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Abstract

The Geil-Matsumoto bound conditions the number of rational places of

a function field in terms of the Weierstrass semigroup of any of the places.

Lewittes’ bound preceded the Geil-Matsumoto bound and it only considers

the smallest generator of the numerical semigroup. It can be derived from

the Geil-Matsumoto bound and so it is weaker. However, for general

semigroups the Geil-Matsumoto bound does not have a closed formula

and it may be hard to compute, while Lewittes’ bound is very simple. We

give a closed formula for the Geil-Matsumoto bound for the case when

the Weierstrass semigroup has two generators. We first find a solution to

the membership problem for semigroups generated by two integers and

then apply it to find the above formula. We also study the semigroups

for which Lewittes’s bound and the Geil-Matsumoto bound coincide. We

finally investigate on some simplifications for the computation of the Geil-

Matsumoto bound.

Key words: Algebraic function field, Weierstrass semigroup, Geil-Matsumoto
bound, gonality bound, Lewittes’ bound.

1 Introduction

Given n pairwise distinct places P1, . . . , Pn of degree one of an algebraic function
field F/Fq, and a divisor G with support disjoint from {P1, . . . , Pn}, the geo-
metric Goppa code CP1,...,Pn

(G) is defined by {(f(P1), . . . , f(Pn)) : f ∈ L(G)}.
See [9] for a general reference. Then, the length of CP1,...,Pn

(G) is n and it is
bounded by the number of places of degree one of F/Fq. Thus, an important
problem of algebraic coding theory is bounding the number of places of degree
one of function fields.

The Hasse-Weil bound for the number of places of degree one of a function
field as well as Serre’s improvement use only the genus of the function field
and the field size. Geil and Matsumoto give in [4] a bound in terms of the
Weierstrass semigroup of a rational place (i.e. the set of pole orders of rational
functions having only poles in that place). It is a neat formula although it is
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not closed and it may be computationally hard to calculate. Lewittes’ bound
[7], also called the gonality bound, preceded the Geil-Matsumoto bound and
it only considers the smallest generator of the numerical semigroup. It can be
derived from the Geil-Matsumoto bound and so it is weaker. The advantage of
Lewittes’ bound with respect to the Geil-Matsumoto bound is that Lewittes’
bound is very simple to compute.

Important curves such as hyperelliptic curves, Hermitian curves or Geil’s
norm-trace curves [3] have Weierstrass semigroups generated by two integers.
Also, for any numerical semigroup Λ generated by two coprime integers, one
can get the equation of a curve having a place whose Weierstrass semigroup is
Λ [5].

In Section 2, we give some notions on numerical semigroups and solve the
membership problem for numerical semigroups generated by two coprime inte-
gers. Then in Section 3 we use the result in Section 2 to deduce a closed formula
for the Geil-Matsumoto bound when the Weierstrass semigroup is generated by
two integers. In Section 4 we return to semigroups generated by any number
of integers and study in which cases Lewittes’ bound and the Geil-Matsumoto
bound coincide. In Section 5 we give a result that may simplify the computation
of the Geil-Matsumoto bound.

2 Membership for semigroups with two genera-

tors

Let N0 be the set of non-negative integers. A numerical semigroup is a subset
of N0 containing 0, closed under addition and with finite complement in N0. A
general reference for numerical semigroups is [8]. For a numerical semigroup Λ
define the genus of Λ as the number g = #(N0 \ Λ). The elements in Λ are
called the non-gaps of Λ while the elements in N0 \ Λ are called the gaps of Λ.

The generators of a numerical semigroup are those non-gaps which can
not be obtained as a sum of two smaller non-gaps. If a1, . . . , al are the gen-
erators of a semigroup Λ then Λ = {n1a1 + · · · + nlal : n1, . . . , nl ∈ N0}
and so a1, . . . , al are necessarily coprime. If a1, . . . , al are coprime, we call
{n1a1 + · · ·+ nlal : n1, . . . , nl ∈ N0} the semigroup generated by a1, . . . , al and
denote it by 〈a1, . . . , al〉.

