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AFFINE CARTESIAN CODES

HIRAM H. LÓPEZ, CARLOS RENTERÍA-MÁRQUEZ, AND RAFAEL H. VILLARREAL

Abstract. We compute the basic parameters (dimension, length, minimum distance) of affine
evaluation codes defined on a cartesian product of finite sets. Given a sequence of positive
integers, we construct an evaluation code, over a degenerate torus, with prescribed parameters
of a certain type. As an application of our results, we recover the formulas for the minimum
distance of various families of evaluation codes.

1. Introduction

Let K be an arbitrary field and let A1, . . . , An be a collection of non-empty subsets of K with
a finite number of elements. Consider the following finite sets: (a) the cartesian product

X∗ := A1 × · · · ×An ⊂ A
n,

where A
n = Kn is an affine space over the field K, and (b) the projective closure of X∗

Y := {[(γ1, . . . , γn, 1)] | γi ∈ Ai for all i} ⊂ P
n,

where P
n is a projective space over the field K. We also consider X, the image of X∗ \ {0}

under the map A
n \ {0} 7→ P

n−1, γ 7→ [γ]. In what follows di denotes |Ai|, the cardinality of Ai

for i = 1, . . . , n. We may always assume that 2 ≤ di ≤ di+1 for all i (see Proposition 3.2). As
usual, we denote the finite field with q elements by Fq. The multiplicative group of the field K
will be denoted by K∗.

Let S = K[t1, . . . , tn] be a polynomial ring, let P1, . . . , Pm be the points of X∗, and let S≤d

be the K-vector space of all polynomials of S of degree at most d. The evaluation map

evd : S≤d −→ K |X∗|, f 7→ (f(P1), . . . , f(Pm)) ,

defines a linear map of K-vector spaces. The image of evd, denoted by CX∗(d), defines a linear

code. Permitting an abuse of language, we are referring to CX∗(d) as a linear code, even though
the field K might not be finite. We call CX∗(d) the affine cartesian evaluation code (cartesian
code for short) of degree d on the set X∗. If K is finite, cartesian codes are special types of affine
Reed-Muller codes in the sense of [27, p. 37].

The dimension and the length are two of the basic parameters of CX∗(d), they are defined
as dimK CX∗(d) and |X∗|, respectively. A third basic parameter of CX∗(d) is the minimum

distance, which is given by

δX∗(d) = min{‖evd(f)‖ : evd(f) 6= 0; f ∈ S≤d},

where ‖evd(f)‖ is the number of non-zero entries of evd(f). It is well known that the code
CX∗(d) has the same parameters that CY (d), the projective evaluation code of degree d on Y .
We give a short proof of this fact by showing that these codes are equal (Proposition 2.9).
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The main results of this paper describe the basic parameters of cartesian evaluation codes
and show the existence of cartesian codes—over degenerate tori—with prescribed parameters of
a certain type.

Some families of evaluation codes—including several variations of Reed-Muller codes—have
been studied extensively using commutative algebra methods (e.g., Hilbert functions, resolutions,
Gröbner bases), see [4, 5, 8, 11, 16, 18, 19, 20, 23, 26]. In this paper we use these methods to
study the family of cartesian codes.

A key observation that allows us to use commutative algebra methods to study evaluation
codes is that the kernel of the evaluation map evd is precisely S≤d ∩ I(X∗), where I(X∗) is the
vanishing ideal of X∗ consisting of all polynomials of S that vanish on X∗. Thus, as is seen in
the references given above, the algebra of S/I(X∗) is related to the basic parameters of CX∗(d).
Below we will clarify some more the role of commutative algebra in coding theory.

Let S[u] = ⊕∞
d=0S[u]d be a polynomial ring with the standard grading, where u = tn+1 is a

new variable. Recall that the vanishing ideal of Y , denoted by I(Y ), is the ideal of S[u] generated
by the homogeneous polynomials that vanish on Y . We use the algebraic invariants (regularity,
degree, Hilbert function) of the graded ring S[u]/I(Y ) as a tool to study the described codes.
It is a fact that this graded ring has the same invariants that the affine ring S/I(X∗) [12,
Remark 5.3.16]. The Hilbert function of S[u]/I(Y ) is given by

HY (d) := dimK(S[u]d/I(Y ) ∩ S[u]d).

According to [13, Lecture 13], we have that HY (d) = |Y | for d ≥ |Y | − 1. This means that
|Y | is the degree of S[u]/I(Y ) in the sense of algebraic geometry [13, p. 166]. The regularity of
S[u]/I(Y ), denoted by regS[u]/I(Y ), is the least integer ℓ ≥ 0 such that HY (d) = |Y | for d ≥ ℓ.

The algebraic invariants of S[u]/I(Y ) occur in algebraic coding theory, as we now briefly
explain. The code CX∗(d), has length |Y | and dimension HY (d). The knowledge of the regularity
of S[u]/I(Y ) is important for applications to coding theory: for d ≥ regS[u]/I(Y ) the code

CX∗(d) coincides with the underlying vector spaceK |X∗| and has, accordingly, minimum distance
equal to 1. Thus, potentially good codes CX∗(d) can occur only if 1 ≤ d < reg(S[u]/I(Y )).

The contents of this paper are as follows. We show that the vanishing ideal I(Y ) is a complete
intersection (Proposition 2.5). Then, one can use [5, Corollary 2.6] to compute the algebraic
invariants of I(Y ) in terms of the sequence d1, . . . , dn. As a consequence, we compute the
dimension of CX∗(d) and show that δX∗(d) = 1 for d ≥

∑n
i=1(di − 1) (Theorem 3.1).

