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Abstract We show that it is possible to achieve perfect forward secrecy (PFS) in two-
message or one-round key exchange (KE) protocols even in the presence of very strong active
adversaries that can reveal random values of sessions and compromise long-term secret keys
of parties. We provide two new game-based security models for KE protocols with increasing
security guarantees, namely, eCKw and eCK-PFS. The eCKw model is a slightly stronger vari-
ant of the extended Canetti–Krawczyk (eCK) security model. The eCK-PFS model captures
PFS in the presence of eCKw adversaries. We propose a security-strengthening transforma-
tion (i. e., a compiler) from eCKw to eCK-PFS that can be applied to protocols that only
achieve security in a weaker model than eCKw , which we call eCKpassive. We show that,
given a two-message Diffie–Hellman type protocol secure in eCKpassive, our transformation
yields a two-message protocol that is secure in eCK-PFS. We demonstrate how our trans-
formation can be applied to concrete KE protocols. In particular, our methodology allows
us to prove the security of the first known one-round protocol that achieves PFS under actor
compromise and ephemeral-key reveal.
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184 C. Cremers, M. Feltz

1 Introduction

The majority of recently developed key exchange (KE) protocols have been proven secure
with respect to game-based security models for KE protocols [2,4,11,25,28]. The first such
security model was introduced by Bellare and Rogaway [2]. In their model, the adversary
is modeled as a probabilistic polynomial-time (PPT) Turing machine that interacts with the
protocol participants through queries. The queries specify the capabilities of the adversary.
For instance, he can send messages to parties and reveal certain session-keys. The definition of
security in the Bellare–Rogaway model requires that (a) two parties who complete matching
sessions (i. e., the intended communication partners) compute the same session-key and that
(b) the adversary cannot learn the session-key with more than negligible probability. Building
on this work, Canetti and Krawczyk [11] developed a more complex security model that
gives the adversary additional powers such as access to a session-state query that reveals
the internal state of a session. LaMacchia et al. [28] adapted the Canetti–Krawczyk model
to capture resilience to key compromise impersonation attacks and resilience to the leakage
of various combinations of long-term and ephemeral secret keys in a single security model.
This model is known as the extended Canetti–Krawczyk (eCK) security model.

One important property of KE protocols that is not guaranteed by the eCK security model
is perfect forward secrecy (PFS). This property holds if an adversary cannot learn the session-
keys of past sessions, even if he compromises long-term keys of parties [34, p. 496]. The
designers of the eCK model claimed that this property cannot be achieved by two-message
KE protocols: “As noted by Krawczyk [26], the PFS requirement is not relevant for 2-round
AKE protocols since no 2-round protocol can achieve PFS” [28, p. 5]. In particular, in [25,
p. 15], Krawczyk sketched a generic PFS attack, for which he claimed that it breaks the
security of any “implicitly authenticated” two-message KE protocol. This class of protocols
is not formally defined in [25]. The attack is sketched on a basic gx , gy message exchange,
as used in the (H)MQV protocols. In the attack, the adversary actively interferes with the
communication between the parties by injecting self-constructed messages. This enables him
to compute the used session-key if he later learns the long-term secret keys of the parties.
To prove a slightly weaker notion of forward secrecy for the HMQV protocol, Krawczyk
introduced the notion of weak perfect forward secrecy (weak-PFS) [25]. When long-term
secret keys are compromised, weak-PFS guarantees secrecy of session-keys, but only for
sessions in which the adversary did not actively interfere. Krawczyk’s comments seem to
have led to the incorrect belief that the best that can be achieved for two-message KE protocols
is weak-PFS, e. g., [28, pp. 2, 5], [14, p. 213]. As a result, even though the eCK security
model [28] guarantees only weak-PFS, it is currently described in the literature as the strongest
possible security model for two-message KE protocols [12,28,31].

Contributions. Our first contribution is to push forward the theoretical limits of KE security
notions. This contribution has two parts. First, we generalize the eCK security model [28]
based on the observation that a restriction on the adversary in the eCK model, whose purpose
it is to prevent Krawczyk’s PFS attack, is stronger than needed. To weaken this restriction
(while still preventing the attack) we introduce the concept of origin-session, which relaxes
the notion of matching session. The resulting model, which we call eCKw , specifies a slightly
stronger variant of weak-PFS than the eCK model. We then integrate (strong) PFS into the
eCKw model, which gives rise to the eCK-PFS model. The eCK-PFS model is strictly stronger
than eCKw , and also provides more guarantees than independently considering eCK/eCKw

security and PFS. In particular, security in eCK-PFS implies PFS in the presence of a fully
active attacker who can even learn the actor’s long-term secret key before the start of the
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Perfect forward secrecy under actor compromise and ephemeral-key reveal 185

attacked session, or who can learn session-specific ephemeral secret keys (i. e., random coins
generated in a session).

Our second contribution is a generic security-strengthening transformation (a so-called
compiler) that promotes the modular design approach of KE protocols. Given a two-message
Diffie–Hellman (DH) type KE protocol that is secure in eCKw or even in a weaker model
that we call eCKpassive, our transformation yields a two-message protocol that is secure in the
eCK-PFS model. The transformation introduces neither additional message dependencies
nor additional protocol rounds. Consequently, if our transformation is applied to a one-round
protocol, in which all outgoing messages can be computed before any message is received,
the result is also a one-round protocol. We apply our transformation to two concrete KE
protocols. First, we show that NAXOS [28], the first KE protocol proven secure in the eCK
model, is secure in eCKw and use our transformation to construct a protocol that is secure in
eCK-PFS. Second, we show how the protocol π1-core that is insecure in eCKw can be turned
into a protocol secure in eCK-PFS by proving it secure in the weaker eCKpassive model. Both
examples illustrate how our transformation enables the modular design of protocols.

Overall, this article combines and extends results from our previous papers [16,17].

Organization. In Sect. 2 we recall some standard definitions used in this paper. In Sect. 3
we formalize PFS and weak-PFS, and introduce our security notions eCKw and eCK-PFS.
In Sect. 4 we provide a transformation that turns any two-message Diffie–Hellman type KE
protocol secure in either eCKw or eCKpassive into a two-message KE protocol secure in eCK-
PFS. We show how this transformation can be applied to concrete KE protocols in Sect. 5.
We discuss related work in Sect. 6. Finally, we conclude in Sect. 7.

2 Preliminaries

Let ‖a‖ denote the length of the binary representation of the integer a, where log a < ‖a‖ ≤
log a + 1.

Let G = 〈g〉 be a finite cyclic group of large prime order p with generator g. Similar to
the discrete logarithm experiment [22], we define the GAP discrete logarithm (GAP-DLog)
experiment for a given group-generating algorithm G, algorithm A, and parameter k as
follows.
The GAP discrete logarithm experiment GAP-DLogA,G(k):

1. Run G(1k) to obtain (G, p, g) with ‖p‖ = k.
2. Choose h ∈R G. (This can be done by choosing x ′ ∈R Zp and setting h := gx ′

.)
3. A is given G, p, g, h, and outputs x ∈ Zp . In addition, A is given access to a deci-

sional Diffie–Hellman (DDH) oracle that, for any three elements gu, gv, gw ∈ G, replies
whether or not w = uv mod p.

4. The output of the experiment is defined to be 1 if gx = h, and 0 otherwise.

Definition 1 (GAP-DLog assumption [32]) The GAP-DLog assumption in G states that,
given gu , for u chosen uniformly at random from Zp , it is computationally infeasible to
compute u with the help of a decisional Diffie–Hellman (DDH) oracle (that, for any three
elements gu, gv, gw ∈ G, replies whether or not w = uv mod p). More precisely, we say
that the GAP-DLog assumption holds relative to G, if for all PPT algorithms A, there exists
a negligible function negl such that

P(GAP-DLogA,G(k) = 1) ≤ negl(k).
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186 C. Cremers, M. Feltz

Definition 2 (GAP-CDH assumption [35]) The GAP-CDH assumption in G states that, given
gu and gv , for u, v chosen uniformly at random from Zp , it is computationally infeasible to
compute guv with the help of a decisional Diffie–Hellman (DDH) oracle (that, for any three
elements gu, gv, gw ∈ G, replies whether or not w = uv mod p).

Definition 3 (Signature scheme [22]) A signature scheme Σ is a tuple of three polynomial-
time algorithms Gen, Sign, Vrfy satisfying the following:

1. The probabilistic key-generation algorithm Gen takes as input a security parameter 1k

and outputs a secret/public key pair (sk, pk).
2. The (possibly probabilistic) signing algorithm Sign takes as input a secret key sk and a

message m ∈ {0, 1}∗. It outputs a signature σ := Signsk(m).
3. The deterministic verification algorithm Vrfy takes as input a public key pk, a message

m, and a signature σ . It outputs a bit b, with b = 1 meaning valid and b = 0 meaning
invalid. We write b = Vrfypk(m, σ ).

Definition 4 (SUF-CMA [7]) A signature scheme Σ = (Gen, Sign, Vrfy) is strongly exis-
tentially unforgeable under an adaptive chosen-message attack if for all PPT adversaries
A, there exists a negligible function negl such that Adv

Sig
A (k) ≤ negl(k), where Adv

Sig
A (k)

denotes the probability of successfully forging a valid signature σ on a message m and (m, σ )

is not among the pairs (mi , σi ) (i = 1, . . . , q) generated during the query phase to a signature
oracle OSign returning a signature for any message mi of the adversary’s choice.

3 New KE security notions

We propose two new eCK-like security models for the analysis of KE protocols. The first
model, called eCKw , captures a slightly stronger form of weak-PFS than the original eCK
model. The second model, called eCK-PFS, integrates PFS directly into eCKw . We first
describe a framework for defining KE security models in Sect. 3.1. Using this framework,
we define our new security notions in Sects. 3.2 and 3.3. We then formally compare them in
Sect. 3.4.

3.1 Security notions for KE

Terminology. Let P =
{

P̂1, P̂2, . . . , P̂N

}
be a finite set of N honest parties represented by

binary strings. Each honest party can execute multiple instances of a KE protocol, called ses-
sions, concurrently. We denote session i at honest party P̂ as the tuple (P̂, i) ∈ P×N. We asso-
ciate to each session s ∈ P×N a quintuple of variables Ts = (sactor, speer, srole, ssent, srecv) ∈
P ×{0, 1}∗ ×{I, R}×{0, 1}∗ ×{0, 1}∗. The variables sactor, speer denote the identities of the
actor and intended peer of session s, srole denotes the role that the session is executing (either
initiator or responder), and ssent, srecv denote the concatenation of timely ordered messages
as sent/received by sactor during session s. The values of the variables speer and srole are set
upon activation of session s and the values of the variables ssent and srecv are defined by the
protocol execution steps. A session can only be activated once.

Adversarial capabilities. As is standard for Bellare–Rogaway style security notions for
AKE [2], we model the adversary as a PPT Turing machine that controls all communications
between parties. Similar to the eCK model [28], we consider the following queries:
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Perfect forward secrecy under actor compromise and ephemeral-key reveal 187

1. send(s, v). This query models the adversary sending message v to session s of honest
party sactor . The adversary is given the response generated by the session according to
the protocol. The variables ssent and srecv are updated accordingly (by concatenation).
Abusing notation, we allow the adversary to activate an initiator session with peer Q̂,
via a send(s, Q̂) query and a responder session by sending a message m to session s on
behalf of Q̂, via a send(s, Q̂, m) query. In these cases, speer is set to Q̂ and srole is set
to I and R, respectively. The adversary is given the session’s response according to the
protocol and the variables ssent, srecv are initialized accordingly.

2. corrupt(P̂). If P̂ ∈ P , then the query returns the long-term secret keys of party P̂ .
Otherwise the query returns ⊥.

3. ephemeral-key(s). This query returns the ephemeral secret keys (i. e., the random coins)
of session s.

4. session-key(s). This query returns the session key for a completed session s (i. e. a
session that has accepted/computed a session-key).

5. test-session(s). To respond to this query, a random bit b is chosen. If b = 0, then the
session-key established in session s is returned. Otherwise, a random key is returned
according to the probability distribution of keys generated by the protocol. This query
can only be issued to a completed session.

Notions of freshness. An adversary that can perform the above queries can simply reveal
the session key of all sessions, breaking any protocol. The intuition underlying Bellare–
Rogaway style KE models is to put minimal restrictions on the adversary with respect to
performing these queries, such that there still exist protocols that are secure in the presence
of such an adversary. The restrictions on the queries made by the adversary are formalized by
the notion of fresh sessions. Formally, we define a freshness predicate, that holds if certain
combinations of queries did not occur. Examples of such predicates will be given in the
following two sections.

