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Abstract We study odd and even Z2Z4 formally self-dual codes. The images
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self-dual code but may not be linear. Three constructions are given for formally
self-dual codes and existence theorems are given for codes of each type defined
in the paper.

Keywords Formally self-dual codes · Type I codes · Type II codes ·
Z2Z4-additive codes

Mathematics Subject Classification (2000) 94B60 · 94B25

1 Introduction

Self-dual codes over fields have been a widely studied object since the begin-
ning of coding theory. These codes are important in coding theory and have
interesting relations with finite designs and unimodular lattices. Formally self-
dual codes have weight enumerators that satisfy many of the same algebraic
conditions of self-dual codes without being self-dual themselves. It has been a
long standing question to classify formally self-dual codes and self-dual codes.

Following the major results in [23], where it was shown that interesting
binary codes were found as the Gray image of quaternary codes, a great deal
of study was given to codes over Z4. By the results of Delsarte decades earlier,
this study was extended to consider Z2Z4 codes [6], [7]. Specifically, because
these codes had binary images that were propelinear codes [29].
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One of the major tools in the constructions of self-dual codes is the building
up construction. Essentially, it is a technique for constructing larger self-dual
codes from smaller ones. Building up constructions were first given for binary
codes in [9]. They were extended in many places, for example in [15], [18], [19],
and [5]. Recently, these ideas were extended to formally self-dual codes in [24]
and [16]. In this work, we study formally self-dual Z2Z4 codes and find various
building up constructions from formally self-dual Z2Z4 codes.

1.1 Z2Z4-Additive Codes

Denote by Z2 and Z4 the rings of integers modulo 2 and modulo 4, respectively.
Let Zn2 and Zn4 denote the space of n-tuples over these rings. We say that a
binary code is any non-empty subset C of Zn2 , and if that subcode is a vector
space then we say that it is a linear code. Similarly, any non-empty subset C of
Zn4 is a quaternary code and a submodule of Zn4 is called a quaternary linear
code.

In 1973, Delsarte (see [13]), defined additive codes as subgroups of the
underlying abelian group in a translation association scheme. For the binary
Hamming scheme, namely, when the underlying abelian group is of order 2n,
the only structures for the abelian group are those of the form Zα2 × Zβ4 , with

α + 2β = n ([14]). This means that the subgroups C of Zα2 × Zβ4 are the
only additive codes in a binary Hamming scheme. We distinguish them from
additive codes over finite fields (see [2,3,25]), by calling them Z2Z4-additive
codes (see [4,6,7,21,28,29]).

The structure of these codes is given as follows. We write v ∈ Zα2 × Zβ4 as

v = (v1|v2) where v1 = (x1, . . . , xα) ∈ Zα2 and v2 = (y1, . . . , yβ) ∈ Zβ4 .

We can now define a Gray map for Z2Z4-additive codes, by taking an
extension of the usual Gray map. Recall that the usual Gray map is φ(0) =

(0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0).We define Φ : Zα2×Z
β
4 −→ Zn2 ,

where n = α+ 2β, by Φ(v1|v2) = (v1|φ(y1), . . . , φ(yβ)). In general, we denote
a Z2Z4-additive code by C and a binary code by C. Moreover, for any Z2Z4

code in Zα2Z
β
4 we shall say that n = α+ 2β.

For vectors v1 ∈ Zn2 and v2 ∈ Zβ4 we denote by wtH(v1) the Hamming
weight of v1 and by wtL(v2) the Lee weight of v2. Then, for a vector v =

(v1|v2) ∈ Zα2 ×Zβ4 , we define the weight of v, denoted by wt(v), as wtH(v1) +
wtL(v2). Note that since wt(v) = wtH(Φ(v)), the map Φ is an isometry.

Let C be a subgroup of Zα2 × Zβ4 , then this code is also isomorphic to an
abelian structure Zγ2 ×Zδ4. We say C is of type 2γ4δ as a group. It follows then
that it has |C| = 2γ+2δ codewords and the number of order two codewords in
C is 2γ+δ. Denote by X and Y the set of Z2 and Z4 coordinate positions re-
spectively. It is immediate that |X| = α and |Y | = β. We make the convention
that X corresponds to the first α coordinates and Y corresponds to the last
β coordinates.
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Let CX be the punctured code of C by deleting the coordinates outside X
and let CY be the punctured code of C by deleting the coordinates outside Y .
Denote by Cb the subcode of C which contains all order two codewords and let
κ be the dimension of (Cb)X . The code Cb is a binary linear code. For the case
α = 0, we will write κ = 0.

For a Z2Z4 code we say that C is of type (α, β; γ, δ;κ), where γ, δ and κ are
defined as above. Additionally, we extend this notation to the binary images
as follows. Let C be a Z2Z4-additive code, which is a subgroup of Zα2 × Zβ4 .
We say that the binary image C = Φ(C) is a Z2Z4-linear code of binary length
n = α+ 2β and type (α, β; γ, δ;κ).

We see that Z2Z4-additive codes are a generalization of both binary linear
codes and quaternary linear codes. When β = 0, the binary code C = C
corresponds to a binary linear code and when α = 0, the Z2Z4-additive code
C is a quaternary linear code.

In [7], it is shown that a Z2Z4-addtive code is permutation equivalent to a
Z2Z4-additive code with standard generator matrix of the form:

GS =

 Iκ Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 , (1)

where Ik is the identity matrix of size k × k; Tb, Sb are matrices over Z2;
T1, T2, R are matrices over Z4 with all entries in {0, 1} ⊂ Z4; and Sq is a
matrix over Z4.

We denote by 1 the all ones vector, and by (1α | 2β) ∈ Zα2 ×Zβ4 the vector
with the first α coordinates equal 1 and the last β coordinates equal 2.

Definition 1 We define a binary code C to be antipodal if for any codeword
z ∈ C, we have that z + 1 ∈ C. If C is a Z2Z4-additive code, we say that C is
antipodal if Φ(C) is antipodal.

A Z2Z4-additive code C ⊆ Zα2 ×Z
β
4 is antipodal if and only if (1α | 2β) ∈ C.

Notice also that the vector (1α | 2β) corresponds to the all one binary vector
under the Gray map.

As in [7], we define the inner product for any two vectors u,v ∈ Zα2 × Zβ4
as

[u,v] = 2(

α∑
i=1

uivi) +

α+β∑
j=α+1

ujvj ∈ Z4,

where the computations are made taking the zeros and ones in the α binary
coordinates as quaternary zeros and ones, respectively.

Note that the inner product is an element of Z4 and not Z2. We denote by
C⊥ the Z2Z4-additive dual code of C; i.e.,

C⊥ = {v ∈ Zα2 × Zβ4 | [u,v] = 0 for all u ∈ C}.

