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Abstract. We study the weakness of key schedules from an observa-
tion: many existing attacks use the fact that the key schedules poorly
distribute key bits in the diffusion path of round function. This reminds
us of the importance of the diffusion’s relation between key schedule and
round function. We present new cryptanalysis results by exploring such
diffusion relation and propose a new criterion for necessary key schedule
diffusion. We discuss potential attacks and summarize the causes for key
schedules without satisfying this criterion. One major cause is that over-
lapping between the diffusion of key schedule and round function leads
to information leakage of key bits. Finally, a measure to estimate our
criterion for recursive key schedules is presented.
Today designing key schedule still lacks practical and necessary princi-
ples. For a practical key schedule with limited diffusion, our work adds
more insight to its requirements and helps to maximize the security level.

1 Introduction

There is not a clear consensus on sufficient and necessary condition that a key
schedule must satisfy. Previous designers paid more attention to the cipher al-
gorithms. Key schedules have not achieved deserving attention and scrutiny as
the algorithms. Many existing designing rules for key schedule are far away from
practical guidance. Some of them are too strong to be used in practice; some
of them are too weak to be secure enough; some of them only focus on a spe-
cific kind of attack and are one-legged; some of them are empirical and lack of
sound reasons why they should be. However, more and more attacks using key
schedule weaknesses indicate that the research on key schedule design principles
is pressing. A poor key schedule can break a perfectly good cipher [34, 10, 35, 6].

Today we only know some basic principles. e.g. a key schedule should avoid
(semi-)weak keys, equivalent keys, and complementation property [11]. Asym-
metry such as round constants is also needed to prevent symmetry in the cipher
leading to slide attacks, e.g. AES, Serpent. Totally independent and random
subkeys are thought to be secure, but this requires a large number of key bit-
s. Practical key schedule generates paseudorandom subkeys at most. One type
of ”strong” key schedule is constructed using one-way function, or encryption
cipher to achieve weakly one-way. These key schedules are not adopted by n-
early all widely used block ciphers due to their low efficiency lacking obvious



necessity. Early key schedules are very simple, including following kinds: simple
permutation of master key, e.g. DES, IDEA; direct or recursive linear trans-
formation from master key. As the development of cryptanalysis technique, the
designer began to add non-linear operations, such as S-boxes, into key sched-
ules for avoiding related-key (differential) type attacks. Most of non-linear key
schedules are falling into three types. First type is similar to the SPN structure
of block cipher, such as AES. A typical case of second type is Serpent, which
goes through a number of S-boxes after linear transformation. The third type
usually uses cipher primitives to generate prekeys–this ensures a certain degree
of confusion and diffusion, then transform prekeys into subkeys linearly. These
key schedules are invertible to eliminate equivalent keys, which may appear in a
one-way situation [17].
Our Contribution. In this paper, we observe that most of the attacks exploit-
ing key schedule weakness are based on the fact that the key bits are insufficiently
distributed in the diffusion of round function, and give examples to illustrate this
fact. From this observation, we point out that the relation between the diffu-
sion of cipher function and the diffusion of key schedule will affect the degree of
encryption process’s dependency on key bits. We discuss this relation in terms
of the definitions of calculation dependency path and actual key information. A
criterion for key schedule is proposed which is ignored by most designers now.
Potential attacks when our criterion is not satisfied are discussed and causes are
summarized. Moreover, by examining our criterion on other ciphers, new crypt-
analysis results are presented, including: meet-in-the-middle attacks on 40-round
SHACAL-2 and 25-round XTEA; improving a meet-in-the-middle attack on Ser-
pent with lower time complexity and on AES with lower memory complexity;
minor improvements for Safer++ and MISTY1. Finally, we present a way to
measure our criterion for recursive key schedules.
Since most practical key schedules need high efficiency, their linear diffusion are
limited and cannot achieve ”completeness” as in most round functions. How to
maximize the security level in this situation is meaningful. Our criterion con-
centrates on the linear layer of key schedules, and it is a necessary requirement
whatever the non-linear components are.

2 Previous Work and Our Motivation

This section introduces previous design rules for key schedules. We highlight the
work relating with linear transformation, and discuss what they lack of.

In [15], the author summarized the following purpose: ”to present each key
bit to a message input, and to an autoclave input, of each S-box as quickly as
possible”. By generating different permutations for DES key schedule, the author
tested ciphertext dependence on key bits [31], and developed new principles: each
key bit is used as input to each S-box in turn; no bit is used as autoclave inputs
or excluded on successive rounds. From these empirical principles we can only
derive that key bits should be uniformly used. More detailed effects caused by
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key schedules with different permutations and potential attacks caused by key
schedules without satisfying above principles are not mentioned.

In [2], the author pointed out that all subkeys should be equally good, and
defined a so-called ”strong key schedule” with this property: it is ”hard” to find
any remaining key bits from any known key bits. The author then proposed a
simple ”strong key schedule” using encryption functions.

In [13], the author discovered that several practical attacks utilize the lin-
ear relation between subkey bits in different rounds, which avoids considerable
amount of work. So he suggested this relation be practically intractable, and
proposed two necessary properties: equal effect for all input key bits and weakly
one-way. For these properties the author constructed a key schedule with n-
folding algorithm and DES(3 single DES and 1 triple-DES), which slows down
key setup obviously.

In [3] the author recommended maximizing avalanche in the subkeys. If pos-
sible every key bit should affect nearly every round in different ways. More
specific principles are given in [4], including: hard to invert; no equivalent keys
and collision-freedom–standard hash function properties; no dead spots; equally
powerful effect of every key bit on the subkeys.