Security model. A game-based security model M is defined by a set of adversary capabilities
(queries) MQ and a freshness notion Mfresh.

Security experiment W in model M. Security of a KE protocol π is defined via a security
experiment W (or attack game) played by an adversary E , modeled as a PPT algorithm,
against a challenger.

Before the experiment starts properly, there is a setup phase, in which the challenger runs
a key-generation algorithm specified by the protocol that takes as input a security parameter
1k and outputs valid static secret/public key pair(s), for each party P̂ ∈ P . The adversary
is then given all public data, including the public keys of all the honest parties in P . Then,
the adversary can choose to register arbitrary valid public keys (even public keys of honest
parties) on behalf of a set of adversary-controlled parties L̂ /∈ P .

After the above setup phase, the security experiment W can be described in four successive
stages, as follows:

1. The adversary E can perform any sequence of queries from MQ .
2. At some point in the experiment, E issues a test-session query to a completed session

that is Mfresh by the time the query is issued.
3. The adversary may continue with queries from MQ , under the condition that the test

session must remain Mfresh.
4. Finally, E outputs a bit b′ as his guess for b.
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188 C. Cremers, M. Feltz

The adversary E wins the security experiment W if he correctly guesses the bit b chosen by
the challenger during the test-session query (i. e., if b = b′ where b′ denotes E’s guess).
Success of E in the experiment is expressed in terms of E’s advantage in distinguishing
whether he received the real or a random session-key in response to the test-session query.
The advantage of adversary E in the above security experiment against a KE protocol π for
security parameter k is defined as Advπ

E (k) = |2P(b = b′) − 1|.
The notion of matching sessions specifies when two sessions are supposed to be intended

communication partners. Here we formalize the matching sessions definition from the eCK
model [28] which is based on matching conversations.

Definition 5 (matching sessions) Two completed sessions s and s′ are said to be matching
if

sactor = s′
peer ∧ speer = s′

actor ∧ ssent = s′
recv ∧ srecv = s′

sent ∧ srole �= s′
role.

As in the eCK model, we require that matching sessions perform different roles. The conse-
quences of such a choice are explored in detail in [15]. Two issues are important here. First,
there is a strong connection between the information used in a matching definition and the
information used to compute the session key. Second, some protocols like the two-message
versions of MQV and HMQV allow sessions to compute the same key even if they perform
the same role, whereas other protocols such as NAXOS and π1-core from Sect. 5 require the
sessions that compute the same key to perform different roles. In this paper we follow the
eCK setup, which applies directly to protocols of the second type. Protocols of the first type
can be dealt with by dropping the requirement of different roles from the matching definition.

Definition 6 (security) A KE protocol π is said to be secure in model M if, for all PPT
adversaries E , it holds that

– if two honest parties successfully complete matching sessions, then they compute the
same session key, and

– E has no more than a negligible advantage in winning security experiment W in model
M , that is, there exists a negligible function negl in the security parameter k such that
Advπ

E (k) ≤ negl(k).

3.2 eCKw: strengthening weak-PFS

As stated in the introduction, the eCK model captures weak-PFS but not PFS, based on
Krawczyk’s generic PFS attack [25,26]. We first formally define PFS, and then briefly recall
the attack.

It is hard to find a formal definition of PFS, as it is common to argue informally about
PFS. For example, the following informal definition is given in [34, p. 496]:

“A protocol is said to have perfect forward secrecy if compromise of long-term keys
does not compromise past session keys.”

However, such a definition does not suffice when we want to formally prove that our models
imply PFS or similar properties. To address this, we provide a formal definition of PFS in the
form of a Bellare–Rogaway-style security definition. This allows us to make precise formal
statements about the properties that our models achieve and the relations between them.

Definition 7 (PFS f resh) A completed session s in experiment W is PFSfresh if it holds that,
before the completion of session s, no keys have been registered on behalf of adversary-
controlled parties and no corrupt query has been issued.
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Definition 8 (PFS) A KE protocol π is said to satisfy PFS if it is secure in the PFS model,
where PFSQ = {send, corrupt} and PFSfresh is defined as above.

We now return to Krawczyk’s generic attack. Consider a two-message protocol in which
the agents exchange ephemeral public Diffie–Hellman keys, i. e., gx and gy , where x and y
are chosen at random from Zp (for some large prime p). Then, Krawczyk’s attack proceeds
as follows. The adversary, impersonating party Â, generates a random value x (∈ Zp) and
sends gx to a responder session at party B̂. B̂ responds by sending gy and computes the
session key. The adversary chooses B̂’s session as the test session, i. e., the session under
attack, and reveals Â’s long-term secret key after B̂’s session ends. Now the adversary can
simply follow all protocol steps that an honest party Â would have performed using x and
Â’s long-term secret key. In particular, the adversary can compute the same session-key as
the test session, violating PFS.

Krawczyk’s attack works directly for all two-message KE protocols that exchange DH
keys of the form gz , where z does not involve the sender’s long-term secret key, such as
HMQV [26]. Additionally, the attack also works on protocols like NAXOS [28], where
z (∈ Zp) is a hash of the sender’s long-term secret key and a random value. The adversary
can replace this value by an arbitrary value from Zp .

To still prove some form of forward secrecy for such protocols, Krawczyk introduced the
notion of weak-PFS. In weak-PFS, the adversary is not allowed to actively interfere with the
messages exchanged by the test session. This prevents the attack because the adversary is no
longer allowed to insert his own DH exponential. Similarly, in the eCK model, this restriction
on interfering with the test session is modeled by checking if a matching session exists [28,
p. 5]. If this is the case, then the adversary must have been passive and he is allowed to reveal
the long-term secret keys of the actor and the intended communication partner of a session.
If there is no matching session, the adversary is not allowed to reveal the long-term secret
key of the intended communication partner.

We observe that Krawczyk’s attack only depends on the adversary injecting or modifying
the message received by the test session; he does not need to actively interfere with the
message sent by the test session. However, eCK models passivity of the adversary in the
test session by checking whether a matching session for the test session exists, which also
prevents the adversary from modifying (or deleting) the message sent by the test session.
In this sense, the restriction on the adversary in eCK is sufficient but not necessary for the
prevention of Krawczyk’s attack. We therefore relax the notion of matching sessions and
introduce the concept of origin-session.

Definition 9 (origin-session) We say that a (possibly incomplete) session s′ is an origin-
session for a completed session s when s′

sent = srecv.

Note that if two completed sessions s, s′ are matching, then s and s′ are origin-sessions for
each other. However, if session s is an origin-session for some session s′, then it might not
necessarily be a matching session for s′ (e. g. in case the roles of the sessions are identical).
Thus, a session being a matching session for some session is a stronger requirement than a
session being an origin-session for some session.

Using this notion, we give the first formal definition of weak-PFS. In order to exclude
Krawczyk’s generic PFS attack, we disallow the adversary from injecting his own messages
into the test session. However, whereas Krawczyk enforced this by requiring a matching
session to exist, we merely require the messages received by the test session to have been
sent by a so-called origin session. In other words, if an origin-session s′ for some session
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190 C. Cremers, M. Feltz

s exists, then the messages received by session s have not been modified or injected by the
adversary.

Definition 10 (wPFS f resh) A completed session s in security experiment W is wPFSfresh if
all of the following conditions hold:

1. there exists an origin-session for session s, and
2. before the completion of session s, no keys have been registered on behalf of adversary-

controlled parties and no corrupt query has been issued.

Definition 11 (weak-PFS) A KE protocol π is said to satisfy weak-PFS if it is secure in the
wPFS model, where wPFSQ = {send, corrupt} and wPFSfresh is defined as above.

Summarizing, we capture weak-PFS by the compromise of long-term secret keys of parties
after the end of the test session under the condition that an origin-session for the test session
exists. Thus, we model passivity of the adversary in the test session by the existence of an
origin-session for the test session (and not by the notion of matching session, e. g., as done
in [26]).

Compared to the original eCK model, our definition of weak-PFS enables us to capture
an additional capability of the adversary: revealing the long-term secret key of the intended
communication partner (i. e. the peer) of the test session s in case an origin-session s′ for s
exists, even when no matching session exists for s. Thus, in contrast to the eCK model, the
adversary may reveal the long-term key of the peer of the test session s in case an origin-
session s′ for session s exists and

– actively interfere with the message sent by the test session (e. g. by modifying it or
injecting his own message), or

– replay a message from another session to the test session (as in [8]), or
– leave session s′ incomplete (in case s′ is an initiator session).

We call our strengthened variant of the eCK model the eCKw model.

Definition 12 (eCKw
f resh) A completed session s in security experiment W is eCKw

fresh if
all of the following conditions hold:

1. sactor and speer are honest parties, i. e. (sactor, speer) ∈ P × P ,
2. W does not include the query session-key(s),
3. for all sessions s∗ such that s∗ matches s, W does not include session-key(s∗),
4. W does not include both corrupt(sactor) and ephemeral-key(s),
5. for all sessions s′ such that s′ is an origin-session for session s, W does not include both

corrupt(speer) and ephemeral-key(s′), and
6. if there exists no origin-session for session s, then W does not include a corrupt(speer )

query.

Definition 13 (eCKw security) A KE protocol π is said to satisfy eCKw security if it
is secure in the eCKw model, where eCKw

fresh is defined as above, and eCKw
Q =

{send, corrupt, ephemeral-key, session-key}.

In Sect. 5.1 we will show that the NAXOS protocol satisfies eCKw security.
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3.3 eCK-PFS: integrating PFS into eCKw

We next extend the eCKw model by integrating PFS, which yields the strictly stronger eCK-
PFS model. PFS is reflected in eCK-PFS by allowing the adversary to reveal the long-term
secret keys of all the protocol participants after the end of the test session, as in the PFS
model. These keys can be revealed irrespective of the existence of an origin-session (or a
matching session). The PFS attack scenario is neither captured in eCKw (nor in eCK) if the
origin-session (matching session) does not exist for the test session. In contrast to the way
in which the CK-NSR model from [8] incorporates PFS, eCK-PFS additionally captures
leakage of various combinations of ephemeral secret keys and long-term secret keys as well
as PFS under actor compromise.

Definition 14 (eCK-PFS f resh) A completed session s in security experiment W is
eCK-PFSfresh if all of the following conditions hold:

1. sactor and speer are honest parties, i. e. (sactor, speer) ∈ P × P ,
2. W does not include the query session-key(s),
3. for all sessions s∗ such that s∗ matches s, W does not include session-key(s∗),
4. W does not include both corrupt(sactor) and ephemeral-key(s),
5. for all sessions s′ such that s′ is an origin-session for session s, W does not include both

corrupt(speer) and ephemeral-key(s′), and
6. if there exists no origin-session for session s, then W does not include a corrupt(speer)

query before the completion of session s.

Definition 15 (eCK-PFS security) A KE protocol π is said to satisfy eCK-PFS security if
it is secure in the eCK-PFS model, where eCK-PFSQ = {send, corrupt, ephemeral-key,

session-key} and eCK-PFSfresh is defined as above.

3.4 Relations between the security models

Let secure(M, π) be a predicate that is true if and only if the protocol π is secure in security
model M . Here we formalize the relative strengths of security between game-based KE
security models given in [13] as follows.

Definition 16 Let Π be a class of KE protocols. We say that a security model M ′ is stronger
than a security model M with respect to Π , denoted by M ≤Π

Sec M ′, if

∀ π ∈ Π. secure(M ′, π) → secure(M, π). (1)

The previous definition implies that protocols proven secure in model M ′ will be secure in
model M , where M ≤Π

Sec M ′. To show that model M ′ is not stronger than model M , denoted
by M �

Π
Sec M ′, it suffices to find a protocol π ∈ Π such that π is secure in model M ′ and

insecure in model M , as in [13,15]. We say that model M ′ is strictly stronger than model M
with respect to protocol class Π , denoted by M <Π

Sec M ′, if M ≤Π
Sec M ′ and M ′

�
Π
Sec M .

Informally, the eCK-PFS model is stronger than eCKw because the eCK-PFS model allows
the adversary to corrupt all parties after the test session is completed (regardless of whether
an origin-session exists for the test session), capturing PFS. In contrast, in case the adversary
is active in the message received by the test session, he is not allowed to reveal the long-term
secret key of the peer of the test session in the eCKw model.

Proposition 1 Let Π be the class of two-message KE protocols. The eCK-PFS model is
strictly stronger than the eCKw model with respect to Π .
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Fig. 1 Relations between the
security models for the class of
two-message KE protocols

The first part of the Proof of Proposition 1, namely that eCK-PFS is stronger than eCKw ,
proceeds in a similar way as the reduction proofs in [13].