Among numerical semigroups, those generated by two integers, that is, nu-
merical semigroups of the form {ma+nb : m,n ∈ N0} for some coprime integers
a, b, have a particular interest. Important curves such as hyperelliptic curves,
Hermitian curves or Geil’s norm-trace curves [3] have Weierstrass semigroups
generated by two integers. Properties of semigroups generated by two coprime
integers can be found in [6]. For instance, the semigroup generated by a and

b has genus (a−1)(b−1)
2 , and any element i ∈ Λ can be uniquely written as

i = ma + nb with m,n integers such that 0 6 n 6 a − 1. From the results
in [5, Section 3.2] one can get, for any numerical semigroup Λ generated by
two coprime integers the equation of a curve having a point whose Weierstrass
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semigroup is Λ.
For a numerical semigroup, the membership problem is that of determining,

for any integer i whether it belongs or not to the numerical semigroup. In the
next lemma we first state a result already proved in [6] and then we give a
solution to the membership problem for semigroups generated by two coprime
integers. By x mod a with x, a integers we mean the smallest positive integer
congruent with x modulo a.

Lemma 2.1. Suppose Λ is generated by a, b with a < b. Let c be the inverse of
b modulo a.

1. Any i ∈ Λ can be uniquely written as i = ma+ nb for some m,n > 0 with
n 6 a− 1.

2. i ∈ Λ if and only if b(i · c mod a) 6 i.

Proof. 1. Suppose i ∈ Λ. Then i = m̃a+ ñb for some non-negative integers
m̃, ñ. Let n = ñ mod a and m = m̃ + b⌊ ñ

a
⌋. Then i = m̃a + ñb =

m̃a + (a⌊ ñ
a
⌋ + (ñ mod a))b = ma + nb with obviously m,n > 0 and

n 6 a− 1.

For uniqueness, suppose i = ma + nb for some m,n > 0 and n 6 a − 1,
and simultaneously, i = m′a + n′b for some m′, n′ > 0 and n′ 6 a − 1.
Then (m − m′)a = (n′ − n)b. Since a and b are coprime, a must divide
n− n′ which can only happen if n = n′ and so m = m′.

2. If i ∈ Λ then by the previous statement there exist unique integers m,n >

0 with n 6 a − 1 such that i = ma + nb. In this case, i · c mod a =
(ma+ nb) · c mod a = n and then it is obvious that b(i · c mod a) 6 i.

On the other hand, suppose i ∈ N0 and define n = i · c mod a. Then
i−nb is a multiple of a since (i−nb) mod a = ((i mod a)−(nb mod a))
mod a = 0. If nb 6 i then i − nb is a positive multiple of a, say ma, and
i = ma+ nb, so i ∈ Λ.

Remark 2.2. Notice that for the case b = a+1 the condition b(i ·c mod a) 6 i
is equivalent to (a + 1)(i mod a) 6 i and to a(i mod a) 6 i − (i mod a) and
so i mod a 6 ⌊ i

a
⌋. Therefore, i ∈ 〈a, a+ 1〉 if and only if the remainder of the

division of i by a is at most its quotient. This was already proved in [2].

3 The Geil-Matsumoto bound

Let Nq(g) be the maximum number of rational places of degree one of a function
field over Fq with genus g. The Hasse-Weil bound [9, Theorem V.2.3] states
|Nq(g)− (q+1)| 6 2g

√
q. Serre’s refinement [9, Theorem V.3.1] states |Nq(g)−

(q + 1)| 6 g⌊2√q⌋. This means that either Nq(g) 6 q + 1 or

Nq(g) 6 Sq(g) := q + 1 + g⌊2√q⌋. (1)
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Since g⌊2√q⌋ > 0 it is enough to state equation 1.
If we consider the Weierstrass semigroup Λ of any such places then we can

define Nq(Λ) as the maximum number of rational places of degree one of a
function field over Fq such that the Weierstrass semigroup at one of the places
is Λ. Lewittes’ bound [7] states, if λ1 is the first non-zero element in Λ,

Nq(Λ) 6 Lq(Λ) := qλ1 + 1

and the Geil-Matsumoto bound [4] is

Nq(Λ) 6 GMq(Λ) := #(Λ \ ∪
λi generator of Λ

(qλi + Λ)) + 1. (2)

In [4, 5] the next result is proved, from which Lewittes’ bound can be deduced
from the Geil-Matsumoto bound.

Lemma 3.1. #(Λ \ (qλ1 + Λ)) = qλ1.

Here, for a numerical semigroup generated by two coprime integers a, b we
describe the Geil-Matsumoto bound in terms of a, b giving a formula which is
simpler to compute than (2).