The code C is called self-orthogonal if C ⊆ C⊥ and self-dual if C⊥ = C. For a
complete description of self-dual codes and an extensive bibliography see [30].
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If C = φ(C), the binary code Φ(C⊥) is denoted by C⊥ and called the Z2Z4-dual
code of C.

If C is a Z2Z4 code with parameters (α, β; γ, δ;κ) then C⊥ has parameters
(α, β; γ̄, δ̄; κ̄) where

γ̄ = α+ γ − 2κ,

δ̄ = β − γ − δ + κ,

κ̄ = α− κ.

1.2 Z2Z4 Formally Self-Dual Codes

In general, a code C over any ring is said to be formally self-dual if its weight
enumerator is the same as the weight enumerator of its orthogonal. For exam-
ple, any self-dual code is necessarily formally self-dual but, of course, there are
formally self-dual codes that are not self-dual. For quaternary codes, a code
can be formally self-dual with respect to the Lee weight enumerator but not
with respect to the Hamming weight enumerator and vice versa. We shall de-
fine a weight enumerator for Z2Z4 codes and give the MacWilliams relations,
and then define what we mean for formally self-dual codes in this case.

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Define the weight
enumerator of C to be

WC(x, y) =
∑
c∈C

xn−wt(c)ywt(c), (2)

where n = α + 2β. We know from [6,14,29] that for the weight enumerator
defined in (2) we have

WC⊥(x, y) =
1

|C|
WC(x+ y, x− y).

For binary codes we have the usual Hamming weight enumerator; i.e.,

WC(x, y) =
∑
c∈C

xn−wtH(c)ywtH(c).

Definition 2 Let C be a Z2Z4-additive code. If WC⊥(x, y) = WC(x, y), then
C is a Z2Z4-additive, or shortly Z2Z4, formally self-dual code.

Example 1 Consider the codes generated by the following matrices:(
0 1 0
1 0 0

)
,
(

0 0 1
)
.

Let C be the code generated by the first matrix and D be the code generated
by the second matrix. It is clear that C⊥ = D and that the weight enumer-
ator of both is WC(x, y) = x4 + 2x3y + x2y2. Hence, these codes are Z2Z4

formally self-dual. The code C has parameters (2, 1; 2, 0; 2) whereas the code D
has parameters (2, 1; 0, 1; 0). Note that Z2Z4 formally self-dual codes do not
have necessarily the same parameters.
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Following the terminology of [5] and [17], where the definitions were made
for self-dual codes, we define the following terms.

Definition 3 If a Z2Z4-additive formally self-dual code C has odd weights,
then C is said to be Type 0. If C has only even weights, but not all weights are
doubly-even, then the code C is said to be Type I. If all the codewords in C have
doubly-even weight, then it is said to be Type II.

In general, if all the codewords of a Z2Z4-additive code C have even weights,
then C is an even code; otherwise, C is an odd code. Notice, that this is different
than the definition first given in [1] where Type I and Type II for self-dual codes
are defined in terms of Euclidean weight with an eye towards the constructed
lattice. In our definition we are strictly concerned with the Lee weights.

We shall given an example of an odd Z2Z4 formally self-dual code.

Example 2 Consider the following generator matrices:

G =

(
0 1 2 0
1 1 1 1

)
, G′ =

(
1 1 3 1
1 0 0 2

)
.

The codes C and C′ generated by G and G′ respectively are odd Z2Z4 formally
self-dual codes of length 6 that are orthogonals of each other with weight enu-
merator: WC(x, y) = WC⊥(x, y) = x6 + 4x3y3 + 3x2y4. Notice that its Gray
image has minimum weight 3 which is higher than any self-dual code at that
length.

Definition 4 Let C be a binary code. Then we say that C is a formally self-
dual code if the weight enumerator of C is held invariant by the action of the
MacWilliams relations.

Note that in this case we are not assuming that C is a linear code. If C is a
non-linear binary code then we do not have that WC(w, y) = WC⊥(x, y) since
C⊥ = 〈C〉⊥ and 〈C〉 is larger than C when C is non-linear. In general, what
we are seeking are binary codes that are images of Z2Z4-additive codes under
the Gray map, since they correspond to the structures defined by Delsarte,
and have weight enumerators held invariant by the MacWilliams relations.

The following is immediate given that Φ is an isomotery.

Theorem 1 If C is a Z2Z4 formally self-dual code, then Φ(C) is a binary
formally self-dual code.

It follows immediately from this theorem that if C is a formally self-dual
code then α must be even, since n is even for a binary formally self-dual code
and n = α+ 2β.

Let C be a Z2Z4 formally self-dual code. The weight enumerator is held
invariant by the action of the MacWilliams relations and hence the invariant
theory for binary self-dual codes described in [26, Chapter 19] also applies to
C. Therefore, C is held invariant by the action of the matrix

M0 =
1√
2

(
1 1
1 −1

)
.
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If the code is Type I then it is also held invariant by the action of the matrix

M1 =

(
−1 0
0 −1

)
,

since n must be even. Additionally, if the code is Type II then it is held
invariant by

M2 =

(
1 0
0 i

)
,

where i is the complex number with i2 = −1. Hence, the standard Gleason’s
Theorem applies.

Theorem 2 (Gleason [22],[26]) Let C be a Z2Z4-additive formally self-dual
code. Then,WC(x, y) ∈ C[x2 + y2, y(x− y)], if C is Type 0,

WC(x, y) ∈ C[x2 + y2, x8 + 14x4y4 + y8], if C is Type I,
WC(x, y) ∈ C[x8 + 14x4y4 + y8, x4y4(x4 − y4)4], if C is Type II.

(3)

It follows from Theorem 2 that a Z2Z4-additive formally self-dual code
that is Type II must have length a multiple of 8.

2 Separability and Existence of Z2Z4 Formally Self-Dual Codes of
Certain Types

In this section, we shall give some conditions related to the separability and
antipodality in terms of the type of the code. In particular, we compare these
conditions to the behavior in the case of Z2Z4-additive self-dual codes given
in [7]. Also we shall prove when codes of each type exist deppending on the
parameters α and β.

Lemma 1 Let C and C′ be Z2Z4 formally self-dual codes. Then the code
C × C′ = {(vX ,wX |vY ,wY )},v = (vX |vY ) ∈ C,w = (wX |wY ) ∈ C′} is a
formally self-dual code and WC×C′(x, y) = WC(x, y)W ′C(x, y).

Proof: It is immediate that (C×C′)⊥ = C⊥×C′⊥ and that WC×C′(x, y) =
WC(x, y)W ′C(x, y).