In Section 3, we show upper bounds in terms of d1, . . . , dn on the number of roots, over X∗, of
polynomials in S which do not vanish at all points of X∗ (Proposition 3.6, Corollary 3.7). The
main theorem of Section 3 is a formula for the minimum distance of CX∗(d) (Theorem 3.8). In
general, the problem of computing the minimum distance of a linear code is difficult because it
is NP-hard [29]. The basic parameters of evaluation codes over finite fields have been computed
in a number of cases. Our main results provide unifying tools to treat some of these cases. As
an application, if Y is a projective torus in P

n over a finite field K, we recover a formula of
[21] for the minimum distance of CY (d) (Corollary 3.10). If Y is the image of An under the
map A

n → P
n, x 7→ [(x, 1)], we also recover a formula of [4] for the minimum distance of CY (d)

(Corollary 3.11). If Y = P
n, the parameters of CY (d) are described in [23, Theorem 1] (see

also [15]), notice that in this case Y does not arises as the projective closure of some cartesian
product X∗.

Finally, in Section 4, we consider cartesian codes over degenerate tori. Given a sequence
d1, . . . , dn of positive integers, there exists a finite field Fq such that di divides q − 1 for all
i. We use this field to construct a cartesian code—over a degenerate torus—with previously
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fixed parameters, expressed in terms of d1, . . . , dn (Theorem 4.2). As a byproduct, we obtain
formulae for the basic parameters of any affine evaluation code over a degenerate torus (see
Definition 4.1). Thus, we are also recovering the main results of [9, 10] (Remark 4.3).

It should be mentioned that we do not know of any efficient decoding algorithm for the family
of cartesian codes. The reader is referred to [3, Chapter 9], [14, 28] and the references there for
some available decoding algorithms for some families of linear codes.

For all unexplained terminology and additional information, we refer to [6, 13, 24] (for com-
mutative algebra and the theory of Hilbert functions), and [17, 25, 27] (for the theory of linear
codes).

2. Complete intersections and algebraic invariants

We keep the same notations and definitions used in Section 1. In what follows di denotes
|Ai|, the cardinality of Ai for i = 1, . . . , n. In this section we show that I(Y ) is a complete
intersection and compute the algebraic invariants of I(Y ) in terms of d1, . . . , dn.

Theorem 2.1. (Combinatorial Nullstellensatz [2, Theorem 1.2]) Let S = K[t1, . . . , tn] be a

polynomial ring over a field K, let f ∈ S, and let a = (ai) ∈ N
n. Suppose that the coefficient of

ta in f is non-zero and deg (f) = a1 + · · · + an. If A1, . . . , An are subsets of K, with |Ai| > ai
for all i, then there are x1 ∈ A1, . . . , xn ∈ An such that f (x1, . . . , xn) 6= 0.

Lemma 2.2. (a) |Y | = |X∗| = d1 · · · dn.

(b) If Ai is a subgroup of (K∗, · ) for all i, then |X∗|/|A1 ∩ · · · ∩An| = |X|.

(c) If G ∈ I(X∗) and degti (G) < di for i = 1, . . . , n, then G = 0.

Proof. (a) The map X∗ 7→ Y , x 7→ [(x, 1)], is bijective. Thus, |Y | = |X∗|. (b) Since Ai is a
group for all i, the sets X∗ and X are also groups under componentwise multiplication. Thus,
there is an epimorphism of groups X∗ 7→ X, x 7→ [x], whose kernel is equal to

{(γ, . . . , γ) ∈ X∗ : γ ∈ A1 ∩ · · · ∩An}.

Thus, |X∗|/|A1 ∩ · · · ∩An| = |X|. To show (c) we proceed by contradiction. Assume that G is
non-zero. Then, there is a monomial ta = ta11 · · · tann of G with deg(G) = a1 + · · · + an, where
a = (a1, . . . , an) and ai > 0 for some i. As degti(G) < di for all i, then ai < |Ai| = di for all i.
Thus, by Theorem 2.1, there are x1, . . . , xn with xi ∈ Ai for all i such that G (x1, . . . , xn) 6= 0,
a contradiction to the assumption that G vanishes on X∗. �

Lemma 2.3. Let fi be the polynomial
∏

γ∈Ai
(ti − γ) for 1 ≤ i ≤ n. Then

I(X∗) = (f1, . . . , fn).

Proof. “⊃” This inclusion is clear because fi vanishes on X∗ by construction. “⊂” Take f in
I(X∗). Let ≻ be the reverse lexicographical order on the monomials of S. By the division
algorithm [1, Theorem 1.5.9, p. 30], we can write

f = g1f1 + · · ·+ gnfn +G,

where each of the terms of G is not divisible by any of the leading monomials td11 , . . . , tdnn , i.e.,
degti(G) < di for all i. As G belongs to I(X∗), by Lemma 2.2, we get that G = 0. Thus,
f ∈ (f1, . . . , fn). �
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The degree and the regularity of S[u]/I(Y ) can be computed from its Hilbert series. Indeed,
the Hilbert series can be written as

FY (t) :=
∞∑

i=0

HY (i)t
i =

∞∑

i=0

dimK(S[u]/I(Y ))it
i =

h0 + h1t+ · · ·+ hrt
r

1− t
,

where h0, . . . , hr are positive integers. This follows from the fact that I(Y ) is a Cohen-Macaulay
ideal of height n [7]. The number r is the regularity of S[u]/I(Y ) and h0 + · · ·+hr is the degree
of S[u]/I(Y ) (see [30, Corollary 4.1.12]).

Definition 2.4. A homogeneous ideal I ⊂ S is called a complete intersection if there exists
homogeneous polynomials g1, . . . , gr such that I = (g1, . . . , gr), where r is the height of I.

Proposition 2.5. (a) I(Y ) = (
∏

γ∈A1
(t1 − uγ), . . . ,

∏
γ∈An

(tn − uγ)).

(b) I(Y ) is a complete intersection.

(c) FY (t) =
∏n

i=1(1 + t+ · · · + tdi−1)/(1 − t).

(d) regS[u]/I(Y ) =
∑n

i=1(di − 1) and deg(S[u]/I(Y )) = |Y | = d1 · · · dn.