Proof We first show that the eCK-PFS model is stronger than the eCKw model with respect
to Π . The first condition of Definition 6 is satisfied since matching is defined in the same
way for both models eCKw and eCK-PFS. Let π ∈ Π . To show that the second condition
of Definition 6 holds, we construct an adversary E ′ attacking protocol π in model eCK-PFS
using an adversary E attacking π in eCKw . Adversary E ′ proceeds as follows. Whenever E
issues a query send, corrupt, ephemeral-key, session-key or test-session, adversary E ′
issues the same query and forwards the answer received to E . At the end of E’s execution, i. e.
after it has output its guess bit b, E ′ outputs b as well. Note that if eCKw

fresh holds for the test
session, then by definition eCK-PFSfresh also holds. In particular, if there is no origin session,
then the sixth condition of eCKw

fresh requires that there is no corrupt of the peer, which
implies the sixth condition of eCK-PFSfresh. Hence, it holds that Advπ

E (k) ≤ Advπ
E ′(k),

where k denotes the security parameter. Since by assumption protocol π is secure in eCK-
PFS, there is a negligible function g such that Advπ

E ′(k) ≤ g(k). It follows that protocol π

is secure in eCKw .
The model eCK-PFS is strictly stronger than eCKw since, e. g., the NAXOS protocol is

secure in eCKw , as we show in Sect. 5, but insecure in eCK-PFS due to the PFS attack
described in Sect. 3.2. ��

The following proposition states that PFS is a stronger property than weak-PFS.

Proposition 2 Let Π be the class of two-message KE protocols. The PFS model is strictly
stronger than the wPFS model with respect to Π .

Proof The proof that the PFS model is stronger than the wPFS model is similar to the
corresponding Proof of Proposition 1. Note that the test session being wPFSfresh implies that
it is PFSfresh since we have a further freshness requirement in the wPFS model. The PFS
model is strictly stronger than the wPFS model since, e. g., the NAXOS protocol achieves
weak-PFS as can be easily deduced from the Proof of Proposition 7, but does not satisfy PFS
due to the generic PFS attack described in Sect. 3.2. ��

The relations between these four models and the eCKpassive model that we will define in
Sect. 4.3 are depicted in Fig. 1.

4 A security-strengthening transformation from eCKw to eCK-PFS

4.1 Protocol class DH-2

We define a class of two-message Diffie–Hellman type KE protocols (similar to the class of
KE protocols in [8]). Then, we present a security-strengthening transformation (compiler)
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Fig. 2 A generic two-message DH type protocol

that can be applied to any such protocol. Finally we show that this transformation turns any
KE protocol secure in eCKw into a KE protocol secure in eCK-PFS.

Let k be a security parameter and let G be a finite cyclic group of prime order p with
generator g, where ‖p‖ = k. Let Ω be static publicly known data such as parties’ identifiers
(binary strings in P), their long-term public keys or publicly known functions and parameters.
Let S be a set of constants from which random values are chosen (e. g. S = Zp or S = {0, 1}k).
We denote by x ∈R S that x is chosen uniformly at random from the set S. In the generic two-
message DH type protocol, illustrated in Fig. 2, party Â’s long-term secret key is a ∈R Zp and
Â’s long-term public key is A = ga . The session-specific ephemeral secret key of the session
at party Â is denoted by rÂ ∈R S and the corresponding ephemeral public key is denoted by X .

Similarly, party B̂’s long-term secret/public key pair is (b, B) and the ephemeral secret/public
key pair of the session at B̂ is denoted by (rB̂ , Y ). The public functions fI , fR : {0, 1}∗ → Zp

depend on the ephemeral secret key and may depend on the long-term secret key or on public
information. The public functions FI , FR : {0, 1}∗ → {0, 1}k depend on the Diffie–Hellman
exponent the long-term secret key, the received Diffie–Hellman exponential and other public
information. We assume that the public keys of all parties are known to all other participants
in the protocol.

Protocol description. The generic two-message DH type protocol, depicted in Fig. 2, pro-
ceeds as follows:

1. Upon activation of session s = ( Â, i) ∈ P × N with peer B̂, Â (the initiator) performs
the steps:

– Choose an ephemeral secret key rÂ ∈R S and compute X = g fI (rÂ,a,Ω).
– Send X (and possibly other public data, e. g. identifiers of peer and actor of the

session) to B̂.
– Initialize Ts to ( Â, B̂, I, m, ε), where m denotes the message sent by session s.

2. Upon activation of session s′ = (B̂, j) ∈ P × N with message X (and possibly other
data) on behalf of Â, party B̂ (the responder) performs the steps:

– Check that X ∈ G.
– Choose an ephemeral secret key rB̂ ∈R S and compute Y = g fR(rB̂ ,b,Ω).
– Compute K B̂ = FR( fR(rB̂ , b,Ω), b, X,Ω).

– Send Y (and possibly other public data) to Â.
– Set Ts′ to (B̂, Â, R, m′, n′), where m′ denotes the message sent by session s′ and n′

the message received by session s′, and complete the session by accepting K B̂ as the
session-key.

3. Upon receiving message Y (with possibly other data) in session s, party Â performs the
steps:
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Fig. 3 A transformed generic protocol SIG(π )

– Check that Y ∈ G.
– Compute K Â = FI( fI(rÂ, a,Ω), a, Y,Ω).

– Update Ts to ( Â, B̂, I, m, n) and complete the session by accepting K Â as the session-
key.

The above description also applies to protocols with additional checks, which we omit for
clarity. We assume that whenever a check in a session fails, all session-specific data is erased
from memory and the session is aborted, i. e., it terminates without establishing a session-key.

Definition 17 (Protocol class DH-2) We define DH-2 as the class of all two-message KE
protocols that follow the description of a generic DH type protocol and meet the following
validity requirement:

– In the presence of an eavesdropping adversary, two honest parties Â and B̂ can complete
matching sessions (in the sense of Definition 5), in which case they hold the same session-
key.

The validity requirement requires that if the messages of two honest parties Â and B̂ are
faithfully relayed to each other, then both parties end up with a shared session-key (see
also [2–4]). Note that, e. g., the KE protocols NAXOS [28], NAXOS+ [31], NETS [30] and
CMQV [37] belong to the class DH-2.

Remark 1 Note that the protocol class DH-2 contains the subclass of one-round DH type
protocols in which messages can be generated independently from each other.

4.2 Protocol transformation SIG

Here we show how to transform any protocol π ∈ DH-2 into a two-message protocol
SIG(π), shown in Fig. 3, by applying the signature transformation SIG. Party Â has two
independent valid long-term secret/public key pairs, one pair (a, A) from protocol π and one
pair (skÂ, pkÂ) for use in a digital signature scheme Σ with security parameter k. Similarly,

party B̂’s long-term secret/public key pairs are (b, B) and (skB̂ , pkB̂). The transformed
protocol SIG(π) in Fig. 3 proceeds as protocol π except that each party needs to additionally
sign a message using its secret signature key and check that the received signature on a
message is valid with respect to the long-term public key of its peer. The fields between
square brackets within the signature are optional. Note that if the objective is to obtain a
one-round protocol, then X should not be included in the second message.

Informally, a security-strengthening protocol transformation is a mapping between pro-
tocols such that the transformed protocol satisfies stronger security properties. We formally
define it as follows.
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Definition 18 (Security-strengthening protocol transformation) Let Π1 and Π2 be two
classes of KE protocols. We say that a function f : Π1 → Π2 is a security-strengthening
protocol transformation from the model M to the model M ′ if

1. M ≤Π2
Sec M ′, and

2. ∀π ∈ Π1. secure(M, π) → secure(M ′, f (π)).

The previous definition implies that if a KE protocol π ∈ Π1 is secure in model M ,
M ≤Π2

Sec M ′, and f is a security-strengthening transformation from M to M ′, then protocol
f (π) ∈ Π2 is secure in model M ′. Note that, by Definition 16, it follows that protocol f (π)

is secure in model M .

4.3 Security analysis of SIG

Our original intent was to show that SIG is security-strengthening from eCKw to eCK-PFS,
but we will in fact show a more general result: we show that SIG is security-strengthening
from a weaker version of the eCKw model, which we call eCKpassive, to eCK-PFS.

Weakening eCKw to eCK passive. Informally, the eCKpassive model weakens eCKw by captur-
ing only passive attacks on the test session (i. e., the session under attack). The adversary can
delay, forward, or replay messages to the test session. However, he is not allowed to inject a
message to the test session or to modify the message that the test session receives. As in the
eCKw model, the adversary is allowed to reveal ephemeral values of sessions and long-term
secret keys of parties, thus it also captures, e. g., weak-PFS. Formally, the eCKpassive model
only differs from eCKw in its definition of freshness. In eCKpassive, there must exist an origin
session for the test session.

Definition 19 (eCK passive
f resh) A completed session s in security experiment W is

eCKpassive
fresh if all of the following conditions hold:

1. sactor and speer are honest parties, i. e. (sactor, speer) ∈ P × P ,
2. there exists an origin-session s′ for session s,
3. W does not include the query session-key(s),
4. for all sessions s∗ such that s∗ matches s, W does not include session-key(s∗),
5. W does not include both corrupt(sactor) and ephemeral-key(s), and
6. for all sessions s′ such that s′ is an origin-session for session s, W does not include both

corrupt(speer) and ephemeral-key(s′).

Definition 20 (eCK passive security) A KE protocol π is said to satisfy eCK passive secu-
rity if it is secure in the eCKpassive model , where eCKpassive

Q = {send, corrupt,
ephemeral-key, session-key} and eCKpassive

fresh is defined as above.

Proposition 3 Let Π be the class of two-message KE protocols.

– The eCKpassive model is strictly stronger than the wPFS model with respect to Π .
– The eCK-PFS model is strictly stronger than the PFS model with respect to Π .

Proof The proof that the eCKpassive model is stronger than the wPFS model is similar to
the corresponding Proof of Proposition 1. Note that the test session being wPFSfresh implies
that it is eCKpassive

fresh since in the wPFS model the adversary is not given access to the
queries ephemeral-key and session-key. Also, in the wPFS model the adversary is not
allowed to either register keys on behalf of adversary-controlled parties or to issue a corrupt
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query before the completion of the test session. A similar argument applies to show that the
eCK-PFS model is stronger than the PFS model.

The eCKpassive model is strictly stronger than the wPFS model. It can be easily shown
that protocol TS2 achieves weak-PFS by adapting the proof of [21, Theorem 2]. However,
protocol TS2 is insecure against an adversary who can reveal the long-term secret key of
the actor of the test session and the ephemeral secret key of the origin-session for the test
session. Hence, TS2 is insecure in eCKpassive. The eCK-PFS model is strictly stronger than
the PFS model. By Theorem 1, it holds that SIG(TS2) satisfies PFS (see Remark 1). However,
SIG(TS2) is insecure in eCK-PFS for a similar reason as TS2 is insecure in eCKpassive. ��

Propositions 4 and 5 will be used in the Proofs of Theorem 1 and Corollary 1.

Proposition 4 Let Π be the class of two-message KE protocols. The eCKw model is strictly
stronger than the eCKpassive model with respect to Π .

Proof The proof that the eCKw model is stronger than the eCKpassive model is similar to the
corresponding Proof of Proposition 1. Note that if the test session is eCKpassive

fresh, then it
is also eCKw

fresh. This follows from the fact that compared to the eCKw model, we have a
further freshness condition on the test session in eCKpassive, namely that an origin session
exists for the test session.

The model eCKw is strictly stronger than the eCKpassive model since, e. g., the KE protocol
π1-core is secure in eCKpassive, as we show in Sect. 5, but insecure in eCKw as observed
in [25]. ��
Proposition 5 Let Π be the class of two-message KE protocols. The eCK-PFS model is
strictly stronger than the eCKpassive model with respect to protocols Π .

Proof Since eC K passive <Π
Sec eC K w and eC K w <Π

Sec eC K − P F S, it follows that
eC K passive <Π

Sec eC K − P F S by transitivity of the implication (1). The eCK-PFS model is
strictly stronger than eC K passive since, e. g., the protocol π1-core is secure in eC K passive but
insecure in eCK-PFS. ��

How to provably achieve eCK-PFS security. We show in Theorem 1 below that the SIG
transformation is a security-strengthening protocol transformation from eCKpassive to eCK-
PFS provided that the digital signature scheme is strongly existentially unforgeable under
an adaptive chosen-message attack (SUF-CMA) as well as deterministic. An example of
such a scheme is the GDH signature scheme from [6]. We require a deterministic signature
scheme so that we do not have to consider additional random coins from the signature
generation procedure when reasoning about ephemeral-key queries. For certain randomized
signature schemes, an efficient adversary can compute the secret (signature) key given the
corresponding public key, a signature on any message using the secret key, and the random
coins involved in the signature generation learned through an ephemeral-key query (as
noted in [28]). The following lemma is used in the Proof of Theorem 1.