We have that

WC×C′(x, y) = WC(x, y)WC′(x, y) = WC⊥(x, y)W(C′)⊥(x, y) = W(C×C′)⊥(x, y).

This gives that C × C′ is a formally self-dual code. ut

Note that if the generator matrices of C and C′ are G =
(
Gb Gq

)
and

G′ =
(
G′b G

′
q

)
respectively, then the generator matrix of C × C′ is

G =

(
Gb 0 Gq 0
0 G′b 0 G′q

)
.
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Example 3 Consider the code C in Example 1 and the code C′ in Example 2.
Then a generator matrix of C × C′ is

G =


0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 1 0 3 1
0 0 1 0 0 0 2

 ,

and the weight enumerator is WC×C′(x, y) = x10 + 2x9y + 2x8y2 + 4x7y3 +
11x6y4 + 10x5y5 + 3x4y6.

We shall now define separable codes and relate them to the lemma above.

Definition 5 A Z2Z4-additive code is said to be separable if the generator

matrix can be written in the form

(
A 0
0 B

)
, where A is a binary matrix and

B is a quaternary matrix. Equivalently, we can say that a Z2Z4 code C is
separable if every vector in C is o f the form (v,w) where v ∈ C and w ∈ D
where C is a binary code and D is a quaternary code. In this case we say
C = C ×D.

Note that we can think of binary and quaternary codes as Z2Z4 codes so
that the cross product given in Lemma 1 applies here as the cross product of
two Z2Z4 codes. This gives the following.

Corollary 1 If C is a binary formally self-dual code and D is a quaternary
formally self-dual code then C ×D is a Z2Z4 formally self-dual code.

Proof: The proof follows from Lemma 1. ut

For a Z2Z4-additive self-dual code C, there are some conditions that relates
separability, antipodality and the Type of the code as it was proved in [5]. If
C is an antipodal code, then C is of Type I or Type II. Also if C is separable
then necessarily C is antipodal. As a result, if C is Type 0, then C is non-
separable and non-antipodal. These properties are not satisfied in the case of
Z2Z4 formally self-dual codes.

Unlike for self-dual codes, a Type 0 Z2Z4 formally self-dual can be sepa-
rable. For example, consider the code 〈(10|)〉 × 〈|2〉 ⊆ Z2

2 × Z4. Its orthogonal
is 〈(01|)〉 × 〈|2〉. These codes have vectors of weight 1 and hence are odd.
Therefore, the code is an odd separable formally self-dual code. Also, unlike
the case for self-dual codes [5], separability does not imply that the code is
antipodal. For example, in the separable code given above, 〈(10|)〉 × 〈|2〉, the
code is separable but not antipodal; i.e., (11|2) is not in the code.

Theorem 3 Let C and D be Z2Z4 codes with C⊥ = D. Then (Cb)⊥X = (Db)X .

Proof: Let v and w be order 2 codewords of C and D respectively. Since
the quaternary components contain only elements from {0, 2} we have that
[vX ,wX ] = 0 where the inner product is the binary inner product. Hence,
every vector in (Db)X is orthogonal to every vector in (Cb)X . It is also true
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that every vector in (Cb)X is orthogonal to every vector in (Db)X . This gives
the result. ut

For self-dual codes, this result implies that (Cb)X was a self-dual code.
However, it is not true that if C is a Z2Z4 formally self-dual code then (Cb)X
is a formally self-dual code. Considering the Z2Z4 formally self-dual codes C
and D in Example 1, we have that (Cb)X = Z2

2 and (Db)X = {00|0}. While
they are duals of each other, they are not formally self-dual.

The following theorem characterizes even Z2Z4 formally self-dual codes.

Theorem 4 A Z2Z4 formally self-dual code C is even if and only if (1α | 2β) ∈
C.

Proof: Let C be a Z2Z4 formally self-dual code. If v ∈ Zα2 × Zβ4 , then
[v, (1α | 2β)] ≡ 2wt(vX)+2wt(vY ) (mod 4). Therefore, if a vector v has even
weight then [v, (1α | 2β)] = 0 and if v has odd weight [v, (1α | 2β)] = 2. If C
is an even code then (1α | 2β) ∈ C⊥. Notice that (1α | 2β) is the only vector
with Lee weight n, hence since the weight enumerators of C and C⊥ are the
same we have that (1α | 2β) ∈ C. If C is an odd code then (1α | 2β) 6∈ C⊥ and
by the same reasoning (1α | 2β) is not in C. ut

Note that from the previous theorem, we have that every Type I or Type II
Z2Z4 formally self-dual code is antipodal.

Now we will study the existence of Type 0, Type I and Type II codes.
We shall give conditions for the values of α and β and also examples of codes
having each possible α and β by using the direct product of codes. We start
with the case of Type 0 codes.

The code C1 = 〈(10|)〉 is a Type 0 code with α = 2 and β = 0. The code
C2 = 〈(00|1)〉 is a Type 0 code with α = 2 and β = 1. Notice that the codes C1
and C2 are not self-dual, but they are formally self-dual. Moreover, given any
Type 0 formally self-dual code we can take the direct product with C3 = 〈(|2)〉
and still have a Type 0 formally self-dual code. Notice that C3 is not Type 0,
but the direct product of a Type 0 with any other type will result in a Type 0
code. Taking direct products of C1, C2 and C3 we have the following theorem.

Theorem 5 There exists a Type 0 Z2Z4 formally self-dual code for all α, β
satisfying α = 2a, β = b with a ≥ 1 and b ≥ 0 or a = 0 and b ≥ 2.

Proof: The only case that remains is to find Type 0 codes for α = 0. In
this case, take (|1, 0) which is a Type 0 code. ut

The code C4 = 〈(11|)〉 is a Type I code with α = 2 and β = 0. The code
C3 = 〈(|2)〉, given above, is a Type I code with α = 0 and β = 1. The codes C3
and C4 are self-dual codes. Notice that taking the direct product of a Type I
code with a Type I or Type II code results in a Type I code. This gives the
following theorem.

Theorem 6 There exists a Type I Z2Z4 formally self-dual code for all α, β
satisfying α = 2a, β = b with a ≥ 0, b ≥ 0.
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Finally, we shall now examine when Type II codes exist.

Theorem 7 Let C be a Type II Z2Z4 formally self-dual code, then α+2β must
be a multiple of 8 and α ≡ 0 (mod 4).

Proof: Let C be a Type II Z2Z4 formally self-dual code. Since C and C⊥
have the same weight enumerator, we have that C⊥ is Type II Z2Z4 formally
self-dual. By Theorem 4, (1α | 2β) belongs to C and C⊥.

By Gleason’s Theorem (Theorem 2), we have that n = α + 2β must be a
multiple of 8, and hence α must be even.