Proof. (a) For i = 1, . . . , n, we set fi =
∏

γ∈Ai
(ti − γ). Let ≻ be the reverse lexicographical

order on the monomials of S[u]. Since f1, . . . , fn form a Gröbner basis with respect to this order,
by Lemma 2.3 and [16, Lemma 3.7], the vanishing ideal I(Y ) is equal to (fh

1 , . . . , f
h
n ), where

fh
i =

∏
γ∈Ai

(ti − uγ) is the homogenization of fi with respect to a new variable u. Part (b)

follows from (a) because I(Y ) is an ideal of height n [7]. (c) This part follows using (a) and a
well known formula for the Hilbert series of a complete intersection (see [30, p. 104]). (d) This
part follows directly from [5, Corollary 2.6]. �

Definition 2.6. Let {Qi}
m
i=1 be a set of representatives for the points of Y . The map

ev′d : S[u]d → K |Y |, f 7→ (f(Qi)/f0(Qi))
m
i=1 ,

where f0(t1, . . . , tn, u) = ud, defines a linear map of K-vector spaces. The image of ev′d, denoted
by CY (d), is called a projective evaluation code of degree d on the set Y .

It is not hard to see that the map ev′d is independent of the set of representatives that we
choose for the points of Y .

Definition 2.7. The affine Hilbert function of S/I(X∗) is given by

HX∗(d) := dimK S≤d/I(X
∗)≤d, where I(X∗)≤d = S≤d ∩ I(X∗).

As the evaluation map evd induces an isomorphism S≤d/I(X
∗)≤d ≃ CX∗(d), as K-vector

spaces, the dimension of CX∗(d) is HX∗(d).

Lemma 2.8. [12, Remark 5.3.16] HX∗(d) = HY (d) for d ≥ 0.

In particular, from this lemma, the dimension and the length of the cartesian code CX∗(d)
are HY (d) and deg(S[u]/I(Y )), respectively.

Proposition 2.9. CX∗(d) = CY (d) for d ≥ 1.

Proof. Since S[u]d/I(Y )d ≃ CY (d) and S≤d/I(X
∗)≤d ≃ CX∗(d), by Lemma 2.8, we get that

the linear codes CX∗(d) and CY (d) have the same dimension, and the same length. Thus, it
suffices to show the inclusion “⊃”. Any point of CY (d) has the form W = (f(Pi, 1))

m
i=1, where

P1, . . . , Pm are the points of X∗ and f ∈ S[u]d. If f̃ is the polynomial f(t1, . . . , tn, 1), then f̃ is

in S≤d and f(Pi, 1) = f̃(Pi) for all i. Thus, W is in CX∗(d), as required. �
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3. Cartesian evaluation codes

In this section we compute the basic parameters of cartesian codes and give some applications.
If d is at most

∑n
i=1(di − 1), we show an upper bound in terms of d1, . . . , dn on the number of

roots, over X∗, of polynomials in S≤d which do not vanish at all points of X∗.

We begin by computing some of the basic parameters of CX∗(d), the cartesian evaluation
code of degree d on X∗.

Theorem 3.1. The length of CX∗(d) is d1 · · · dn, its minimum distance is 1 for d ≥
∑n

i=1(di−1),
and its dimension is

HX∗(d) =

(
n+ d

d

)
−

∑

1≤i≤n

(
n+ d− di
d− di

)
+

∑

i<j

(
n+ d− (di + dj)

d− (di + dj)

)
−

∑

i<j<k

(
n+ d− (di + dj + dk)

d− (di + dj + dk)

)
+ · · ·+ (−1)n

(
n+ d− (d1 + · · · + dn)

d− (d1 + · · ·+ dn)

)
.

Proof. The length of CX∗(d) is |X∗| = d1 · · · dn. We set r =
∑n

i=1(di − 1). By Proposition 2.5,
the regularity of S[u]/I(Y ) is equal to r, i.e., HY (d) = |Y | for d ≥ r. Thus, by Lemmas 2.2
and 2.8, HX∗(d) = |X∗| for d ≥ r, i.e., CX∗(d) = K |X∗| for d ≥ r. Hence δX∗(d) = 1 for d ≥ r.
By Proposition 2.5, the ideal I(Y ) is a complete intersection generated by n homogeneous
polynomials f1, . . . , fn of degrees d1, . . . , dn. Thus, applying [5, Corollary 2.6] and using the
equality HX∗(d) = HY (d), we obtain the required formula for the dimension. �

Proposition 3.2. If d1 = 1 and X ′ = A2 × · · · ×An, then CX∗(d) = CX′(d) for d ≥ 1.

Proof. Let α be the only element of A1 and let Y ′ be the projective closure of X ′. Then, by
Proposition 2.5, we get

I(Y ) = (t1 − uα, fh
2 , . . . , f

h
n ) and I(Y ′) = (fh

2 , . . . , f
h
n ),

where fh
i =

∏
γ∈Ai

(ti−uγ) for i = 2, . . . , n. Since S[u]/I(Y ) and K[t2, . . . , tn, u]/I(Y
′) have the

same Hilbert function, we get that the dimension and the length of CX∗(d) and CX′(d) are the
same. Thus, to show the equality CX∗(d) = CX′(d), it suffices to show the inclusion “⊂”. Any
element of CX∗(d) has the form

W = (f(α,Q1), . . . , f(α,Qm)),

where Q1, . . . , Qm are the points of X ′ and f ∈ S≤d. If f̃ is the polynomial f(α, t2, . . . , tn), then

f̃ is in K[t2, . . . , tn]≤d and f(α,Qi) = f̃(Qi) for all i. Thus, W is in CX′(d), as required. �

Since permuting the sets A1, . . . , An does not affect neither the parameters of the corre-
sponding cartesian evaluation codes, nor the invariants of the corresponding vanishing ideal, by
Proposition 3.2 we may always assume that 2 ≤ di ≤ di+1 for all i, where di = |Ai|.

