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A Generalized Birthday Approach for Efficiently
Finding Linear Relations in `-sequences?
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Abstract. Feedback with Carry Shift Registers (FCSRs) have previ-
ously been available in two configurations, the Fibonacci and Galois ar-
chitectures. Recently, a generalized and unifying FCSR structure and
theory was presented. The new ring FCSRs model repairs some weak-
nesses of the older architectures. Most notably, the carry cell bias prop-
erty that was exploited for an attack on the eSTREAM final portfolio
cipher F-FCSR-H v2 is no longer possible for the updated (and unbroken)
F-FCSR-H v3 stream cipher.
In this paper we show how to exploit a particular set of linear relations
in ring FCSR sequences. We show what biases can be expected, and
we also present a generalized birthday algorithm for actually realizing
these relations. As all prerequisites of a distinguishing attack are present,
we explicitly show a new such attack on F-FCSR-H v3 with an online
time complexity of only 237.2. The offline time complexity (for finding
a linear relation) is 256.2. This is the first successful attack on F-FCSR-
H v3, the first attack to breach the exhaustive search complexity limit.
Note that this attack is completely different from that of F-FCSR-H v2.
We focus on this particular application in the paper, but the presented
algorithm is actually very general. The algorithm can be applied to any
FCSR automaton, so linearly filtered FCSRs and FCSR combiners may
be particularly interesting targets for cryptanalysis.

Keywords: FCSR, Linear Relations, Generalized Birthday Attack, Dis-
tinguisher

1 Introduction

Feedback with Carry Shift Registers (FCSRs) were introduced by A. Klap-
per and M. Goresky in [10] as a nonlinear alternative to Linear Feedback
Shift Registers (LFSRs). This intrinsic nonlinearity is due to the fact that
FCSRs use integer addition with carries instead of the modular addition
(xor) operator used in LFSRs, and this property somewhat relaxes the
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nonlinearity requirements on other building blocks of cryptographic de-
signs. The structural similarities between LFSRs and FCSRs imply that
many of the good properties of LFSRs are inherited, but unlike most
other nonlinear sequence generators, FCSRs have a well-studied algebraic
structure, making analysis much easier.

Two different flavors of FCSRs have been available in the past; the
Fibonacci and Galois architectures. Very recently, a new approach for FC-
SRs, ring FCSRs or ring representation, was proposed in [2]. An extended
description of ring FCSRs is available in the journal version [3]. The new
ring FCSR automaton and its associated theory truly do unify the pre-
vious architectures, but more interestingly, it also generalizes the entire
FCSR concept by adding flexibility. While Fibonacci- and Galois-FCSRs
use many-to-one- and one-to-many-feedbacks, respectively, ring FCSRs
allow many-to-many-feedbacks (see Figure 3), resulting in a generalized
theory based on the adjacency matrix of the corresponding automaton
graph. Ring FCSRs retain many good properties of FCSRs and are more
resistant to side-channel attacks. The new ring FCSRs model also repairs
some of the weaknesses of the older architectures. Most notably, the carry
cell bias property that was exploited by Hell and Johansson in [7] for an
attack on the eSTREAM final portfolio cipher F-FCSR-H v2 is no longer
possible for the updated and yet unbroken F-FCSR-H v3 stream cipher.

In this paper we show how to exploit a particular set of linear relations
in ring FCSR sequences. We show what biases can be expected, and
we also present a generalized birthday algorithm for actually realizing
these relations. As all prerequisites of a distinguishing attack are present,
we explicitly show a new such attack on F-FCSR-H v3 with an online
time complexity of only 237.2. The offline time complexity (for finding a
linear relation) is 256.2. This is the first successful attack on F-FCSR-
H v3, the first attack to breach the exhaustive search complexity limit
of 280 (initializations). Note that this attack is completely different from
that of F-FCSR-H v2. We focus on this application in the paper, but
the presented algorithm is actually very general. The algorithm can be
applied to any FCSR automaton, so linearly filtered FCSRs and FCSR
combiners may be particularly interesting targets for cryptanalysis.

The paper is organized as follows. In Section 2 we cover some basics
of FCSRs and `-sequences. In Section 3 we introduce some theory for
new linear relations and show our generalized birthday algorithm, and
Section 4 shows some simulation results that verify our theory. We discuss
applications in Section 5, where we detail the attack on F-FCSR-H v3.
The paper is concluded in Section 6.



2 Preliminaries

An FCSR is a device that produces the 2-adic expansion of a rational
number p/q for some integers p and q, where q is odd. Traditionally, this
device has been available in two different configurations; Fibonacci and
Galois representation, named analogously to the corresponding LFSR rep-
resentations that are very similar in structure. Only recently, a new and
more general FCSR configuration was presented, the ring representation,
which generalizes the two previous architectures.

In FCSR-based stream ciphers, p usually depends on the secret key
and the initialization vector (IV ), and q is a public parameter. The choice
of q induces a number of FCSR properties. The arguably most important
property is that it completely determines the length of the period of the
binary sequence that the FCSR outputs.

