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AFFINE CARTESIAN CODES

HIRAM H. LOPEZ, CARLOS RENTER{A-MARQUEZ, AND RAFAEL H. VILLARREAL

ABSTRACT. We compute the basic parameters (dimension, length, minimum distance) of affine
evaluation codes defined on a cartesian product of finite sets. Given a sequence of positive
integers, we construct an evaluation code, over a degenerate torus, with prescribed parameters
of a certain type. As an application of our results, we recover the formulas for the minimum
distance of various families of evaluation codes.

1. INTRODUCTION

Let K be an arbitrary field and let Aq,..., A, be a collection of non-empty subsets of K with
a finite number of elements. Consider the following finite sets: (a) the cartesian product

X =A x---x A, CA",
where A" = K™ is an affine space over the field K, and (b) the projective closure of X*
Y= {[(717 <o Yno 1)] ”YZ S AZ for all Z} C ]P)n7

where P" is a projective space over the field K. We also consider X, the image of X* \ {0}
under the map A" \ {0} — P!, v — [y]. In what follows d; denotes |A;|, the cardinality of A;
for : = 1,...,n. We may always assume that 2 < d; < d;41 for all i (see Proposition B.2]). As
usual, we denote the finite field with ¢ elements by [F,. The multiplicative group of the field K
will be denoted by K*.

Let S = K|ty,...,t,] be a polynomial ring, let Py,..., Py, be the points of X*, and let S<4
be the K-vector space of all polynomials of S of degree at most d. The evaluation map

evd:SSd—>K|X*|7 fH(f(P1)77f(Pm))7

defines a linear map of K-vector spaces. The image of evy, denoted by Cx+(d), defines a linear
code. Permitting an abuse of language, we are referring to C'x«(d) as a linear code, even though
the field K might not be finite. We call Cx+(d) the affine cartesian evaluation code (cartesian
code for short) of degree d on the set X*. If K is finite, cartesian codes are special types of affine
Reed-Muller codes in the sense of [27) p. 37].

The dimension and the length are two of the basic parameters of Cx«(d), they are defined
as dimg Cx+(d) and |X*|, respectively. A third basic parameter of Cx«(d) is the minimum
distance, which is given by

dx+(d) = minflleva(f)||: eva(f) # 0; f € S<a},
where [levy(f)]| is the number of non-zero entries of evy(f). It is well known that the code

Cx+(d) has the same parameters that Cy (d), the projective evaluation code of degree d on Y.
We give a short proof of this fact by showing that these codes are equal (Proposition 2.9)).
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The main results of this paper describe the basic parameters of cartesian evaluation codes
and show the existence of cartesian codes—over degenerate tori—with prescribed parameters of
a certain type.

Some families of evaluation codes—including several variations of Reed-Muller codes—have
been studied extensively using commutative algebra methods (e.g., Hilbert functions, resolutions,
Grobner bases), see [4, 5] [8, [1T], 16, 18] 19, 20, 23, 26]. In this paper we use these methods to
study the family of cartesian codes.

A key observation that allows us to use commutative algebra methods to study evaluation
codes is that the kernel of the evaluation map evy is precisely S<4 N I(X*), where I(X™) is the
vanishing ideal of X* consisting of all polynomials of S that vanish on X*. Thus, as is seen in
the references given above, the algebra of S/I(X™) is related to the basic parameters of Cx+(d).
Below we will clarify some more the role of commutative algebra in coding theory.

Let S[u] = ®32,S[ulq be a polynomial ring with the standard grading, where u = t,1; is a
new variable. Recall that the vanishing ideal of Y, denoted by I(Y'), is the ideal of S[u] generated
by the homogeneous polynomials that vanish on Y. We use the algebraic invariants (regularity,
degree, Hilbert function) of the graded ring S[u]/I(Y) as a tool to study the described codes.
It is a fact that this graded ring has the same invariants that the affine ring S/I(X™) [12]
Remark 5.3.16]. The Hilbert function of S[u]/I(Y) is given by

Hy(d) = dlmK(S[u]d/[(Y) N S[u]d)
According to [13 Lecture 13|, we have that Hy (d) = |Y| for d > |Y| — 1. This means that
|Y'| is the degree of S[u]/I(Y) in the sense of algebraic geometry [13], p. 166]. The regularity of
Sul/I(Y'), denoted by reg S[u]/I(Y), is the least integer ¢ > 0 such that Hy (d) = |Y| for d > ¢.

The algebraic invariants of S[u]/I(Y") occur in algebraic coding theory, as we now briefly
explain. The code Cx+(d), has length |Y'| and dimension Hy (d). The knowledge of the regularity
of S[u]/I(Y) is important for applications to coding theory: for d > regS[u]/I(Y") the code
Cx+(d) coincides with the underlying vector space K IX*|'and has, accordingly, minimum distance
equal to 1. Thus, potentially good codes Cx+(d) can occur only if 1 < d < reg(S[u]/I(Y)).