For G ∈ S, we denote the zero set of G in X∗ by ZX∗(G). We begin with a general bound
that will be refined later in this section. The proof of [22, Lemma 3A, p. 147] can be easily
adapted to obtain the following auxiliary result.

Lemma 3.3. Let 0 6= G = G(t1, . . . , tn) ∈ S be a polynomial of total degree d. If di ≤ di+1 for

all i, then

|ZX∗(G)| ≤

{
d2 · · · dnd if n ≥ 2,
d if n = 1.
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Proof. By induction on n+ d ≥ 1. If n+ d = 1, then n = 1, d = 0 and the result is obvious. If
n = 1, then the result is clear because G has at most d roots in K. Thus, we may assume d ≥ 1
and n ≥ 2. We can write G as

(†) G = G(t1, . . . , tn) = G0(t1, . . . , tn−1) +G1(t1, . . . , tn−1)tn + · · · +Gr(t1, . . . , tn−1)t
r
n,

where Gr 6= 0 and 0 ≤ r ≤ d. Let β1, . . . , βd1 be the elements of A1. We set

Hk = Hk(t2, . . . , tn) := G(βk, t2, . . . , tn) for 1 ≤ k ≤ d1.

Case (I): Hk(t2, . . . , tn) = 0 for some 1 ≤ k ≤ d1. From Eq. (†) we get

Hk(t2, . . . , tn) = G0(βk, t2, . . . , tn−1) +G1(βk, t2, . . . , tn−1)tn + · · · +Gr(βk, t2, . . . , tn−1)t
r
n = 0.

Therefore Gi(βk, t2, . . . , tn−1) = 0 for i = 0, . . . , r. Hence t1 − βk divides Gi(t1, . . . , tn−1) for all
i. Thus, by Eq. (†), we can write

G(t1, . . . , tn) = (t1 − βk)G
′(t1, . . . , tn)

for some G′ ∈ S. Notice that deg(G′) + n = d− 1 + n < d+ n. Hence, by induction, we get

|ZX∗(G)| ≤ |ZX∗(t1 − βk)|+ |ZX∗(G′(t1, . . . , tn))| ≤ d2 · · · dn + d2 · · · dn(d− 1) = d2 · · · dnd.

Case (II): Hk(t2, . . . , tn) 6= 0 for 1 ≤ k ≤ d1. Observe the inclusion

ZX∗(G) ⊂
d1⋃

k=1

({βk} × Z(Hk)),

where Z(Hk) = {a ∈ A2 × · · · ×An |Hk(a) = 0}. As deg(Hk) + n− 1 < d+ n and di ≤ di+1 for
all i, then by induction

|ZX∗(G)| ≤
d1∑

k=1

|Z(Hk)| ≤ d1d3 · · · dnd ≤ d2d3 · · · dnd,

as required. �

Lemma 3.4. Let d1, . . . , dn−1, d
′, d be positive integers such that d =

∑k
i=1(di − 1) + ℓ and

d′ =
∑k′

i=1(di − 1) + ℓ′ for some integers k, k′, ℓ, ℓ′ satisfying that 0 ≤ k, k′ ≤ n − 2 and 1 ≤ ℓ ≤
dk+1 − 1, 1 ≤ ℓ′ ≤ dk′+1 − 1. If d′ ≤ d and di ≤ di+1 for all i, then k′ ≤ k and

(∗) − dk′+1 · · · dn−1 + ℓ′dk′+2 · · · dn−1 ≤ −dk+1 · · · dn−1 + ℓdk+2 · · · dn−1,

where dk+2 · · · dn−1 = 1 (resp., dk′+2 · · · dn−1 = 1) if k = n− 2 (resp., k′ = n− 2).

Proof. First we show that k′ ≤ k. If k′ > k, from the equality

ℓ = (d− d′) + ℓ′ + [(dk+1 − 1) + · · ·+ (dk′+1 − 1)],

we obtain that ℓ ≥ dk+1, a contradiction. Thus, k′ ≤ k. Since dk+2 · · · dn−1 is a common factor
of each term of Eq. (∗), we need only show the equivalent inequality:

(∗∗) dk+1 − ℓ ≤ (dk′+1 − ℓ′)dk′+2 · · · dk+1.

If k = k′, then dk′+2 · · · dk+1 = 1 and d − d′ = ℓ − ℓ′ ≥ 0. Hence, ℓ ≥ ℓ′ and Eq. (∗∗) holds. If
k ≥ k′ + 1, then

dk+1 − ℓ ≤ dk+1 ≤ dk′+2 · · · dk+1 ≤ dk′+2 · · · dk+1(dk′+1 − ℓ′).

Thus, Eq. (∗∗) holds. �
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Lemma 3.5. If 0 6= G ∈ S. Then, there are r ≥ 0 distinct elements β1, . . . , βr in An and

G′ ∈ S such that

G = (tn − β1)
a1 · · · (tn − βr)

arG′, ai ≥ 1 for all i,

and G′(t1, . . . , tn−1, γ) 6= 0 for any γ ∈ An.

Proof. Fix a monomial ordering in S. If the degree of G is zero, we set r = 0 and G = G′.
Assume that deg(G) > 0. If G(t1, . . . , tn−1, γ) 6= 0 for all γ ∈ An, we set G = G′ and r = 0. If
G(t1, . . . , tn−1, γ) = 0 for some γ ∈ An, then by the division algorithm there are F and H in S
such that G = (tn − γ)F + H, where H is a polynomial whose terms are not divisible by the
leading term of tn−γ, i.e., H is a polynomial in K[t1, . . . , tn−1]. Thus, as G(t1, . . . , tn−1, γ) = 0,
we get that H = 0 and G = (tn−γ)F . Since deg(F ) < deg(G), the result follows using induction
on the total degree of G. �

Proposition 3.6. Let G = G(t1, . . . , tn) ∈ S be a polynomial of total degree d ≥ 1 such that

degti(G) ≤ di − 1 for i = 1, . . . , n. If di ≤ di+1 for all i and d =
∑k

i=1(di − 1) + ℓ for some

integers k, ℓ such that 1 ≤ ℓ ≤ dk+1 − 1, 0 ≤ k ≤ n− 1, then

|ZX∗(G)| ≤ dk+2 · · · dn(d1 · · · dk+1 − dk+1 + ℓ),

where we set dk+2 · · · dn = 1 if k = n− 1.