In [14], the author indicated that knowledge of one subkey provides no leakage
of information about any other subkeys. Each subkey is generated by inputting
all master key bits to a one-way function, ensuring the avalanche effect and the
entropy.

In [11], the author adopted a invertible and recursive structure to design AES
key schedule. He claimed that this structure must possess low implementation
cost, sufficient diffusion and asymmetry.

In [12], the author stressed on one-wayness and minimal mutual information
between all subkey bits and master key bits(using master key bits directly in
subkeys leads to the worst case), which can be obtained by one-wayness. He
measured one-wayness with Shannon’s bit confusion and bit diffusion with sta-
tistical tests.

Above work can be summarized into two problems: no bit leakage and max-
imizing avalanche. First, key schedules should have no bit leakage in the level
of ”round”, or of the whole key schedule. The former means they only consider
leakage between different rounds of subkeys, or between some rounds of subkeys
and master keys. When an recursive key schedule is invertible or when subkeys
are direct transformation from master key, above leakage cannot be avoided.
The latter means that no subkey bits can be derived easily whatever key knowl-
edge is obtained. Many recent attacks show that the ”round” consideration is
not enough for security, while considering the whole key schedule is too strong
with no attack supporting its necessity. So what kinds of leakage should a key
schedule avoid? Moreover, the obscure understanding for the pattern of leakage
leads to a recommendation of using one-way function, which has unpractical
efficiency and existence of equivalent keys. Even the irreversibility of one-way
function eliminates the leakage, it makes detecting equivalent keys difficult. For
example, [12] applied AES round function to its key schedule for one-wayness,
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and this key schedule is proved to exist 2271 equivalent key pairs [17]. Second,
maximizing avalanche effect reminds us of the importance of the diffusion in a
key schedule. The AES designer claimed that his key schedule can achieve suf-
ficient diffusion by taking a recursive structure. However, this key schedule has
caused many attacks due to its slow diffusion, which is not the original intention
of the designer. The definition of ”sufficient” or ”slow” for diffusion is unclear
and just intuitive. So what requirements should the diffusion of key schedules
satisfy? We consider above two problems together by relating the key schedule’s
diffusion with the cipher function’s diffusion to propose a more detailed leakage
pattern. Through our specific requirements, a key schedule can be designed more
targeted.

3 Our Definitions

First, we improve a 6-round meet-in-the-middle attack [5] on Serpent [32] for
explaining our definitions. The plaintext is B0 and the ciphertext is B6. Bi is
the input of round i, Xi is the input of S-box layer in round i, and Y i is the
input of linear layer in round i. The bit to meet is X3

3,7(at 3’th row, 7’th column
of X3). Fig. 1 shows the computation flow from the plaintext. The grey boxes
represent the internal bits needed to compute in each round, and it is easy to
know which key bits are involved in this computation.

The amount of the involved key is 237 bits by Fig. 1. However, according to
the linear transformation in the key schedule, the grey 8 bits in K2 can derive
from the gray bits in K0 and K1. So actually the information of involved key
is 229 bits, with a possible time complexity reduction. We check the decryption
flow, and exchange the order of linear transform L in round i-1 and key XOR
operation in round i. Instead of guessing K4, and K5, we guess K

′

4 and K
′

5,
K

′

i = L−1(Ki). We need to guess 4 bits in K
′

4, 48 bits in K
′

5 and 124 bits in
K6. The total is 176 bits. So the total complexity depends on the computation
from plaintext. The time complexity of original attack is 2247, while our time
complexity is 2233 with 25 data complexity. The improvement of our attack is
mainly based on two facts. First is the existence of equivalent key steming from
the characteristics of key-alternating structure, and this has been used in many
other attacks such as on AES and ARIA. We stress on the second fact that the
combined action of the key schedule’s diffusion and the round function’s diffusion
makes the actual involved key bits less than their expected number. The effect
of round function diffusion on the key schedule is not neglectable. One measure
for diffusion is the completeness property, which deals with the dependency of
each output bit on the input bits. So for the ”incomplete” diffusion, we focus on
the dependency of output bits on input bits and give the following definitions.

Definition 1. Calculation Dependency Path: X is a m-bit intermediate val-
ue. According to the cipher round function, there is a calculation path for X0:
X0 = f1(X1,K1) = f1(f2(X2,K2),K1) = f1(f2(f3(X3,K3),K2),K1) = ..... =
f1(...(fs(Xs,Ks),Ks−1), ...,K1), Like Fig. 2.
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Fig. 1. The left is the 4-round calculation path of Serpent. The right is the correspond-
ing 4-round involved subkeys.

5



Fig. 2. A calculation dependency path. The grey parts are Xi. Note that the direction is
considered as ”backward”, opposite to the encryption direction. Similarly, a ”forward”
calculation dependency path corresponding to decryption process is opposite to the
decryption direction.

fi is a sub-function depending on the cipher structure, where i = 1, ..., s. Xi is
the set of input bits for fi and Xi−1 is the set of output bits, i.e. the calculation
of Xi−1 is dependent on Xi and Ki. X → X1 → X2 → ..... → Xs is called a
calculation dependency path.

Definition 2. Key Dependency Path: The subkey bits involved in a calcula-
tion dependency path are denoted as a key dependency path. That is, K1,K2, ....,Ks.

Definition 3. Actual Key Information(AKI): According to a key schedule,
the minimal amount of key bits which can easily derive all subkey bits in a key
dependency path is called actual key information.