Roughly following [6], we now give a very brief overview of Fibonacci
and Galois FCSRs. We then introduce the relevant background informa-
tion on ring FCSRs and FCSR sequences that we will be using in this
paper.

2.1 Fibonacci FCSR basics

The state of a Fibonacci FCSR of size n consists of two principal parts,
the main register m = (m0,m1, ...,mn−1) and a (blog2 (wt (q + 1))c+ 1)-
bit memory register b, where wt is the weight function that reports the
number of ones in the binary expansion of a number (Hamming weight).
Let m(t) and b(t) denote the state of the registers m and b at time t.
State updates are performed according to

mi(t+ 1) = mi+1(t), for 0 ≤ i ≤ n− 2,

σ(t+ 1) = b(t) +
n∑
i=1

qimn−i(t),

mn−1(t+ 1) = σ(t+ 1) mod 2,

b(t+ 1) = σ(t+ 1) div 2.

The auxiliary values σ(·) are used for clarity.
The connection integer q of the corresponding FCSR is defined as

q = qn2n + qn−12
n−1 + . . .+ q22

2 + q12− 1.

An example of a Fibonacci FCSR (with q = 85) is given in Figure 1. It
should be noted that the box labeled � is a full adder that adds all inputs



m0m1m2m3m4m5

�

b
div 2 mod 2

qi 1 1 0 1 0 1

i 1 2 3 4 5 6

Fig. 1. The Fibonacci FCSR with connection integer q = 85.

into a (regular) sum σ. The value σ mod 2 is then fed into mn−1, while
σ div 2 is stored in the memory register b.

2.2 Galois FCSR basics

The state of a Galois FCSR of size n also consists of two principal parts,
the main register m = (m0,m1, ...,mn−1), as before, and a carries register
c = (c0, c1, ..., cn−2). We additionally let c(t) denote the state of the
register c at time t.

As for Fibonacci FCSRs, define the connection integer as

q = qn2n + qn−12
n−1 + . . .+ q22

2 + q12− 1,

and let d = q+1
2 = (dn−1 . . . d0)binary. The carries register contains l active

cells, where l + 1 is the number of nonzero binary digits di in d. Disre-
garding dn−1, which must always be set, the active carry cells correspond
to the di = 1 in the interval 0 ≤ i ≤ n− 2.

We continue to let � denote (regular) addition with carry, but in the
Galois case we will only need one memory bit per carry. The � operator
now takes three inputs in total, two external inputs and the carry bit. For
every clocking it first computes the (regular) sum σ of all three input bits.
It then feeds σ mod 2 into the succeeding main memory cell and stores
the bit σ div 2 in the carry register. The state update mechanism can be
summarized as follows.

σi(t+ 1) = mi+1(t) + ci(t) + dim0(t), for 0 ≤ i ≤ n− 2,

mi(t+ 1) = σi(t+ 1) mod 2, for 0 ≤ i ≤ n− 2,

ci(t+ 1) = σi(t+ 1) div 2, for 0 ≤ i ≤ n− 2,

mn−1(t+ 1) = m0(t).

Following [1], we specifically illustrate the case q = 347 in Figure 2, which
gives us d = 174 = (10101110)binary.
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Fig. 2. The Galois FCSR with connection integer q = 347.

2.3 Ring FCSR basics

Contrary to the Fibonacci and Galois representations, ring FCSRs allow
full freedom in tap placement and can be seen as a generalization of the
two previous architectures. Using main and carries registers m = (m0,m1,
...,mn−1) and c = (c0, c1, ..., cn−1) to describe the state of a ring FCSR
of size n, updates are performed according to

σ(t+ 1) = Tm(t) + c(t),

m(t+ 1) = σ(t+ 1) mod 2,

c(t+ 1) = σ(t+ 1) div 2,

where T = (ti,j)0≤i,j<n is the n×n transition matrix of the corresponding
automaton graph. We have

ti,j =

{
1 if mj is used to update mi,

0 otherwise.

Definition 1 (Connection integer of a ring FCSR). Let T be the
transition matrix of a ring FCSR. The connection integer q is then given
by q = det(I− 2T).

While Definition 1 defines q as a negative number, we will abuse this
notation by disregarding the sign in the sequel. To obtain a ring FCSR
with desirable properties, T should be chosen according to the guidelines
listed in Section 5.1 in [2]. A ring FCSR with connection integer q = 243
is illustrated in Figure 3 with an equivalent alternative view in Figure 4.
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Fig. 3. A ring FCSR with connection integer q = 243.
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Fig. 4. Alternative view of a ring FCSR with connection integer q = 243.

2.4 Basic properties of FCSR sequences

The output sequence a = {at}∞t=0 of an FCSR automaton is called an
FCSR sequence. For all FCSR architectures we let the output bits be
defined by the contents of the main register cell m0 according to

at+1 = m0(t).

Lemmas 1 and 2 from [11] introduce some notations and basic properties
of FCSR sequences.