The contents of this paper are as follows. We show that the vanishing ideal I(Y") is a complete
intersection (Proposition [Z5]). Then, one can use [0, Corollary 2.6] to compute the algebraic

invariants of I(Y) in terms of the sequence di,...,d,. As a consequence, we compute the
dimension of Cx+(d) and show that dx«(d) =1 for d > >"7 ;(d; — 1) (Theorem B.1]).
In Section B, we show upper bounds in terms of dy, ..., d, on the number of roots, over X*, of

polynomials in S which do not vanish at all points of X* (Proposition B.6] Corollary 3.7)). The
main theorem of Section B is a formula for the minimum distance of Cx«(d) (Theorem [B.§]). In
general, the problem of computing the minimum distance of a linear code is difficult because it
is NP-hard [29]. The basic parameters of evaluation codes over finite fields have been computed
in a number of cases. Our main results provide unifying tools to treat some of these cases. As
an application, if Y is a projective torus in P" over a finite field K, we recover a formula of
[21] for the minimum distance of Cy(d) (Corollary BI0). If Y is the image of A™ under the
map A" — P", x — [(x, 1)], we also recover a formula of [4] for the minimum distance of Cy (d)
(Corollary BIT)). If Y = P, the parameters of Cy(d) are described in [23, Theorem 1] (see
also [15]), notice that in this case Y does not arises as the projective closure of some cartesian
product X*.

Finally, in Section Ml we consider cartesian codes over degenerate tori. Given a sequence
dy,...,d, of positive integers, there exists a finite field F, such that d; divides ¢ — 1 for all
1. We use this field to construct a cartesian code—over a degenerate torus—with previously
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fixed parameters, expressed in terms of dj,...,d, (Theorem [£2). As a byproduct, we obtain
formulae for the basic parameters of any affine evaluation code over a degenerate torus (see
Definition [4.T]). Thus, we are also recovering the main results of [9, [10] (Remark [£.3]).

It should be mentioned that we do not know of any efficient decoding algorithm for the family
of cartesian codes. The reader is referred to [3, Chapter 9], [14, 28] and the references there for
some available decoding algorithms for some families of linear codes.

For all unexplained terminology and additional information, we refer to [6] 13| 24] (for com-
mutative algebra and the theory of Hilbert functions), and [17, 25 27] (for the theory of linear
codes).

2. COMPLETE INTERSECTIONS AND ALGEBRAIC INVARIANTS

We keep the same notations and definitions used in Section Il In what follows d; denotes
|A;|, the cardinality of A; for i = 1,...,n. In this section we show that I(Y') is a complete
intersection and compute the algebraic invariants of I(Y') in terms of dy, ..., d,.

Theorem 2.1. (Combinatorial Nullstellensatz [2, Theorem 1.2]) Let S = Klt1,...,t,] be a
polynomial ring over a field K, let f € S, and let a = (a;) € N™. Suppose that the coefficient of
t* in f is non-zero and deg (f) = a1 + -+ + an. If Ay,..., A, are subsets of K, with |A;| > a;
for all i, then there are x1 € Ay,...,x, € Ay, such that f (z1,...,2,) # 0.

Lemma 2.2. (a) |Y|=|X"|=d;---d,.
(b) If A; is a subgroup of (K*,-) for all i, then | X*|/|A1N---NA,| =|X]|.
(c) If G € I(X™) and deg,, (G) < d; fori=1,...,n, then G = 0.

Proof. (a) The map X* — Y, z — [(x,1)], is bijective. Thus, |Y| = |X*|. (b) Since 4; is a
group for all 7, the sets X* and X are also groups under componentwise multiplication. Thus,
there is an epimorphism of groups X* — X, x +— [z]|, whose kernel is equal to

{(7,...,y)e X iye A4n---NAL}

Thus, | X*|/|A1 N--- N Ay| = |X]. To show (c) we proceed by contradiction. Assume that G is
non-zero. Then, there is a monomial ¢t* = ¢{* ---t% of G with deg(G) = a1 + --- + a,, where
a = (a1,...,a,) and a; > 0 for some i. As deg;, (G) < d; for all 4, then a; < |A;| = d; for all 4.
Thus, by Theorem 21| there are x1,...,x, with z; € A; for all i such that G (z1,...,z,) # 0,
a contradiction to the assumption that G vanishes on X*. O

Lemma 2.3. Let f; be the polynomial H'YEAi (t; —7) for 1 <i<n. Then
I(X™) = (fi,- - fo)-

Proof. “2” This inclusion is clear because f; vanishes on X* by construction. “C” Take f in
I(X*). Let > be the reverse lexicographical order on the monomials of S. By the division
algorithm [T, Theorem 1.5.9, p. 30], we can write

f:glf1+”’+gnfn+Ga

where each of the terms of G is not divisible by any of the leading monomials t‘lil, cotdn e

degy, (G) < d; for all i. As G belongs to I(X*), by Lemma 2.2, we get that G = 0. Thus,
fe(fi,o oy fn) O
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The degree and the regularity of S[u]/I(Y") can be computed from its Hilbert series. Indeed,
the Hilbert series can be written as

. ho+hit+ -+ ht”
ZHY Zdlmx (Wit = ===

where hg, ..., h, are posmve integers. ThIS follows from the fact that I(Y") is a Cohen-Macaulay
ideal of height n [7]. The number r is the regularity of S[u]/I(Y") and hg+ - - -+ h,. is the degree
of S[u]/I(Y") (see [30, Corollary 4.1.12]).

