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Abstract

In [2], the authors determine the representation of order-q-subplanes and order-

q-sublines of PG(2, q3) in the Bruck-Bose representation in PG(6, q). In particular,

they showed that an order-q-subplane of PG(2, q3) corresponds to a certain ruled

surface in PG(6, q). In this article we show that the converse holds, namely that

any ruled surface satisfying the required properties corresponds to a tangent order-

q-subplane of PG(2, q3).

1 Introduction

We begin with a brief introduction to 2-spreads in PG(5, q), and the Bruck-Bose repre-

sentation of PG(2, q3) in PG(6, q), and introduce the notation we will use.

A 2-spread of PG(5, q) is a set of q3 + 1 planes that partition PG(5, q). The following

construction of a regular 2-spread of PG(5, q) will be needed. Embed PG(5, q) in PG(5, q3)

and let g be a line of PG(5, q3) disjoint from PG(5, q). The Frobenius automorphism of

GF(q3) where x 7→ xq induces a collineation of PG(5, q3). Let gq, gq
2

be the conjugate
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lines of g; both of these are disjoint from PG(5, q). Let Pi be a point on g; then the

plane 〈Pi, P
q

i , P
q2

i 〉 meets PG(5, q) in a plane. As Pi ranges over all the points of g, we

get q3 + 1 planes of PG(5, q) that partition PG(5, q). These planes form a regular spread

S of PG(5, q). The lines g, gq, gq
2

are called the (conjugate skew) transversal lines of the

spread S. Conversely, given a regular 2-spread in PG(5, q), there is a unique set of three

(conjugate skew) transversal lines in PG(5, q3) that generate S in this way. See [6] for

more information on 2-spreads.

We work in linear representation of a finite translation plane P of dimension at most three

over its kernel, an idea which was developed independently by André [1] and Bruck and

Bose [4, 5]. Let Σ∞ be a hyperplane of PG(6, q) and let S be a 2-spread of Σ∞. We use the

phrase a subspace of PG(6, q)\Σ∞ to mean a subspace of PG(6, q) that is not contained

in Σ∞. Consider the following incidence structure: the points of A(S) are the points of

PG(6, q)\Σ∞; the lines of A(S) are the 3-spaces of PG(6, q)\Σ∞ that contain an element

of S; and incidence in A(S) is induced by incidence in PG(6, q). Then the incidence

structure A(S) is an affine plane of order q3. We can complete A(S) to a projective plane

P(S); the points on the line at infinity ℓ∞ have a natural correspondence to the elements

of the 2-spread S. The projective plane P(S) is the Desarguesian plane PG(2, q3) if and

only if S is a regular 2-spread of Σ∞

∼= PG(5, q) (see [3]).

We will be using the cubic extension PG(6, q3) of PG(6, q). If K is a subspace or curve

of PG(6, q), we use K∗ to denote the natural extension of K to PG(6, q3).

2 The characterisation

In [2], the authors prove the following result that an order-q-subplane of PG(2, q3) corre-

sponds to a certain ruled surface in PG(6, q). In this article we show that the converse

holds, namely that any ruled surface satisfying the required properties corresponds to a

tangent order-q-subplane of PG(2, q3). We use the notation of Section 1 and recall the

following result.

Theorem 2.1 [2, Theorem 2.7] Let B be an order-q-subplane of PG(2, q3) that is tangent

to ℓ∞ in the point T . Let πT be the spread element corresponding to T . Then B determines

a set B of points in PG(6, q) (where the affine points of B correspond to the affine points

of B) such that:

(a) B is a ruled surface with conic directrix C contained in the plane πT ∈ S, and

normal rational curve directrix N contained in a 3-space Σ that meets Σ∞ in a

spread element (distinct from πT ). The points of B lie on q + 1 pairwise disjoint

generator lines joining C to N .
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(b) The q+1 generator lines of B joining C to N are determined by a projectivity from

C to N .

(c) When we extend B to PG(6, q3), it contains the conjugate transversal lines g, gq, gq
2

of the spread S.

In this article we prove the converse of this result.

Theorem 2.2 In PG(6, q), let C be a conic in a spread element π such that in the cubic

extension PG(6, q3), C∗ contains the three transversal points P = π∗∩g, P q = π∗∩gq, P q2 =

π∗ ∩ gq
2

. Let Σ be a 3-space of PG(6, q) \ Σ∞ about a spread element α distinct from π.