The term ”easily” depends on specific attack scenarios. We start the analysis
from an output and trace its inputs successively, so the direction of path in Fig. 2
is considered as ”backward”, opposite to the encryption direction. Similarly, a
”forward” calculation dependency path corresponding to decryption process is
opposite to the decryption direction. The output can be one bit, or any size no
larger than block size, depending on specific attack scenarios. A typical calcula-
tion dependency path is a one-round cipher involving one-round subkey. Obvi-
ously the diffusion layer mainly determines the related intermediate values in a
path, since the non-linear module only has a limited range of diffusion(e.g. 4, 8,
or 16-bit). Note that both calculation dependency path and its key dependency
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path depend on the diffusion of round function, and AKI is determined by the
diffusion of key schedule. Ciphers with different structures have different forms
of sub-functions. Take SPN structure as an example, the sub-function fi can be
easily known from the entries of linear transformation matrix corresponding to
Xi−1. Look at Fig. 1, the grey boxes in the left show a calculation dependency
path, and in the right show a key dependency path. X0 is X3

3,7, and Xs is B0.
The AKI is 229 bits of the linear map of master key.

In a combination of two or more paths, the definition of AKI still holds.

4 Existing Attacks Using Weakness of Key Schedules

One serious weakness of key schedules used by current attacks is the existence
of calculation dependency paths missing some bits of master key(’s map). The
following examples illustrate how this insufficient AKI plays an important role
in an attack1.

4.1 IDEA

IDEA [26] is a 64-bit, 8.5-round block cipher with 128-bit keys. The input of
round i is denoted by Xi = (Xi

1, Xi
2, Xi

3, Xi
4). The output of KA layer in round

i is Y i = (Y i1 , Y i2 , Y i3 , Y i4 ). The subkey of round i is Zi = (Zi1, Zi2, Zi3, Zi4, Zi5,
Zi6). pi, qi, si, ti, ui are intermediate values of MA layer in round i.

Recently, one of the most important cryptanalysis on IDEA is a meet-in-the-
middle attack combining with the keyless Biryukov-Demirci relation [6]. The
6-round attack takes use of the following two calculation dependency paths.
Backward: s4 → p4 → (Y 4

1 ,Y 4
3 ) → (X4

1 , X4
3 ) → (Y 3

1 , t3, Y 3
2 , u3) → (Y 3

1 , Y 3
2 ,

p3, q3) → (Y 3
1 , Y 3

2 , Y 3
3 , Y 3

4 ) → (X3
1 , X3

2 , X3
3 , X3

4 ) → (Y 2
1 , Y 2

2 , Y 2
3 , Y 2

4 ). The
key dependency path are: Z4

1 , Z4
3 , Z4

5 , Z3
1 , Z3

2 , Z3
3 , Z3

4 , Z3
5 , Z3

6 , Z2
5 , Z2

6 , with
112-bit AKI(the 50-33 bits of the master key). Forward: s5 → p5 → (X6

1 , X6
2 )→

(Y 6
1 , Y 6

2 ) → (X7
1 , X7

2 , X7
3 , X7

4 ) → (X8
1 , X8

2 , X8
3 , X8

4 ) → (Y 8
1 , Y 8

2 , Y 8
3 , Y 8

4 ). The
involved subkeys are: Z5

5 , Z
6
1 , Z

6
2 , Z6

5 , Z
6
6 , Z

7
1 , Z

7
2 , Z

7
3 , Z

7
4 , Z

7
5 , Z

7
6 , Z

8
1 , Z

8
2 , Z

8
3 , Z

8
4 ,

with 103-bit AKI(the 125-99 bits of the master key). Above AKI are both less
than master key size(128-bit), which make a meet-in-the-middle attack possible.
The leaked information between these two key dependency paths further reduces
memory complexity[6].

Moreover, above 6-round attack is extended into 7.5-round with splice-and-
cut technique, using another path [6]: (X2

1 , X2
2 , Y 2

3 , Y 2
4 ) → (X1

1 , X1
2 , X1

3 , X1
4 ).

The combined AKI of this path(0-95 bits of the master key) and above forward
path is only 103 bits, so the top and bottom rounds can be connected to target
more rounds. Above backward path is modified as s4 → (X2

1 , X2
2 , Y 2

3 , Y 2
4 ),

without changing its corresponding AKI.

1 In the examples of this paper, we take the same notations as in the paper of original
attacks.
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Finally, [6] proposed the distributive technique for speeding up exhaustive
search, which save the searching complexity for the missing key bits in a calcu-
lation dependency path. The path s3 → p3 → (Y 3

1 , Y 3
3 ) → (X3

1 , X3
3 ) → (X2

1 ,
X2

2 , X2
3 , X2

4 ) → (X1
1 , Y 1

2 , X1
3 , X1

4 ) misses 16-24 bits of the master key, so the
attacker can perform operations in this path without guessing these 9 bits, and
then perform the rest operations for all of the key guesses. This technique still
needs to go over all the possible keys, but performs less than a full encryption
for each key.

4.2 KASUMI

KASUMI [27] is a 64-bit, 8-round block cipher with 128-bit keys. The plaintext
P = L0||R0. Let Li and Bi be the input and output of i + 1 round function
respectively. X[i1,...,i2] denotes the (i2 - i1 + 1)-bit data from i1’th bit to i2’th
bit of X. Each round key is made up of KLi, KOi and KIi. Here, KLi = (KLi,1,
KLi,2), KOi = (KOi,1, KOi,2, KOi,3) and KIi = (KIi,1, KIi,2, KIi,3), which
are linearly derived from the master key K = (k1, k2,...,k8).