If (1α | 0β) is not in C⊥ then there exists a vector v ∈ C whose binary
part has oddly many ones. Since the weight have to be even, the quaternary
part of v must then have an odd number of ±1. Then, the vector v + v ∈ C
has an all zero binary part and an odd number of coordinates with a 2 in
them. Hence, it has weight congruent to 2 (mod 4). This is a contradiction
since the code is Type II. Hence, (1α | 0β) must be in C⊥. Since C⊥ is Type II
Z2Z4 formally self-dual, (1α | 0β) must have doubly-even weight. Therefore,
α = wt(1α |0β) ≡ 0 (mod 4). ut

Example 4 Consider the code generated by the following matrix: 1 1 1 1 0 0
0 1 1 0 2 0
0 0 1 1 1 1

 .

Notice that the third row is not self-orthogonal, so the code is not self-dual.
The weight enumerator of the code is x8 + 14x4y4 + y8, so the code is formally
self-dual. Specifically, this code is a Type II code that is formally self-dual but is
not self-dual. Here n is 8, so this is the smallest possible example of a Type II
Z2Z4 formally self-dual code.

We know that the [8, 4, 4] binary Hamming code is a doubly-even binary
self-dual code. The code D⊕4 in [11] with generator matrix: 1 1 1 1

2 2 0 0
2 0 2 0


is a quaternary code with the weight enumerator of the Hamming code. Hence,
both can be viewed as Z2Z4 Type II codes. We note that the direct product
of two Type II codes results in a Type II code. Using these two codes and the
Z2Z4-additive code in Example 4 together with the results of Lemma 1 and
Theorem 7 we get the following.

Theorem 8 There exists a Type II Z2Z4 formally self-dual code for all α, β
satisfying α = 8a+ 4b, β = 2b+ 4c, a, b, c ≥ 0.
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3 Subcodes of Z2Z4 Formally Self-Dual Codes

When C is a binary self-dual code, then the subset of double-even vectors of
C is a linear subcode. This subcode is used in [10] to obtain the shadow of
a self-dual code. In this section, we study the properties of the subset of all
double-even vectors in a Type I code and also the subset of even vectors in an
odd Z2Z4 formally self-dual code.

It is well known that for binary vectors we have

wt(v + w) = wt(v) + wt(w)− 2|v ∗w|, (4)

where ∗ is the component-wise product. Then it follows immediately that if
v and w are binary doubly-even vectors and v + w is a binary doubly-even
vector then the two vectors must be orthogonal. This gives that any binary
Type II formally self-dual code must be self-dual. Example 4 showed that this
is not true for Z2Z4-additive codes.

For Z4 vectors, Equation 4 is not true. Consider for example the two qua-
ternary vectors (1120) and (1111). These two vectors are orthogonal and both
have doubly-even weight but their sum is (2231) which has weight 6 ≡ 2
(mod 4). Moreover, we can take the sum of two doubly-even vectors which
is also doubly-even but where the vectors are not orthogonal. For example,
take the quaternary vectors (1111000) and (0001111). Their sum is (1112111)
which has weight 8, yet the vectors have inner product 1 6= 0. Hence, the usual
techniques do not apply in Z4 codes or in Z2Z4-additive codes.

We do however, have the following elementary lemma.

Lemma 2 Let C be a Type I Z2Z4 formally self-dual code and let C′ be the
subcode of doubly even vectors then

WC′(x, y) =
1

2
(WC(x, y) +WC(x, iy)), (5)

where i is the complex number with i2 = −1.

Proof: Doubly-even vectors are counted twice in (WC(x, y) +WC(x, iy))
and singly-even vectors are counted once inWC(x, y) and negatively inWC(x, iy).
ut

Unlike in the binary self-dual case, it is not immediate that the subcode of
doubly-even vectors is a linear subcode. However, we can use this lemma to
show that the subcode of doubly-even vectors is precisely half the code.

Theorem 9 Let C be a Type I Z2Z4 formally self-dual code and let C′ be the

subcode of doubly-even vectors then |C′| = |C|
2 .

Proof: Let C be a Type I code. Let p(x, y) = x2 + y2 and q(x, y) =
x8 + 14x4y4 + y8. We know from Theorem 2 that the weight enumerator of C
can be written as

WC(x, y) =

n
2∑
j=0

Ajp(x, y)jq(x, y)
n−2j

8 .
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Additionally, we know that for any Z2Z4-additive code D, WD(1, 1) = |D|.
Now,

WC′(x, y) =
1

2
(

n
2∑
j=0

Ajp(x, y)jq(x, y)
n−2j

8 +

n
2∑
j=0

Ajp(x, iy)jq(x, iy)
n−2j

8 )

=
1

2

n
2∑
j=0

Ajq(x, y)
n−2j

8 (p(x, y)j − p(x, iy)j)

=
1

2

n
2∑
j=0

Ajq(x, y)
n−2j

8 ((x2 + y2)j − (x2 − y2)j).

The second step follows from the fact that q(x, y) = q(x, iy). Then, we have

|C′| = WC′(1, 1) =
1

2

n
2∑
j=0

Ajq(1, 1)
n−2j

8 (p(1, 1)j − (0)j) =
1

2
WC(1, 1) =

1

2
|C|.

(6)
This gives the result. ut

Theorem 10 Let C be a Type I Z2Z4 formally self-dual code with C′ the sub-
code of doubly-even vectors, then either C′ is a subgroup of index 2 or 〈C′〉 = C.

Proof: We have seen in Theorem 9 that |C′| = |C|
2 . If C′ is linear then we

are done. If it is not then it generates a subcode of C′ but since the order of a
subgroup must divide the order of a group we have that it must be C. ut

Moreover, we shall show in the following examples that both situations
can occur. The following example is of a Type I code where the subcode of
doubly-even vectors is not linear.

Example 5 Consider the quaternary linear code E+
7 in [11] and C′ its subcode

of doubly-even vectors. The code has generator matrix:
1 0 0 3 1 1 0
1 0 1 0 0 3 1
1 1 0 1 0 0 3
2 2 2 2 2 2 2

 .

The code is a Type I self-dual code with weight enumerator:

WC(x, y) = x14 + 14x10y4 + 49x8y6 + 49x6y8 + 14x4y10 + y14.

The weight enumerator for C′ is

WC′(x, y) = x14 + 14x10y4 + 49x6y8.

Notice that summing the first two vectors which both have doubly-even weight
give the vector (2013101) which has weight 6 which is not doubly-even. In fact,
cyclic shifts of of (3110100) generate the code. In other words the subcode of
doubly-even vectors generates the entire code. The binary image of this code is
a non-linear (14, 27, 6) code.
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We give now two examples of codes where the subcode of doubly-even
vectors is linear.