Theorem 3.2. The Geil-Matsumoto bound for the semigroup generated by a
and b with a < b is

GMq(〈a, b〉) = 1 +

a−1
∑

n=0

min

(

q,

⌈

q − n

a

⌉

· b
)

(3)

=







1 + qa if q 6 ⌊ q

a
⌋b

1 + (qmod a)q + (a− (qmod a))⌊ q
a
⌋b if ⌊ q

a
⌋b < q 6 ⌈ q

a
⌉b

1 + ab⌈ q

a
⌉ − (a− (qmod a))b if q > ⌈ q

a
⌉b

(4)

Proof. The Geil-Matsumoto bound for the semigroup generated by a and b with

a < b is 1 + #

{

i ∈ Λ :
i− qa 6∈ Λ
i− qb 6∈ Λ

}

. By Lemma 2.1 i ∈ Λ if and only if b(ic

mod a) 6 i, where c is the inverse of b modulo a. Now, suppose that i ∈ Λ can
be expressed as i = ma+ nb for some integers m,n > 0, n 6 a− 1. Then

i− qa 6∈ Λ ⇐⇒ b((i − qa)c mod a) > i− qa

⇐⇒ b((ma+ nb− qa)c mod a) > i− qa

⇐⇒ b(nbc mod a) > i− qa

⇐⇒ bn > i− qa

⇐⇒ bn > (m− q)a+ nb

⇐⇒ (m− q)a < 0

⇐⇒ m < q
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i − qb 6∈ Λ ⇐⇒ b((i− qb)c mod a) > i− qb

⇐⇒ b((ma+ nb− qb)c mod a) > i− qb

⇐⇒ b((n− q)bc mod a) > i− qb

⇐⇒ b((n− q) mod a) > i− qb

⇐⇒ b((n− q) mod a) > ma+ (n− q)b

⇐⇒ b[((n− q) mod a)− (n− q)] > ma

⇐⇒ b

(

−
⌊

n− q

a

⌋

a

)

> ma

⇐⇒ b

(⌈

−n− q

a

⌉)

> m

⇐⇒ b

⌈

q − n

a

⌉

> m

Consequently, the Geil-Matsumoto bound is

1 +
a−1
∑

n=0

min

(

q,

⌈

q − n

a

⌉

· b
)

Now some technical steps lead to the next formula.

GMq(〈a, b〉) =







1 + qa if q 6 ⌈ q−a+1
a

⌉b
1 + (q mod a)q + (a− (q mod a))⌈ q−a+1

a
⌉b if ⌈ q−a+1

a
⌉b < q 6 ⌈ q

a
⌉b

1 + ab⌈ q
a
⌉ − (a− (q mod a))b if q > ⌈ q

a
⌉b
(5)

Since ⌈ q−a+1
a

⌉ is the unique integer between q−a+1
a

and q
a
, one has ⌈ q−a+1

a
⌉ =

⌊ q

a
⌋, and the formula in (5) coincides with that in (4).

4 Coincidences of Lewittes’s and the Geil-Matsumoto

bound

We are interested now in the coincidences of Lewittes’s and the Geil-Matsumoto
bound. To get an idea, one can see in Table 1 the portion of semigroups for
which they coincide for several values of the genus and the field size.

Beelen and Ruano proved in [1, Proposition 9] that if q ∈ Λ then the bounds
coincide. For the case of two generators, from equation (3) we deduce that
GMq(〈a, b〉) = Lq(〈a, b〉) if and only if q 6 ⌊ q

a
⌋b. Otherwise, the Geil-Matsumoto

bound always gives an improvement with respect to Lewittes’s bound. We want
to generalize these results to semigroups with any number of generators.

Theorem 4.1. Let Λ = 〈λ1, . . . , λn〉 with λ1 < λi for all i > 1. The next
statements are equivalent
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1. GMq(Λ) = Lq(Λ),

2. Λ \ ∪n
i=1(qλi + Λ) = Λ \ (qλ1 + Λ),

3. q(λi − λ1) ∈ Λ for all i > 1.

Proof. By Lemma 3.1 it is obvious that 2 implies 1. The converse follows from
the inclusion Λ\∪n

i=1(qλi+Λ) ⊆ Λ\(qλ1+Λ) and the equality GMq(Λ) = Lq(Λ)
which, by Lemma 3.1, implies that #(Λ \ ∪n

i=1(qλi + Λ)) = #(Λ \ (qλ1 + Λ)).
For the equivalence of the last two statements notice that q(λi −λ1) ∈ Λ for

all i > 1 ⇐⇒ qλi ∈ qλ1 + Λ for all i > 1 ⇐⇒ qλi + Λ ⊆ qλ1 + Λ for all i > 1
⇐⇒ Λ \ ∪n

i=1(qλi + Λ) = Λ \ (qλ1 + Λ).