Lemma 1 (Difference lemma [36]) Let A, B, F be events defined on some probability space.
Suppose that event A ∧ Fc occurs if and only if event B ∧ Fc occurs (where Fc denotes the
complement of event F). Then

|P(A) − P(B)| ≤ P(F).

We now give the main theorem and corollary before proceeding with their proofs.

123



Perfect forward secrecy under actor compromise and ephemeral-key reveal 197

Theorem 1 Let Π denote the class of two-message KE protocols. Under the assumption that
the signature scheme is deterministic and SUF-CMA, the transformation SIG : DH-2 → Π

is a security-strengthening protocol transformation from eCKpassive to eCK-PFS according
to Definition 18.

Corollary 1 Let Π denote the class of two-message KE protocols. Under the assumption that
the signature scheme is deterministic and SUF-CMA, the transformation SIG : DH-2 → Π

is a security-strengthening protocol transformation from eCKw to eCK-PFS according to
Definition 18.

Proof (Theorem 1) The first condition of Definition 18 is satisfied by Proposition 5. We next
verify whether the second condition of Definition 18 holds. Let π ∈ DH-2 be secure in
model eCKpassive. It is straightforward to verify the first condition of Definition 6, i. e., that
matching sessions of protocol SIG(π) compute the same key (since matching sessions of
protocol π compute the same key). We show next that the second condition of Definition 6
holds, i. e., an adversary against SIG(π) in eCK-PFS has no more than a negligible advantage
in distinguishing the session key from a random key. We present a security proof structured
as a sequence of games, a proof technique introduced in [36]. Let Si denote the event that
the adversary correctly guesses the bit chosen by the challenger to answer the test-session
query in Game i and let αi = |2P(Si ) − 1| denote the advantage of the adversary in Game i.
Let N , qs be upper bounds on the number of parties and activated sessions, respectively. ��
Game 0. This game reflects the security experiment W in model eCK-PFS, as defined in
Sect. 3.1, played by a PPT adversary E against the protocol SIG(π).

Game 1. [Transition based on a small failure event] Let CollSIG(π) be the small failure event
that a collision for protocol SIG(π) occurs (e. g., in ephemeral secret keys). As soon as event
CollSIG(π) occurs, the attack game stops.

Analysis of Game 1. Game 0 is identical to Game 1 up to the point in the experiment where
event CollSIG(π) occurs for the first time. The difference lemma yields that |P(S0)−P(S1)| ≤
P(CollSIG(π)). Hence,

α0 = |2P(S0) − 1| = 2|P(S0) − P(S1) + P(S1) − 1/2|
≤ 2(|P(S0) − P(S1)| + |P(S1) − 1/2|)
≤ 2P(CollSIG(π)) + α1.

Game 2. [Transition based on a large failure event (see [9,19])] Before the adversary E
starts the attack game, the challenger chooses a random value m ∈R {1, 2, . . . , qs}. The
m-th session activated by E , denoted by s∗, is the session on which the challenger wants the
adversary to be tested. Let T be the event that the test session is not session s∗. If event T
occurs, then the attack game halts and the adversary outputs a random bit.
Analysis of Game 2. Event T is non-negligible, the environment can efficiently detect it
and T is independent of the output in Game 1 (i. e. P(S1|T ) = P(S1)). If T does not
occur, then the attacker E will output the same bit in Game 2 as it did in Game 1 (so that
P(S2|T c) = P(S1|T c) = P(S1)). If event T occurs in Game 2, then the attack game halts
and the adversary E outputs a random bit (so that P(S2|T ) = 1/2). We have,

P(S2) = P(S2|T )P(T ) + P(S2|T c)P(T c) = 1

2
P(T ) + P(S1)P(T c)

= P(T c)(P(S1) − 1

2
) + 1

2
.
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Hence we get, α2 = |2P(S2) − 1| = P(T c)|2P(S1) − 1| = 1
qs

α1.
Suppose w. l. o. g. that s∗

role = I and that protocol π does not include optional public
information in the sent messages. Let F be a forgery event with respect to the long-term
public key pkP̂ of party P̂ , that is, adversary E issues a send(s∗, V, σ ) query to session s∗
being incomplete such that

– σ is a valid signature on message m = (V, [W, s∗
actor]) with respect to the public key of

P̂ , where W is the Diffie–Hellman exponential contained in message s∗
sent , and

– (V, σ ) has never been output by party P̂ in response to a send query.

Game 3. [Transition based on a small failure event] This game is the same as the previous
one except that when a forgery event F with respect to the long-term public key of some
party P̂ ∈ P occurs, the experiment halts and E outputs a random bit.

Analysis of Game 3. The analysis of Game 3 proceeds in several steps. Consider first the
following three cases.

1. If E issues a corrupt(P̂) query before the completion of session s∗ and no origin-session
exists for s∗, then session s∗ is not eCK-PFSfresh. This would have caused Game 2 to
abort since session s∗ would not be the test session. Recall that the test-session query
can only be issued to a session that is eCK-PFSfresh by the time the query is issued. Hence
this case can be excluded.

2. If P̂ were adversary-controlled (i. e. P̂ /∈ P), then session s∗ would not be eCK-PFSfresh

and Game 2 would have aborted. Hence this case can be excluded as well.
3. If E does not issue a corrupt(P̂) query before the completion of session s∗, then he can

only impersonate party P̂ to session s∗ by forging a signature on a message with respect
to the long-term public key of P̂ .

Claim We have |P(S2) − P(S3)| ≤ P(F).

Proof If event F does not occur, then Game 2 and 3 proceed identically (i. e. S2 ∧ Fc ⇔
S3 ∧ Fc). The difference lemma yields that |P(S2) − P(S3)| ≤ P(F). ��
Claim If the deterministic signature scheme is SUF-CMA, then P(F) is negligible. More
precisely, P(F) ≤ N Adv

Sign
M (k), where Adv

Sign
M (k) denotes the probability of a successful

forgery.

Proof Consider the following algorithm M using adversary E as a subroutine. M is given
a public signature key pk and access to the corresponding signature oracle OSign. It selects
at random one of the N parties and sets its public key to pk. We denote this party by P̂ and
its signature key pair by (skP̂ , pkP̂ ). Further, the algorithm M chooses signature key pairs

(ski , pki ) for all honest parties P̂i ∈ P with P̂i �= P̂ and stores the associated secret keys.
It also chooses key pairs (ci , Ci ) for all honest parties P̂i ∈ P as needed for protocol π and
stores the associated secret keys.

ALGORITHM M :

1. Run E on input 1k and the public keys for all of the N parties.
2. If E issues a send(z, Q̂) query to activate session z with peer Q̂ ∈ P , then answer it as

follows.

– If zactor �= P̂ , then choose x ∈R Zp to get X = gx , compute the signature σ on
message m = (X [, Q̂]) on behalf of zactor and return the message (X, σ ) to E .
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– If zactor = P̂ , then choose x ∈R Zp to get X = gx and query the signature oracle on
message m = (X [, Q̂]) which returns the signature σ on message m. Store the pair
(m, σ ) in a table L , initially empty, and return the message (X, σ ) to E .

3. If E issues a send(z, Q̂, m) query to activate session z, then answer it as follows. First
check whether message m is of the form (X, σ ) for some X ∈ G and σ a valid signature
on message (X [, zactor]) with respect to the public key of Q̂. If the checks succeed, then:

– If zactor �= P̂ , then choose y ∈R Zp to get Y = gy , compute the signature σ on
message m = (Y [, X, Q̂]) on behalf of zactor and return the message (Y, σ ) to E .

– If zactor = P̂ , then choose y ∈R Zp to get Y = gx and query the signature oracle
on message m = (Y [, X, Q̂]) which returns the signature σ on message m. Store the
pair (m, σ ) in table L (initially empty) and return the message (Y, σ ) to E .

If one of the checks does not succeed, then abort session z.
4. If E issues a send(z, m) query to session z in role I, then check whether message m is

of the form (Y, σ ) for some Y ∈ G and σ a valid signature on message (Y [, X, zactor])
with respect to the public key of zpeer (where W ∈ G is contained in message s∗

sent). If
the check fails, then abort session z.

5. If E makes a send(s∗, V, σ ) query, where σ is a valid signature with respect to the
public key pkP̂ of party P̂ on message m = (V [, W, s∗

actor]) (where W ∈ G is contained
in s∗

sent), before the completion of the test session s∗ and (m, σ ) /∈ L , then stop E and
output (m, σ ) as a forgery.

6. The queries session-key, ephemeral-key are answered in the appropriate way since M
has chosen the ephemeral secret keys for all the sessions and the long-term secret keys
for use in protocol π for all the parties.

7. The queries corrupt(Q̂i ), where Q̂i ∈ P \{P̂}, are answered in the appropriate way since
M knows the secret key pairs of the honest parties in the set P \ {P̂}. In case Q̂i /∈ P ,
M returns ⊥. In case Q̂i = P̂ , M aborts with failure.

8. If E issues the query test-session(s∗), then abort with failure.

Under event F , algorithm M is successful as described in Step 5 and the abortions as in Step
7 and 8 do not occur. The probability that E succeeds in forging a signature with respect to
the public key of P̂ is bounded above by the probability that M outputs a forgery multiplied
by the number of honest parties, that is, P(F) ≤ N Adv

Sign
M (k). ��

Claim Let Adv
SIG(π),Game 3,O
E (k) := |2P(S3|O) − 1|, where O denotes the event that

there is an origin-session for the test session. It holds that Adv
SIG(π),Game 3
E (k) =

max(0, Adv
SIG(π),Game 3,O
E (k)).

Proof Note that |2P(S3|F) − 1| = |2 1
2 − 1| = 0 (since, when event F occurs in Game 3, E

outputs a random bit) and that if event F does not occur, then there exists an origin-session
for the test session. ��

We next establish an upper bound for Adv
SIG(π),Game 3,O
E (k) in terms of the security of

protocol π .

Claim Assume that in Game 3 there exists a unique1 origin-session s for the test ses-
sion s∗ with sactor = s∗

peer . If there is an efficient adversary E in eCK-PFS succeed-

1 No collision in the ephemeral secret keys occurs for SIG(π) (where π ∈ DH-2) since otherwise Game 1
would have caused the game to abort.
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ing in Game 3 against protocol SIG(π) with non-negligible advantage, then we can con-
struct an efficient adversary E ′ in eCKpassive succeeding in Game 3 against protocol π

with non-negligible advantage using adversary E as a subroutine. Moreover, it holds that
Adv

SIG(π),Game 3,O
E (k) ≤ Adv

π,Game 3
E ′ (k).

Proof Fix an efficient adversary E in eCK-PFS succeeding in Game 3 against protocol
SIG(π) with non-negligible advantage. Let us construct an adversary E ′ in eCKpassive suc-
ceeding in Game 3 against protocol π with non-negligible advantage using adversary E as a
subroutine.

ALGORITHM E ′: E ′ chooses secret/public signature key pairs for all the parties and
stores the associated secret signature keys. It is given all public knowledge, such as public
(non-signature) keys for all the parties.

1. Run E against SIG(π) on input 1k and the public key pairs for all of the N parties.
2. When E issues a corrupt(P̂) query to some party P̂ , E ′ issues that query to party P̂ and

returns the answer to that query together with the secret signature key of P̂ (that E ′ has
chosen) to E .

3. When E issues an ephemeral-key or a session-key query to some session z, E ′ issues
that query to session z and returns the answer to E .

4. send queries are answered in the following way.

– If E issues a send(z, Q̂) query to activate session z with peer Q̂, then E ′ issues the
same query to session z. The response is a message W (∈ G). Since E ′ knows the
secret signature key of zactor , it can sign the message m = (W [, Q̂]) on its behalf
and then return the message (W, σ ) to E , where σ denotes the signature on m with
respect to the public key of zactor .