Example 6 Consider the code C generated by

(
1 1 0
0 0 2

)
. Here the subcode C′

is {(00|0), (11|2)} which is a linear subcode. A purely quaternary linear code
can have C′ as a linear subcode as well. Consider the octacode, O8 in [11]. It
has generator matrix: 

1 0 0 0 3 1 2 1
0 1 0 0 1 2 3 1
0 0 1 0 3 3 3 1
0 0 0 1 2 3 1 1

 .

The weight enumerator for this code is:

x16 + 112x10y6 + 30x8y8 + 112x6y10 + y16.

The subcode C′ is linear and has generator matrix:
1 1 1 1 1 1 1 1
0 2 0 0 2 0 2 2
0 0 2 0 2 2 2 0
0 0 0 2 0 2 2 2

 .

In [10], and earlier in [31], the shadow of binary codes was considered.
Namely, given a Type I binary self-dual code, the weight enumerator of the
subcode C ′ of doubly-even vectors is computed by the formula in (5). Then, the
weight enumerator of the shadow C ′⊥−C is computed using the MacWilliams
relations. If this weight enumerator had non-acceptable coefficients, that is ei-
ther negative or non-integer, then there could be no code with this weight
enumerator. This powerful technique relied on the fact that the subcode of
doubly-even vectors was linear. This means that it does not necessarily apply
in our situation. Hence, weight enumerators which are eliminated by inves-
tigating the shadow are still in play here. Namely, if C ′ is not linear then
the computation of the weight enumerator of the shadow does not necessarily
give the weight enumerator of a code. Then, if this weight enumerator is not
acceptable it does not imply that there cannot be a code with this weight
enumerator.

We now give some structural results about Type 0 codes taking into account
the subcodes of doubly-even weight vectors.

Let C be a Type 0 code. Let C0 = {v ∈ C | wt(c) ≡ 0 mod 2}.

Lemma 3 If C is an odd Z2Z4 formally self-dual code, then C0 is an additive
subcode of C with [C : C0] = 2. Moreover,

WC0(x, y) =
1

2
(WC(x, y) +WC(x,−y)). (7)



13

Proof: First we shall show that it is an additive subcode. If C is a
Type 0 code, then by Theorem 4 we see that (1α | 2β) 6∈ C. Note that
C0 = {v | [v, (1α | 2β)] = 0} and hence it is an additive subcode. Then, if
a monomial represents even weight, the coefficient is the same in WC(x, y) and
WC(x,−y)). If the monomial represents odd weight, then the coefficients are
negatives of each other. Hence, even weights are counted twice and odd weights
are not counted in this sum. Dividing by 2 then gives the weight enumerator
of C0. ut

4 Constructions

In this section, we shall give different constructions of Z2Z4 formally self-dual
codes starting from a Z2Z4 formally self-dual code C. The first construction
is the neighbor construction; we obtain an even code with the same length of
C, a Type 0 code. Constructions A, B and C gives new codes, C̄, C̃ and Ĉ, by
increasing the length of a Z2Z4 formally self-dual code C.

The first construction is the analog of the neighbor construction for Z2Z4-
additive self-dual codes [5].

We say that C is a neighbor of C′ if there is a vector v not in C such that
C′ = 〈Cv,v〉, where Cv = {w | w ∈ C, [v,w] = 0}.

Theorem 11 (Neighbor Construction) Let C be a Type 0 Z2Z4 formally
self-dual code, then C is a neighbor of an even formally self-dual code.

Proof: Let C be an odd Z2Z4 formally self-dual code and let C0 be the
subcode of even vectors. Let D = C⊥ and let D0 be the subcode of D of even
vectors. Note that if v = (1α | 2β), then C0 = Cv and D0 = Dv. We know that
WC0(x, y) = WD0(x, y). Let C′ = 〈C0, (1α | 2β)〉 and D′ = 〈D0, (1α | 2β)〉.
Then, WC′(x, y) = WC(x, y) + WC(y, x) = WD′(x, y). If c ∈ C′ and d ∈ D′
then [c,d] = [c0 + λ(1α | 2β),d0 + µ(1α | 2β)] = 0, for λ, µ ∈ {0, 1}. Since

|C′| = |D′| then C′⊥ = D′. Then, C′ = 〈Cv,v〉, for v = (1α | 2β), is an even
formally self-dual code. ut

In [24], a construction of larger binary formally self-dual codes was given
from existing odd binary formally self-dual codes, which we shall refer to as
the building up construction. That is, if C is the binary code then a larger
code C̄ is constructed from it. A constructive, simpler proof of this result was
given in [16]. We shall generalize this construction, in the same setting as was
done in [16], to Z2Z4 formally self-dual codes.

Let C be a Z2Z4 formally self-dual code. If C = φ(C) is linear, then we can
consider the code C̄ constructed as C̄ = φ−1(C̄), where C̄ is obtained from C
by applying the binary building up construction, as in [16]. However, usually
and most interestingly, φ(C) is not linear. The next theorem shows that we
can generalize the building up construction for Z2Z4 formally self-dual codes
whose Gray map image is not linear.

Let C be a Type 0 Z2Z4 formally self-dual code. Let C0 be the subcode of
C of even vectors. By Lemma 3, we have that C0 is of index 2 in C and that
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there exists a vector t ∈ C − C0 such that C = 〈C0, t〉 and t + t ∈ C0. It also
follows that C⊥0 = 〈C⊥, (1α | 2β)〉. Define Cλ,µ by

Cλ,µ = C0 + λt + µ(1α | 2β).

Notice that λ and µ can be either 0 or 1.

Theorem 12 (Construction A) Let C be a Type 0 Z2Z4 formally self-dual
code of length n and type (α, β; γ, δ;κ). Let C0 be the subcode of even vectors.
The code

C̄ = 〈{(0, 0, c) | c ∈ C0} ∪ {(1, 0, c) | c ∈ C − C0}, (1, 1, (1α | 2β))〉 (8)

is an even formally self-dual code of length n+ 2 and type (α+ 2, β; γ+ 1, δ; κ̄)
with weight enumerator

WC(x, y) = x2WC0,0(x, y) + xyWC1,0(x, y) + y2WC0,0(y, x) + xyWC1,0(y, x).

The code

C̄ = 〈{(0, 0, c) | c ∈ C0} ∪ {(1, 1, c) | c ∈ C − C0}, (1, 0, ((1α | 2β)))〉 (9)

is an odd formally self-dual code of length n+ 2 any type (α+ 2, β; γ + 1, δ; κ̄)
with weight enumerator

WC̄(x, y) = x2WC0,0(x, y) + y2WC1,0(x, y) + xyWC0,0(y, x) + xyWC1,0(y, x).