Notice that under the hypothesis q ∈ Λ then q(λ−λ1) ∈ Λ is satisfied by all
λ ∈ Λ. So, Theorem 4.1 generalizes Beelen-Ruano’s result.

Theorem 4.1 suggests to analyze under what conditions q(λi − λ1) ∈ Λ for
some i > 1. Let us first see in what cases q(λi − λ1) ∈ {xλ1 + yλi : x, y ∈ N0}.
Notice that if gcd(λ1, λi) = d then {xλ1 + yλi : x, y ∈ N0} = d〈λ1

d
, λi

d
〉, where

by d〈λ1

d
, λi

d
〉 we mean the set {dλ : λ ∈ 〈λ1

d
, λi

d
〉}. Obviously, d〈λ1

d
, λi

d
〉 ⊆ Λ.

Lemma 4.2. Let gcd(λ1, λi) = d. Then q(λi − λ1) ∈ d〈λ1

d
, λi

d
〉 if and only if

qd 6 ⌊ qd

λ1

⌋λi. In particular, if q 6 ⌊ q

λ1

⌋λi then q(λi − λ1) ∈ d〈λ1

d
, λi

d
〉.

Proof. We need to prove that q(λi

d
− λ1

d
) ∈ 〈λ1

d
, λi

d
〉 if and only if qd 6 ⌊ qd

λ1

⌋λi.

Suppose that c is the inverse of λi

d
modulo λ1

d
. By Lemma 2.1, q(λi

d
− λ1

d
) ∈

〈λ1

d
, λi

d
〉 if and only if λi

d
(q(λi

d
− λ1

d
)c mod λ1

d
) 6 q(λi

d
− λ1

d
), that is, λi

d
(q

mod λ1

d
) 6 q(λi

d
− λ1

d
) which is equivalent to qd 6 ⌊ qd

λ1

⌋λi.

Now, if q 6 ⌊ q

λ1

⌋λi, then qd 6 ⌊ q

λ1

⌋dλi 6 ⌊ qd

λ1

⌋λi and the last statement
follows.

Proposition 4.3. Suppose λ1 < λ2 < · · · < λn and let Λ = 〈λ1, λ2, . . . , λn〉. If
q 6 ⌊ q

λ1

⌋λ2 then GMq(Λ) = Lq(Λ).

Proof. By hypothesis, q 6 ⌊ q

λ1

⌋λi for all i > 1. By Lemma 4.2, q(λi − λ1) ∈ Λ
for all i > 1 and by Theorem 4.1, GMq(Λ) = Lq(Λ).

Remark 4.4. As mentioned, the converse is true when restricted to semigroups
with two generators. Otherwise the converse is not true in general. For instance,
consider Λ = 〈5, 7, 18〉 with q = 9. We have Λ = {0, 5, 7, 10, 12, 14, 15, 17, 18, . . .}
and Λ\∪

λi generator of Λ(qλi+Λ) = {0, 5, 7, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48,
49, 51, 53, 54, 56, 58, 61} = Λ \ (qλ1 + Λ). So GMq(〈5, 7, 18〉) = Lq(〈5, 7, 18〉) =
46. However, q(= 9) > ⌊ q

λ1

⌋λ2(= 7). The reason is that although q(λ2 − λ1) 6∈
〈λ1, λ2〉, it holds that q(λ2 − λ1) ∈ 〈λ1, λ2, λ3〉 = Λ.