Definition 2.4. A homogeneous ideal I C S is called a complete intersection if there exists
homogeneous polynomials ¢i, ..., g, such that I = (g1,...,g,), where r is the height of I.

Proposition 2.5. (a) I(Y) = (H'yEA1( —uy),. H'YEAn( —uy)).
(b) I(Y') is a complete intersection.
() Fy(8) = [T (Lt 4+ + 57 /(1 ).
(d) reg S[ul/I(Y) = 3", (d; — 1) and deg(S[u]/I(Y)) = [Y]| =dy -~ dy.

Proof. (a) For ¢ = 1,...,n, we set f; = H'YEAi (t; — 7). Let > be the reverse lexicographical
order on the monomials of S[u|. Since fi,..., f, form a Grobner basis with respect to this order,
by Lemma and [I6, Lemma 3.7], the vanishing ideal I(Y) is equal to (ff,..., f), where
= [1,e4,(ti — uy) is the homogenization of f; with respect to a new variable u. Part (b)
follows from (a) because I(Y') is an ideal of height n [7]. (c) This part follows using (a) and a
well known formula for the Hilbert series of a complete intersection (see [30, p. 104]). (d) This
part follows directly from [5, Corollary 2.6]. O

Definition 2.6. Let {Q;}/"; be a set of representatives for the points of Y. The map
evg: Sfula = KV f = (F(Q0)/fo(Q)7s

where fo(t1,...,tn,u) = u?, defines a linear map of K-vector spaces. The image of ev/;, denoted

by Cy (d), is called a projective evaluation code of degree d on the set Y.

It is not hard to see that the map ev/, is independent of the set of representatives that we
choose for the points of Y.

Definition 2.7. The affine Hilbert function of S/I(X*) is given by
Hx+(d) := dimg S<q/I(X*)<q, where I(X")<q=S<qNI(X").

As the evaluation map ev, induces an isomorphism S<q/I(X*)<q ~ Cx=«(d), as K-vector
spaces, the dimension of Cx+(d) is Hx~(d).
Lemma 2.8. [12, Remark 5.3.16] Hx+(d) = Hy(d) for d > 0.

In particular, from this lemma, the dimension and the length of the cartesian code Cx+(d)
are Hy(d) and deg(S[u]/I(Y")), respectively.
Proposition 2.9. Cx«(d) = Cy(d) for d > 1.
Proof. Since Slu]q/I(Y)q ~ Cy(d) and S<4/I(X*)<q ~ Cx+(d), by Lemma 2.8 we get that

the linear codes Cx+(d) and Cy(d) have the same dimension, and the same length. Thus, it
suffices to show the inclusion “O”. Any point of Cy (d) has the form W = (f(P;, 1)), where

Py, ..., Py are the points of X* and f € Slufq. If f is the polynomial ft1, ..., ty, 1), then fis
in S<4and f(P;,1) = f(P;) for all i. Thus, W is in Cx+(d), as required. O



3. CARTESIAN EVALUATION CODES

In this section we compute the basic parameters of cartesian codes and give some applications.
If d is at most > ;(d; — 1), we show an upper bound in terms of dy,...,d, on the number of
roots, over X*, of polynomials in S<4 which do not vanish at all points of X*.

We begin by computing some of the basic parameters of Cx«(d), the cartesian evaluation
code of degree d on X*.

Theorem 3.1. The length of Cx«(d) isdy - - - dy, its minimum distance is 1 ford > >~ (d;—1),
and its dimension is
Hx-(d) = ( d ) Z < d—d; >+Z< d— (d; +d;)
1<i<n 1<J

n—+d—(d + dj + d) (nd—(d+ - +dy)
> +o (1) :
iS5k d—(di—i-dj—i-dk) d—(dy+ - +dp)

Proof. The length of Cx+(d) is | X*| =d;---d,. Weset r =3 ,(d; — 1). By Proposition [2.5]
the regularity of S[u]/I(Y) is equal to 7, i.e., Hy(d) = |Y| for d > r. Thus, by Lemmas
and 28, Hx-(d) = | X*| for d > r, i.e., Cx«(d) = KIX"| for d > r. Hence x+(d) =1 for d > 7.
By Proposition 2.5 the ideal I(Y) is a complete intersection generated by n homogeneous
polynomials fi,..., f, of degrees dy,...,d,. Thus, applying [5, Corollary 2.6] and using the
equality Hx~(d) = Hy(d), we obtain the required formula for the dimension. g

Proposition 3.2. Ifdy =1 and X' = As x -+ x A, then Cx+«(d) = Cx/(d) for d > 1.