Moreover, any code with these weight enumerators is a formally self-dual code.
We refer to the first construction as the even Construction A and the second
one as the odd Construction A.

Proof: Let C be a Type 0 Z2Z4 formally self-dual code with C0 and Cλ,µ
be defined as above. Set D = C⊥. Since the weight enumerator of D is the
same as the weight enumerator of C, D is also and odd formally self-dual code.
Therefore, we have the same situation for D. Namely, we define Dλ,µ by

Dλ,µ = D0 + λt′ + µ(1α | 2β),

where D0 is the subcode of even vectors and t′ is the vector such that 〈D0, t
′〉 =

D. Notice that the weight enumerator of C0 and D0 are identical. Since the
weight enumerators of C and D were identical then the weight enumerators of
C1,0 = C−C0 and D1,0 = D−D0 are identical. Then, we see that WC0,1(x, y) =
WC0,0(y, x) and WD0,1

(x, y) = WD0,0
(y, x). This gives that C0,1 and D0,1 have

identical weight enumerators. Similarly,

WC1,1(x, y) = WC1,0(y, x) and WD1,1(x, y) = WD1,0(y, x),

so C1,1 and D1,1 have identical weight enumerators. Thus, the weight enumer-
ators of the corresponding cosets are identical.

We shall form two codes C̄ and D̄ that are orthogonals of each other
and that have the same weight enumerator. Let C̄ = ∪(vλ,µ, Cλ,µ) and D̄ =
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∪(wλ,µ,Dλ,µ), where vλ,µ, wλ,µ ∈ Z2
2, for λ, µ ∈ {0, 1}. To ensure that the

codes are additive we need vλ,µ = λv1,0 +µv0,1 and wλ,µ = λw1,0 +µw0,1. For
C̄ and D̄ to be orthogonal we need

[(vλ,µ, wλ′,µ′)] = −[Cλ,µ,Dλ′,µ′ ],

where [Cλ,µ,Dλ′,µ′ ] is the inner product of any two vectors in those cosets.
Then, we have

[Cλ,µ,Dλ′,µ′ ] = [c0 + λt + µ(1α | 2β),d0 + λ′t′ + µ′(1α | 2β)]

= λµ′[t, (1α | 2β)] + µλ′[t′, (1α | 2β)] = 2(λµ′ + µλ).

To ensure that the weight enumerators of C̄ and D̄ are identical, we also
need that the weight of vλ,µ is equal to the weight of wλ,µ. Let v1,0 = (1, 0),
v0,1 = (1, 1), w1,0 = (0, 1), and w0,1 = (1, 1). It is a simple computation to
verify that these choices satisfy all of the conditions and that it gives the code
in (8). Moreover, since the odd vectors have an odd vector attached and the
even vectors have an even vector attached the new code is even.

For the code in (9), let v1,0 = (1, 1), v0,1 = (0, 1), w1,0 = (1, 1) and w0,1 =
(1, 0). It is a simple computation to verify that these choices satisfy all of the
conditions and that it gives the code in (9). Moreover, since the odd vectors
have an even vector attached and the even vectors have an odd vector attached
the new code is odd.

The weight enumerators follow simply from the construction. Then, since
these weight enumerators are held invariant by the MacWilliams relations any
code with these weight enumerators are formally self-dual.

In both cases, the new constructions add 2 binary coordinates and one
vector of order 2. Therefore, the new codes are of type (α + 2, β; γ + 1, δ, κ̄).
ut
Example 7 We can continue the example given in Example 2. Applying the
even Construction A we get an even Z2Z4 formally self-dual code with n = 8,
generator matrix  1 1 1 1 2 2

1 0 0 1 2 0
0 0 1 1 1 1

 ,

and weight enumerator

WC̄(x, y) = x8 + 14x4y4 + y8.

So the image of this code under the Gray map is the binary Hamming code of
length 8. Applying the odd construction we get an odd Z2Z4 formally self-dual
code with n = 8, generator matrix 1 0 1 1 2 2

1 1 0 1 2 0
0 0 1 1 1 1

 ,

and weight enumerator

WC̄(x, y) = x8 + 3x5y3 + 7x4y4 + 4x3y5 + xy7.
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Theorem 13 Let C be an even Z2Z4 formally self-dual code. The generator
matrix of C can be written as

11 1 . . . 1 2 . . . 2
10 wX wY
01
...

01

A1 B1

00
...

00

A2 B2


,

for some vector (1, 0, wX |wY ) ∈ Zα2 × Zβ4 and some binary matrices A1 and
A2, and quaternary matrices B1 and B2 if and only if the code generated bywX wY

A1 B1

A2 B2


is a Type 0 code C1 and C̄1 = C, that is C is the result of even Construction A
applied to C1.

Corollary 2 Let C be an even Z2Z4 formally self-dual code. Then, there exists
a Type 0 Z2Z4 formally self-dual code C1 with C̄1 = C, where C̄1 is the result
of even Construction A applied to C1.

Example 8 Let C be the separable Z2Z4 formally self-dual code 〈(01|)〉× 〈|2〉.
The code C̄, with the even Construction A, has generator matrix: 1 1 1 1 0

1 0 0 1 0
0 0 0 0 2

 .

Therefore, this is a case when C is separable and C̄ is also separable.
Let C be the separable Z2Z4 formally self-dual code 〈(01|)〉 × 〈(|01)〉. Using

the even Construction A we have that C̄ is generated by 1 1 1 1 2 2
0 0 0 1 0 1
1 0 0 0 0 1

 .

This code is non-separable. Therefore, we have an example of a separable code
C where using the even construction we obtain C̄ which is non-separable.

Lemma 4 Let C be a Z2Z4 formally self-dual code and C̄ the code obtained
using the even or the odd Construction A. Let v = (vX |vY ) ∈ C and (a,v) ∈ C̄,
for some a ∈ Z2

2. Then, (a,vX |0) ∈ C̄ if and only if (vX |0) ∈ C.

Proof: The result follows from the construction of C̄. ut



17

Corollary 3 Let C be a Z2Z4 formally self-dual code and C̄ the code obtained
using the even or the odd Construction A. If C is non-separable, then C̄ is
non-separable.

The next construction shows how to obtain a formally self-dual code from
a self-dual code using any self-orthogonal vector v 6∈ C with (v + v) ∈ C.