Let N be a normal rational curve in Σ that in the cubic extension contains the points

Q = α∗ ∩ g,Qq = α∗ ∩ gq, Qq2 = α∗ ∩ gq
2

. In PG(6, q3), let B∗ be the unique ruled surface

with directrices C∗,N ∗ defined by the projectivity that maps P qi 7→ Qqi, i = 1, 2, 3. Then

the ruled surface B of PG(6, q) corresponds to an order-q-subplane of PG(2, q3) that is

tangent to ℓ∞.

To simplify the following statements, we define a special conic of a spread element

π to be a conic that in the cubic extension PG(6, q3) contains the transversal points

P = π∗∩ g, P q = π∗∩ gq, P q2 = π∗∩ gq
2

. A special normal rational curve in a 3-space

Σ of PG(6, q) \ Σ∞ through a spread element α 6= π is one which in the cubic extension

PG(6, q3) contains the three transversal points Q = α∗ ∩ g,Qq = α∗ ∩ gq, Qq2 = α∗ ∩ gq
2

.

Note that a special normal rational curve is disjoint from Σ∞.

This allows us to make a compact statement that combines Theorems 2.1 and 2.2.

Corollary 2.3 Let B be a ruled surface of PG(6, q) defined by a projectivity from a conic

directrix C to a normal rational curve directrix N . Then B corresponds to an order-q-

subplane of PG(2, q3) if and only if C is a special conic in a spread element π, N is a

special normal rational curve in a 3-space about a spread element distinct from π, and

in the cubic extension PG(6, q3) of PG(6, q), B contains the transversals of the regular

spread S.

We will prove this result by counting. By Theorem 2.1, a tangent order-q-subplane of

PG(2, q3) corresponds in PG(6, q) to a ruled surface with a special conic directrix and

a special normal rational curve directrix that when extended to PG(6, q3) contains the

transversals of the spread S. We show the converse is true by counting the number of

tangent order-q-subplanes of PG(2, q3), and the number of such ruled surfaces in PG(6, q)

and showing that the two sets have the same number of elements. We proceed with a

series of lemmas.
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Lemma 2.4 The number of tangent order-q-subplanes of PG(2, q3) through a fixed point

T of ℓ∞ is q7(q3 − 1)(q2 + q + 1).

Proof We first count the total number of order-q-subplanes in PG(2, q3), it is

(q6 + q3 + 1)(q6 + q3)q6(q6 − 2q3 + 1)

(q2 + q + 1)(q2 + q)q2(q2 − 2q + 1)
= q6(q6 + q3 + 1)(q2 − q + 1)(q2 + q + 1).

Next we count the number x of order-q-subplanes tangent to ℓ∞. We count in two ways

the number of pairs (m, π) where m is a line of PG(2, q3) tangent to an order-q-subplane

π. We have

q6(q6 + q3 + 1)(q2 − q + 1)(q2 + q + 1)× (q2 + q + 1)(q3 − q) = (q6 + q3 + 1)x

and so x = q7(q2 − q + 1)(q2 + q + 1)2(q − 1)(q + 1). As the subgroup PGL(3, q3) fixing

the line ℓ∞ is transitive on the points of ℓ∞, the number of order-q-subplanes tangent to

ℓ∞ at the point T ∈ ℓ∞ is x/(q3 + 1) = q7(q3 − 1)(q2 + q + 1). �

Lemma 2.5 Let Σ be a 3-space of PG(6, q) \Σ∞ about a spread element. The number of

special normal rational curves in Σ is q3(q3 − 1).

Proof By [2, Theorem 2.5], the number of special normal rational curves in Σ is equal

to the number of order-q-sublines of a line ℓ (ℓ 6= ℓ∞) that are disjoint from ℓ∞. There

are
(

q3 + 1

3

)

/

(

q + 1

3

)

= q2(q2 + q + 1)(q2 − q + 1)

sublines of ℓ. Of these,
(

q3

2

)

/

(

q

2

)

= q2(q2 + q + 1)

contain the point ℓ∩ℓ∞. Hence there are q2(q2+q+1)(q2−q) = q3(q3−1) order-q-sublines

of ℓ that are disjoint from ℓ∞. �

Lemma 2.6 Two points in a spread element π lie in a unique special conic of π. Further,

every special conic of π is non-degenerate.

Proof In the cubic extension PG(6, q3), π∗ contain the three transversal points P =

π∗ ∩ g, P q = π∗ ∩ gq, P q2 = π∗ ∩ gq
2

. Let A,B be two points of π. We first show that

A,B, P, P q, P q2 are five points, no three collinear.