Lemma 1. The output sequence a = {at}∞t=0 of an FCSR with con-
nection integer q corresponds to a rational number β = p

q . Specifically,∑∞
t=0 at2

t = p
q , which means that a is the 2-adic representation of β. The

sequence a is strictly periodic if and only if β ≤ 0 and |β| < 1.



The same FCSR sequence can be generated by many different FCSRs
with different connection integers, but we will further abuse notation
somewhat by letting the connection integer q of an FCSR sequence refer
to the smallest possible such integer.

Definition 2 (`-sequence). An `-sequence a is an FCSR sequence with
connection integer q for which 2 is a primitive root, where q = pe (e ≥ 1)
and p is an odd prime. The period of a is ϕ(q), where ϕ is the Euler
totient function.

Lemma 2. Given an `-sequence a = {at}∞t=0 with connection integer q,
there exists a unique integer A, 0 ≤ A < q, such that

at = αt mod 2, t ≥ 0,

with αt = (Aγt) mod q, where γ is the multiplicative inverse of 2 in the
ring of integers modulo q.

We will also be using an interesting observation from [2] that relates the
contents of the main memory cells.

Lemma 3. Given a ring FCSR with connection integer q for which 2 is a
primitive root, q = pe (e ≥ 1) and p is an odd prime, the output sequence
of each main register cell is an `-sequence with connection integer q.

2.5 Linear properties of `-sequences

We now define a particular set of linear relations.

Definition 3 ((i + j)-relations Rq). Let a connection integer q and
positive integers u1, · · · , ui and v1, · · · , vj be given. The linear relation

2−u1 + · · ·+ 2−ui ≡ 2−v1 + · · ·+ 2−vj mod q

is called a (i+ j)-relation and is denoted Rq(u1, . . . , ui; v1, . . . , vj).

From [14] we take some definitions and results on `-sequences that we
either state directly or expand upon. Define the r-tuple set

Ωr(q) = {〈i1, . . . , ir〉 |i1, . . . , ir ∈ Zq\{0}, i1 + · · ·+ ir 6≡ 0 mod q} .

The available keystream is always finite in practice, so from now on we
consider finite `-sequences only. A linear property of `-sequences can now
be described as follows.



Theorem 1. [14]((3+1)-relation bias) Let an `-sequence a = {at}s+e+k−1t=s+d

with connection integer q and a (3 + 1)-relation Rq(w, x, y; z), where
d = min(w, x, y, z), e = max(w, x, y, z), s ≥ 0 and αt = (A2−t) mod q as
in Lemma 2 be given. If the triplet sequence

{〈αt+w, αt+x, αt+y〉}s+k−1t=s

cannot be distinguished from a uniformly random triplet sequence over
Ω3(q), then the k events

at+w ⊕ at+x ⊕ at+y ⊕ at+z = 0, 0 ≤ t < k,

can be seen as k independent Bernoulli trials with success probability 1
3 .

In short, Theorem 1 shows that (3 + 1)-relations have bias 1
3 , and

Theorem 1 can easily be generalized to (m+1)-relations. Specifically, the
bias is zero when m is even. That is, relations of odd weight do not exhibit
a bias that we can detect. Furthermore, the bias is non-zero when m is
odd, decreasing as m grows. These non-zero biases stem from properties
of modular addition.

Although [14] considers Galois and Fibonacci FCSRs, the proof of
Theorem 1 only assumes `-sequences, so the result immediately carries
over to ring FCSRs.

It should also be noted that Theorem 1 above is stated as in [14].
The condition on the triplet sequence over Ω3(q) is of particular interest.
This condition surely does not hold for a known value q since αt+1 =
(αt2

−1) mod q. However, the situation is not as bad as it appears. Loosely
put, it is sufficient if the corresponding at = LSB(αt) behave randomly
in a statistical sense. While a sequence {αt} is fully determined after the
first term has been observed, the corresponding binary sequence {at} is
much more well-behaved, even for a known q. The requirement stated for
Theorem 1 is stronger than it needs to be – it is possible to relax the
requirement somewhat.

As Theorem 1 is stated it appears that one would need to find a
suitable triplet sequence as described above in order to realize the attack,
but this is not necessary in practice. In [14], Tian and Qi used simulations
to verify that the triplet condition is reasonable for practical applications.

The possibility to use (3 + 1)-relations for cryptanalytic attacks was
identified in [14], but the briefly outlined algorithm has a complexity
that exceeds 280, which is the exhaustive search complexity for F-FCSR-
H v3. Also, the estimated data complexity of the resulting distinguisher is
underestimated by a factor of about 32, which is pointed out in Section 5.



3 Generalizing linear relations of `-sequences

3.1 Bias of (2 + 2)-relations

Armed with the bias for (3 + 1)-relations, we are now encouraged to find
corresponding results for (2 + 2)-relations. A motivational factor here is
that balanced equations, with two terms on either side in this case, are
suitable for birthday attack approaches.

It turns out that transforming Theorem 1 from (3 + 1)- to (2 + 2)-
relations is not all that hard. All we need is two simple lemmas.