In Table 1, together with the portion of semigroups for which the Lewittes
and the Geil-Matsumoto bounds coincide, we give the portion of semigroups
satisfying the hypothesis in Proposition 4.3. From that table it is easy to check
again that in general the converse of Proposition 4.3 is not true.
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Lewittes = Geil-Matsumoto q 6 ⌊ q

λ1

⌋λ2

Genus q=2 q=3 q=9 q=16 q=256 q=2 q=3 q=9 q=16 q=256
2 50.00% 100% 100% 100% 100% 50.00% 100% 100% 100% 100%
3 25.00% 75.00% 100% 100% 100% 25.00% 75.00% 100% 100% 100%
4 42.86% 57.14% 100% 100% 100% 14.29% 42.86% 85.71% 100% 100%
5 33.33% 41.67% 91.67% 100% 100% 8.33% 25.00% 58.33% 91.67% 100%
6 21.74% 43.48% 86.96% 100% 100% 4.35% 17.39% 43.48% 82.61% 100%
7 17.95% 41.03% 87.18% 100% 100% 2.56% 10.26% 38.46% 84.62% 100%
8 14.93% 37.31% 85.07% 100% 100% 1.49% 5.97% 53.73% 91.04% 100%
9 11.02% 33.05% 88.14% 98.31% 100% 0.85% 4.24% 72.03% 87.29% 100%
10 8.82% 29.90% 88.24% 95.59% 100% 0.49% 2.45% 79.90% 78.92% 100%
11 7.58% 25.95% 84.55% 92.71% 100% 0.29% 1.46% 78.13% 65.89% 100%
12 6.59% 23.48% 78.89% 90.88% 100% 0.17% 1.01% 69.93% 54.05% 100%
13 5.69% 21.48% 73.73% 89.81% 100% 0.10% 0.60% 59.64% 42.76% 100%
14 5.02% 18.90% 69.76% 88.66% 100% 0.06% 0.35% 49.26% 33.73% 100%
15 4.10% 16.63% 66.26% 87.68% 100% 0.04% 0.25% 39.38% 28.35% 100%
16 3.45% 14.77% 63.23% 87.22% 100% 0.02% 0.15% 30.86% 28.67% 100%
17 2.92% 13.10% 60.66% 87.00% 100% 0.01% 0.09% 23.79% 35.23% 100%
18 2.38% 11.66% 58.74% 87.03% 100% 0.01% 0.06% 18.33% 45.70% 100%
19 1.93% 10.40% 57.06% 86.71% 100% 0.00% 0.04% 13.93% 55.89% 100%
20 1.60% 9.28% 55.71% 85.43% 100% 0.00% 0.02% 10.55% 62.47% 99.95%
21 1.31% 8.34% 54.67% 83.03% 100% 0.00% 0.01% 7.93% 64.51% 99.75%
22 1.09% 7.48% 53.95% 80.14% 100% 0.00% 0.01% 5.93% 62.93% 99.19%
23 0.90% 6.70% 53.29% 77.41% 100% 0.00% 0.01% 4.39% 59.00% 98.09%
24 0.75% 6.02% 52.46% 75.16% 100% 0.00% 0.00% 3.25% 53.67% 96.50%
25 0.63% 5.42% 51.33% 73.37% 100% 0.00% 0.00% 2.38% 47.63% 94.73%
26 0.53% 4.90% 49.94% 71.94% 100% 0.00% 0.00% 1.74% 41.35% 93.12%
27 0.45% 4.45% 48.39% 70.75% 100% 0.00% 0.00% 1.27% 35.24% 91.84%
28 0.38% 4.07% 46.81% 69.73% 100% 0.00% 0.00% 0.92% 29.58% 90.87%
29 0.32% 3.74% 45.25% 68.76% 100% 0.00% 0.00% 0.67% 24.52% 90.06%
30 0.27% 3.44% 43.76% 67.80% 100% 0.00% 0.00% 0.48% 20.12% 89.25%

Table 1: Portion of semigroups for which the Lewittes and the Geil-Matsumoto
bounds coincide and portion of semigroups satisfying the hypothesis in Propo-
sition 4.3, that is q 6 ⌊ q

λ1

⌋λ2, where λ1, λ2 are the first and second smallest
generators.
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5 Simplifying the computation

Next we investigate in which cases the computation of Λ\∪
λi generator of Λ(qλi+

Λ) can be simplified to the computation of Λ \ ∪i∈I(qλi + Λ) for some index
set I smaller than the number of generators of Λ. The next proposition can be
proved very similarly as we proved Theorem 4.1.

Proposition 5.1. Let Λ = 〈λ1, . . . , λn〉 and let I be an index set included in
{1, . . . , n}. The next statements are equivalent.

1. Λ \ ∪n
i=1(qλi + Λ) = Λ \ ∪i∈I(qλi + Λ).

2. For all i 6∈ I there exists 1 6 j 6 n, j ∈ I such that q(λi − λj) ∈ Λ.

One consequence of Proposition 5.1 is the next proposition.