Proof. We proceed by induction on n. By Lemma 3.5, there are r ≥ 0 distinct elements β1, . . . , βr
in An and G′ ∈ S such that

G = (tn − β1)
a1 · · · (tn − βr)

arG′, ai ≥ 1 for all i,

and G′(t1, . . . , tn−1, γ) 6= 0 for any γ ∈ An. Notice that r ≤
∑r

i=1 ai ≤ dn−1 because the degree
of G in tn is at most dn − 1. We may assume that An = {β1, . . . , βdn}. Let d′i be the degree of
G′(t1, . . . , tn−1, βi) and let d′ = max{d′i| r + 1 ≤ i ≤ dn}.

Case (I): Assume n = 1. Then, k = 0 and d = ℓ. Then |ZX∗(G)| ≤ ℓ because a non-zero
polynomial in one variable of degree d has at most d roots.

Case (II): Assume n ≥ 2 and k = 0. Then, d = ℓ ≤ d1 − 1. Hence, by Lemma 3.3, we get

|ZX∗(G)| ≤ d2 · · · dnd = d2 · · · dnℓ = dk+2 · · · dn(d1 · · · dk+1 − dk+1 + ℓ),

as required.

Case (III): Assume n ≥ 2, k ≥ 1 and d′ = 0. Then, |ZX∗(G)| = rd1 · · · dn−1. Thus, it suffices
to show the inequality

rd1 · · · dn−1 ≤ d1 · · · dn − dk+1 · · · dn + ℓdk+2 · · · dn.

All terms of this inequality have dk+2 · · · dn−1 as a common factor. Hence, this case reduces
to showing the following equivalent inequality

rd1 · · · dk+1 ≤ dn(d1 · · · dk+1 − dk+1 + ℓ).

We can write dn = r + 1 + δ for some δ ≥ 0. If we substitute dn by r + 1 + δ, we get the
equivalent inequality

dk+1(r + 1) ≤ ℓr + d1 · · · dk+1 + ℓ+ δd1 · · · dk+1 − δdk+1 + δℓ.

We can write d = r + δ1 for some δ1 ≥ 0. Next, if we substitute r by
∑k

i=1(di − 1) + ℓ− δ1
on the left hand side of this inequality, we get

0 ≤ ℓ[r + 1 + δ − dk+1] + dk+1[d1 · · · dk − 1−
∑k

i=1(di − 1) + δ1] + δ[d1 · · · dk+1 − dk+1].
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Since r+1+ δ− dk+1 ≥ r+1+ δ− dn = 0 and k ≥ 1, this inequality holds. This completes the
proof of this case.

Case (IV): Assume n ≥ 2, k ≥ 1 and d′ ≥ 1. We may assume that βr+1, . . . , βm are the

elements βi of {βr+1, . . . , βdn} such that G′(t1, . . . , tn−1, βi) has positive degree. We set

G′
i = G′(t1, . . . , tn−1, βi)

for r + 1 ≤ i ≤ m. Notice that d =
∑r

i=1 ai + deg(G′) ≥ r + d′ ≥ d′i. The polynomial

H := (tn − β1)
a1 · · · (tn − βr)

ar

has exactly rd1 · · · dn−1 roots in X∗. Hence, counting the roots of G′ that are not in ZX∗(H),
we obtain:

(⋆) |ZX∗(G)| ≤ rd1 · · · dn−1 +
m∑

i=r+1

|Z(G′
i)|,

where Z(G′
i) is the set of zeros of G′

i in A1 × · · · ×An−1. For each r + 1 ≤ i ≤ m, we can write

d′i =
∑k′

i

i=1(di − 1) + ℓ′i, with 1 ≤ ℓ′i ≤ dk′
i
+1 − 1. The proof of this case will be divided in three

subcases.

Subcase (IV.a): Assume ℓ ≥ r and k = n − 1. The degree of G′
i in the variable tj is at most

dj − 1 for j = 1, . . . , n− 1. Hence, by Lemma 2.2, the non-zero polynomial G′
i cannot be the

zero-function on A1 × · · · ×An−1. Therefore, |Z(G′
i)| ≤ d1 · · · dn−1 − 1 for r+1 ≤ i ≤ m. Thus,

by Eq. (⋆), we get the required inequality

|ZX∗(G)| ≤ rd1 · · · dn−1 + (dn − r)(d1 · · · dn−1 − 1) ≤ d1 · · · dn − dn + ℓ,

because in this case dk+2 · · · dn = 1 and ℓ ≥ r.

Subcase (IV.b): Assume ℓ > r and k ≤ n− 2. Then, we can write

d− r =

k∑

i=1

(di − 1) + (ℓ− r)

with 1 ≤ ℓ− r ≤ dk+1 − 1. Since d′i ≤ d− r for i = r+ 1, . . . ,m, by applying Lemma 3.4 to the
sequence d1, . . . , dn−1, d

′
i, d − r, we get k′i ≤ k for r + 1 ≤ i ≤ m. By induction hypothesis we

can bound |Z(G′
i)|. Then, using Eq. (⋆) and Lemma 3.4, we obtain:

|ZX∗(G)| ≤ rd1 · · · dn−1 +

m∑

i=r+1

dk′
i
+2 · · · dn−1(d1 · · · dk′

i
+1 − dk′

i
+1 + ℓ′i)

≤ rd1 · · · dn−1 + (dn − r)[(dk+2 · · · dn−1)(d1 · · · dk+1 − dk+1 + ℓ− r)].