Lemma 4. If 2 is a primitive root of q, then 2
ϕ(q)

2 ≡ −1 mod q. We thus

have 2i+
ϕ(q)

2 ≡ −2i mod q.

The following lemma is a direct consequence of Proposition 1 in [5].

Lemma 5. Using the notation in Lemma 2, we have at = a
t+

ϕ(q)
2

⊕ 1

and αt = q − α
t+

ϕ(q)
2

.

Using Lemma 5, we can now relate a triplet sequence to a (2+2)-relation.

Theorem 2 ((2+2)-relations have bias 1
3). Let a = {at}s+e+k−1t=s+d be an

`-sequence with connection integer q and a (2 + 2)-relation Rq(w, x; y, z)
where d = min(w, x, y, z), e = max(w, x, y, z), s ≥ 0 and αt = (A2−t) mod q
as in Lemma 2 be given. If the triplet sequence

{〈αt+w, αt+x, q − αt+y〉}s+k−1t=s

cannot be distinguished from a uniformly random triplet sequence over
Ω3(q), then the k events

at+w ⊕ at+x ⊕ at+y ⊕ at+z = 0, 0 ≤ t < k, (1)

can be seen as k independent Bernoulli trials with success probability 2
3 =

1
2

(
1 + 1

3

)
.

Proof. Given 2w + 2x ≡ 2y + 2z mod q, we have 2w + 2x− 2y ≡ 2z mod q.

Using Lemma 4, since 2 is a primitive root of q, we have 2w+2x+2y+
ϕ(q)

2 ≡
2z mod q. Thus Rq(w, x, y+ ϕ(q)

2 ; z) is a (3+1)-relation. Using Lemma 5,
we can write the triplet sequence given above as{〈

αt+w, αt+x, αt+y+ϕ(q)
2

〉}s+k−1
t=s

.



From Theorem 1 we know that the k events

at+w ⊕ at+x ⊕ at+y+ϕ(q)
2

⊕ at+z = 1, 0 ≤ t < k, (2)

can be seen as k independent Bernoulli trials with success probability 2
3 .

Using Lemma 5, if we replace a
t+y+

ϕ(q)
2

in Equation (2) by at+y⊕ 1, then

Equation (1) can be obtained. ut

The point of Theorem 2 is that the bias of (2 + 2)-relations is 1
3 , which

is very large in this context. Theorem 2 can also easily be generalized to
(n+ n)-relations.

For the sake of our upcoming F-FCSR-H v3 analysis, we also consider
what happens when several `-sequences are combined by bitwise xor.
Theorem 3 provides some answers.

Theorem 3 (Bias of xored `-sequences). Let Rq(w, x; y, z) be a given
(2 + 2)-relation. Given m independent `-sequences ai = {ait}s+e+k−1t=s+d , 1 ≤
i ≤ m, with connection integer q where d = min(w, x, y, z) and e =
max(w, x, y, z), with αit defined correspondingly for each i. If the following
m triplet sequences {〈

αit+w, α
i
t+x, q − αit+y

〉}s+k−1
t=s

for 1 ≤ i ≤ m cannot be distinguished from a uniformly random triplet
sequence over Ω3(q), then the k events

m⊕
i=1

ait+w ⊕ ait+x ⊕ ait+y ⊕ ait+z = 0

for s ≤ t < s+k are k independent Bernoulli trials with success probability
1
2

(
1 +

(
1
3

)m)
.

Proof. The independence of the m `-sequences motivates using the piling-
up lemma, see [12]. ut

Theorem 3 considers the expected value of the bias, but for practical
applications we need to know what level of accuracy we may expect.
Proposition 1 gives us a practical error-bounding formula.

Proposition 1 (Bounding formula for bias of xored `-sequences).
Using the notation from Theorem 3, let b = {bt}s+e+k−1t=s+d be the bitwise



xor of the sequences ai, 1 ≤ i ≤ m. For Rq(w, x; y, z), the bias of sequence
b is defined as

εqb =
1

k

k−1∑
t=0

(−1)bt+w⊕bt+x⊕bt+y⊕bt+z . (3)

Then, εqb satisfies

Pr

[
εqb ≥

(
1

3

)m
− 4.6802√

k

]
≈ 0.9999. (4)

Proof. According to Theorem 3, the k events

bit+w ⊕ bit+x ⊕ bit+y ⊕ bit+z = 0

for 0 ≤ t < k can be seen as independent Bernoulli trials with success
probability p = 1

2

(
1 +

(
1
3

)m)
. If X1, X2, . . . , Xk are random variables

associated with these Bernoulli trials, we have

Pr [Xt = 1] = p and Pr [Xt = 0] = 1− p,

with E(Xt) = µ = p and V ar(Xt) = σ2 = p(1 − p) for each 0 ≤ t <
k. Defining Yj =

∑j
i=1Xi, the Central Limit Theorem states that the

probability distribution of

Wk =
Yk
k − µ
σ√
k

=
Yk
k − p√
p(1−p)
k

goes to N(0, 1) in the limit as k →∞, see [9]. The value k can be regarded
as sufficiently large when k(1−p) ≥ 5 and kp ≥ 5. According to the normal
distribution table, we have

Pr [Wk ≥ −4.6802] ≈ 0.9999,

that is

Pr

[
Yk
k
≥ p−

4.6802×
√
p(1− p)√
k

]
≈ 0.9999.