Proposition 5.2. Let Λ = 〈λ1, . . . , λn〉 with λ1 < λ2 < · · · < λn and λ1 < q.

1. Let λj be the maximum generator strictly smaller than q

⌊ q

λ1
⌋ then

Λ \ ∪n
i=1(qλi + Λ) = Λ \ ∪j

i=1(qλi + Λ).

2. Let λj be the maximum generator strictly smaller than 2λ1 − 1 then

Λ \ ∪n
i=1(qλi + Λ) = Λ \ ∪j

i=1(qλi + Λ).

Proof. The first statement is a consequence of Lemma 4.2 together with Propo-
sition 5.1. For the second statement suppose that q = xλ1+ y with x, y integers
and x > 1. Then q

⌊ q

λ1
⌋ = λ1 +

y
x
. The result follows from the inequalities x > 1

and y 6 λ1 − 1.

We will call the generators that are strictly smaller than 2λ1 − 1 Geil-
Matsumoto generators. What the last statement of the previous proposition
says is that for computing the Geil-Matsumoto bound we only need to subtract
from Λ the sets qµ+ Λ for µ a Geil-Matsumoto generator. Since in general we
need to subtract these sets for all generators, this constitutes an improvement
in terms of computation. In Table 2, we give the mean of the number of Geil-
Matsumoto generators and non-Geil-Matsumoto generators per semigroup for
different genera. In Table 3, we give the portion of Geil-Matsumoto genera-
tors (and non-Geil-Matsumoto generators) with respect to the total number of
generators for different genera. We observe that, although the portion of non-
Geil-Matsumoto generators decreases with the genus, it remains still significant,
with a portion of more than 30% for genus 25.

Proposition 5.2 is a first consequence of Proposition 5.1 and it can be used
to simplify the computation of the Geil-Matsumoto bound. We leave it as a
problem for future research to find other consequences of Proposition 5.1 to get
further simplifications.
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Genus

Mean of
the number of
GM generators
per semigroup

Mean of
the number of
non-GM generators
per semigroup

2 1.50 1.00
3 1.75 1.00
4 2.00 1.14
5 2.33 1.42
6 2.52 1.43
7 2.79 1.62
8 3.07 1.76
9 3.32 1.89
10 3.57 2.00
11 3.85 2.17
12 4.10 2.27
13 4.38 2.41
14 4.65 2.53
15 4.92 2.65
16 5.20 2.76
17 5.48 2.88
18 5.76 2.98
19 6.05 3.09
20 6.35 3.20
21 6.64 3.30
22 6.94 3.40
23 7.24 3.50
24 7.55 3.59
25 7.86 3.68
26 8.17 3.77
27 8.49 3.86
28 8.81 3.94
29 9.13 4.03
30 9.46 4.10

Table 2: Mean of the number of Geil-Matsumoto generators and non-Geil-
Matsumoto generators per semigroup
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Genus

Total number of
GM generators
divided by the
total number of
generators

Total number of
non-GM generators
divided by the
total number of
generators

Mean of the
portion of
non-GM generators
per semigroup

2 60.00% 40.00% 41.67%
3 63.64% 36.36% 35.42%
4 63.64% 36.36% 38.57%
5 62.22% 37.78% 40.14%
6 63.74% 36.26% 37.43%
7 63.37% 36.63% 39.13%
8 63.58% 36.42% 39.03%
9 63.74% 36.26% 38.58%
10 64.03% 35.97% 38.39%
11 63.96% 36.04% 38.76%
12 64.34% 35.66% 38.26%
13 64.54% 35.46% 38.17%
14 64.75% 35.25% 37.99%
15 65.01% 34.99% 37.73%
16 65.30% 34.70% 37.45%
17 65.56% 34.44% 37.21%
18 65.88% 34.12% 36.87%
19 66.19% 33.81% 36.55%
20 66.49% 33.51% 36.25%
21 66.79% 33.21% 35.93%
22 67.11% 32.89% 35.59%
23 67.43% 32.57% 35.26%
24 67.76% 32.24% 34.91%
25 68.08% 31.92% 34.56%
26 68.41% 31.59% 34.21%
27 68.74% 31.26% 33.86%
28 69.07% 30.93% 33.50%
29 69.40% 30.60% 33.14%
30 69.74% 30.26% 32.77%

Table 3: Portion of Geil-Matsumoto generators
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