Proof. Let a be the only element of A; and let Y’ be the projective closure of X’. Then, by
Proposition 2.5] we get

I(Y) = (1 —ua, f§, ..., fn) and 1Y) = (f3,--. ),
where f}' = [T,ea,(ti—uy) fori=2,...,n. Since Slu]/I(Y) and K[ta, ... ytn,u]/I(Y') have the
same Hilbert function, we get that the dimension and the length of Cx+(d) and Cx/(d) are the

same. Thus, to show the equality Cx«(d) = Cx(d), it suffices to show the inclusion “C”. Any
element of C'x«(d) has the form

W = (f(Oé, Ql)a s ,f(Oé, Qm)),

where Q1, ..., Qm are the points of X’ and f € S<g4. If fis the polynomial f(a,ts,...,t,), then
fisin K[ta, ..., ty]<q and f(o, Qi) = f(Q;) for all i. Thus, W is in Cx/(d), as required. O

Since permuting the sets Ai,..., A, does not affect neither the parameters of the corre-
sponding cartesian evaluation codes, nor the invariants of the corresponding vanishing ideal, by
Proposition we may always assume that 2 < d; < d; 41 for all 4, where d; = |4;].

For G € S, we denote the zero set of G in X* by Zx+(G). We begin with a general bound

that will be refined later in this section. The proof of [22] Lemma 3A, p. 147] can be easily
adapted to obtain the following auxiliary result.

Lemma 3.3. Let 0 # G = G(t1,...,ty) € S be a polynomial of total degree d. If d; < d;y1 for
all i, then

dy--dpd ifn>2,
ze@l={ g A
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Proof. By induction on n+d > 1. If n+d =1, then n =1, d = 0 and the result is obvious. If
n = 1, then the result is clear because G has at most d roots in K. Thus, we may assume d > 1
and n > 2. We can write GG as

() G=G(t1,...,tn) = Go(t1,. .., tn—1) + Gi(t1, ... 1)l + -+ Gr(t1, ..., ta1)ty,,
where G, # 0 and 0 <r <d. Let 3,..., 34, be the elements of A;. We set
Hy = Hylta, ... tn) =GB ta, ..., tn) for 1<k<d,.

Case (I): Hg(t2,...,tn) =0 for some 1 < k < d;y. From Eq. () we get
Hy(to, ..., tn) = Go(Br,ta, ... tn—1) + G1(Br, ta,. .. s tn—1)tn + -+ + Gr(Br, ta, ..., tn—1)t;, = 0.
Therefore G;(Bg,t2, ... ,tn—1) =0 for i =0,...,r. Hence t; — B divides G;(t1,...,t,—1) for all
i. Thus, by Eq. (), we can write

Gty ... tn) = (t1 — Br)G (t1,. .., tn)

for some G’ € S. Notice that deg(G') +n =d — 1+ n < d+ n. Hence, by induction, we get

Zx+(G)| < |Zx+(t1 = Bi)| + | Zx+(G'(t1, - tp))| S da - dp + do - dp(d — 1) = da -+ - dpd.

Case (IT): Hy(ta,...,tn) # 0 for 1 <k < d;. Observe the inclusion
dy

Zx+(G) C U({/Bk} x Z(Hy)),

k=1

where Z(Hy) = {a € Ag x -+ x Ay, | Hi(a) = 0}. As deg(Hy) +n—1<d+n and d; < d;4q for
all 4, then by induction

di
Zx-(G)] < | Z(Hy)| < dads -+ dpd < dods - dpd,

k=1
as required. n
Lemma 3.4. Let dy,...,d,_1,d',d be positive integers such that d = Zle(di — 1)+ ¢ and
d = Zi‘il(dl — 1)+ ¢ for some integers k, k', 0,0 satisfying that 0 < kK’ <n—2and 1 <{ <
dg1 — 1, 1 <V <dpy1— 1. If d <d and d; < diy1 for all i, then k' <k and
(*) —dpy1dpo1 + Cdpyo - dyoy < —digr - dpy + ldiyo -+ dnq,
where dyyo---dp—1 =1 (resp., dpryg-dp_1 =1) if k=n—2 (resp., ¥ =n —2).

Proof. First we show that k' < k. If k' > k, from the equality
C=(d—d)+ 0+ [(dps1 = 1)+ + (dp41 = 1)),

we obtain that ¢ > dj1, a contradiction. Thus, ¥’ < k. Since dj5---d,—_1 is a common factor
of each term of Eq. (@), we need only show the equivalent inequality:

(o) i1 — £ < (dprgr — 0)dpr o - - dpyr.

If k =k, then dpyo---dgyy =1 and d—d =/¢— ¢ > 0. Hence, £ > ¢ and Eq. (&) holds. If
k> K +1, then

dip1 — 0 < dpp1 < dpyodpp1 < dpyo- - dprr(depr — ).
Thus, Eq. (#=#) holds. O
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Lemma 3.5. If 0 # G € S. Then, there are r > 0 distinct elements B1,...,05, in A, and
G’ € S such that

G=(ty— )" (tn — Br)" G, a; > 1 for all i,
and G'(t1,...,th—1,7) # 0 for any v € A,.