When m is large enough, say m = 10,
√
p(1− p) ≈ 1

2 , so

Pr

[
Yk
k
≥ p− 2.3401√

k

]
≈ 0.9999.

Noting that εqb = 2Yk
k − 1, we finally deduce

Pr

[
εqb ≥

(
1

3

)m
− 4.6802√

k

]
≈ 0.9999. ut

Simulations indicating that Proposition 1 holds for practical applica-
tions can be found in Section 4.



3.2 A generalized birthday attack algorithm for finding
(2 + 2)-relations

We now know the bias of (2 + 2)-relations, but we still need to be able
to actually find them. In this section we introduce a generalized birth-
day attack algorithm that efficiently solves the problem. Our algorithm
will find a (2 + 2)-relation Rq(w, x; y, z) with width max(w, x, y, z) −
min(w, x, y, z) < N . The value N is tunable, chosen so that the run-
ning time of the algorithm is minimized while the success probability is
sufficiently high. We need a definition for reduction purposes.

Definition 4 (k-small). Given an integer q and a real number k, the
integer n-tuple 〈i1, . . . , in〉 is k-small if 2−i1 + . . .+ 2−in mod q < q

k .

The k-small 1- and 2-tuples will be referred to as k-small numbers and
pairs, respectively. Neither q nor k should be assumed to be small in the
general case.

We first generate all k-small numbers in a specific interval, storing
them in a table T1. Note that each such number is smaller than q

k . We
then form all possible (unordered) pairs 〈w, x〉 , 0 ≤ w, x < N , of these
k-small numbers, storing them in a hash table T2 (cuckoo hashing with
O(1) insertion and lookups is appropriate, see [13]) that stores value pairs
keyed on their sum modulo q. We keep adding such pairs to T2 until we
find a collision. That is, we look for a set {〈w, x〉 , 〈y, z〉} satisfying

2−w + 2−x ≡ 2−y + 2−z mod q.

Algorithm 1 specifies the details1.

Because of the reduction, tables T1 and T2 will contain approximately
N
k and

(N
k
2

)
entries, respectively. The time complexity of Algorithm 1 is

N +
(N

k
2

)
, since this is the time it takes to build tables T1 and T2. We

expect to find a collision after about(N
k

2

)
=

√
2qα

k

insertions into T2, where we use α = 9.22 to set the collision probability
to at least 99% (see [16]). Minimizing the time complexity we get the

1 From a notational point of view, the reader may think of both T1 and T2 as hash
tables, where, e.g., T1 [k] = v means insertion of value v keyed on k. While T1 can
be implemented as linear storage (an array) in practice (this should become clear in
Section 3.3), T2 needs to be implemented as a hash table.



Algorithm 1 – Generalized Birthday Approach to Finding a (2 + 2)-relation

Input: Integers N and q, real number k.
Output: Rq(w, x; y, z) or the phrase ”No (2 + 2)-relation was found”.

create empty tables T1 and T2;
B = an integer in the interval [0, q) chosen uniformly at random;
for (i = B; i < B + N ; i++) { /* insert all k-small numbers in [B,B + N) into T1 */

if (i is k-small) {
T1[i] = 2−i mod q;

}
}
for (all pairs 〈a, b〉 of keys a, b from T1) {

s = T1[a] + T1[b];
if (key s is in T2) {
〈x, y〉 = T2[s]; /* get pair 〈x, y〉 from T2 */

m = min(a, b, x, y); /* normalize relation */

return Rq(a−m, b−m;x−m, y −m);
}
T2[s] = 〈a, b〉; /* insert pair 〈a, b〉 into T2 */

}
return ”No (2 + 2)-relation was found”;

conditions N =
(N

k
2

)(N
k
2

)
=
√

2qα
k

⇔
{
N = 2k2

N4 = 8k3αq,

which for F-FCSR-H v3 (using log2 q < 160.26) gives us k =
(αq

2

)1/5
and

N = 266.0 for a total time complexity of 2N = 267.0.
A few observations may and should be made at this point. First of

all, Algorithm 1 is trivially generalized to (n + n)-relations, n ≥ 2, and
the corresponding minimization conditions are given by{

N =
(N

k
n

)(N
k
n

)
=
√

nqα
k

⇔
{
Nn−1 = n!kn

N2n = n(n!)2k2n−1αq.

For n = 3 for F-FCSR-H v3 we get k =
(αq

2

)1/4
and N = 262.3 for a total

time complexity of 2N = 263.3. The bias in this case is 2
15 .

Also, for n ≥ 4, we can reduce the time complexity further by ap-
plying additional smallness reductions in the lower layers according to
the generalized birthday approach [15]. In general, the time complexity
decreases as n grows.