Theorem 14 (Construction B) Let C be a Z2Z4 self-dual code of type
(α, β; γ, δ;κ) and let v be a self-orthogonal vector v 6∈ C with v + v ∈ C.
Let Cv = {w | w ∈ C, [w,v] = 0} and t ∈ C such that 〈Cv, t〉 = C. Let
Cλ,µ = Cv + λt + µv, λ, µ ∈ {0, 1}. Then the code

C̃ = 〈{(0, 0, c) | c ∈ Cv} ∪ {(0, 1, c) | c ∈ C − Cv}, (1, 1,v)〉 (10)

is a formally self-dual code of type (α+ 2, β; γ̃, δ̃; κ̃) which is not self-dual.

Proof: Let C be a Z2Z4 self-dual code with v, t, Cv and Cλ,µ defined as
above.

We shall construct two codes C̃ and D̃ that are orthogonal to each other
with the same weight enumerator. Let C̃ = ∪(vλ,µ, Cλ,µ) and D̃ = ∪(wλ,µ, Cλ,µ),

where vλ,µ, wλ,µ ∈ Z2
2, for λ, µ ∈ {0, 1}. Note that C̃ is of type (α̃, β̃; γ̃, δ̃; κ̃),

where α̃ = α+ 2 and β̃ = β.
On one hand, we need [(vλ,µ, wλ′,µ′)] = −[Cλ,µ, Cλ′,µ′ ] so that the codes are

orthogonal each other. On the other hand, we need vλ,µ = λv1,0 + µv0,1 and
wλ,µ = λw1,0 + µw0,1 to ensure that the codes are additive.

Note that [Cλ,µ, Cλ′,µ′ ] = [c0 + λt + µv, c0 + λ′t + µ′v] = 2(λµ′ + λ′µ).
Consider v0,1 = (1, 1), v1,0 = (0, 1), and w0,1 = (1, 1), w1,0 = (1, 0). This gives
[(vλ,µ, Cλ,µ), (wλ′,µ′ , Cλ′,µ′)] = 0.

Hence, C̃ and D̃ are orthogonals and it is immediate that they have the
same weight enumerator. Moreover, it is easy to see that C̃ 6= D̃ so the code is
not self-dual. Hence, C̃ and D̃ are Z2Z4 formally self-dual codes that are not
self-dual. ut

Corollary 4 Let C be a Z2Z4 self-dual code with v, t and Cv as above. If G

is the generator matrix for Cv, then

(
t
G

)
is a generator matrix for C and

 1 1 v
0 1 t
0 0 G


is a generator matrix for C̃.

We shall now give a construction of Type II codes. It is in the spirit of the
construction given in [9] for self-dual binary codes but because they are Z2Z4

codes and only formally self-dual there are numerous differences. Let C be a
Type I code with n ≡ 6 (mod 8). The following lemma appears in [10] in a
binary setting but the proof can be modified to fit here.
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Lemma 5 Let C be a Type I Z2Z4 formally self-dual code with n = α + 2β
where the subcode of doubly-even vectors is linear. Then, the weights of the
vectors in C⊥0 − C are congruent to n

2 (mod 4).

Proof: In [10] they prove this result for binary codes by showing that the
weight enumerator of a Type I code has a doubly-even subcode computed as
in (11). Then, the MacWilliams relations give the weight enumerator for C⊥0 .
Then, an algebraic argument gives the result, so the same situation is true for
the present case. ut

Let C be a Type I Z2Z4 formally self-dual code with n ≡ 6 (mod 8) and let
C0 = C′ be the subcode of vectors that have doubly-even weight. We have seen
in Theorem 10 that this is either a subgroup of index 2 if it is linear or half
the code which generates the whole code. We shall assume that C0 is linear,
which we have seen does occur. Notice that (1α | 2β) ∈ C − C0 since 6 ≡ 2
(mod 4). This gives that C = 〈C0, (1α | 2β)〉. Similarly to (7), we note that

WC0(x, y) =
1

2
(WC(x, y) +WC(x, iy)). (11)

Let v be the vector such that 〈C,v〉 = C⊥0 . Define

Cλ,µ = C0 + λ(1α | 2β) + µv.

Let D = C⊥ and define Dλ,µ = D0 +λ(1α | 2β)+µw where w is the vector
such that D⊥0 = 〈D,w〉.

Lemma 6 Let C be a Type I Z2Z4 formally self-dual code where the sub-
code of doubly-even vectors is linear. Let v,w be defined as above. Then,
[v, (1α | 2β)] = [w, (1α | 2β)] = 2.

Proof: If a vector has weight 3 (mod 4) then the number of units must
be 1 (mod 2). Lemma 5 gives that the weights of v and w are 3 (mod 4). This
gives that [v, (1α | 2β)] = [w, (1α | 2β)] = 2. ut

The next construction is different from the other construction techniques
in that in certain cases we extend in the quaternary coordinates and in certain
cases we extend in the binary coordinates.

Theorem 15 (Construction C) Let C be a Type I Z2Z4 formally self-dual
code of type (α, β; γ, δ;κ) with n = α+ 2β ≡ 6 (mod 8) such that the subcode
C0 of doubly-even vectors is linear. Let v,w be defined as above.

– If [v,w] = a ∈ {1, 3} then define the code

Ĉ = 〈{(c, 0) | c ∈ C0} ∪ {(c, 2) | c ∈ C − C0}, (v, a)〉. (12)

– If [v,w] = 2 then define the code

Ĉ = 〈{(0, 0, c) | c ∈ C0} ∪ {(1, 1, c) | c ∈ C − C0}, (1, 0,v)〉. (13)
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In either case, Ĉ is a Type II Z2Z4 formally self-dual code with weight
enumerator

WĈ(x, y) = x2WC0,0(x, y) + y2WC1,0(x, y) + xyWC0,0(y, x) + xyWC1,0(y, x).

In the first case, the code is of type (α, β+ 1, γ − 1, δ+ 1, κ̂) and in the second

one it is of type (α+ 2, β, γ̂, δ̂, κ̂).

Proof: We prove this in a similar way to other building up constructions
except that we either extend the binary or quaternary coordinates depending
on the case. Namely, let Cλ,µ be defined as above and set D = C⊥ with Dλ,µ
being defined similarly. Let v,w be defined as above. Now we shall construct
the extended code Ĉ depending on the value of [v,w].

If [v,w] ∈ {1, 3}, then we define Ĉ = ∪(Cλ,µ, vλ,µ) and D̂ = ∪(Dλ,µ, wλ,µ),

where vλ,µ, wλ,µ ∈ Z4. In the case [v,w] = 2, we define Ĉ = ∪(vλ,µ, Cλ,µ)

and D̂ = ∪(wλ,µ,Dλ,µ), where vλ,µ, wλ,µ ∈ Z2
2. In both cases, we let vλ,µ =

λv1,0 + µv0,1 and wλ,µ = λw1,0 + µw0,1 so that the codes are linear by design.