– If E issues a send(z, Q̂, m) query to activate session z, where message m is of the
form (W, σ ), then E ′ first checks whether W ∈ G and second whether σ is a valid
signature on message (W [, zactor]) with respect to the public key of Q̂. If the checks
succeed, then E ′ issues the query send(z, W ) to session z. The response is a message
V ∈ G. Since E ′ knows the secret signature key of zactor , it can sign the message
m = (V [, W, Q̂]) on its behalf and then return the message (V, σ ) to E , where σ

denotes the signature on m with respect to the public key of zactor .
– If E issues a send(z, m) query, where message m is of the form (V, σ ), then E ′

first checks whether V ∈ G and second whether σ is a valid signature on mes-
sage (V [, W, zactor]) with respect to the public key of zpeer , where W is the Diffie–
Hellman exponential contained in zsent . If the checks succeed, then E ′ issues the
query send(z, V ) to session z.

If one of the checks fails, then session z is aborted (i. e. E ′ aborts session z).
5. In case E issues the test-session query to session s∗, E ′ issues the test-session query

to session s∗ and returns the answer to E .
6. At the end of E’s execution (after it has output its guess b′), output b′ as well.

Since by assumption there exists a unique origin-session for the test session, the test session
being eCK-PFSfresh is also eCKpassive

fresh. Thus, it holds that

Adv
SIG(π),Game 3,O
E (k) ≤ Adv

π,Game 3
E ′ (k).
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Finally,

Adv
SIG(π)
E (k) ≤ 2P(CollSIG(π)) + 2qs N Adv

Sign
M (k) + qs Adv

SIG(π),Game 3,O
E (k)

≤ 2P(CollSIG(π)) + 2qs N Adv
Sign
M (k) + qs Adv

π,Game 3
E ′ (k)

Since by assumption protocol π is secure in eCKpassive, there is a negligible function g such
that Adv

π,Game 3
E ′ (k) ≤ g(k), which completes the proof. ��

Proof (Corollary 1) The first condition of Definition 18 is satisfied by Proposition 1. We next
verify the second requirement. Letπ ∈ DH-2 secure in eCKw . Since by Proposition 4 we have
eC K passive ≤Π

Sec eC K w, it follows that protocol π is secure in eCKpassive. By Theorem 1, SIG
is a security strengthening protocol transformation from eCKpassive to eCK-PFS. Therefore,
the transformed protocol SIG(π) is secure in eCK-PFS. ��

Remark 2 Let eCK-NEKpassive and eCK-NEK-PFS be the security models obtained from
eCKpassive and eCK-PFS (respectively) by removing the ephemeral-key query from the
adversary’s capabilities and related restrictions in the freshness definitions. Then it can be
shown in a similar way as above that for any KE protocol π ∈ DH-2 secure in eCK-
NEKpassive, the transformed protocol SIG(π) is secure in eCK-NEK-PFS using either a
deterministic or a randomized SUF-CMA signature scheme. The same statement holds when
replacing eCK-NEKpassive by wPFS and eCK-NEK-PFS by PFS.

Remark 3 Blake-Wilson and Menezes [5, p. 160] introduced the duplicate-signature key
selection (DSKS) attack on signature schemes: after observing a user’s signature σ on a
message m, the adversary E is able to compute a signature key pair (skE , pkE ) (or sometimes
just a verification key pkE ) such that σ is also E’s signature on the message m. Now, the
adversary in our setting can only register public keys at the onset of the experiment W
described in Sect. 3, i. e. before interacting with the parties through queries. Thus, DSKS
attacks, which exploit the adversary’s ability to register a public key after observing signed
messages, are not captured in our models. Note however that UKS attacks based on public-
key re-registration (such as the ones on STS-MAC and STS-ENC [5, p. 159] as well as on
KEA [29, p. 380]) are captured in our models eCKpassive, eCKw , and eCK-PFS. Such UKS
attacks can e. g. be prevented by making the session key derivation depend on the identifiers
of actor and peer of the session.

5 Application of SIG to concrete KE protocols

In Sect. 5.1 we demonstrate that the NAXOS protocol is secure in eCKw and construct a
protocol secure in eCK-PFS using our SIG transformation. In Sect. 5.2 we show how to prove
the security of the π1 protocol from [16] in eCK-PFS by proving the much weaker protocol
π1-core secure in eCKpassive and applying the SIG transformation to π1-core.

5.1 NAXOS revisited

The NAXOS protocol [28], shown in Fig. 4, provides an example of a protocol belonging
to the class DH-2, where H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}k denote two hash
functions and rÂ, rB̂ ∈R {0, 1}k . In analogy to Fig. 2, note that fI(rÂ, a,Ω) = H1(rÂ, a),
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Fig. 4 NAXOS protocol [28]

Fig. 5 SIG(NAXOS) protocol

fR(rB̂ , b,Ω) = H1(rB̂ , b), FI( fI(rÂ, a,Ω), a, Y,Ω)=H2(Y a, B H1(rÂ,a), Y H1(rÂ,a), Â, B̂),

and FR( fR(rB̂ , b,Ω), b, X,Ω) = H2(AH1(rB̂ ,b), Xb, X H1(rB̂ ,b), Â, B̂).
The following proposition states that the NAXOS protocol is secure in eCKw .

Proposition 6 Under the GAP-CDH assumption in the cyclic group G of prime order p,
NAXOS satisfies eCKw security, when H1 and H2 are modeled as independent random
oracles.

In contrast to the proof of NAXOS in the eCK model [28], the Proof of Proposition 6
distinguishes between the cases whether or not an origin-session (instead of a matching
session) exists for the test session.

Proof (Sketch) Similar to [28,37], we analyze the following events:

1. K c,
2. DL ∧ K ,
3. TO ∧ DLc ∧ K , and
4. (TO)c ∧ DLc ∧ K , where

TO denotes the event that there exists an origin-session for the test session, DL denotes the
event that there exists a party Ĉ ∈ P (with long-term secret key c) such that the adversary
M , during its execution, queries H1 with (∗, c) before issuing a corrupt(Ĉ) query and K
denotes the event that M wins the security experiment against NAXOS by querying H2 with
(σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y, A), σ2 = CDH(B, X) and σ3 = CDH(X, Y ), given
that the test session is s∗ with Ts∗ = ( Â, B̂, I, X, Y ). ��
The full Proof of Proposition 6 is given in the appendix. Applying the SIG transformation to
the NAXOS protocol yields the protocol SIG(NAXOS), depicted in Fig. 5.

Combining Proposition 6 with Theorem 1, we obtain the following result.

Corollary 2 Under the GAP-CDH assumption in the cyclic group G of prime order p, using
a deterministic SUF-CMA signature scheme, the SIG(NAXOS) protocol satisfies eCK-PFS
security, when H1, H2 are modeled as independent random oracles.
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Fig. 6 Protocol π1-core

Fig. 7 π1 protocol [16]

5.2 Proving π1 secure in eCK-PFS via π1-core

Figure 6 shows the protocol π1-core ∈ DH-2, where KDF : {0, 1}∗ → {0, 1}k denotes a key
derivation function and x, y ∈R Zp . As observed in [25], the π1-core protocol is insecure
with respect to an active adversary. The adversary can impersonate B̂ to Â by simply sending
the message B−1 Z (where Z = gi for some i ∈R Zp) to Â. Â would compute the secret value
for the session-key as (B B−1 Z)x+a = Z x+a which can also be computed by the adversary.
This attack shows that π1-core is insecure in eCKw .

However, even though π1-core is insecure in eCKw , it can be proven secure in the weaker
eCKpassive model, as the following proposition shows.

Proposition 7 Under the GAP-CDH assumption in the cyclic group G of prime order p, the
protocol π1-core satisfies eCKpassive security, when KDF is modeled as a random oracle.

Proof (Sketch) We analyze the following events:

1. K c, and
2. TO ∧ K , where

TO denotes the event that there exists an origin-session for the test session, and K denotes
the event that the adversary M wins the security experiment against π1-core by querying
KDF with ( Â, B̂, σ, X), where σ = CDH(Y B, X A), given that the test session is s∗ with
Ts∗ = ( Â, B̂, I, X, Y ). Recall that in case there is no origin-session for the test session, the
test session is not eCKpassive

fresh. ��

The full Proof of Proposition 7 is given in the appendix. Applying the SIG transformation
to the π1-core protocol yields the π1 protocol from [16], depicted in Fig. 7.

Combining Proposition 7 with Theorem 1, we immediately obtain the following result.

Corollary 3 Under the GAP-CDH assumption in the cyclic group G of prime order p, using
a deterministic SUF-CMA signature scheme, the protocol π1 satisfies eCK-PFS security,
when KDF is modeled as a random oracle.
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6 Related work

6.1 Perfect forward secrecy (PFS)

The majority of related works claim that PFS cannot be achieved in a two-message KE pro-
tocol [9,14,25,27,28]. There are two notable exceptions. First, the two-message modified-
Okamoto-Tanaka (mOT) protocol by Gennaro et al. [20] provides PFS in the identity-based
setting. Additionally, they sketch variants of the protocol for the PKI-based setting. As
noted by the authors [20], the mOT protocol and its variants are not resilient against loss
of ephemeral keys, and they are therefore insecure in eCK-like models. Second, in [8], Boyd
and González Nieto suggest a transformation C based on adding MACs on the message
exchange of a KE protocol that satisfies weak-PFS, to achieve PFS. However, the MAC
transformation does not ensure security in eCK-PFS, because it does not guarantee PFS
under actor compromise and leakage of ephemeral secret keys, as we show in Sect. 6.2. It
is important to note that our security model eCK-PFS prevents the attack scenario described
in [8, p. 458] since we restrict the adversary from revealing the ephemeral secret keys of the
origin-session for the test session (see Definition 14).

In [21], Jeong et al. introduce the one-round KE protocols TS2 and TS3 and show that
these protocols achieve forward secrecy. The underlying security model with respect to which
both protocols are proven secure is based on the Bellare–Rogaway model in [2] and captures
forward secrecy by allowing the adversary to corrupt both actor and peer of some target
session in case the adversary is passive during the execution of the target session (which
corresponds to weak-PFS). As observed in [1], it seems that protocol TS3 satisfies a stronger
forward secrecy property than protocol TS2, although this is not stated or proven in [21].
We conjecture that protocol TS3 in fact achieves PFS, under the same assumptions as stated
in [21, Theorem 3].

In [27], LaMacchia et al. describe an eCK variant for protocols with more than two
messages that additionally guarantees PFS. However, this eCK variant cannot be met by any
protocol from the class we are considering here, because it uses the concept of matching
session instead of origin-session. Boyd and González Nieto’s replay attack [8, p. 458] serves
as a generic counterexample: it shows that no two-message KE protocol in DH-2 that does
not provide message replay detection can achieve security in this eCK variant, assuming that
the notion of matching sessions is defined as in Definition 5.

6.2 Protocol transformations

Several protocol transformations (often called compilers) that aim towards a modular
approach in the design and analysis of protocols have been proposed in the literature (see
e. g. [8,10,11,23]). In particular, applying such transformations to concrete protocols should
lead to protocols that are secure in a stronger security model.

In [11], Canetti and Krawczyk specify transformations from the authenticated-links model
(AM) to the unauthenticated-links adversarial model (UM). In the AM, the adversary is not
allowed to actively interfere within the communication. In the UM, the adversary has basic
attacker capabilities as well as the capability of corrupting agents, revealing session-keys and
session-state. The idea is that a protocol secure in the AM can be translated into a protocol
secure in the stronger model UM using an authenticator. Thus, authenticators can be seen as
compilers which translate protocols secure in the AM into protocols secure in the UM.

In the context of authenticated group KE, Katz and Yung [23] propose a compiler which
transforms any group KE protocol secure against a passive adversary to an authenticated
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group KE protocol secure against an active adversary who fully controls the network. The
transformed protocol has an additional protocol round and requires signatures on some
broadcasted messages. Note that the Katz and Yung compiler is however not a security-
strengthening transformation in the sense of Definition 18 due to the counterexample given
in [10, p. 13]. Bresson et al. [10] propose a similar signature-based compiler than [23] which
yields a protocol achieving authenticated KE security as well as mutual authentication when
applied to any group KE protocol secure against a passive adversary. The passive adversary
in [10] is slightly stronger than the one in [23] since in addition to eavesdropping on regular
protocol executions, he may delay or delete messages, or change their delivery order. The
security model eCKpassive introduced in Sect. 4 considers an even stronger passive adversary
that can also replay messages to sessions and is only restricted from injecting or modifying
the messages received by the target session.

The C transformation by Boyd and González Nieto [8] aims to provide message origin
authentication based on a static Diffie–Hellman key. However, an adversary capable of actor
compromise can compute the static Diffie–Hellman key used in the test session. Hence, in this
context, the static Diffie–Hellman key does not provide any authentication. More precisely,
an attacker can impersonate the peer of the test session by first revealing the long-term secret
keys of the actor (which allows him to create valid MACs on messages of his choice). After the
completion of the test session he can reveal the long-term secret keys of the peer, effectively
performing a variant of Krawczyk’s attack. We next detail a concrete instance of this attack,
showing that C(NAXOS) [8] is insecure in eCK-PFS. We denote by S = ga′b′

the shared
static DH key between the parties Â and B̂.