Secondly, we have tuned the parameters to make it sufficiently prob-
able for us to find one linear relation. When we have reached the point



of finding the first relation, it quickly becomes quite cheap to find many
more collisions by increasing N slightly. This turns the algorithm into a
cornucopia of (n + n)-relations. One possible usage for this is for a fast
correlation attack. This would work very well in distinguishing situations
where it is cheap to find many different relations compared to the amount
of keystream needed for the distinguisher. One particular observation is
important in this case. If we have

2−u1 + · · ·+ 2−un ≡ 2−v1 + · · ·+ 2−vn mod q

for some numbers u1, · · · , un and v1, · · · , vn, then we also have

2−u1+i + · · ·+ 2−un+i ≡ 2−v1+i + · · ·+ 2−vn+i mod q

for all i. This shows that we need to take dependency into account
when we search for multiple linear relations. However, since we employ
k-smallness, this effect will only be valid for a limited number of i in our
case. Furthermore, the above observation could also be used for normal-
izing the parameters in an (n+ n)-relation, as we do in Algorithm 1.

This normalization is performed at the end, just before the (2 + 2)-
relation is output. Performing it any sooner would ruin the generalized
birthday approach, as we then would be required to find a collision be-
tween different sets of pairs, ultimately degrading the complexity. Some
further comments on dependency can be found in Section 3.4.

Third, the offline complexity measure used here involves mostly ta-
ble insertions and lookups. A better comparison to exhaustive key search
would compare these complexities to those of initializations. For F-FCSR-
H v3, one initialization involves 48 FCSR updates. This should be com-
pared to the operations in Algorithm 1, one modular exponentiation (that
can be translated into a shift and a conditional subtraction) and inser-
tion into tables T1 and T2. Since these operations do not need to be too
complicated, we conclude that our offline complexity measure constitutes
a conservative measure compared to initializations.

The online complexity measure, xoring 2n bits, is much cheaper than
48 FCSR updates (for n of reasonable size).

Fourth, the purpose of the randomly selected value B is to prevent
algorithm designers from choosing some suitable q that will extend the
running time of Algorithm 1. By choosing the starting point B at random,
the expected time complexity does not depend on q.

And last but not least, Algorithm 1 is specified with a fixed N for clar-
ity. In practice one can simply keep extending T1 and T2 until sufficiently
many collisions have been found.



3.3 Improvement by modular interval summation

We now describe an improvement that makes it even cheaper to find
(2+2)-relations, a technique that is also generalizable to (n+n)-relations.
The general idea here is to improve Algorithm 1 by employing a more
efficient utilization of the numbers that we generate for storage in table
T1. In the original setting described above, all numbers that are not k-
small are simply discarded, and this is a waste of resources.

In the second part of Algorithm 1 we form all possible pairs of k-
small numbers from table T1 and store all such pairs in table T2. Note
that these pairs are k

2 -small. The improvement is made possible by the
fact that we do not necessarily need to sum two k-small numbers to make
k
2 -small pairs. The previously discarded numbers can be used to this end
in the following way.

Instead of using one table T1 we now use k tables T1,0, . . . , T1,k−1 for
the first step to store all numbers 2−i mod q,B ≤ i < B + N . Divide

the interval [0, q) into k equally wide subintervals
[
jq
k ,

(j+1)q
k

)
, 0 ≤ j < k,

and a number 2−i mod q is put in table T1,j if it is in the jth subinterval.
As before, we use all entries in table T1,0 to form all possible k

2 -small

pairs and store these in table T2. But we can also form k
2 -small pairs by

pairing any two number from tables T1,1 and T1,k−1, and any two numbers
from tables T1,2 and T1,k−2, and so on, as shown in Figure 5. In this way
we can increase the number of pairs we can generate by a factor of about
k.

T1,0

0

T1,1

q
k

T1,2

2q
k

T1,3

3q
k

T1,k−3

(k−3)q
k

T1,k−2

(k−2)q
k

T1,k−1

(k−1)q
k

4q
k

q

·

·

·

·

·

·

Fig. 5. Interval subdivision and pairing of tables T1,0, . . . , T1,k−1.

Revising the previous complexity analysis, tables T1,0, . . . , T1,k−1 now
contain about N

k elements each for a total of N numbers and a total build
time of N insertions.



T2 will contain about
(N

k
2

)
+ k−1

2

(
N
k

)2 ≈ N2

2k entries. The time com-
plexity of the revised Algorithm 1, the time taken to build tables T1 and
T2, is N + N2

2k . We now expect to find a collision after about

N2

2k
=

√
2qα

k
(5)

insertions into T2, where we continue to use α = 9.22 as before. Minimiz-
ing the time complexity we get the revised conditions{

N = N2

2k
N2

2k =
√

2qα
k

⇔

{
N = 2k

k =
( qα

2

) 1
3 ,

which gives us k = 254.2 and N = 255.2 for a total time complexity of
2N = 256.2 for finding a (2 + 2)-relation for the FCSR used in F-FCSR-H
v3.