Thus, by factoring out the common term dk+2 · · · dn−1, we need only show the inequality:

rd1 · · · dk+1 + (dn − r)(d1 · · · dk+1 − dk+1 + ℓ− r) ≤

dn(d1 · · · dk+1 − dk+1 + ℓ).

After simplification, we get that this inequality is equivalent to r(dn− dk+1+ ℓ− r) ≥ 0. This
inequality holds because dn ≥ dk+1 and ℓ > r.

Subcase (IV.c): Assume ℓ ≤ r. We can write d− r =
∑s

i=1(di−1)+ ℓ̃, where 1 ≤ ℓ̃ ≤ ds+1−1
and s ≤ k. Notice that s < k. Indeed, if s = k, then from the equality

(⋆⋆) d− r =

s∑

i=1

(di − 1) + ℓ̃ =

k∑

i=1

(di − 1) + ℓ− r
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we get that ℓ̃ = ℓ − r ≥ 1, a contradiction. Thus, s ≤ n − 2. As d − r ≥ d′i, by applying
Lemma 3.4 to d1, . . . , dn−1, d

′
i, d− r, we have k′i ≤ s ≤ n− 2 for i = r + 1, . . . ,m. By induction

hypothesis we can bound |Z(G′
i)|. Therefore, using Eq. (⋆) and Lemma 3.4, we obtain:

|ZX∗(G)| ≤ rd1 · · · dn−1 +
m∑

i=r+1

[d1 · · · dn−1 − dk′
i
+1 · · · dn−1 + dk′

i
+2 · · · dn−1ℓ

′
i]

≤ rd1 · · · dn−1 + (dn − r)[d1 · · · dn−1 − ds+1 · · · dn−1 + ds+2 · · · dn−1ℓ̃ ].

Thus, we need only show the inequality

rd1 · · · dn−1 + (dn − r)[d1 · · · dn−1 − ds+1 · · · dn−1 + ds+2 · · · dn−1ℓ̃ ] ≤

d1 · · · dn − dk+1 · · · dn + dk+2 · · · dnℓ.

After cancelling out some terms, we get the following equivalent inequality:

(‡) dk+1 · · · dn − dk+2 · · · dnℓ ≤ (dn − r)[ds+1 · · · dn−1 − ds+2 · · · dn−1ℓ̃ ].

The proof now reduces to show this inequality.

Subcase (IV.c.1): Assume k = n− 1. Then, Eq. (‡) simplifies to

dn − ℓ ≤ (dn − r)[ds+1 · · · dn−1 − ds+2 · · · dn−1ℓ̃ ].

Since dn ≥ r + 1, it suffices to show the inequality

r + 1− ℓ ≤ ds+2 · · · dn−1(ds+1 − ℓ̃ ).

From Eq. (⋆⋆), we get

r + (1− ℓ) = ℓ− ℓ̃+

n−1∑

i=s+1

(di − 1) + (1− ℓ) = −ℓ̃+ ds+1 +

n−1∑

i=s+2

(di − 1).

Hence, the last inequality is equivalent to

n−1∑

i=s+2

(di − 1) ≤ (ds+2 · · · dn−1 − 1)(ds+1 − ℓ̃).

This inequality holds because ds+2 · · · dn−1 ≥
∑n−1

i=s+2(di − 1) + 1.

Subcase (IV.c.2): Assume k ≤ n − 2. By canceling out the common term dk+2 · · · dn−1 in

Eq. (‡), we obtain the following equivalent inequality

dk+1dn − dnℓ ≤ (dn − r)(ds+2 · · · dk+1)(ds+1 − ℓ̃ ).

We rewrite this inequality as

r(ds+2 · · · dk+1)(ds+1 − ℓ̃ ) ≤ dn[(ds+2 · · · dk+1)(ds+1 − ℓ̃ )− dk+1] + ℓdn.

Since dn ≥ r + 1 it suffices to show the inequality

r(ds+2 · · · dk+1)(ds+1 − ℓ̃ ) ≤

r[(ds+2 · · · dk+1)(ds+1 − ℓ̃ )− dk+1] + [(ds+2 · · · dk+1)(ds+1 − ℓ̃ )− dk+1] + ℓdn.

After a quick simplification, this inequality reduces to

(r + 1)dk+1 ≤ (ds+2 · · · dk+1)(ds+1 − ℓ̃ ) + ℓdn.
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From Eq. (⋆⋆), we get r + 1 = (−ℓ̃+ ds+1) + (ℓ+
∑k

i=s+2(di − 1)). Hence, the last inequality is
equivalent to

dk+1

k∑

i=s+2

(di − 1) ≤ dk+1(ds+2 · · · dk − 1)(ds+1 − ℓ̃ ) + ℓ(dn − dk+1).

This inequality holds because ds+2 · · · dk ≥
∑k

i=s+2(di − 1) + 1. This completes the proof of the
proposition. �

Corollary 3.7. Let d ≥ 1 be an integer. If di ≤ di+1 for all i and d =
∑k

i=1(di − 1) + ℓ for

some integers k, ℓ such that 1 ≤ ℓ ≤ dk+1 − 1 and 0 ≤ k ≤ n− 1, then

max{|ZX∗(F )| : F ∈ S≤d; F 6≡ 0} ≤ dk+2 · · · dn(d1 · · · dk+1 − dk+1 + ℓ).