1. The adversary E first reveals the long-term secret keys of party Â.
2. He then activates an initiator session s at Â with peer B̂ via the query send(s, B̂) and

receives as a response the message m = X, MACS( Â, B̂, X), where X = gH1(rÂ,a) with
rÂ chosen uniformly at random from {0, 1}k in session s.

3. E chooses an arbitrary z ∈ Zp , computes Z = gz and sends message m̃ =
Z , MACS(B̂, Â, Z) to session s. Upon receiving message m̃ in session s, Â computes
the session key K Â = H2(Za, B H1(rÂ,a), Z H1(rÂ,a), Â, B̂) and completes the session by
accepting K Â as the session key.

4. Now, E chooses the completed session s as the test session, and reveals the long-term
secret keys of party B̂. This enables him to compute the session key of the test session
as KE = H2(Az, Xb, X z, Â, B̂).

Hence, the MAC transformation does not achieve security in eCK-PFS.

7 Conclusions

We provided two new eCK-like security notions, namely eCKw and eCK-PFS. The eCKw

model slightly strengthens eCK by including a more precise modeling of weak-PFS. The
strictly stronger eCK-PFS notion guarantees PFS, even in the presence of eCK-like adver-
saries. Note that separately proving eCKw (or eCK) security and PFS does not imply security
in eCK-PFS. For example, eCK-PFS additionally considers PFS under actor compromise.

In the process of formalizing these models, we also provided formal definitions of PFS and,
for the first time, weak-PFS. We formally related our models and their intended properties.

Existing two-message KE protocols such as CMQV [37], NAXOS [28], C(NAXOS) [8], or
HMQV [25,26], fail to achieve security in eCK-PFS. We specified a security-strengthening
transformation that transforms any two-message DH type KE protocol secure in eCKpassive or
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eCKw into a two-message protocol secure in eCK-PFS. Thus, the SIG transformation can be
applied to protocols such as NAXOS, that are secure in eCKw . Additionally, it can be applied
to protocols that fail to achieve security in eCKw , but that can instead be proven secure in the
weaker eCKpassive model. As a concrete example we have proven that the π1-core protocol
is secure in eCKpassive. Subsequent application of the SIG transformation to π1-core implies
that the efficient π1 protocol from [16] is secure in eCK-PFS. This example illustrates the
use of SIG in the modular design of KE protocols.

It remains an open question whether there exist more efficient generic transformations
that yield two-message KE protocols secure in eCK-PFS.

Acknowledgments This work was supported by ETH Research Grant ETH-30 09-3. We thank Colin Boyd
and the anonymous reviewers for constructive comments on earlier versions of this work.

Appendix

1. On the eCK model [28]

There are two main aspects in which the eCK model is underspecified.
First, the eCK model specifies that in the setup phase of the security experiment, the

adversary may register arbitrary public keys [28, p. 8]. This can be interpreted in at least two
ways: (a) the adversary may register arbitrary valid public keys (e. g., elements of a given
group G), or (b) the adversary may register arbitrary bit strings (e. g., elements that do not
belong to a given group G). As the security proof of NAXOS in the eCK model [28, pp. 12-
16] is incomplete, it is unclear whether the result of LaMacchia et al. [28, Theorem 1] holds
under the second interpretation. In addition, LaMacchia et al. [28, Fig. 1] state that the HMQV
protocol achieves CK-security under arbitrary key registration, (the same key registration as
in the eCK model). This statement is only correct under interpretation (a), because HMQV
is vulnerable to small-subgroup attacks as described in [33, p. 53], a reference cited in [28].
We therefore assume the literal interpretation (a), i. e., the adversary may register arbitrary
valid public keys from the key space. This is also in line with the descriptions in [18,24,37].

Second, the eCK model puts no explicit restrictions on the corrupt query. For honest
parties the intent of the query is clear. However, it is unclear in [28] whether the query is
allowed on adversary-controlled parties on behalf of those the adversary registered a public
key. Consider the following two cases for adversary-controlled parties. On the one hand, if the
adversary already knows the secret key corresponding to the valid public key he registered,
then the corrupt query is redundant. On the other hand, if the adversary were allowed to
perform this query when he does not know the secret key of the corresponding valid public
key, then no protocol would be secure in the eCK model: the adversary would be able to
obtain the secret key of any honest party by simply re-registering the public key for an
adversary-controlled party, and then corrupting the latter party. In particular, this gives the
adversary access to the secret keys of honest parties without performing a corrupt on these
honest parties, which can then be combined with an ephemeral-key query to compute the
session key of the test session. The previous observations lead us to the conclusion that the
query corrupt(P̂) should be defined in such a way that it returns the secret keys of party P̂
if P̂ is honest, and ⊥ otherwise.

We show in Proposition 8 that our eCKw model is stronger than the eCK model with
respect to Π .

Proposition 8 Let Π be the class of two-message KE protocols. The eCKw model is stronger
than the eCK model with respect to Π .
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Proof The first condition of Definition 6 is satisfied since matching is defined in the same way
for both models eCKw and eCK. Let π ∈ Π . To show that the second condition of Definition 6
holds, we construct an adversary E ′ attacking protocol π in model eCKw using an adversary
E attacking π in eCK. In the setup phase of the eCK experiment, the adversary selects N
distinct binary strings P̂1, P̂2, . . . , P̂N for N honest parties. Define P = {P̂1, P̂2, . . . , P̂N } for
the eCKw experiment. During the registration phase at the onset of the experiment, in case E
registers valid public keys on behalf of adversary-controlled parties L̂ /∈ P , E ′ proceeds with
the same registration of keys. Whenever E issues a query send, corrupt, ephemeral-key,
session-key or test-session, adversary E ′ issues the same query and forwards the answer
received to E . At the end of E’s execution, i. e. after it has output its guess bit b, E ′ outputs
b as well. Note that if eCKfresh holds for the test session, then by definition eCKw

fresh also
holds. In particular, if there is no matching session, then the last condition in the freshness
definition of the eCK model [28, p. 9] requires that there is no corrupt of the peer, which
implies the sixth condition of eCKw

fresh. Hence, it holds that Advπ
E (k) ≤ Advπ

E ′(k), where
k denotes the security parameter. Since by assumption protocol π is secure in eCKw , there
is a negligible function g such that Advπ

E ′(k) ≤ g(k). It follows that protocol π is secure in
eCK. ��
2. Proof of Proposition 6

Proposition 6 Under the GAP-CDH assumption in the cyclic group G of prime order p,
the NAXOS protocol is satisfies eCKwsecurity, when H1, H2 are modeled as independent
random oracles.

Proof Here we show that NAXOS is secure in eCKw . We use the structure of the security
proof of the CMQV protocol in [37] as it is more detailed than the proof of NAXOS in [28].

Let the test session s∗ be given by Ts∗ = ( Â, B̂, I, X, Y ). We first consider event K c

where the adversary M wins the security experiment against NAXOS (with non-negligible
advantage) and does not query H2 with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y, A), σ2 =
CDH(B, X) and σ3 = CDH(X, Y ).
Event K c

If event K c occurs, then the adversary M must have issued a session-key query to some
session s such that Ks = Ks∗ (where Ks and Ks∗ denote the session-keys computed in
sessions s and s∗, respectively) and s does not match s∗. We consider the following four
events:

1. A1 : there exist two sessions s1, s2 such that rs1 = rs2 (where rs1 and rs2 denote the
random coins drawn in sessions s1 and s2, respectively).

2. A2 : there exists a session s such that H1(rs, skactor,s) = H1(rs∗ , skactor,s∗) and rs �= rs∗ .
3. A3 : there exists a session s′ such that H2(inputs′) = H2(inputs∗) with inputs′ �= inputs∗ .
4. A4 : there exists an adversarial query inputM to the oracle H2 such that H2(inputM ) =

H2(inputs∗) with inputM �= inputs∗ .

Analysis of event K c

We denote by qs an upper bound on the number of activated sessions by the adversary and
by qro2 an upper bound on the number of queries to the random oracle H2. We have that

P(K c) ≤ P(A1 ∨ A2 ∨ A3 ∨ A4) ≤ P(A1) + P(A2) + P(A3) + P(A4)

≤ q2
s

2

1

2k
+ qs

p
+ qs + qro2

2k
,

which is a negligible function of the security parameter k.
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In the subsequent events (and their analyses) we assume that no collisions in the queries
to the oracle H1 occur and that none of the events A1, . . . , A4 occurs. Similar to [28,37], we
next consider the following three events:

1. DL ∧ K ,
2. TO ∧ DLc ∧ K , and
3. (TO)c ∧ DLc ∧ K , where

TO denotes the event that there exists an origin-session for the test session, DL denotes the
event where there exists a party Ĉ ∈ P such that the adversary M , during its execution,
queries H1 with (∗, c) before issuing a corrupt(Ĉ) query and K denotes the event that M
wins the security experiment against NAXOS by querying H2 with (σ1, σ2, σ3, Â, B̂), where
σ1 = CDH(Y, A), σ2 = CDH(B, X) and σ3 = CDH(X, Y ).

Note that we analyze the security of the NAXOS protocol in case the messages only
contain the Diffie–Hellman exponentials.
Event DL ∧ K
This event is independent of the event that there exists an origin-session for the test session.

Let the input to the GAP-DLog challenge be C . Suppose that event DL ∧ K occurs
with non-negligible probability. In this case, the simulator S chooses one party Ĉ ∈ P at
random and sets its long-term public key to C . S chooses long-term secret/public key pairs for
the remaining honest parties and stores the associated long-term secret keys. Additionally
S chooses a random value m ∈R {1, 2, . . . , qs}. We denote the m’th activated session by
adversary M by s∗. Suppose further that s∗

actor = Â, s∗
peer = B̂ and s∗

role = I, w. l. o. g.. The
simulation of M ′s environment proceeds as follows:

1. send queries are answered in the usual way. In case a session s is activated via a send
query, S stores an entry of the form

(
s, rs, sksactor , κ

) ∈ (P×N)×{0, 1}k ×(Zp∪{∗})×Zp

in a table Q, initially empty, (unless ephemeral public key validation on the received
element fails in which case the session is aborted). When computing the (outgoing)
Diffie–Hellman exponential of session s, S does the following:

– S chooses rs ∈R {0, 1}k (i. e. the randomness of session s),
– S chooses κ ∈R Zp ,
– if sactor �= Ĉ , then S stores the entry

(
s, rs, sksactor , κ

)
in Q, else S stores the entry

(s, rs, ∗, κ) in Q,2 and
– S returns the Diffie–Hellman exponential gκ to M .

2. S stores entries of the form
(

Q̂i , Q̂ j , r, U, V, λ
)

∈ P×{0, 1}∗×{I, R}×G×G×{0, 1}k

in a table T , initially empty. Upon completion of session s with Ts =
(

Q̂i , Q̂ j , I, U, V
)

,

S does the following:

– If there exists an entry
(

Q̂ j , Q̂i , R, V, U, λ
)

in table T , then S stores
(
Q̂i , Q̂ j , I, U,

V, λ
)

in table T .

– Else if there exists an entry
(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
in table L , for some λ ∈ {0, 1}k ,

such that DDH(V, U, σ3) = 1, DDH(U, Q j , σ2) = 1 and

– V
skQ̂i = σ1 (in case Q̂i �= Ĉ) or DDH(V, Qi , σ1) = 1 (in case Q̂i = Ĉ),

2 We do not need to keep consistency with H1 queries via lookup in table J since the probability that the
adversary guesses the random data of a session is negligible.
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then S stores
(

Q̂i , Q̂ j , I, U, V, λ
)

in table T .

– Else, S chooses μ ∈R {0, 1}k and stores the entry
(

Q̂i , Q̂ j , I, U, V, μ
)

in T .

The session-key of a completed session s with Ts =
(

Q̂ j , Q̂i , R, V, U
)

is determined

and stored similarly.
3. ephemeral-key(s): S answers this query in the appropriate way.
4. session-key(s): S answers this query by look-up in table T .
5. test-session(s): If s �= s∗, then S aborts; otherwise S answers the query in the appro-

priate way.
6. corrupt(P̂): S answers this query in the appropriate way, except if P̂ = Ĉ in which case

S aborts with failure.
7. S stores entries of the form (r, h, κ) ∈ {0, 1}k × Zp × Zp in a table J , initially empty.