It is possible to double the number of pairs by using, say, T1,0 and
T1,1, and T1,0 and T1,k−1 together, and so on. Half of the pairs will be
k
2 -small in these cases. However, there is a small additional cost involved
and we did not find that these additional pairs affect the time complexity
in a positive way.

Generalizing to (n + n)-relations, we need to use the entries in ta-
bles T1,0, . . . , T1,k−1 to form k

n -small n-tuples. This can be done by first
choosing entries from any n − 1 tables T1,0, . . . , T1,k−1, and then choos-
ing the last table so that the sum ends up in

[
0, nqk

)
(modular interval

summation). The new conditions become

{
N = kn−1

n!

(
N
k

)n
kn−1

n!

(
N
k

)n
=
√

nqα
k

⇔

N = (n!k)
1

n−1

k =
(
(nqα)n−1

(n!)2

) 1
n+1

.

For F-FCSR-H v3, the corresponding complexities are given in Table 1.

In Table 2 we also summarize the off- and online complexities for the
F-FCSR-H v3 distinguishers for various relation types developed this far.

3.4 Dependency between linear relations

Consider once more the linear dependency condition of linear relations
that was noted in Section 3.2.



Table 1. Time complexity for finding an (n+ n)-relation for F-FCSR-H
v3.

relation type k N time

(2 + 2) 254.2 255.2 256.2

(3 + 3) 281.3 242.0 243.0

(4 + 4) 297.5 234.1 235.1

Table 2. F-FCSR-H v3 distinguisher complexities.

relation type offline online

(2 + 2) 256.2 237.2

(3 + 3) 243.0 263.6

(4 + 4) 235.1 289.7

Definition 5. The linear relations Rq(w, x; y, z) and Rq(w′, x′; y′, z′) are
linearly dependent if and only if

w − w′ = x− x′ = y − y′ = z − z′.

In Algorithm 1, table T2 is used to store k-small pairs 〈w, x〉, and pairs
are continuously added to this table until a collision is found. When two
pairs 〈w, x〉 and 〈y, z〉 finally do collide, when their sums are equal, we
have obtained a linear relation Rq(w, x; y, z). For a relation Rq(w, x; y, z)
we have 0 ≤ w, x, y, z < N , so any pair of linear relations Rq(w, x; y, z)
and Rq(w′, x′; y′, z′) are linearly dependent with a probability of about
1
N3 . Thus, if we use Algorithm 1 to produce a set of L linear relations, by

expected value we should find that about L2

2N3 of these linear relations are
redundant. For the values of N that we consider in our applications, it
is hard to see how this dependency could come into play, even for a fast
correlation attack where one would need to produce many relations.

However, in order to ensure that this dependency does not deplete the
search space of Algorithm 1, we also consider the search procedure itself.
Table T2 contains about N2

2k pairs, so the number of quadruples (pairs of

pairs) that we test is about
(N2

2k
2

)
≈ N4

8k2 . The linear dependency condition
in Definition 5 applies to quadruples as well, in the sense that testing
a quadruple that is linearly dependent on a previously tested quadru-
ple is redundant work (searchspace redundancy). Therefore, among N4

8k2



quadruples we will find that at most(N4

8k2

2

)
1

N3
≈ N5

27k4

of them are linearly dependent, so that the fraction of linearly dependent
quadruples is no more than N

16k2 . For the values of N and k that we
encounter in our applications (see Table 1), we can again and finally
conclude that the dependency issue is a non-issue.

4 Simulations

We have run a set of simulations for verifying the validity of Proposition 1.
The guidelines in [2] were followed for random generation of F-FCSRs for
these simulations. For each test, a new ring FCSRs of size n and a linear
filter with m input bits was used. Algorithm 1 and the modular interval
summation technique presented in Section 3.3 were employed to exhibit
a (2+ 2)-relation. We randomly selected 100 keystream subsequences b of
sufficient length and calculated their bias according to Equation (3).

To verify Proposition 1, we ran 10000 tests with parameters 20 ≤ n ≤
30 and 2 ≤ m ≤ 4. We found Equation (4) to hold for all subsequences
b in all tests. The results of these tests can also be seen as an indication
that the triplet sequence condition over Ω3(q) in Theorems 2 and 3 is
reasonable.

We also ran 100 tests for bigger F-FCSRs, n = 40 and m = 4, with
the same result. Example 1 shows one of the F-FCSR ciphers in detail.

Example 1. F-FCSR cipher based on a 40-bit ring FCSR with connection
integer q = 1111855758899 and transition matrix T = (ti,j)0≤i,j<40 with

ti,j =

{
1, (i, j) ∈ S or j ≡ i+ 1 mod 40,

0, otherwise ,

where S is the set of pairs given in Table 3.
The linear filter xors the values of the four main register cells mi

with i ∈ {0, 5, 9, 17}. The (2 + 2)-relation Rq(0, 22802; 2166, 27778) with
bias 1

3 was found. Initializing the main memory and carry registers with
random bits, we randomly chose 100 subsequences of length 200000 for
bias calculation.