In [7], the author proposed a meet-in-the-middle attack using initial structure
and partial matching. The construction of the initial structure is based on a for-
ward calculation dependency path: R0[16, ..., 31]→ (L1[16, ..., 31], B0[16, ..., 31])
→ (L0, B1). In addition, when L0 is 0x0000ffff , the output of FL has nothing
to do with KL1. So the involved subkeys are: KO1, KI1, KL2, KI2,2, KO2,2,
KI2,3, KO2,3 containing 7 16-bit words of master key except k3. Similarly, choose
L2 as 0x0000ffff , the output of FL has nothing to do with KL3, so the back-
ward path L3[16, ..., 31] → (B2[16, ..., 31], L1[16, ..., 31]) → (L2, B1) also exclude
k3. These two paths bring about a initial structure separating k3 in the process
of searching the total key.

Moreover, using the distributive technique in [6] also can get a factor of
almost 2 speedups for exhaustive search on KASUMI. Due to the absence of k4
and k8 in the top and bottom rounds of paths, the part of encryption performed
until the full key guess is thus slightly more than 4 rounds.

4.3 MISTY1

8-round MISTY1 [28] has a more complicate key schedule than KASUMI while
other components and structure are similar. However, although this key schedule
adds non-linear S-boxes, its diffusion still exists flaws. In [8] the author extended
an integral attack to 6-round MISTY1 by applying a weakness of the key sched-
ule. We show this weakness also comes from a calculation dependency path
with insufficient AKI. This example illustrates more clearly about the concept
of sub-function in Definition 1 due to the structure of MISTY1. FOi denotes
FO function in round i, and it includes FIi,1, FIi,2, FIi,3, and two key XOR
operations. ILi||IRi is the 32-bit input of FOi. Each FI is keyed by AKOi,j
and AKIi,j , where j = 1, 2, 3. OLi||ORi is the output of FOi, which is derived
from (MLi ⊕ AKOi,4) || (MRi ⊕ AKOi,5). MLi || MRi is the output after
FIi,3. Before each odd round and after the last round, there are additional two
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FL functions. KLi,1 and KLi,2 are subkeys in FLi. The master key K = (K1,

K2,...,K8), and another 8 16-bit words are K
′

i = FIKi+1(Ki).
This attack starts before the FL3, FL4 layer and ends at the end of the

cipher. The plaintext is P (1..32) || P (33..64) The beginning value X0 is the input
of FI4,1. X(i1..i2) denotes the (i2 - i1 + 1)-bit data from i1’th bit to i2’th bit of
X. D(1..32) is the output of FL3, D(33..64) is the output of FL4.
X0 = AKO4,1

⊕
IL4 = AKO4,1

⊕
D(33..48)

⊕
OL3

= AKO4,1

⊕
D(33..48)

⊕
ML3

⊕
AKO3,4

D(33..48) = FLKL4,1,KL4,2
(P (33..64))

ML3 = FIAKI3,1(AKO3,1

⊕
IL3)

⊕
IR3

⊕
FIAKI3,2(AKO3,2

⊕
IR3)

IL3 = FLKL3,1,KL3,2
(P (1..32))

IR3 = FLKL3,1(P (1..32))

So the calculation dependency path is X0 → (D(33..48), ML3) → (D(33..48),
IL3, IR3)→ (P (1..32), P (33..64)), with key dependency path AKO4,1

⊕
AKO3,4,

AKI3,1, AKO3,1, AKI3,2, AKO3,2, KL3,1, KL3,2, KL4,1, KL4,2. Due to the bits
leakage of the key schedule, when KL3,2 and KL4,1 have been guessed, AKI3,1,
AKI3,2 is also known. This diminished AKI makes the attack successful. Another
path used in [8] begins from the input of FI4,2.

4.4 Camellia

In [18], the author gave a few observations on Camellia’s key schedule [29], which
can also be summarized as key information leakage in the calculation dependency
paths. Take Camellia-128 as an example, the AKI of the combination of (K8,
K9,2) and (K16,2, K17) is only 82 bits(Ki is the subkey of round function F
in round i, Ki,j is the j’th byte of Ki), which makes a 4 rounds extension on
a 6-round impossible differentials feasible. The same situation also occurs in
Camellia-192 and Camellia-256.

5 New Attacks Using Weakness of Key Schedules

By checking calculation dependency paths, we find new meet-in-the-middle at-
tacks for 40-round SHACAL-2 and 25-round XTEA. In addition to Serpent men-
tioned in Section 3, we also improve previous attacks on AES and Safer++.

From now on, X[i1] denotes the i1’th bit of X, and X[i1,...,i2] denotes the (i2
- i1 + 1)-bit data from i1’th bit to i2’th bit of X.

5.1 SHACAL-2

SHACAL-2 [21] is composed of 64 rounds using a variable key length up to 512
bits. A 256-bit plaintext is divided into eight 32-bit words A, B, C, D, E, F, G,
H. Pi is the input of round i, and Pi+1 is the output of round i.
Pi = Ai || Bi || Ci || Di || Ei || Fi || Gi || Hi. The best single-key attacks
for SHACAL-2 are differential-linear attack on 32-round [19] and differential-
nonlinear attack on 33-round [20]. Our attack is for 0-39 rounds with 512-bit
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keys. The plaintext is P0, and the ciphertext is P40. We find a forward and a
backward calculation dependency paths with insufficient AKI both starting from
H20[0]. See Table. 1 and Table. 2.