When M makes a query of the form (r, h) to the random oracle for H1, answer it as
follows:

– If C = gh , then S aborts M and is successful by outputting DLog(C) = h.
– Else if (r, h, κ) ∈ J for some κ ∈ Zp , then S returns κ to M .
– Else if there exists an entry

(
s, rs, sksactor , κ

)
in Q, for some s ∈ P × N, rs ∈

{0, 1}k , sksactor ∈ Zp and κ ∈ Zp , such that rs = r and sksactor = h, then S returns κ

to M and stores the entry (r, h, κ) in table J .
– Else, S chooses κ ∈R Zp , returns it to M and stores the entry (r, h, κ) in J .

8. S stores entries of the form
(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
∈ G × G × G × {0, 1}∗ ×

{0, 1}∗ × {0, 1}k in a table L , initially empty. When M makes a query of the form(
σ1, σ2, σ3, Q̂i , Q̂ j

)
to the random oracle for H2, answer it as follows:

– If
(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
∈ L for some λ ∈ {0, 1}k , then S returns λ to M .

– Else if there exist entries
(

Q̂i , Q̂ j , I, U, V, λ
)

or
(

Q̂ j , Q̂i , R, V, U, λ
)

in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V, U, σ3) = 1,
DDH(V, Qi , σ1) = 1 and DDH(U, Q j , σ2) = 1, then S returns λ to M and stores

the entry
(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
in table L .

– Else, S chooses μ ∈R {0, 1}k , returns it to M and stores the entry
(
σ1, σ2, σ3, Q̂i ,

Q̂ j , μ
)

in L .

9. M outputs a guess: S aborts with failure.

Analysis of event DL ∧ K
S’s simulation of M’s environment is perfect except with negligible probability. The proba-
bility that M selects s∗ as the test session is at least 1

qs
. Assuming that this is indeed the case,

S does not abort in Step 5. With probability at least 1
N , S assigns the public key C to a party Ĉ

for whom M queries H1 with (∗, h) such that C = gh before issuing a corrupt(Ĉ) query. In
this case, S is successful as described in Step 7 and does not abort in Steps 6 and 9. Hence, if
event DL ∧ K occurs, then the success probability of S is given by P(S) ≥ 1

Nqs
P(DL ∧ K ).
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Event TO ∧ DLc ∧ K
Let s∗ and s′ denote the test session and the origin-session for the test session, respectively.
We split event Ev := TO ∧ DLc ∧ K into the following events B1, . . . , B3 so that Ev =
B1 ∨ B2 ∨ B3:

1. B1 : Ev occurs and s∗
peer = s′

actor .
2. B2 : Ev occurs and s∗

peer �= s′
actor and M does not issue an ephemeral-key(s′) query to

the origin-session s′ of s∗, but may issue a corrupt(s∗
peer) query.

3. B3 : Ev occurs and s∗
peer �= s′

actor and M does not issue a corrupt(s∗
peer) query, but may

issue an ephemeral-key(s′) query to the origin-session s′ of s∗.

Event B1

Let the input to the G DH challenge be (X0, Y0). Suppose that event B1 occurs with non-
negligible probability. In this case S chooses long-term secret/public key pairs for all the
honest parties and stores the associated long-term secret keys. Additionally S chooses two
random values m, n ∈R {1, 2, . . . , qs}. The m’th activated session by adversary M will be
called s∗ and the n’th activated session will be called s′. The ephemeral secret key of session
s∗ is denoted by x̃0 and the ephemeral secret key of session s′ is denoted by ỹ0. Suppose
further that s∗

actor = Â, s∗
peer = B̂ and s∗

role = I, w. l. o. g.. The simulation of M ′s environment
proceeds as follows:

1. send(s∗, B̂): S sets the ephemeral public key X to X0 and answers the query with
message X0.

2. send(s∗, Y0): S proceeds with Step 7.
3. send(s′, P̂): S sets the ephemeral public key Y to Y0 and answers the query with

message Y0.
4. send(s′, P̂, Z): S checks whether Z ∈ G, sets the ephemeral public key Y to Y0,

answers the query with message Y0 and proceeds with Step 7. If the check fails, session
s′ is aborted.

5. send(s′, Z): S proceeds with Step 7.
6. Other send queries are answered in the usual way.3

7. S stores entries of the form
(

Q̂i , Q̂ j , r, U, V, λ
)

∈ P × {0, 1}∗ × {I, R} × G ×
G × {0, 1}k in a table T , initially empty. Upon completion of session s with Ts =(

Q̂i , Q̂ j , I, U, V
)

, S does the following:

– If there exists an entry
(

Q̂ j , Q̂i , R, V, U, λ
)

in table T , then S stores
(
Q̂i , Q̂ j , I, U,

V, λ
)

in table T .

– Else if there exists an entry
(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
in table L , for some λ ∈ {0, 1}k ,

such that V
skQ̂i = σ1, DDH(U, Q j , σ2) = 1 and DDH(V, U, σ3) = 1, then S stores(

Q̂i , Q̂ j , I, U, V, λ
)

in table T .

– Else, S chooses μ ∈R {0, 1}k , and stores the entry
(

Q̂i , Q̂ j , I, U, V, μ
)

in T .

The session-key of a completed session s with Ts =
(

Q̂ j , Q̂i , R, V, U
)

is determined

and stored similarly.
8. ephemeral-key(s): S answers this query in the appropriate way.

3 Note that, if the group check fails, the session is aborted.
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9. session-key(s): S answers this query by look-up in table T .
10. test-session(s): If s �= s∗ or if s′ is not the origin-session for session s∗, then S aborts;

otherwise S answers the query in the appropriate way.
11. H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a)

and rĈ = x̃0 or if Ĉ = B̂ (i.e. c = b) and rĈ = ỹ0, in which case S aborts with failure.

12. corrupt(P̂): S answers this query in the appropriate way.

13. S stores entries of the form
(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
∈ G × G × G × {0, 1}∗ ×

{0, 1}∗ × {0, 1}k in a table L , initially empty. When M makes a query of the form(
σ1, σ2, σ3, Q̂i , Q̂ j

)
to the random oracle for H2, answer it as follows:

– If
{

Q̂i , Q̂ j

}
=

{
Â, B̂

}
, σ1 = Y a

0 , σ2 = Xb
0 and DDH(X0, Y0, σ3) = 1, then S

aborts M and is successful by outputting CDH(X0, Y0) = σ3.

– Else if
(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
∈ L for some λ ∈ {0, 1}k , then S returns λ to M .

– Else if there exist entries
(

Q̂i , Q̂ j , I, U, V, λ
)

or
(

Q̂ j , Q̂i , R, V, U, λ
)

, for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V, Qi , σ1) = 1, DDH(U, Q j , σ2) = 1
and DDH(V, U, σ3) = 1 in table T , then S returns λ to M and stores the entry(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
in table L .

– Else, S chooses μ ∈R {0, 1}k , returns it to M and stores the entry
(
σ1, σ2, σ3, Q̂i ,

Q̂ j , μ
)

in L .

14. M outputs a guess: S aborts with failure.

Analysis of event B1

S’s simulation of M’s environment is perfect except with negligible probability. The prob-
ability that M selects s∗ as the test session and s′ as the origin-session for the test session
is at least 1

q2
s

. Assuming that this is indeed the case, S does not abort in Step 10. Recall that

Ts∗ = ( Â, B̂, I, X0, Y0). Since x̃0 is used only in the test session, M can only obtain it via
an ephemeral-key(s∗) query before making an H1 query that includes x̃0. Similarly, M can
only obtain ỹ0 via an ephemeral-key(s′) query on the origin-session s′ before making an
H1 query that includes ỹ0. Under event DLc, the adversary first issues a corrupt(P̂) query
to party P̂ before making an H1 query that involves the long-term secret key of party P̂ .
Freshness of the test session guarantees that the adversary can reveal at most one value in
each of the pairs (x̃0, a) and (ỹ0, b); hence S does not abort in Step 11. Under event K ,
except with negligible probability of guessing CDH(X0, Y0), S is successful as described in
the first case of Step 13 and does not abort as in Step 14. Hence, if event B1 occurs, then the
success probability of S is given by P(S) ≥ 1

q2
s

P(B1).

Event B2

Let the input to the G DH challenge be (X0, Y0). Suppose that event B2 occurs with non-
negligible probability. The simulation of S proceeds in a similar way as for event B1. Steps
8 and 11 need to be replaced by the following:

– ephemeral-key(s): S answers this query in the appropriate way, except if s = s′ in
which case S aborts with failure.

– H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a)
and rĈ = x̃0, in which case S aborts with failure.
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Analysis of event B2

S’s simulation of M’s environment is perfect except with negligible probability. The prob-
ability that M selects s∗ as the test session and s′ as the origin-session for the test session
is 1

q2
s

. Recall that Ts∗ = ( Â, B̂, I, X0, Y0). Since x̃0 is used only in the test session, M can

only obtain it via an ephemeral-key(s∗) query before making an H1 query that includes x̃0.
Under event DLc, the adversary first issues a corrupt(P̂) query to party P̂ before making
an H1 query that involves the long-term secret key of party P̂ . Freshness of the test session
guarantees that the adversary can reveal at most one value of the pair (x̃0, a). Under event B2

the simulation does not fail as in Step 8. Under event K , except with negligible probability
of guessing CDH(X0, Y0), S is successful as described in the first case of Step 13 and does
not abort as in Step 14. Hence, if event B2 occurs, then the success probability of S is given
by P(S) ≥ 1

q2
s

P(B2).

Event B3

Let the input to the G DH challenge be (X0, B). Suppose that event B3 occurs with non-
negligible probability. In this case, S chooses one party B̂ ∈ P at random and sets its
long-term public key to B. S chooses long-term secret/public key pairs for the remaining
parties in P and stores the associated long-term secret keys. Additionally S chooses two
random values m, n ∈R {1, 2, . . . , qs}. We denote the m’th activated session by adversary M
by s∗ and the n’th activated session by s′. The ephemeral secret key of session s∗ is denoted
by x̃0. Suppose further that s∗

actor = Â, s∗
peer = B̂ and s∗

role = I, w. l. o. g.. The simulation of
M ′s environment proceeds as follows:

1. send(s∗, B̂): S sets the ephemeral public key X to X0 and answers the query with
message X0.

2. send(s∗, Z): S proceeds with Step 4.
3. Other send queries are answered as for event DL ∧ K .

4. S stores entries of the form
(

Q̂i , Q̂ j , r, U, V, λ
)

∈ P×{0, 1}∗×{I, R}×G×G×{0, 1}k

in a table T , initially empty. Upon completion of session s with Ts =
(

Q̂i , Q̂ j , I, U, V
)

,

S proceeds as for event DL ∧ K (see above).
5. ephemeral-key(s): S answers this query in the appropriate way.
6. session-key(s): S answers this query by look-up in table T .
7. test-session(s): If s �= s∗ or if s′ is not the origin-session for session s∗, then S aborts;

otherwise S answers the query in the appropriate way.
8. H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a)

and rĈ = x̃0, in which case S aborts with failure.

9. corrupt(P̂): S answers this query in the appropriate way, except if P̂ = B̂ in which case
S aborts with failure.

10. S stores entries of the form
(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
∈ G × G × G × P × P × {0, 1}k

in a table L , initially empty. When M makes a query of the form
(
σ1, σ2, σ3, Q̂i , Q̂ j

)

to the random oracle for H2, answer it as follows:

– If
{

Q̂i , Q̂ j

}
=

{
Â, B̂

}
, σ1 = A

H1(rs′ ,sks′actor
)
, DDH(X0, B, σ2) = 1, and σ3 =

X
H1(rs′ ,sks′actor

)

0 , then S aborts M and is successful by outputting CDH(X0, B) = σ2.

– Else if
(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
∈ L for some λ ∈ {0, 1}k , then S returns λ to M .
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– Else if there exist entries
(

Q̂i , Q̂ j , I, U, V, λ
)

or
(

Q̂ j , Q̂i , R, V, U, λ
)

in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V, U, σ3) = 1,
DDH(V, Qi , σ1) = 1 and DDH(U, Q j , σ2) = 1, then S returns λ to M and stores

the entry
(
σ1, σ2, σ3, Q̂i , Q̂ j , λ

)
in table L .

– Else, S chooses μ ∈R {0, 1}k , returns it to M and stores the entry
(
σ1, σ2, σ3, Q̂i ,

Q̂ j , μ
)

in L .