We also performed several negative tests using the trials above, but ran-
domly altered one or more of the parameters in the (2 + 2)-relation ob-
tained from Algorithm 1. As expected, in this case, only some of the
selected keystream subsequences satisfied Equation (4).



Table 3. The set S of nontrivial connections in the transition matrix of
a 40-bit F-FCSR.

(0, 6) (1, 29) (2, 4) (3, 15) (5, 20) (7, 21)

(9, 37) (10, 19) (12, 36) (13, 34) (15, 7) (17, 26)

(18, 17) (20, 13) (21, 18) (23, 39) (25, 31) (26, 10)

(34, 11) (35, 12) (36, 30)

Beyond this, we also performed simulations to verify our complexity
estimation of Algorithm 1 with modular interval summation. More than
10000 experiments with prime parameters 235 ≤ q ≤ 240 were conducted,
and the results suggest that the average value of N is in fact somewhat
lower than the estimation.

5 Applications to ring FCSRs, F-FCSRs, FCSR
combiners and F-FCSR-H v3

Algorithm 1 is applicable to all ring FCSRs, so the underlying FCSRs
of all linearly filtered FCSRs and FCSR combiners may be targeted. We
now focus specifically on distinguishing attacks on F-FCSR-H v3.

A distinguisher is a decision mechanism that decides if a given se-
quence is the output of a cipher or if it is some truly random sequence.
The decision mechanism takes a sequence as input and outputs either
”CIPHER” or ”RANDOM”.

The F-FCSR-H v3 stream cipher uses 80-bit keys and a ring FCSR
with a connection integer q with log2 q < 160.26. Eight bits are output
for every clocking, and these bits are derived using eight separate output
subfilters that xor a number of register cells. Six of the filters xor ten bits,
while the remaining two xor eleven.

From Proposition 1 we have

Pr

[
εqb ≥

(
1

3

)m
− 4.6802√

k

]
≈ 0.9999.

A common rule of thumb (see [8]) is that approximately (εqb)
−2 samples

are needed to distinguish a given sequence from a uniform distribution,
which means we need

k ≤
((

1

3

)m
− 4.6802√

k

)−2



keystream bits for the distinguishing attack, implying that

k ≤ 32.2647× 32m,

where k is the expected number of required keystream bits. In [14] it is
claimed that the required length of keystream for the (3+3)-relation case
is simply 32m, which is not entirely accurate since that disregards the
factor of 32.2647.

Getting back to F-FCSR-H v3, making use of the six smaller subfilters
only (out of eight), we can apply the above formula with m = 10 to get

k ≤ 8

6
× 32.2647× 32m = 237.2.

As stated before, the offline time complexity is 256.2. This is the time
required for finding the (2 + 2)-relation. As for keystream requirements,
we need four separate chunks of 237.2 keystream bits each for a total of
239.2 keystream bits to perform the attack in time 237.2. However, these
four chunks can be quite far apart due to the width

max(w, x, y, z)−min(w, x, y, z)

of the (2 + 2)-relation Rq(w, x; y, z). Thus, we can perform the attack in
time 237.2, but we still need to observe 256.2 keystream bits. The keystream
requirement is therefore 256.2 bits, while we can manage with only 239.2

bits of storage.
The relation width can be made smaller by using higher-order (n +

n)-relations, but the bias quickly diminishes as n gets large. Also, the
fact that we are employing a generalized birthday attack contributes to
this width. One would expect to find shorter relations using a standard
birthday attack, but the width is then improved only at the expense of
an increased time complexity.

The F-FCSR-H v3 distinguisher is made explicit in Algorithm 2, where
the last if-clause may use any efficient statistical decision mechanism, for
example the Neyman-Pearson lemma in [4].

6 Conclusions

We have presented a generalized birthday algorithm that can be used
to find a specific set of linear relations. The algorithm was applied to
produce different distinguishing attacks on F-FCSR-H v3. The one we
advocate uses a (2 + 2)-relation and has off- and online time complexities



Algorithm 2 – F-FCSR-H v3 Distinguisher

Input: Keystream bits zt for t ≥ 0.
Output: The classification ”CIPHER” or ”RANDOM”.

/* offline */

Use Algorithm 1 to find a (2 + 2)-relation Rq(w, x; y, z);
/* online */

c = 0; /* relation counter */

for (i = 0; i < 237.2; i++) {
if (i mod 8 ≥ 2) {/* if small subfilter was used */

if (zi+w ⊕ zi+x ⊕ zi+y ⊕ zi+z = 0) {
c++;

}
}

}
if (c significantly deviates from 1

2
× 6

8
× 237.2) {

return ”CIPHER”;
}
return ”RANDOM”;

256.2 and 237.2, respectively. These are the first successful attacks on F-
FCSR-H v3, breaking the exhaustive search complexity bound. While this
application was very specific, the presented algorithm itself is very general
and applicable to all ring FCSRs. In particular, it can be applied to the
underlying FCSRs of all linearly filtered FCSRs and FCSR combiners.
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