Table 1. The Backward Calculation Dependency Path and Its Key Dependency Path

Round Involved Intermediate Bits Involved Key Bits

H20[0] no
19 G19[0] no
18 F18[0] no
17 E17[0] no
16 (D16[0], E16[0], E16[6], D16[11], E16[25], F16[0], G16[0], H16[0]) K16[0]
15 (C15[0], D15[0, ..., 25], E15, F15[0, ..., 25], G15[0, ..., 25], H15[0, ..., 25]) K15[0, ..., 25]
14 (B14[0], C14[0, ..., 25], D14, E14, F14, G14, H14) K14

13 (A13[0], B13[0, ..., 25], C13, D13, E13, F13, G13, H13) K13

12 (A12[0, ..., 25], B12, C12, D12, E12, F12, G12, H12) K12

11 P11 K11

10 P10 K10

9 P9 K9

8 P8 K8

7 P7 K7

6 P6 K6

5 P5 K5

4 P4 K4

3 P3 K3

2 P2 K2

1 P1 K1

0 P0 K0

The AKI of the backward path is 507 bits. There are totally 529 bits in the
forward path which should have cover all the 512 bits master key. However, the
leakage reduce the AKI to only 508 bits. With the knowledge of K24[0, ..., 25],
K25[0, ..., 25], K26, ...,K39, once we guess K24[26, ..., 31], according to the key
schedule K23[0, ..., 25] and K22[0] can be derived.

With above two paths we can mount a basic meet-in-the-middle attack by
checking if H20[0] computed from plaintexts and ciphertexts match. We choose
4 plaintexts and their ciphertexts. The time complexity for meet-in-the-middle
phase is 2508 + 2509, and for searching phase is 2508, totally 2510.

SHACAL-2 was recommended to be one of the NESSIE selections, while
SHACAL-1 was not selected due to some concerns of its key schedule. However,
our analysis exposes that the key schedule of SHACAL-2 also has flaws.
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Table 2. The Forward Calculation Dependency Path and Its Key Dependency Path

Round Involved Intermediate Bits Involved Key Bits

20 H20[0] K20[0]

21 (A21[0], B21[0], B21[2], B21[13], B21[22], C21[0], D21[0], K21[0]
F21[0], F21[6], F21[11], F21[25], G21[0], H21[0])

22 (A22[0], B22[0], B22[2], B22[13], B22[22], C22[0], C22[2], C22[13], K22[0]
C22[22], D22[0], E22[0], F22[0], F22[6], F22[11], F22[25], G22[0],

G22[6], G22[11], G22[25], H22[0])

23 (A23[0], B23[0], B23[2], B23[13], B23[22], C23[0], K23[0, ..., 25]
C23[2], C23[13], C23[22], D23[0], D23[2], D23[13],
D23[22], E23[0], F23[0], F23[6], F23[11], F23[25],
G23[0], G23[6], G23[11], G23[25], H23[0], H23[6],

H23[11], H23[25])

24 (A24[0, ..., 25], B24, C24[0, ..., 25], D24[0, ..., 25], K24[0, ..., 25]
E24[0, ..., 22], F24, G24[0, ..., 25], H24[0, ..., 25])

25 (A25[0, ..., 25], B25, C25, D25[0, ..., 25], K25[0, ..., 25]
E25[0, ..., 25], F25, G25, H25[0, ..., 25])

26 (A26[0, ..., 25], B26, C26, D26, E26[0, ..., 25], F26, G26, H26) K26

27 P27 K27

28 P28 K28

29 P29 K29

30 P30 K30

31 P31 K31

32 P32 K32

33 P33 K33

34 P34 K34

35 P35 K35

36 P36 K36

37 P37 K37

38 P38 K38

39 P39 K39

P40
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5.2 XTEA

XTEA [30] has 64-bit block size and 128-bit key size, which is extended from
TEA [36]. The best 25-round result is a three-subset meet-in-the-middle with
9 known plaintexts and 2120.4 XTEA computations [37]. Other recent results
include [9, 22]. Our 25-round attack has similar complexity with [37] but is much
simpler. The attacks in [9, 37] and ours all make use of calculation dependency
paths without enough AKI.

Li||Ri and Li+1||Ri+1 is the input and output of round i. The master key is
made of four 32-bit words K0, K1, K2 and K3. Our attack is from round 23 to
round 47, with the plaintext L23||R23 and the ciphertext L48||R48. We compute
L36[0] from the plaintexts and the ciphertexts, and check if they match.

We trace those bits needed to know during the calculation for L36[0] from
plaintext. In order to compute L36[0], we need to compute R35[0]; In order
to compute R35[0], we need to compute L34[0], R34[0], R34[5], and so on. This
path is illustrated in Appendix 1. By examining the key schedule, we find that
K3[21, ..., 31] of master key are not used. Similarly, K0[21, ..., 31] are not used
for computing L36[0] from ciphertext. The attack is as follows:

Algorithm 5.1: A meet-in-the-middle attack for 25-round XTEA(P )

for each guess of K0[0, .., 20],K1,K2,K3[0, .., 20]

do


for each guess of K0[21, ..., 31] compute Li36[0] from pi, i = 0, .., 7,
store these Li36[0] in a hash table
for each guess of K3[21, ..., 31] compute Li36[0] from ci, i = 0, .., 7,
check if there is a match in the table
if there is a match in the table, choose as a candidate key.

Exhaustively search the candidate keys.

The time complexity of the meet-in-the-middle phase needs 2106+11+3 = 2120

encryption. There are 2128−8 = 2120 candidate keys left, so the searching phase
needs 2120 encryption. The total time complexity is 2121, and the data complexity
is 8.