Proof. Let F = F (t1, . . . , tn) ∈ S be an arbitrary polynomial of total degree d′ ≤ d such that

F (P ) 6= 0 for some P ∈ X∗. We can write d′ =
∑k′

i=1(di − 1) + ℓ′ with 1 ≤ ℓ′ ≤ dk′+1 − 1 and
0 ≤ k′ ≤ k. Let ≺ be the graded reverse lexicographical order on the monomials of S. In this
order t1 ≻ · · · ≻ tn. For 1 ≤ i ≤ n, let fi be the polynomial

∏
γ∈Ai

(ti−γ). Recall that di = |Ai|,

i.e., fi has degree di. By the division algorithm [1, Theorem 1.5.9, p. 30], we can write

(††) F = h1f1 + · · ·+ hnfn +G′,

for some G′ ∈ S with degti(G
′) ≤ di − 1 for i = 1, . . . , n and deg(G′) = d′′ ≤ d′. If G′ is a

constant, by Eq. (††) and using that 0 6= F (P ) = G′(P ), we get ZX∗(F ) = ∅. Thus, we may

assume that the polynomial G′ has positive degree d′′. We can write d′′ =
∑k′′

i=1(di − 1) + ℓ′′,
where 1 ≤ ℓ′′ ≤ dk′′+1 and 0 ≤ k′′ ≤ k′. Notice that ZX∗(F ) = ZX∗(G′). By Proposition 3.6,
and applying Lemma 3.4 to the sequences d1, . . . , dn, d

′′, d′ and d1, . . . , dn, d
′, d, we obtain

|ZX∗(F )| = |ZX∗(G′)| ≤ d1 · · · dn − dk′′+1 · · · dn + dk′′+2 · · · dnℓ
′′

≤ d1 · · · dn − dk′+1 · · · dn + dk′+2 · · · dnℓ
′

≤ d1 · · · dn − dk+1 · · · dn + dk+2 · · · dnℓ.

Thus, |ZX∗(F )| ≤ d1 · · · dn − dk+1 · · · dn + dk+2 · · · dnℓ, as required. �

We come to the main result of this section.

Theorem 3.8. Let K be a field and let CX∗(d) be the cartesian evaluation code of degree d on

the finite set X∗ = A1 × · · · × An ⊂ Kn. If 2 ≤ di ≤ di+1 for all i, with di = |Ai|, and d ≥ 1,
then the minimum distance of CX∗(d) is given by

δX∗(d) =





(dk+1 − ℓ) dk+2 · · · dn if d ≤
n∑

i=1
(di − 1)− 1,

1 if d ≥
n∑

i=1
(di − 1) ,

where k ≥ 0, ℓ are the unique integers such that d =
∑k

i=1 (di − 1) + ℓ and 1 ≤ ℓ ≤ dk+1 − 1.

Proof. If d ≥
∑n

i=1(di − 1), then the minimum distance of CX∗(d) is equal to 1 by Theorem 3.1.
Assume that 1 ≤ d ≤

∑n
i=1 (di − 1)− 1. We can write

Ai = {βi,1, βi,2, . . . , βi,di}, i = 1, . . . , n.

For 1 ≤ i ≤ k + 1, consider the polynomials

fi =

{
(βi,1 − ti)(βi,2 − ti) · · · (βi,di−1 − ti) if 1 ≤ i ≤ k,
(βk+1,1 − tk+1)(βk+1,2 − tk+1) · · · (βk+1,ℓ − tk+1) if i = k + 1.
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The polynomialG = f1 · · · fk+1 has degree d and G(β1,d1 , β2,d2 , . . . , βn,dn) 6= 0. From the equality

ZX∗(G) = [(A1 \ {β1,d1})×A2 × · · · ×An] ∪

[{β1,d1} × (A2 \ {β2,d2})×A3 × · · · ×An] ∪

...

[{β1,d1} × · · · × {βk−1,dk−1
} × (Ak \ {βk,dk})×Ak+1 × · · · ×An] ∪

[{β1,d1} × · · · × {βk,dk} × {βk+1,1, . . . , βk+1,ℓ} ×Ak+2 × · · · ×An],

we get that the number of zeros of G in X∗ is given by:

|ZX∗(G)| =
k∑

i=1

(di − 1)(di+1 · · · dn) + ℓdk+2 · · · dn = d1 · · · dn − dk+1 · · · dn + ℓdk+2 · · · dn.

By Lemma 2.2, one has |X∗| = d1 · · · dn. Therefore

δX∗(d) = min{‖evd(F )‖ : evd(F ) 6= 0;F ∈ S≤d} = |X| −max{|ZX∗(F )| : F ∈ S≤d; F 6≡ 0}

≤ d1 · · · dn − |ZX∗(G)| = (dk+1 − ℓ) dk+2 · · · dn,

where ‖evd(F )‖ is the number of non-zero entries of evd(F ) and F 6≡ 0 means that F is not the
zero function on X∗. Thus

δX∗(d) ≤ (dk+1 − ℓ)dk+2 · · · dn.

The reverse inequality follows at once from Corollary 3.7. �

Definition 3.9. If K is a finite field, the set T = {[(x1, . . . , xn+1)] ∈ P
n|xi ∈ K∗ for all i} is

called a projective torus in P
n, where K∗ = K \ {0}.

As a consequence of our main result, we recover the following formula for the minimum
distance of a parameterized code over a projective torus.

Corollary 3.10. [21, Theorem 3.5] Let K = Fq be a finite field with q 6= 2 elements. If T is a

projective torus in P
n and d ≥ 1, then the minimum distance of CT(d) is given by

δT(d) =

{
(q − 1)n−k−1(q − 1− ℓ) if d ≤ (q − 2)n− 1,

1 if d ≥ (q − 2)n,

where k and ℓ are the unique integers such that k ≥ 0, 1 ≤ ℓ ≤ q − 2 and d = k(q − 2) + ℓ.

Proof. If Ai = K∗ for i = 1, . . . , n, then X∗ = (K∗)n, Y = T, and di = q − 1 for all i. Since
δX∗(d) = δY (d), the result follows at once from Theorem 3.8. �

As another consequence of our main result, we recover a formula for the minimum distance
of an evaluation code over an affine space.