Proof. Fix a monomial ordering in S. If the degree of G is zero, we set r = 0 and G = G'.
Assume that deg(G) > 0. If G(t1,...,tn—1,7) # 0 for all v € A, we set G = G and r = 0. If
G(t1,...,thn—1,7) = 0 for some v € A, then by the division algorithm there are F' and H in S
such that G = (t,, —v)F + H, where H is a polynomial whose terms are not divisible by the
leading term of ¢, —~, i.e., H is a polynomial in K[t1,...,t,—1]. Thus, as G(t1,...,tn—1,7) =0,
we get that H = 0 and G = (t, —7)F. Since deg(F) < deg(G), the result follows using induction
on the total degree of G. g

Proposition 3.6. Let G = G(t1,...,t,) € S be a polynomial of total degree d > 1 such that
deg; (G) < d; — 1 fori=1,....n. Ifdi < diy1 for all i and d = Zle(di — 1) 4+ ¢ for some
integers k, ¢ such that 1 < ¢ <dg;1—1,0<k <n-—1, then

1 Zx+(G)| < diya -+ dp(dr -+~ dy1 — dip1 +£),

where we set dyyo---dp, =14ifk=n—1.

Proof. We proceed by induction on n. By Lemmal[3.5] there are r > 0 distinct elements 31, ..., 5,
in A,, and G’ € S such that

G = (th — B1)™ - (tn — )" G, a; > 1 for all i,
and G'(t1,...,tn—1,7) # 0 for any v € A,,. Notice that r <7, a; < d,, — 1 because the degree
of G in t, is at most d, — 1. We may assume that A,, = {f1,..., 84, }. Let d; be the degree of
G'(t1,...,th—1,0;) and let d' = max{d}| r+1 <i <d,}.
Case (I): Assume n = 1. Then, k = 0 and d = ¢. Then |Zx-(G)| < £ because a non-zero
polynomial in one variable of degree d has at most d roots.

Case (IT): Assume n > 2 and k = 0. Then, d = ¢ < d; — 1. Hence, by Lemma 3.3 we get
|Zx~(G)| <dg---dpd =dy- dnl = dpyo- - dn(dr-- - dpy1 — dg1 +0),
as required.

Case (III): Assume n > 2, k> 1 and d' = 0. Then, |Zx+(G)| =rdy -+ d,—1. Thus, it suffices
to show the inequality

rdy-cdpy <dyccdy —dggy o dp + ldgga - dp.

All terms of this inequality have di9---d,—1 as a common factor. Hence, this case reduces
to showing the following equivalent inequality
rdy - dppy <dp(dy - dyyr — dpgr +£).
We can write d, = r 4+ 1 + § for some § > 0. If we substitute d, by r + 1 4 §, we get the
equivalent inequality
drs1(r+1) <br+dy-dgs1 + 0+ dy -+ - dgy1 — ddgr1 + L.

We can write d = r + 01 for some d; > 0. Next, if we substitute r by Zle(di —1)+0—6
on the left hand side of this inequality, we get

0<lr+1+406—dps1] +dpgr[dr-dp —1 =% (di = 1) +81) + 6[dy - dyr1 — dis1].
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Sincer+14+d—dgy1 >r+14+6—d, =0and k > 1, this inequality holds. This completes the
proof of this case.

Case (IV): Assume n > 2, k > 1 and d > 1. We may assume that S,41,..., 3, are the
elements 3; of {B,41,..., 84, } such that G'(¢1,...,t,—1, ;) has positive degree. We set
G; = G/(tb s 7tn—17 ﬁz)
for r +1 < i < m. Notice that d =>_;_, a; + deg(G’) > r + d' > d;. The polynomial

H:= (tn - Bl)a1 o (tn - /Br)ar
has exactly rdy - --d,—_1 roots in X*. Hence, counting the roots of G’ that are not in Zx-(H),
we obtain:

m
(%) |Zx+(G) Sl dnor + Y 1Z(G),
i=r+1
where Z(G!) is the set of zeros of G} in A; x -+ x A,_. For each r + 1 < i < m, we can write
d, = 2:?’:1(61Z — 1)+ £, with 1 < ¢ < dp 1 — 1. The proof of this case will be divided in three
subcases.

