is an embedding. For this assume that U, V are two full-rank k×n matrices
such that rs(U) = rs(V ). It follows that there is an S ∈ GLk with V = SU . The two vectors

[det(U [1, ..., k]),det(U [1, ..., k − 1, k + 1]), . . . ,det(U [n− k + 1, ..., n])]

and

[det(V [1, ..., k]),det(V [1, ..., k − 1, k + 1]), . . . , det(V [n− k + 1, ..., n])]

differ hence only by the non-zero factor detS. As elements of the projective space P
(nk)−1 they are

thus the same and the map is well defined.

Assume now that rs(U) 6= rs(V ). Without loss of generality we can assume that both U and V

are in reduced row echelon form, where the forms are necessarily different. Observe that all non-zero
entries of U can also be written, up to sign, as det(U [i1, ..., ik]). It follows that ϕ(U) is different from
ϕ(V ).
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Next we show that the map ψ : ϕ′(Gq(k, n)) → ϕ(Gq(k, n)), defined as follows, is an isomorphism.

(φ(U1) ∧ ... ∧ φ(Uk)) ∗ F
×
q = (

n−1
∑

i=0

λ1iα
i ∧ ... ∧

n−1
∑

i=0

λkiα
i) ∗ F×

q

=
∑

0≤i1,...,ik<n

(λ1i1α
i1 ∧ ... ∧ λkikα

ik ) ∗ F×
q

=
∑

0≤i1,...,ik<n

λ1i1 ...λkik (α
i1 ∧ ... ∧ αik ) ∗ F×

q

=
∑

0≤i1<...<ik<n

µi1,...,ik(α
i1 ∧ ... ∧ αik ) ∗ F×

q

7−→ [µ0,...,k−1 : ... : µn−k,...,n−1]

where λjl ∈ Fq for all j ∈ {1, ..., k}, l ∈ {0, ..., n− 1} and µi1,...,ik :=
∑

σ∈Sk
(−1)σλ1σ(i1)...λkσ(ik) ∈ Fq.

Since ψ is an isomorphism and ϕ′ = ψ−1 ◦ ϕ, it follows that ϕ′ is an embedding as well. ⊓⊔

Remark 2 The map ϕ is called the Plücker embedding of the Grassmannian Gq(k, n). The projective
coordinates

[det(U [1, ..., k]) : ... : det(U [n− k + 1, ..., n])] = F
×
q (det(U [1, ..., k]), ..., det(U [n− k + 1, ..., n])).

are often referred to as the Plücker coordinates of rs(U).

Theorem 8 The following diagram commutes:

U
·P

✲ UP

∑

µi1,...,ik (α
i1 ∧ ... ∧ αik ) ∗ F×

q

ϕ′

❄

∗ α
✲

∑

µi1,...,ik(α
i1+1 ∧ ... ∧ αik+1) ∗ F×

q

ϕ′

❄

Hence, an irreducible cyclic orbit code C = {UP i | i = 0, ..., ord(P ) − 1} has a corresponding “Plücker

orbit”:

ϕ′(C) = {ϕ′(U) ∗ αi | i = 0, ..., ord(α)− 1} = ϕ′(U) ∗ 〈α〉

Proof

ϕ′(UP ) = F
×
q · (φ(U1P ) ∧ ... ∧ φ(UkP )) = F

×
q · (φ(U1)α ∧ ... ∧ φ(Uk)α)

= F
×
q · (φ(U1) ∧ ... ∧ φ(Uk)) ∗ α

⊓⊔

Example 5 Over F2 let p(x) = x4 + x+ 1 and U ∈ G2(2,4) such that φ(U) = {0, 1, α+ α2, 1 + α+ α2},
i.e.

U = rs

[

1 0 0 0
0 1 1 0

]

.
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Then ϕ′(U) = (1 ∧ α+ α2) = (1 ∧ α) + (1 ∧ α2) and ϕ(U) = [µ0,1 : µ0,2 : µ0,3 : µ1,2 : µ1,3 : µ2,3] = [1 :
1 : 0 : 0 : 0 : 0]. The elements of the Plücker orbit ϕ′(U) ∗ 〈α〉 are

(1 ∧ α+ α2) = (1 ∧ α) + (1 ∧ α2),

(α ∧ α2 + α3) = (α ∧ α2) + (α ∧ α3),

(α2 ∧ α3 + α4) = (α2 ∧ 1 + α+ α3) = (α2 ∧ 1) + (α2 ∧ α) + (α2 ∧ α3),

(α3 ∧ α+ α2 + α4) = (α3 ∧ 1 + α2) = (α3 ∧ 1) + (α3 ∧ α2),

(α4 ∧ α+ α3) = (1 + α ∧ α+ α3) = (1 ∧ α) + (1 ∧ α3) + (α ∧ α3),

and (α+α2∧α2+α4) = (α+α2∧1+α+α2) = (α+α2∧1) = (1∧α+α2) over F2. The corresponding
Plücker coordinates are

[1 : 1 : 0 : 0 : 0 : 0],

[0 : 0 : 0 : 1 : 1 : 0],

[0 : 1 : 0 : 1 : 0 : 1],

[0 : 0 : 1 : 0 : 0 : 1],

[1 : 0 : 1 : 0 : 1 : 0].

The respective subspace code is the spread code defined by x4 + x+ 1 according to Section 3.1.

In the following we describe the balls of radius t (with respect to the subspace distance) around
some U ∈ Gq(k, n) with the help of the Plücker coordinates. An algebraic description of the balls of
radius t is potentially important if one is interested in an algebraic decoding algorithm for constant
dimension codes. For example, a list decoding algorithm would compute all code words inside some
ball around a received message word.