Both XTEA and SHACAL-2 have the following common attributes leading
to calculation dependency paths that can be used for attacking: the size of one
round subkey is much less than the master key size, and the diffusion of cipher
round function is slow for distributing key bits. If the key schedule’s diffusion
overlaps the diffusion of cipher round function to some extent, the actual number
of distributed key bits further decreases. Above two attacks are mainly based
on observations of key schedules, without other complicated cryptanalysis tech-
niques. The lesson learned is that in a calculation path of cipher function, the
key schedule should involve key bits outside this path as quickly as possible.
Moreover, if there are any kinds of available relations between existing paths,
the block cipher will be more unsafe.
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5.3 AES

AES has 128-bit block size and supports three key sizes: 128, 192, and 256 bits.
It is byte-oriented, and the state is organized as a 4 × 4 table with one-byte

entries. K(r) and C(r) denote the subkey and the ciphertext of r’th round. ˆK(r)

= MixColumns−1(K(r)). Xi,j denotes the byte of X at row i, column j.

Two calculation dependency paths both starting from C
(5)
1,1 are used. The

forward is: C
(5)
1,1 → (C

(6)
1,1 , C

(6)
2,1 , C

(6)
3,1 , C

(6)
4,1)→ C(7) → C(8), with key dependency

path denoted as A:
ˆ

K
(6)
1,1 ,

ˆ
K

(7)
1,1 ,

ˆ
K

(7)
2,4 ,

ˆ
K

(7)
3,3 ,

ˆ
C

(7)
4,2 , K(8). The backward is: C

(5)
1,1

→ (C
(4)
1,1 , C

(4)
2,2 , C

(4)
3,3 , C

(4)
4,4) → (M

(4)
1,1 , M

(4)
2,2 , M

(4)
3,3 , M

(4)
4,4 )(M is the value after

MixColumn), with key dependency path denoted as B: K
(4)
1,1 , K

(4)
2,2 , K

(4)
3,3 , K

(4)
4,4 ,

K
(5)
1,1 . Another key path denoted as C is: K

(0)
1,1 , K

(0)
2,2 , K

(0)
3,3 , K

(0)
4,4 , K

(1)
1,1 .

In [23], the author described a meet-in-the-middle attack on 8-round AES-256

with two parts. First is precomputing all possible mappings of C
(1)
1,1 → C

(5)
1,1 .

Then search key bytes in A and C to choose and encrypt a suitable plaintext
set, and do a partial decryption on the ciphertext set.

Algorithm 5.2: A meet-in-the-middle attack for 8-round AES-256(P )

for each guess of K
(4)
3,3 ,K

(4)
4,4 ,K

(5)
1,1

do



for each guess of c0, .., c21

do

{
precompute f

c0,..,c21,K
(4)
3,3,K

(4)
4,4,K

(5)
1,1

(x), x = 0, ..., 255

Store the 2176 256 bytes sequence in a hash table

for each guess of key bytes in path C

do



Partially encrypt the set of 232 plaintexts to get the intermediate values of C(1)

Choose 256 plaintexts that C
(1)
1,1 takes every possible value and the other bytes fixed

Sort the 256 plaintexts chosen above indexed by their values of C
(1)
1,1

for each guess of K
(4)
1,3 ,K

(4)
2,3 ,K

(4)
2,4 ,K

(4)
3,4 ,K

(4)
4,3 ,

column 2 of K(6), column 1 of K(8),
ˆ

K
(6)
1,1 ,

ˆ
K

(7)
1,1 ,

ˆ
K

(7)
2,4 ,

ˆ
K

(7)
3,3 ,

ˆ
K

(7)
4,2

do



Deduce K
(4)
1,4 from K

(5)
1,1 ,K

(4)
1,3 , andK

(1)
1,1

Deduce column 2, 3, 4 of K(8)

Partially decrypt the ciphertexts corresponding to the 256 plaintexts

to get the sequence of the intermediate values of C
(5)
1,1 .

If this sequence matches one of the 2176 sequences in the hash table,
record the key as a candidate, otherwise, continue with another guess.

The precomputation needs to search subkeys in path B and other 20 param-

eters, 25 bytes totally: c0,..,c21, K
(4)
3,3 , K

(4)
4,4 , K

(5)
1,1 .

We improve the original attack by observing that the AKI of combination of A,
B and C is less than the total number of bytes involved, due to the leaked key
bytes between A and B. By the key schedule of AES-256, knowledge of columns
1, 2, 3, 4 of the subkey K(8)(belongs to key path A) allows to deduce columns 2,
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3, 4 of the subkey K(6), columns 3, 4 of the subkey K(4), column 4 of K(2). So

K
(4)
3,3 , K

(4)
4,4 are leaked. Also, K

(3)
1,1 can derive from the knowledge of K

(1)
1,1(belongs

to key path C) and K
(2)
1,4 , then K

(5)
1,1 is also leaked from K

(3)
1,1 and K

(4)
1,4 .

By above observation we can reduce the memory complexity by a factor of
224 with a similar method mentioned in [6]. We rearrange the key bytes in the
key search phase.
Choose a set of 232 plaintexts with bytes on the diagonal taking all possible
values and the other 12 bytes fixed. Obtain the corresponding ciphertexts. The
attack is Algorithm 5.2.
The memory complexity of this attack is 2176 × 256 = 2184 bytes, while the
original attack is at least 2208 bytes. With a time-memory tradeoff, the original
attack can reduce the memory complexity at the cost of increasing the time
complexity. Our attack obtains a lower memory complexity without changing
the time complexity–2208 encryptions. This is not the best result for 8-round
AES-256, but can remind us of examining the key schedule more carefully.