Subcase (IV.a): Assume ¢ > r and k = n — 1. The degree of G} in the variable ¢; is at most
dj —1for j =1,...,n—1. Hence, by Lemma [2.2] the non-zero polynomial G cannot be the
zero-function on Ay X -+ x A,_1. Therefore, |Z(G})| <dy---dp—1 —1for r+1 <i<m. Thus,
by Eq. (&), we get the required inequality

’ZX*(G)‘ S le ---dn_l + (dn — T)(dl ”’dn—l — 1) S dl dn — dn +€,
because in this case dg49---d, =1 and £ > r.
Subcase (IV.b): Assume ¢ > r and k < n — 2. Then, we can write

k

d—r=>Y (di—=1)+(—r)
i=1
with 1 </l —7r <dg41 — 1. Since d; <d—r for i =r+1,...,m, by applying Lemma 3.4 to the
sequence di,...,dp_1,d;,d —r, we get k} < k for r +1 < i < m. By induction hypothesis we
can bound |Z(G})|. Then, using Eq. ) and Lemma [3.4] we obtain:

Zx+(@)] < rdvocdna+ D digga e dnoa(dr e digr — diggg +6)
i=r+1

< rdycodp—1 + (dy —7)[(dikro - dp—1)(dy -+ dgq — dgy1 + € —1)].
Thus, by factoring out the common term dy12---d,—1, we need only show the inequality:
rdy - dppr + (dp —7)(dy - dgp1 —dgpr +0—1) <
dp(dy - dgy1 — drs1 + 0).

After simplification, we get that this inequality is equivalent to r(d,, — dgy1+¢—1) > 0. This
inequality holds because d,, > dj11 and £ > 7.

Subcase (IV.c): Assume £ <r. We can write d—r =Y ;_,(d; —1) +0, where 1 <0< dgq—1
and s < k. Notice that s < k. Indeed, if s = k, then from the equality

s

k
(%) d—r=> (di—1)+{=) (d;—1)+L—r

i=1 =1
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we get that (=0—1r> 1, a contradiction. Thus, s < n —2. As d —r > d}, by applying
Lemma B4 to dy,...,dn—1,d;,d — 7, we have k} <s <n—2fori=r+1,...,m. By induction
hypothesis we can bound |Z(G?)|. Therefore, using Eq. (®) and Lemma 3.4, we obtain:

|ZX* (G)| S le e dn—l + Z [dl o dn—l - dk;+1 e dn—l + dk£+2 e dn—lég]
i=r+1

< rdidyr 4 (dy —)dr - dpt —dygr - dnot 4 doyo- - dyil).

Thus, we need only show the inequality

rdy - dpoy+ (dp = 7)[dy - dyey —dgyr1 - dpo1 +dsg2 - dp1 0] <
dyeody — dipgr - dy 4 diggs - - dyl.

After cancelling out some terms, we get the following equivalent inequality:

(i) dk+1 T dn - dk+2 T dng < (dn - T)[ds—i-l to dn—l - ds+2 to dn—le]-
The proof now reduces to show this inequality.
Subcase (IV.c.1): Assume k = n — 1. Then, Eq. () simplifies to

dp — 0 < (dp — 1)[dos1 -+ dn_1 — dsso -+ dp_10].
Since d,, > r + 1, it suffices to show the inequality
r4+1—0<depo - dp1(desr —0).
From Eq. [&x), we get

n—1 n—1

r+ Q=0 =00+ > (di-D)+1-0)=—C+dsp1+ > (di—1).
i=s+1 i=s+2

Hence, the last inequality is equivalent to

n—1

Z (di — 1) < (dsp2 - dp_1 — 1)(dgs1 — 0).
i=s+2

This inequality holds because dsi0---d,,_1 > E?;S{}_g(di —1)+1.
Subcase (IV.c.2): Assume k < n — 2. By canceling out the common term dgi9---d,—1 in
Eq. (), we obtain the following equivalent inequality

dipsrdn — dnl < (dyy — 1) (dgsa - djpyr) (dsi1 — 0).
We rewrite this inequality as
r(dsyo - dsr)(dsrr — ) < dp[(dora - dji1) (dssr — £) — dir1] + by
Since d,, > r + 1 it suffices to show the inequality
r(dsya - dppsr)(dorr — 0) <
rl(dst2 - dis1)(dorr = €) = disr] + [(dsgz - - - digg1)(ds1 — £) = digya] + Ldn.
After a quick simplification, this inequality reduces to

(r+ Ddppi1 < (doss - dips1)(dogr — £) + Cdy.




10 HIRAM H. LOPEZ, CARLOS RENTERIA-MARQUEZ, AND RAFAEL H. VILLARREAL

From Eq. (&), we get 7+ 1 = (—0+ dgy1) + ({ + Zf:s-‘,—Z(di —1)). Hence, the last inequality is
equivalent to

k
desr Y (di = 1) < diyr(doga -~ di = 1)(doyr = £) + £(dp — djeyr)-
1=s+2
This inequality holds because dgyo - - dj > Zf: s+2(di —1) + 1. This completes the proof of the
proposition. ]

Corollary 3.7. Let d > 1 be an integer. If d; < djyq for all i and d = Zle(di — 1)+ 4 for
some integers k, £ such that 1 <0 <dpy1 —1 and 0 <k <n—1, then

max{|Zx+(F)|: FF € S<g; F #0} < djyo---dp(dy - diy1 — dig+1 + £).