If the line PP q meets π in a point X , then Xq ∈ (PP q)q = P qP q2. As X ∈ π, Xq = X ,

and so X,P, P q, P q2 are collinear, a contradiction as P, P q, P q2 generate a plane and so
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are not collinear. So the lines PP q, PP q2, P qP q2 are all disjoint from π, that is, no point

of π is on one of these lines.

Next we show that the linem = AB does not contain any of P, P q, P q2. Asm is a line of π,

we have mq = m. If P ∈ m, then P q ∈ mq = m, and similarly P q2 ∈ m, a contradiction.

So m does not contain P , P q or P q2.

Hence we can pick any two points A,B of π and the five points A,B, P, P q, P q2 are no

three collinear, and so lie in a unique non-degenerate conic C∗ of π∗. This conic is fixed

by the Frobenius automorphism x 7→ xq, and so C is a conic of π. Note that this also

means that any special conic of π is non-degenerate. �

Lemma 2.7 The number of special conics in a spread element π is q2 + q + 1.

Proof We want to count the number of conics of π that in the cubic extension π∗ contain

the three transversal points P = π∗ ∩ g, P q = π∗ ∩ gq, P q2 = π∗ ∩ gq
2

. By Lemma 2.6, two

points A,B of π lie in a unique special conic of π. The number of ways to choose A,B,

so that the conic is distinct is (q2 + q + 1)(q2 + q)/(q + 1)q = q2 + q + 1 as required. �

Lemma 2.8 The number of triples (C,N ,B) where C is a special conic in a fixed spread

element π, N is a special normal rational curve in any 3-space of PG(6, q) \ Σ∞ about a

spread element α 6= π, and B is the unique ruled surface with directrices C,N such that in

the cubic extension PG(6, q3), B∗ contains the transversal lines g, gq, gq
2

is q9(q3−1)(q2+

q + 1).

Proof In Lemma 2.7 we show that the number of special conics in a fixed spread element

π is q2 + q + 1. There are q3 choices for the spread element α, and each spread element

lies in q3 3-spaces of PG(6, q) \Σ∞. In Lemma 2.5 we showed that the number of special

normal rational curves in a 3-space is q3(q3 − 1). Finally, as a projectivity is uniquely

determined by the image of three points, in the cubic extension PG(6, q3) there is a unique

ruled surface B
∗ with directrices C∗ and N ∗ that contains the transversal lines g, gq, gq

2

of the spread S. We now show that B∗ meets PG(6, q) in a ruled surface B.

The Frobenius automorphism σ : x 7→ xq fixes C and N pointwise, and also fixes the set

{g, gq, gq
2

}. As q ≥ 2, C has at least 3 points in π, and so C∗, C∗q have at least six common

points, hence σ fixes C∗. Similarly, σ fixes N ∗. Thus σ fixes B∗ since B∗ is determined by

a projectivity, and the three lines {g, gq, gq
2

} uniquely determine this projectivity. As σ

fixes exactly the points of PG(6, q), it follows that B∗ meets PG(6, q) in a ruled surface B

with directrices C,N . That is, B satisfies the conditions of the lemma. Hence the number

of triples is (q2 + q + 1)× (q3 × q3 × q3(q3 − 1))× 1 as required. �
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Proof of Theorem 2.2 To complete the proof of Theorem 2.2, we count the number

of triples (C,N ,B) where B is a ruled surface of PG(6, q) that corresponds to a tangent

order-q-subplane of PG(2, q3) through a fixed point T of ℓ∞, and B has conic directrix

C and normal rational curve directrix N . In Lemma 2.4 we showed that the number of

tangent order-q-subplanes through a fixed point T is q7(q3 − 1)(q2 + q + 1).

Now a tangent order-q-subplane that meets ℓ∞ in the point T contains q2 order-q-sublines

that are not through T . By [2, Theorem 2.5], each of these sublines corresponds to a

special normal rational curve in some 3-space about a spread element. Moreover, this

correspondence is exact. Hence a ruled surface B that corresponds to a tangent order-q-

subplane has a exactly one conic directrix, and q2 normal rational curve directrices. Thus

the number of triples is q2 × q7(q3 − 1)(q2 + q + 1). This is the same as the number of

triples in Lemma 2.8.

Hence the number of ruled surfaces satisfying the conditions of Theorem 2.2 is equal to

the number of ruled surfaces that correspond to tangent order-q-subplanes. Hence every

ruled surface satisfying the conditions of Theorem 2.2 does indeed correspond to a tangent

order-q-subplane as required. �
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