5.4 Safer++

The author in [25] proposed integral cryptanalysis on 4-round Safer++256 [33].
We find that a slight modification for this attack can bring another one round

extension. K2r−1 and K2r are subkeys in round r. K
(p)
i denotes the p’th byte

of Ki. A forward key dependency path is as follows: K
(1)
7 , K

(1)
8 , K

(5)
9 , K

(6)
9 ,

K
(7)
9 , K

(8)
9 , K

(9)
9 , K

(12)
9 , K

(5)
10 , K

(6)
10 , K

(7)
10 , K

(8)
10 , K

(9)
10 , K

(12)
10 . Another key path

is: K
(3)
1 , K

(4)
1 , K

(6)
1 , K

(7)
1 , K

(9)
1 , K

(10)
1 , K

(13)
1 , K

(16)
1 , K

(3)
2 , K

(4)
2 , K

(6)
2 , K

(7)
2 ,

K
(9)
2 , K

(10)
2 , K

(13)
2 , K

(16)
2 . Although the combination of these two paths relates

to 30 bytes subkeys, its AKI is only 22 bytes. This makes the 5-round attack
successful: 2-round integral property and 3 rounds external extension. Unlike the
original attack, we only check whether one byte is balanced and this is enough
to be a non-trivial attack.

6 Our Criterion and Further Discussion

Considering above attacks, we propose a criterion for the design of key schedule:
A key schedule should have no r-round key dependency path with AKI less than
the size of master key. r is dependent on specific security standards for different
block ciphers. For a high security level, r should be as small as possible.
We discuss the unsafe consequences when our criterion is not satisfied:

– If a backward/forward calculation dependency path of length r with insuf-
ficient AKI exists, then there is a r-round extension for an attack with a
proper data complexity. e.g. the attacks in [24] and in Section 4.3.

– If a backward calculation dependency path of length r1 and a forward calcu-
lation dependency path of length r2 with insufficient AKI and certain kind
of connection exist, then there is a meet-in-the-middle attack. e.g. the at-
tacks in Section 5.1, 5.2. Memory complexity of this attack can be further
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reduced when there is leakage in their key dependency paths. e.g. the attack
in Section 5.3. The simplest connection is that the outputs of these two paths
are the same one, which results in a basic meet-in-the-middle attack. If the
connection is of r3 length, there is a (r1+r2+r3)-round attack.

– If the total AKI of the combination of paths at the top and bottom is insuf-
ficient, a basic splice-and-cut technique is feasible. e.g. the attack in [6].

– If there are calculation dependency paths with insufficient AKI in successive
sub-functions, a construction for initial structure is feasible. e.g. the attack
in Section 4.2.

– When a calculation dependency path has been used in an attack, the exis-
tence of missing key bits in segments of this path will further reduce the time
complexity. That is, we generalize ”The distributive technique” mentioned
in [6] to other attack scenarios—the original technique is just as an opti-
mization for exhaustive search. We divide a path into consecutive segments
and for some segments the search computation for the missing key bits is
saved. For example, we can reduce the time complexity of 6-round attack on
MISTY1 in [8] at least by a factor of 2. We separate K

′

4 and K6 from the
key guessing process, since they are only used in AKI3,2, KL4,1 and KL4,2.
That is, when we compute D(33..48) from the plaintexts, we needn’t to guess
K2, K

′

8, K3, K5. The attacks for XTEA in [9] and Section 5.2 can also be
slightly improved by this technique. The longer the segment is and the less
AKI the segment has, the more time complexity can be reduced. Although
improvement brought by this technique is very minor, it still implies a po-
tential defect for key schedules. Even it is uncertain whether there will be
any kinds of disastrous attacks based on this defect, obviously many existing
attacks are easier than what they were considered before.

There are three major causes for existing key schedules without satisfying
our criterion. In order to explain more clearly, we give 3-round examples which
are simple but typical.

– The subkey bits are poorly used and distributed by the round function,
especially when the subkey size is much smaller than the block size and
master key size. For the 3-round path in the left of Fig. 3, it is obvious that
only part of sk1 is involved, while sk2 and sk3 are not used and distributed.

– The subkeys do not increase the avalanche effect of the master key(e.g. simple
permutation), so key dependency paths probably contain a small amount of
key information. See the right of Fig. 3, in this situation the first cause is
eliminated and each intermediate value is keyed. Suppose that the master
key is (K1, K2,...,Kk), sk1,1 = K2, sk1,2 = K1, sk1,3 = K5, sk1,4 = K3, sk1,5
= K8, sk2,1 = K3, sk2,2 = K5, sk2,3 = K8, sk3,1 = K1. Although there are
9 sub-blocks of subkeys in this path, their AKI is only 5 sub-blocks.

– The key information leakage decreases the AKI. In our context, the leakage
means key bits that can be easily derived from the AKI in a key dependency
path. Leakage usually occurs when the patterns of diffusion in the cipher
round function and in the key schedule are overlapping. Also see the right
of Fig. 3, in this situation the subkeys are not simple permutation from the
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master key and have some avalanche effect. Suppose that sk2,1 = sk1,1 ⊕
sk1,2 ⊕ sk1,3, sk2,2 = sk1,2 ⊕ sk1,4 ⊕ sk1,5, sk3,1 = sk1,5 ⊕ sk2,1 ⊕ sk2,3,
the AKI is 6 sub-blocks.

Fig. 3. Examples corresponding to different causes. ski means the subkey in round i.
ski,j means the j’th sub-block of ski which is involved in the calculation dependency
path.

According to above causes, we suggest more detailed requirements for a key
schedule. Every forward and backward key dependency path as well as their
combinations should be carefully examined.

– The subkey size is no small than the block size and master key size, which
makes sure every intermediate value in a path get keyed.

– More and more key bits should be involved with each transformation in the
key schedule. A simple permutation, e.g. shift or rotation, is not preferred.
Binary linear operations such as XOR and modulo addition are better.