The main result shows that the balls of radius t have the structure of Schubert varieties [5, p. 316].
In order to establish this result we introduce the following partial order:

Definition 3 Consider the set ([n]
k
) := {(i1, ..., ik) | il ∈ Zn ∀l} and define the partial order

i := (i1, ..., ik) > (j1, ..., jk) =: j ⇐⇒ ∃N ∈ N≥0 : il = jl ∀l < N and iN > jN .

It is easy to compute the balls around a vector space in the following special case.

Proposition 3 Denote the balls of radius 2t centered at U in Gq(k, n) by B2t(U) and define U0 :=
rs[ Ik×k 0k×n−k ]. Then

B2t(U0) = {V ∈ Gq(k, n) | ϕ
′(V) = det(V[i1, ..., ik]) = 0 ∀(i1, ..., ik) 6≤ (t+ 1, ..., k, n− t+ 1, ..., n)}

Proof For V to be inside the ball it has to hold that

dS(U0,V) ≤ 2t

⇐⇒ 2k − 2 dim(U0 ∩ V) ≤ 2t

⇐⇒ dim(U0 ∩ V) ≥ k − t,

i.e. k − t many of the unit vectors e1, ..., ek have to be elements of V. Since φ(ej) = αj−1, it follows
that ϕ′(V) has to fulfill

µi1,...,ik = 0 if (i1, ..., ik) 6≤ (t+ 1, ..., k, n− t+ 1, ..., n).

⊓⊔
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The proposition shows that B2t(U0) is described in the Plücker space P
(nk)−1 as a point in the

Grassmannian together with linear constraints on the Plücker coordinates.

Example 6 In G2(2, 4) we have

U0 = rs

[

1 0 0 0
0 1 0 0

]

and the elements of distance 2 (i.e. t = 1) are

B2(U0) = {V ∈ G2(2,4) | det(V[i1, i2]) = 0 ∀(i1, i2) 6≤ (2,4)}

= {V ∈ G2(2,4) | det(V[3,4]) = 0}.

Next we derive the equations for a ball B2t(U) around an arbitrary subspace U ∈ Gq(k, n). For this
assume that U = U0G for some G ∈ GLn. A direct computation shows that

B2t(U) = B2t(U0G) = B2t(U0)G.

The transformation by G transforms the linear equations det(V[i1, ..., ik]) = 0 ∀(i1, ..., ik) 6≤ (t +
1, ..., k, n− t+1, ..., n) into a new set of linear equations in the Plücker coordinates. Instead of deriving
these equations in an explicit manner we will show instead that the ball B2t(U) describes a Schubert
variety. Then we will show that the equations defining the ball consist of the defining equations of the
Grassmann variety together with a set of linear equations describing the Schubert variety.

Definition 4 A flag F is a sequence of nested subspaces

{0} ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = F
n
q

where we assume that dimVi = i for i = 1, . . . , n.

Definition 5 Consider the multi-index i = (i1, . . . , ik) such that 1 ≤ i1 < . . . < ik ≤ n. Then

S(i;F) := {V ∈ Gq(k, n) | dim(V ∩ Vis) ≥ s}

is called a Schubert variety.

One observes that B2t(U) = {V ∈ Gq(k, n) | dim(U ∩ V) ≥ k − t} is nothing else than a special
Schubert variety. Indeed, we can simply choose a flag F having the property that Vk = U in conjunction
with the multi-index i = (t+ 1, ..., k, n− t+ 1, ..., n).

Next we describe the defining equations inside the Plücker space P(
n

k)−1. For this introduce a basis
{e1, . . . , en} of Fn

q which is compatible with the flag F , i.e. span{e1, . . . , ei} = Vi for i = 1, . . . , n.
The basis {e1, . . . , en} induces the basis

{ei1 ∧ . . . ∧ eik | 1 ≤ i1 < · · · < ik ≤ n}

of Λk(Fn
q ). If x ∈ Λk(Fn

q ), denote by xi its coordinate with regard to the basis vector ei1 ∧ . . . ∧ eik .
The defining equations of the Schubert variety S(i;F) are then given by

S(i;F) = {x ∈ Gq(k, n) | xj = 0, ∀j 6≤ i}.

An elementary proof of the fact that these linear equations together with the defining equations
of the Grassmannian Gq(k, n) indeed describe the Schubert variety S(i;F) can be found in [5, Chapter
XIV].

For coding theory it is important to note that we have explicit equations describing Schubert
varieties in general and balls of radius t in particular. If a constant dimension network code is given
by explicit equations, one would immediately have a description of all code words which are closer
than a given distance to some received subspace.
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5 Conclusion

We listed all possible irreducible cyclic orbit codes and showed that it suffices to investigate the
groups generated by companion matrices of irreducible polynomials. Moreover, polynomials of the
same degree and same order generate codes with the same cardinality and minimum distance. These
two properties of the code depend strongly on the choice of the starting point in the Grassmannian.
We showed how one can deduce the size and distance of an orbit code for a given subgroup of GLn

from the starting point U ∈ Gq(k, n). For primitive groups this is quite straight-forward while the
non-primitive case is more difficult.

Subsequently one can use this theory of irreducible cyclic orbit codes to characterize all cyclic
orbit codes.

Finally we described the irreducible cyclic orbit codes within the Plücker space and showed that
the orbit structure is preserved. Moreover, we showed how balls around an element of the Grassmann
variety can be described using Plücker coordinates.
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