Proof. Let F = F(t1,...,t,) € S be an arbitrary polynomial of total degree d’ < d such that
F(P) # 0 for some P € X*. We can write d’ = Zi‘il(dz — 1)+ ¢ with 1 < /¢ <dp;1 —1 and
0 < k' < k. Let < be the graded reverse lexicographical order on the monomials of S. In this
order t1 = -+ = t,. For 1 <i < n, let f; be the polynomial H“/GAZ' (t; —7). Recall that d; = |A;],
i.e., f; has degree d;. By the division algorithm [I, Theorem 1.5.9, p. 30], we can write

(—H—) F:h1f1+"'+hnfn+Gla

for some G' € S with deg;, (G') < d; —1 fori = 1,...,n and deg(G") = d" < d'. If ' is a
constant, by Eq. (f) and using that 0 # F(P) = G'(P), we get Zx«(F) = (. Thus, we may
assume that the polynomial G’ has positive degree d”. We can write d”’ = Ef;l(dl —1)+ ¢
where 1 < ¢ < djnyq and 0 < k" < k’. Notice that Zx«(F) = Zx+(G"). By Proposition [B.6]
and applying Lemma [3.4] to the sequences dq,...,d,,d",d and dq,...,d,,d  d, we obtain

Zx+(F)| = [Zx+(G)] < di-dn = drgr - dn + djriz - dpl”
< dl”’dn_dk’+1”’dn+dk’+2”’dn€,
< iy —diyy oy gy dol.
Thus, |Zx«(F)| <di---dp — diy1 - dp + diy2 - - - dpl, as required. O

We come to the main result of this section.

Theorem 3.8. Let K be a field and let Cx+(d) be the cartesian evaluation code of degree d on
the finite set X* = Ay x --- x A, C K™. If 2 < d; < dj1 for all i, with d; = |A;], and d > 1,
then the minimum distance of Cx+(d) is given by

(dis1 —0) d12 -+ dy ifng(di—l)—l,
dx+(d) = i
i=1

where k > 0, ¢ are the unique integers such that d = Zle (di—1)4+2Cand1 <l <dy; —1.
Proof. If d > 377 | (d; — 1), then the minimum distance of Cx+(d) is equal to 1 by Theorem 311
Assume that 1 <d < Y% | (d; — 1) — 1. We can write

Ai:{6i,17ﬁi,27"'7ﬁi,di}7 Z:177n
For 1 <i <k + 1, consider the polynomials

£ = { (Big —ti)(Biz —ti) -~ (Bigi—1 — i) if 1 <i<Ek,
‘ (Br411 — tht1) Brr1,2 — ter1) - - Brgrre —ter1) ifi=k+1.
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The polynomial G = fi - - - fr+1 has degree d and G(B1,4,, B2,dy> - - - » Bn.d,,) 7 0. From the equality

Zx-(C) = [(A\{Bran}) x Az x - x Ay] U
[{/Bl,d1} X (A2 \ {/82,d2}) X Ag X +o- X An] U

[{/Bl,d1} X X {/Bk—l,dk71} X (Ak \ {Bk,dk}) X Ak+1 X X An] U
[{Brai} x -+ X {Broay } X {Bra1,1y -+ Brrre} X Apga X -0 X Ay,
we get that the number of zeros of G in X* is given by:

k

|Zx+(G)| = (di = 1)(disr -+~ dy) + Lo+ dy = dy -+ dy — diyy -+ dy + Ll -~ e
1=1

By Lemma [2.2] one has |X*| =d; ---d,. Therefore
dx+(d) = min{|levg(F)|: evg(F) # 0; F € S<q} = |X| — max{|Zx«(F)|: F € S<q; F # 0}
< diodn — | Zx+(G)] = (dgy1 — €) dyy2 -+ - dn,

where [|evy(F)|| is the number of non-zero entries of evy(F') and F' # 0 means that F is not the
zero function on X*. Thus

ox+(d) < (dgt1 — O)dg+2 - dn.
The reverse inequality follows at once from Corollary B.71 O

Definition 3.9. If K is a finite field, the set T = {[(x1,...,Tpt+1)] € P"|a; € K* for all i} is
called a projective torus in P", where K* = K \ {0}.

As a consequence of our main result, we recover the following formula for the minimum
distance of a parameterized code over a projective torus.

Corollary 3.10. [2I, Theorem 3.5] Let K = F, be a finite field with q # 2 elements. If T is a
projective torus in P and d > 1, then the minimum distance of Cy(d) is given by

— D)k g—1-0) if d<(¢g—2)n—1,
5T(d):{(q T A

where k and ¢ are the unique integers such that k > 0,1 </{<q—2 and d=k(q—2)+¢.

Proof. If A; = K* fori =1,...,n, then X* = (K*)", Y =T, and d; = ¢ — 1 for all 7. Since
dx+(d) = dy(d), the result follows at once from Theorem [B.8] O

As another consequence of our main result, we recover a formula for the minimum distance
of an evaluation code over an affine space.

Corollary 3.11. [4, Theorem 2.6.2] Let K = F, be a finite field and let Y be the image of A"
under the map A" — P", x — [(x,1)]. If d > 1, the minimum distance of Cy (d) is given by:

_ [ (@=0¢" " if d<n(¢g-1)-1,
Md)_{ 1 if d>n(q—1),

where k and ¢ are the unique integers such that k > 0,1 < <qg—1andd=k(qg—1)+¢.