Corollary 3.11. [4, Theorem 2.6.2] Let K = Fq be a finite field and let Y be the image of An

under the map A
n → P

n, x 7→ [(x, 1)]. If d ≥ 1, the minimum distance of CY (d) is given by:

δY (d) =

{
(q − ℓ)qn−k−1 if d ≤ n(q − 1)− 1,

1 if d ≥ n(q − 1),

where k and ℓ are the unique integers such that k ≥ 0, 1 ≤ ℓ ≤ q − 1 and d = k(q − 1) + ℓ.

Proof. If Ai = K for i = 1, . . . , n, thenX∗ = Kn = A
n and di = q for all i. Since δX∗(d) = δY (d),

the result follows at once from Theorem 3.8. �
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Example 3.12. If X∗ = F
n
2 , then the basic parameters of CX∗(d) are given by

|X∗| = 2n, dimCX∗(d) =
∑d

i=0

(
n
i

)
, δX∗(d) = 2n−d, 1 ≤ d ≤ n.

Example 3.13. Let K = F9 be a field with 9 elements. Assume that Ai = K for i = 1, . . . , 4.
For certain values of d, the basic parameters of CX∗(d) are given in the following table:

d 1 2 3 4 5 10 16 20 28 31 32
|X∗| 6561 6561 6561 6561 6561 6561 6561 6561 6561 6561 6561

dimCX∗(d) 5 15 35 70 126 981 3525 5256 6526 6560 6561
δX∗(d) 5832 5103 4374 3645 2916 567 81 45 5 2 1

4. Cartesian codes over degenerate tori

Given a non decreasing sequence of positive integers d1, . . . , dn, we construct a cartesian code,
over a degenerate torus, with prescribed parameters in terms of d1, . . . , dn.

Definition 4.1. Let K = Fq be a finite field and let v = (v1, . . . , vn) be a sequence of positive
integers. The set

X∗ = {(xv11 , . . . , xvnn ) |xi ∈ K∗ for all i} ⊂ A
n,

is called a degenerate torus of type v.

The main result of this section is:

Theorem 4.2. Let 2 ≤ d1 ≤ · · · ≤ dn be a sequence of integers. Then, there is a finite field

K = Fq and a degenerate torus X∗ such that the length of CX∗(d) is d1 · · · dn, its dimension is

dimK CX∗(d) =

(
n+ d

d

)
−

∑

1≤i≤n

(
n+ d− di
d− di

)
+

∑

i<j

(
n+ d− (di + dj)

d− (di + dj)

)
−

∑

i<j<k

(
n+ d− (di + dj + dk)

d− (di + dj + dk)

)
+ · · ·+ (−1)n

(
n+ d− (d1 + · · ·+ dn)

d− (d1 + · · · + dn)

)
,

its minimum distance is 1 if d ≥
∑n

i=1(di − 1), and

δX∗(d) = (dk+1 − ℓ)dk+2 · · · dn if d ≤
∑n

i=1 (di − 1)− 1,

where k ≥ 0, ℓ are the unique integers such that d =
∑k

i=1 (di − 1) + ℓ and 1 ≤ ℓ ≤ dk+1 − 1.

Proof. Pick a prime number p relatively prime to m = d1 · · · dn. Then, by Euler formula,
pϕ(m) ≡ 1 (mod m), where ϕ is the Euler function. We set q = pϕ(m). Hence, there exists a
finite field Fq with q elements such that di divides q − 1 for i = 1, . . . , n. We set K = Fq.

Let β be a generator of the cyclic group (K∗, · ). There are positive integers v1, . . . , vn such
that q−1 = vidi for i = 1, . . . , n. Notice that di is equal to o(β

vi), the order of βvi for i = 1, . . . , n.
We set Ai = 〈βvi〉, where 〈βvi〉 is the subgroup of K∗ generated by βvi . If X∗ is the cartesian
product of A1, . . . , An, it not hard to see that X∗ is given by

X∗ = {(xv11 , . . . , xvnn ) |xi ∈ K∗ for all i} ⊂ A
n,

i.e., X∗ is a degenerate torus of type v = (v1, . . . , vn). The length of |X∗| is d1 · · · dn because
|Ai| = di for all i. The formulae for the dimension and the minimum distance of CX∗(d) follow
from Theorems 3.1 and 3.8. �
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Remark 4.3. Let K = Fq be a finite field and let β be a generator of the cyclic group (K∗, · ). If
X∗ is a degenerate torus of type v = (v1, . . . , vn), then X∗ is the cartesian product of A1, . . . , An,
where Ai is the cyclic group generated by βvi . Thus, if di = |Ai| for i = 1, . . . , n, the affine
evaluation code over X∗ is a cartesian code. Hence, according to Theorem 3.1 and 3.8, the basic
parameters of CX∗(d) can be computed in terms of d1, . . . , dn as in Theorem 4.2. Therefore, we
are recovering the main results of [9, 10].

As an illustration of Theorem 4.2 consider the following example.

Example 4.4. Consider the sequence d1 = 2, d2 = 5, d3 = 9. The prime number q = 181
satisfies that di divides q − 1 for all i. In this case v1 = 90, v2 = 36, v3 = 20. The basic
parameters of the cartesian codes CX∗(d), over the degenerate torus

X∗ = {(x901 , x362 , x203 )|xi ∈ F
∗
181 for i = 1, 2, 3},

are shown in the following table. Notice that the regularity of S[u]/I(Y ) is 13.

d 1 2 3 4 5 6 7 8 9 10 11 12 13
|X∗| 90 90 90 90 90 90 90 90 90 90 90 90 90

dimCX∗(d) 4 9 16 25 35 45 55 65 74 81 86 89 90
δX∗(d) 45 36 27 18 9 8 7 6 5 4 3 2 1

Notice that if K ′ = F9, and we pick subsets A1, A2, A3 of K
′ with |A1| = 2, |A2| = 5, |A3| = 9,

the cartesian evaluation code CX′(d), over the set X ′ = A1 ×A2 ×A3, has the same parameters
that CX∗(d) for any d ≥ 1.

Acknowledgments. We thank the referees for their careful reading of the paper and for the
improvements that they suggested.
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