– The diffusion path in the key schedule should be totally inconsistent with the
diffusion in round function. That is, any subkey bits cannot be determined
by the subkey bits that are in the same key dependency path.

7 Measure for Recursive Key Schedule

In this section we consider the requirements for linear transformation of recursive
key schedules. A recursive key schedule means that the generation of current
subkey is based on the value of previous subkeys. We believe that a recursive
key schedule possesses more advantages in the design of block cipher: generating
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subkeys on-the-fly without precomputaion, which is especially requisite in hash
mode application; increasing the avalanche effect of key bits round-by-round;
security measure can be more normative and systematic. Recursive key schedules
can help to control the speed and pattern of key bits diffusion by the iteration.
We only need to investigate one round transformation and the results can extend
to any rounds. If each subkey directly transforms from the master key without
relations with its neighbour rounds, the measure is hard since we need to check
key dependency paths from each round.

Consider the three causes we summarized in Section 6. The first cause is main-
ly due to the structure of block cipher and has nothing to do with key schedule’s
diffusion. Also, if the linear operations in recursive key schedules cannot involve
more bits to increase the diffusion after each round (e.g, shift, rotation), we
can analyze these simple key schedules directly and eliminate the second cause.
Thus we only consider those recursive linear transformations with operations in-
troducing more diffusion(e.g, XOR and modulo addition), and focus on avoiding
the third cause: the diffusion of key schedule does not result in key information
leakage in the diffusion path of round cipher. Note that this is only a necessary
condition for a secure key schedule.

Usually linear transformations of both block cipher and key schedule can
be represented as follows: LT → yj =

∑
ai,jxi + bj , where yj and xi are the

output and input respectively, and bj ∈ GF(2) is the constant coefficient. All
ai,j over GF(2) constitute the representing matrix, and ai,j = 1 means output
j is dependent on input i. So we can know the input bits that each output bit
depends on from each column of the matrix. M1 represents the matrix of the
round function, and M2 represents the matrix of the key schedule. We discuss
the conditions M2 should satisfy when M1 is known.

Denote k as master key size and n as block size. We take k = 2n as an
example, since this is common but typical when master key size larger than
block size. For many block ciphers this situation is more vulnerable to attack
than that k = n, so it deserves more attention. We consider consecutive 4 rounds
of cipher, corresponding to 2 rounds of key scheduling. We take two rounds of

cipher as one and the equivalent transformation matrix M
′

1 is

(
M2

1 M1

M3
1 M

2
1

)
, with

the identity matrix rewritten as I
′

=

(
I 0
M1 I

)
. Now M

′

1, I
′

and M2 have the

same size k × k. In our context, addition and multiplication are OR and AND
respectively, and weight(·) means Hamming weight.
M2 = (α1, α2,...,αk), αi is the column vector of M2.
M

′

1 = (γ1, γ2,...,γk), γi is the column vector of M
′

1.
ei is a k-bit vector, where i’th bit equal to ”1” and other bits are ”0”, i = 1, ..., n.
For each i, i ∈ [1..n]:

Step.1 θ = I
′ · ei = (θ1, θ2,...,θk).

Step.2 β = M
′

1 · θ =
∑k
j=1 θjγj , AKI = weight(β)
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Step.3 For each j, j ∈ [1..k], if weight(θjαj + β) > weight(β), increase AKI by
1 bit, else make θj equal to 0. Check if AKI = k. If AKI = k, go Step.4,
otherwise, M2 is unsafe.

Step.4 For any subset s with elements chosen from θ1, θ2,...,θk,
if weight(

∑
θj∈s θjαj+β)-2 weight(β) < weigth(s),

AKI = AKI - weight(s) +3 weight(
∑
θj∈s θjαj+β) - weight(β).

If AKI < k, M2 is unsafe.

By inverse of LT we can examine the other direction of key dependency
paths. We show an example to explain above procedure in Fig. 4. Assume M1 is
4× 4 and M2 is 8× 8, i.e. k = 8, and n = 4. They are as follows:

Fig. 4. Matrices of round function diffusion and key schedule diffusion.

When i = 1, θ = (1,0,0,0,1,0,1,0), β = (1,0,1,1,1,1,1,1), AKI = 7. For j = 1,
θ1α1 = (1,0,0,0,0,0,1,1), θ1α1 +β = β. For other j, we can check that θjαj +β =
β. So there is no j satisfying that weight(θjαj +β) > weight(β), AKI still equals
to 7 bits. This shows that M2 is unsafe and we need not go Step.4.

8 Conclusion

This paper focuses on the diffusion of key schedules and proposes a criteri-
on by the definition of AKI: every key dependency path corresponding to the
calculation dependency path should have enough AKI–the actual required key

2 Here is the decimal subtraction, similarly hereinafter.
3 Here is the decimal addition.
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information. We have shown several published attacks to explain our criterion,
and presented new cryptanalysis results on SHACAL-2, XTEA, Serpent, AES
and Safer++. We believe that this criterion can be used to improve attacks for
other block ciphers by analyzing their key schedules. Many previous design rules
of key schedules lack necessity or practicality, so it is hard to convince designers
to follow. Our work gives a practical guidance for both the design and the crypt-
analysis. Open problems include how to design efficient key schedules satisfying
our criterion and how to develop new attacks based on weak key schedules with
paths of insufficient AKI. Our work emphasizes that the interaction between
the diffusion of cipher round function and the diffusion of key schedule should
get more attention. An analysis for the linear transformation of recursive key
schedules is given in our work, and more effective and generalized analysis tools
can be further developed.
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A Appendix 1

Fig. 5. The backward calculation dependency path for L36[0].
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