11. M outputs a guess: S aborts with failure.

Analysis of event B3

S’s simulation of M’s environment is perfect except with negligible probability. The proba-
bility that M selects s∗ as the test session and s′ as its origin-session is at least 1

q2
s

. Assuming

that this is indeed the case, S does not abort in Step 7. With probability 1
N , S assigns the public

key B to the peer of the test session B̂. Under event B3, M does not issue a corrupt(B̂) query,
and so S does not abort in Step 9. Similarly, S does not abort in Step 11 and is successful as
described in Step 10. Hence, if event B3 occurs, then the success probability of S is given by
P(S) ≥ 1

Nq2
s

P(B3).

Event (TO)c ∧ DLc ∧ K
If there is no origin-session for the test session, then there is also no matching session for
the test session. Hence ((TO )c ∧ DLc ∧ K ) ⊆ ((TM )c ∧ DLc ∧ K ) (where TM denotes
the event that there exists a matching session for the test session) which implies that event
(TO)c ∧ DLc ∧ K is covered in the analysis of event (TM )c ∧ DLc ∧ K for which we refer
the reader to [27,28]. Note that, similar to the simulation related to Event B3,

– S checks whether there is a query (σ1, σ2, σ3, Q̂i , Q̂ j ) by M to H2 such that
{

Q̂i , Q̂ j

}
={

Â, B̂
}

, DDH(A, Y, σ1) = 1, DDH(X0, B, σ2) = 1 and DDH(X0, Y, σ3) = 1 (assum-

ing that the test session s∗ is given by Ts∗ = ( Â, B̂, I, X0, Y ) to solve the G DH instance
(X0, B), and

– S keeps consistency between session-key and H2 queries as well as between send and
H1 queries. ��

3. Proof of Proposition 7

Proposition 7 Under the GAP-CDH assumption in the cyclic group G of prime order p, the
protocol π1-core satisfies eCKpassivesecurity, when KDF is modeled as a random oracle.

Proof Let the test session s∗ be given by Ts∗ = ( Â, B̂, I, X, Y ). We first consider event K c

where the adversary M wins the security experiment against π1-core (with non-negligible
advantage) and does not query KDF with ( Â, B̂, σ, X), where σ = CDH(Y B, X A).
Event K c

If event K c occurs, then the adversary M must have issued a session-key query to some
session s such that Ks = Ks∗ (where Ks and Ks∗ denote the session-keys computed in
sessions s and s∗, respectively) and s does not match s∗. We consider the following three
events:

1. A1 : there exist two sessions s1, s2 such that rs1 = rs2 (where rs1 and rs2 denote the
random coins drawn in sessions s1 and s2, respectively). Note that A1 includes the event
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where there exists a session s with Ts = Ts∗ as well as the event where two sessions use
the same random coins (possibly leading to ephemeral-key queries).

2. A2 : there exists a session s such that KDF(inputs) = KDF(inputs∗) with inputs �=
inputs∗ .

3. A3 : there exists an adversarial query inputM to the oracle KDF such that KDF(inputM ) =
KDF(inputs∗) with inputM �= inputs∗ .

Analysis of event K c

We denote by qs an upper bound on the number of activated sessions by the adversary and
by qro an upper bound on the number of queries to the random oracle KDF. We have that

P(K c) ≤ P(A1 ∨ A2 ∨ A3) ≤ P(A1) + P(A2) + P(A3)

≤ q2
s

2p
+ qs + qro

2k
,

which is a negligible function of the security parameter k.
In the subsequent events (and their analyses) we assume that none of the events A1, . . . , A3

occurs. We consider the following event:

TO ∧ K , where

TO denotes the event that there exists an origin-session for the test session, and K denotes
the event that M wins the security experiment against π1-core by querying KDF with
( Â, B̂, σ, X), where σ = CDH(Y B, X A). Recall that in case there is no origin-session
for the test session, the test session is not eCKpassive

fresh.
Event TO ∧ K
Let s∗ and s′ denote the test session and the origin-session for the test session, respectively. We
split event Ev := TO ∧K into the following events B1, . . . , B4 so that Ev = B1∨B2∨B3∨B4:

1. B1 : Ev occurs and the adversary does issue neither ephemeral-key(s′) nor
ephemeral-key(s∗), but may issue the queries corrupt(s∗

actor) and corrupt(s∗
peer).

2. B2 : Ev occurs and the adversary does issue neither ephemeral-key(s∗) nor
corrupt(s∗

peer), but may issue the queries corrupt(s∗
actor) and ephemeral-key(s′).

3. B3 : Ev occurs and the adversary does issue neither ephemeral-key(s′) nor
corrupt(s∗

actor), but may issue the queries corrupt(s∗
peer) and ephemeral-key(s∗).

4. B4 : Ev occurs and the adversary does issue neither corrupt(s∗
actor) nor corrupt(s∗

peer),
but may issue the queries ephemeral-key(s′) and ephemeral-key(s∗).

Event B1

We denote by X, Y the ephemeral public keys sent, received during the test session s∗.
Revealing the long-term secret keys of both s∗

actor and s∗
peer , the adversary E could distinguish

the session-key of the test session from a random key by computing CDH(X, Y ) = gxy (where
X = gx and Y = gy) since

gxy = (Y B)x+aY −a X−b B−a .

We solve the GAP-CDH problem with probability 1
(qs )2 P(Q) where P(Q) must be neg-

ligible since the GAP-CDH problem is hard in G.
Consider the following algorithm C which uses adversary E as a subroutine.

ALGORITHM C : The algorithm is given a pair (X, Y ) of elements from G as an instance of
the GAP-CDH problem. The algorithm randomly selects a session number n from {1, . . . , qs}
which reflects the guess that the n-th activated session, say session s′, is the origin-session
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for session s∗. C chooses long-term public keys for all parties and stores the associated secret
keys.

1. Run E on input 1k and the public keys for all of the N parties.
2. send(s∗, B̂): C sets the ephemeral public key to X and answers the query with the

message X .
3. send(s′, P̂) or send(s′, P̂, Z): C sets the ephemeral public key to Y and answers the

query with the message Y .
4. Other send queries are answered in the usual way (note that, if the group check fails,

the session is aborted).
5. ephemeral-key(s): C answers in the appropriate way, except if s = s′ or s = s∗ in

which cases C aborts with failure.
6. corrupt(P̂): C answers in the appropriate way.
7. test-session(s): If s �= s∗ or if s′ is not the origin-session for session s∗, then C aborts;

otherwise C answers the query in the appropriate way.

8. Store entries of the form
(

Q̂i , Q̂ j , Z , U, λ
)

∈ {0, 1}∗ × {0, 1}∗ × G × G × {0, 1}k in

a table L , initially empty. When E makes a query of the form
(

Q̂i , Q̂ j , Z , U
)

to the

random oracle for KDF, answer it as follows:

– If
{

Q̂i , Q̂ j

}
=

{
Â, B̂

}
, U = X and DDH(X A, Y B, Z) = 1, then C aborts E and

is successful by outputting CDH(X, Y ) = ZY −a X−b B−a .

– Else if
(

Q̂i , Q̂ j , Z , U, λ
)

∈ L for some λ ∈ {0, 1}k , then C returns λ to E .

– Else if there exist entries
(

Q̂i , Q̂ j , I, U, V, λ
)

or
(

Q̂ j , Q̂i , R, V, U, λ
)

, for some

λ ∈ {0, 1}k and V ∈ G, such that DDH(V Pj , U Pi , Z) = 1 in table T , then C returns

λ to E and stores the entry
(

Q̂i , Q̂ j , Z , U, λ
)

in table L .

– Else, C chooses μ ∈R {0, 1}k , returns it to E and stores the entry
(

Q̂i , Q̂ j , Z , U, μ
)

in L .

9. Store entries of the form
(

Q̂i , Q̂ j , r, U, V, λ
)

∈ P×{0, 1}∗×{I, R}×G×G×{0, 1}k in

a table T , initially empty. Upon completion of session s with Ts =
(

Q̂i , Q̂ j , I, U, V
)

,

C proceeds as follows:

– If there exists an entry
(

Q̂ j , Q̂i , R, V, U, λ
)

in table T , then C stores
(
Q̂i , Q̂ j , I,

U, V, λ
)

in table T .

– Else if there exists an entry
(

Q̂i , Q̂ j , Z , U, λ
)

in table L , for some λ ∈ {0, 1}k , such

that DDH(U Pi , V Pj , Z) = 1, then C stores
(

Q̂i , Q̂ j , I, U, V, λ
)

in table T .

– Else, C chooses μ ∈R {0, 1}k and stores the entry
(

Q̂i , Q̂ j , I, U, V, μ
)

in T .

The session-key of a completed session s with Ts =
(

Q̂ j , Q̂i , R, V, U
)

is determined

and stored similarly.
10. session-key(s): C answers this query by look-up in table T .
11. E outputs a guess: C aborts with failure.
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Analysis of event B1

The probability that E selects s∗ as the test session and s′ as the origin-session for the
test session is at least 1

(qs )2 . Assume that this is indeed the case. Then C does not abort as
in Step 7. Under event B1 the simulation does not fail as in Step 5. Under event Q, C is
successful as described in the first case of Step 8 and does not abort as in Step 11. C correctly
computes the GAP-CDH instance with probability at least 1

(qs )2 P(Q) which implies that

P(Q) ≤ (qs)
2 AdvGAP-CDH

C (k).
Event B2

We denote by X = gx , Y = gy the ephemeral public keys sent, received during the test
session s∗. Revealing the long-term secret key of the actor Â of the test session and the
ephemeral key of the origin-session s′ for session s∗, the adversary E could distinguish the
session-key of the test session from a random key by computing DHg(X, B) = gxb where
B = gb denotes the public key of s∗

peer = B̂, since

gxb = (Y B)x+a X−yY −a B−a .

We solve the GAP-CDH problem with probability 1
qs N P(Q) where P(Q) must be neg-

ligible since GAP-CDH problem is hard in G.
Consider the following algorithm C ′ which uses adversary E as a subroutine.

ALGORITHM C ′: The algorithm is given a pair (X, B) of elements from G as an instance
of the GAP-CDH problem. C ′ selects one party B̂ (uniformly at random from the set P)
and sets its long-term public key to B. C ′ chooses long-term public keys for the remaining
parties and stores the associated secret keys. Let us denote the ephemeral public key sent by
the origin-session (and received by the test session) by Y .

1. Run E on input 1k and the public keys for all of the N parties.
2. send(s∗, P̂): If P̂ �= B̂, then C ′ aborts; otherwise C ′ sets the ephemeral public key to

X and answers the query with the message X .
3. Other send queries are answered in the usual way, e. g. if E issues a send(s, P̂, V )

query to session s, then check whether V ∈ G. If yes, choose w ∈R Zp , compute
W = gw (∈ G) and return W to E. If no, then abort session s.

4. ephemeral-key(s): C ′ answers in the appropriate way, except if s = s∗ in which case
C ′ aborts with failure.

5. corrupt(P̂): C ′ answers in the appropriate way, except if P̂ = B̂ in which case C ′ aborts
with failure.

6. test-session(s): If s �= s∗, then C ′ aborts; otherwise C ′ answers the query appropriately.

7. Store entries of the form
(

Q̂i , Q̂ j , Z , U, λ
)

∈ {0, 1}∗ × {0, 1}∗ × G × G × {0, 1}k in

a table L , initially empty. When E makes a query of the form
(

Q̂i , Q̂ j , Z , U
)

to the

random oracle for KDF, answer it as follows:

– If
{

Q̂i , Q̂ j

}
=

{
Â, B̂

}
, U = X and DDH(X A, Y B, Z) = 1, then C ′ aborts E and is

successful by outputting CDH(X, B) = ZY −a X−y B−a (this computation requires
the knowledge of a, therefore we must require that Â �= B̂).

– Else, proceed as in Step 8 of the simulation related to event B1.

8. Store entries of the form
(

Q̂i , Q̂ j , r, U, V, λ
)

∈ P ×{0, 1}∗ ×{I, R}×G ×G ×{0, 1}k

in a table T , initially empty, as in the previous simulation related to event B1.
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9. session-key(s): C ′ answers this query by look-up in table T .
10. E outputs a guess: C ′ aborts with failure.

Analysis of event B2

The probability that E selects s∗ as the test session and B̂ as the peer for the test session
is at least 1

qs N . Assume that this is indeed the case. Then C ′ does not abort as in Step 2
or Step 6. Under event B2 the simulation does not fail as in steps 4, 5. Under event Q,
C ′ is successful as described in the first case of Step 7 and does not abort as in Step 10. C ′
correctly computes the GAP-CDH instance with probability at least 1

qs N P(Q) which implies

that P(Q) ≤ qs N AdvGAP-CDH
C ′ (k).

The analyses of events B3 and B4 are similar to the previous analyses. ��
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