We shall construct Ĉ and D̂ orthogonal, so we need

[vλ,µ, wλ′,µ′ ] = −[Cλ,µ,Dλ′,µ′ ].

By Lemma 6 we have that [v, (1α | 2β)] = [w, (1α | 2β)] = 2 and, consid-
ering c0 ∈ C0,d0 ∈ D0, we obtain

[Cλ,µ,Dλ′,µ′ ] = [c0 + λ(1α | 2β) + µv,d0 + λ′(1α | 2β) + µ′w]

= 2(λµ′ + λ′µ) + µµ′[v,w].

Therefore, Ĉ is a Type II formally self-dual code by taking v1,0 = (2), v0,1 = (1), w1,0 = (2), w0,1 = (3), if [v,w] = 1,
v1,0 = (2), v0,1 = (3), w1,0 = (2), w0,1 = (1), if [v,w] = 3,
v1,0 = (1, 1), v0,1 = (1, 0), w1,0 = (1, 1), w0,1 = (0, 1), if [v,w] = 2.

Since C is a Z2Z4-additive code of type (α, β; γ, δ;κ), then, |C| = 2γ+2δ.
Moreover, since C is Z2Z4 formally self-dual code, we have that |C| = |C⊥| =
2

n
2 , where n = α+ 2β. Therefore,

2(γ + 2δ) = α+ 2β. (14)

Similarly, if Ĉ is of type (α̂, β̂; γ̂, δ̂; κ̂), we have that

2(γ̂ + 2δ̂) = α̂+ 2β̂. (15)

In the case [v,w] = 2, we have α̂ = α+ 2 and β̂ = β. In the case [v,w] ∈
{1, 3}, we have α̂ = α, β̂ = β + 1, δ̂ = δ + 1, and therefore, γ̂ = γ − 1 by (14)
and (15). ut
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5 Lattices

We shall describe some of the lattices that can be constructed by the Gray
image of our codes.

For a binary code C define the kernel of C to be ker(C) = {v ∈ C | v+C =
C}. If C contains the all zero vector then ker(C) is a linear code. If C is a
Z2Z4 code then ker(C) = φ−1(ker(φ(C))); i.e., it is all the vectors that get
mapped to the kernel of its image.

Lemma 7 Let C be a Z2Z4 formally self-dual code. Then, ker(C) is a non-
trivial linear subcode of C.

Proof: By [21], we have that it is linear and that ker(C) = {v ∈ C | 2v ∗
w ∈ C,∀w ∈ C}. This implies that if v has order 2 then v ∈ ker(C). We know
that if a vector w ∈ C has order 4, then w + w has order 2. Hence, the kernel
is non-trivial and it is straightforward that it is linear. ut

By Lemma 7, we have that a Z2Z4 formally self-dual code C is the union of
translates of its kernel. Moreover, we have that φ(C) is the union of translates
of its kernel.

Let Rn be an n-dimensional Euclidean space with the inner product v ·w =
v1w1 + v2w2 + · · · + vnwn for v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn).
An n-dimensional lattice Λ in Rn is a free Z-module spanned by n linearly
independent vectors v1, . . . ,vn. An n by n matrix whose rows are the vectors
v1, . . . ,vn is called a generator matrix G of Λ. The fundamental volume V (Λ)
of Λ is |detG|. The dual lattice Λ∗ is given by Λ∗ = {v ∈ Rn | v · w ∈
Z for all w ∈ Λ}. A lattice Λ is integral if Λ ⊆ Λ∗. An integral lattice with
det(G) = 1 (or Λ = Λ∗) is called unimodular. If the norm v · v is an even
integer for all v ∈ Λ, then Λ is called Type II. Unimodular lattices which are
not even are called Type I.

Recall the standard construction of lattices from codes. (This code is often
called Construction A but we will avoid this since we have already labeled a
different construction with this name.) Namely, for a binary code C,

Λ(C) =
1

2
{v + 2Zn2 | v ∈ C}.

See [12],[8] for a complete description of this construction.
It is well known that if C is a binary self-dual code of Type I (Type II)

then Λ(C) is a unimodular lattice of Type I (Type II). See Theorem 2 on page
183 of [12].

The theta series of a lattice Λ is defined to be ΘΛ(z) =
∑
x∈Λ q

x·x, with
q = eπiz. It is well known (see [12], [8]) that the theta series of a Type I
lattice is an element of C[θ3(z), ∆8(z)] and that the theta series of a Type II
lattice is an element of C[E4(z), ∆24(z)]. See Theorem 7, page 187 of [12] and
Theorem 17, page 192 of [12] respectively for a complete description of these
results. Moreover, if C is a binary linear code with weight enumerator WC(x, y)
then the theta series of Λ(C) is ΘΛ(C)(z) = WC(θ3(2z)), θ2(2z)) where θ3(2z)
and θ2(2z) are Jacobi theta functions. See Theorem 3, page 183 of [12].
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Theorem 16 Let C be an even Z2Z4 formally self-dual code.

– If C is a Type I code with φ(C) self-dual then Λ(φ(C)) is a Type I lattice.
– If C is a Type II code with φ(C) self-dual then Λ(φ(C)) is a Type II lattice.
– If C is a Type I code with φ(C) linear then Λ(φ(C)) is a lattice whose theta

series is an element of C[θ3(z), ∆8(z)].
– If C is a Type II code with φ(C) linear then Λ(φ(C)) is a lattice whose theta

series is an element of C[E4(z), ∆24(z)].
– If C is a Type I code with φ(C) not linear then Λ(φ(C)) is a sphere packing

whose theta series satisfies the MacWilliams type relation in Theorem 1 of
[27].

Proof: The first two items are well known.
To prove the third, recall that the weight enumerator of a Z2Z4 Type I

code is an element of C[x2 + y2, x8 + 14x4y4 + y8]. Then, since ΘΛ(C)(z) =
WC(θ3(2z)), θ2(2z)) we have that the theta series is an element of C[θ3(z), ∆8(z)].

The fourth is similar, except that the weight enumerator is an element of
C[x8 + 14x4y4 + y8, x4y4(x4 − y4)4].

The fifth requires that the code C is the union of translates of a linear
code. We have proven in Lemma 7 that the kernel is a non-trivial subcode.
Then, the kernel of φ(C) is a non-trivial linear subcode. Hence, the image of
the binary kernel is a lattice and the sphere packing is made up of the union
of the translates of this lattice. Hence, Theorem 1 in [27] applies. ut
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4. J. Borges and J. Rifà, “A characterization of 1-perfect additive codes”, IEEE Trans.

Inform. Theory, vol. 45(5), pp. 1688-1697, 1999.
5. J. Borges, S.T. Dougherty and C. Fernández-Córdoba, “Characterization and construc-
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