Proof. f A; = K fori=1,...,n, then X* = K" = A" and d; = ¢ for all i. Since dx+(d) = dy(d),
the result follows at once from Theorem B.8] O
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Example 3.12. If X* = F3, then the basic parameters of Cx+(d) are given by

1X*| =27, dimCx-(d) = X0, ("), dx-(d)=2""% 1<d<n.
Example 3.13. Let K = Fg be a field with 9 elements. Assume that 4; = K fori=1,...,4.
For certain values of d, the basic parameters of Cx+(d) are given in the following table:

d 1 2 3 4 ) 10 16 20 28 31 32
| X 6561 | 6561 | 6561 | 6561 | 6561 | 6561 | 6561 | 6561 | 6561 | 6561 | 6561
dim C'x+(d) ) 15 35 70 | 126 | 981 | 3525 | 5256 | 6526 | 6560 | 6561
Ox+(d) 0832 | 5103 | 4374 | 3645 | 2916 | 567 | 81 45 5 2 1

4. CARTESIAN CODES OVER DEGENERATE TORI

Given a non decreasing sequence of positive integers dy, ..., d,, we construct a cartesian code,
over a degenerate torus, with prescribed parameters in terms of dy, ..., d,.

Definition 4.1. Let K = F, be a finite field and let v = (v1,...,v,) be a sequence of positive
integers. The set

X*={(z1",...,z)) |z, € K* for all i} C A",

is called a degenerate torus of type v.

The main result of this section is:

Theorem 4.2. Let 2 < d; < --- < d, be a sequence of integers. Then, there is a finite field
K =T, and a degenerate torus X* such that the length of Cx+(d) is dy - -dy, its dimension is

v =(3)- 2 () T
Z <n+d—(d,-+dj+dk)> +m+(_1)n<n+d—(d1+...+dn)>’

iSop \ A= (ditdj+dy) d—(di+ - +dy)

its minimum distance is 1 if d > 3" | (d; — 1), and
Ox+(d) = (dpy1 — O)dpyo---dn if A< (di—1) -1,
where k > 0, £ are the unique integers such that d = Zle (di—1)+Cand 1 <l <dpy —1.

Proof. Pick a prime number p relatively prime to m = dy---d,. Then, by Euler formula,
pem =1 (mod m), where ¢ is the Euler function. We set ¢ = p?(M) Hence, there exists a
finite field F,; with ¢ elements such that d; divides ¢ — 1 fori =1,...,n. We set K =TF,.

Let 8 be a generator of the cyclic group (K*, -). There are positive integers v1, ..., v, such
that g—1 = v;d; fori = 1,...,n. Notice that d; is equal to o(3"*), the order of i fori =1,...,n.
We set A; = (B), where (") is the subgroup of K* generated by gv. If X* is the cartesian
product of Aq,...,A,, it not hard to see that X* is given by

X*={(z1", ... zp") |z € K* for all i} C A",

ie., X* is a degenerate torus of type v = (v1,...,v,). The length of |X*| is d; - - - d;, because
|A;| = d; for all i. The formulae for the dimension and the minimum distance of Cx+(d) follow
from Theorems [3.1] and B.8 O
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Remark 4.3. Let K = F, be a finite field and let 5 be a generator of the cyclic group (K*,-). If
X* is a degenerate torus of type v = (vy,...,vy), then X* is the cartesian product of Ay,..., A,,
where A; is the cyclic group generated by . Thus, if d; = |A;| for i = 1,...,n, the affine
evaluation code over X* is a cartesian code. Hence, according to Theorem B.I] and B8], the basic
parameters of C'x«(d) can be computed in terms of dy,...,d, as in Theorem Therefore, we
are recovering the main results of [9] [10].

As an illustration of Theorem consider the following example.

Example 4.4. Consider the sequence di = 2, do = 5, d3 = 9. The prime number ¢ = 181
satisfies that d; divides ¢ — 1 for all . In this case v;1 = 90, vo = 36, v3 = 20. The basic
parameters of the cartesian codes Cx=(d), over the degenerate torus

X* = {(2°, 30,22 | 2; € Fiq, fori=1,2,3},
are shown in the following table. Notice that the regularity of Su]/I(Y") is 13.

d 123|456 7]|8]9]10[11]12]13
[X7] 90 [90 [90 [ 90|90 |90 [90 |90 [ 90|90 |90 | 90 | 90
dimCx-(d) | 4 | 9 |16 | 25|35 |45 | 55| 65 | 74 | 81 | 86 | 89 | 90
5x-(d) |45(36|27 18[9 |8 7|6 |54 |3]|2]1

Notice that if K’ = Fy, and we pick subsets Aj, Ao, A3 of K’ with [A1]| =2, |A3] =5, |A3] =9,
the cartesian evaluation code Cx/(d), over the set X’ = Ay x Ay x A3, has the same parameters
that Cx«(d) for any d > 1.
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improvements that they suggested.
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