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Abstract Forensic watermarking is the application of digital watermarks for the purpose of tracing unau-

thorized redistribution of content. The most powerful type of attack on watermarks is the collusion attack,

in which multiple users compare their differently watermarked versions of the same content. Collusion-

resistant codes have been developed against these attacks. One of the most famous such codes is the

Tardos code. It has the asymptotically optimal property that it can resist c attackers with a code of length

proportional to c2.

Determining error rates for the Tardos code and its various extensions and generalizations turns out to

be a nontrivial problem. In recent work we developed an approach called the Convolution and Series

Expansion (CSE) method to accurately compute false positive accusation probabilities. In this paper we

extend the CSE method in order to make it possible to compute false negative accusation probabilities as

well.

1 Introduction

1.1 Collusion attacks against forensic watermarking

Fingerprinting provides a means for tracing the origin and distribution of digital data. Before distribution

of digital content, the content is modified by applying an imperceptible fingerprint, which plays the role

of a personalized serial number. The fingerprint is usually embedded through a watermarking algorithm.

Once an unauthorized copy of the content is found, the identity can be determined of those users who

participated in the creation of the unauthorized copy. This can be done using a tracing algorithm, which

outputs a list of allegedly guilty users. This process is also known as ‘forensic watermarking’.

Reliable tracing of content requires security against attacks that aim to remove the embedded information

from a copy. Collusion attacks, where a group of pirates collude to compare their copies, are a particular

threat. As any differences between the copies have to arise from the watermarks and not the content,

such a comparison gives information which can be used to remove the watermark. To counter this threat,

coding theory has produced a number of collusion-resistant codes. In any practical implementation, they

must be combined with some kind of embedding scheme. The resulting system has two layers [10,21]: The

coding layer determines which message to embed and protects against collusion attacks. The underlying

watermarking layer hides symbols of the message in segments of the content. The symbols are either binary

or from a larger alphabet. The interface between the fingerprinting code and the watermarking system

is usually specified in terms of the marking assumption plus additional assumptions that are referred to

as a ‘model’. The marking assumption states that the colluders are able to perform modifications only in

those content segments where the colluders received differently marked content. These segments are called

detectable positions. The ‘model’ specifies the kind of symbol manipulations that the attackers are able to

perform in detectable positions. The commonly used Restricted Digit Model (RDM) only allows them to
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choose pieces from their copies of the content, i.e. each segment of the unauthorized copy carries exactly

one symbol that the attackers have available.

1.2 Tardos codes

Many collusion resistant codes have been proposed in the literature. Most notable are the Boneh-Shaw

construction [4] and the by now famous Tardos code [26]. The former construction uses a concatenation of

an inner code with a random outer code, while the latter one is a fully randomized binary code. G. Tardos’

original work was followed by a large number of papers giving generalizations, construction improvements,

sharper analysis etc. (e.g. [2,6–8,13–15,18,19,27–30]). We briefly summarize some of the developments.

The number of users is n. The coalition size that should be resisted by the code is denoted as c0, and ε1
is the maximum allowed probability of accusing a fixed innocent user. In G. Tardos’ original paper [26] a

binary code was given achieving length m = 100c20dln 1
ε1
e, along with a proof that m ∝ c20 is asympotically

optimal1 for large coalitions, for all alphabet sizes. (The ε1 is a function of n and the maximum tolerable

overall false accusation probability.) The original Tardos code construction contained two unfortunate

design choices which caused the high proportionality constant ‘100’. First, the false negative probability

ε2 (not accusing any of the guilty users) was coupled to ε1 according to ε2 = ε
c0/4
1 . This gives ε2 � ε1

which is highly unusual in the context of content distribution; a deterring effect is achieved already at

ε2 ≈ 1
2 , while the false positive probability (≈ nε1) needs to be very small. In the subsequent literature

(e.g. [2,29]) the ε2 was decoupled from ε1, leading to a substantial improvement of the code length.

Second, the symbols 0 and 1 were not treated on an equal footing. Only segments where the attackers

produce a 1 were taken into account. This procedure ignores 50% of all the available information. A fully

symbol-symmetric version of the Tardos code was given in [27], leading to a further improvement of the

code length by a factor 4.

A further improvement was achieved in [19]. The Tardos code construction consists of two probabilistic

steps. In the first step, a bias parameter is generated for each segment. In Tardos’ original construction

the probability density function (pdf) for the bias is a continuous function, suitable for arbitrary coalition

size. In [19] a class of discrete distributions was given that performs better against finite coalition sizes

than the original pdf.

All the above mentioned work followed the so-called ‘simple decoder’ approach, i.e. an accusation score

is computed for each user independently, and if it exceeds a certain threshold, the user is considered

suspicious. In contrast, one can also use a ‘joint decoder’ which considers sets of users [5,16].

Amiri and Tardos [1] have given a capacity-achieving joint decoder construction for the binary code.

(Capacity refers to the information-theoretic treatment [3,11,17,25] of the colluder attack as a com-

munication channel.) However, the construction is rather impractical, requiring computations for many

candidate coalitions. Even if more practical joint decoders are found, the simple decoder will serve as a

stepping stone in their operation. Thus, there is considerable interest in the simple decoder.

In [27] the binary construction was generalized to alphabets of arbitrary size q, in the simple decoder

approach. It was shown that, in the restricted digit model, the transition to a larger alphabet size has

benefits beyond the mere fact that a q-ary symbol carries log2 q bits of information.

1.3 Exact computation of the error rates of Tardos codes

The so-called ‘Gaussian approximation’ or ‘Gaussian assumption’, introduced in [29], has been a useful

tool in the analysis of Tardos codes. The assumption is that the pdf of a user’s accusation score has

a normal distribution. When this is the case, the statistical analysis of the code’s performance can be

drastically simplified; the performance is almost completely determined by a single parameter, namely the

average score µ̃ of the coalition.

1 The proportionality m ∝ c20 was already known in the context of spread-spectrum watermarking. Kilian et

al. [12] showed that, if the watermarks have a component-wise normal distribution, then Ω(
p
m/ln n) differently

marked copies are required to successfully erase any mark with non-negligible probability.
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The Gaussian assumption is motivated by the Central Limit Theorem (CLT): A user accusation consists

of a sum of per-segment contributions, which are independent and identically distributed (i.i.d.). When

many of these get added together, the result is close to normal-distributed, i.e. the pdf is very close to a

Gaussian in a certain region around the average, and deviates in the tails. The longer the code becomes

(i.e. the larger the coalition size c0), the wider this central region. In [29] and [27] theoretical results

were provided arguing that the central region is sufficiently wide to allow for application of the Gaussian

approximation for realistic parameter choices. However, these arguments are not very precise.

In [22–24] an in-depth analytical and numerical investigation of the Gaussian approximation was given in

the RDM case. The approach is based on the convolution rule for characteristic functions, and on a way

to express the false accusation probability as a power series expansion in the small parameter 1/
√
m. This

was dubbed ‘the CSE method’ (Convolution and Series Expansion). The advantage of the CSE method

over simulations and other methods is that it yields reliable results also when the error probability of the

code is very small. For instance, if the error rate is around 10−10, then a number of simulations of order

at least 1010 is required to measure this rate; in contrast, the computational effort in the CSE method

does not depend on the error rate. The work of [22,23] showed, for various parameter settings and attack

strategies, how the false positive probability has a transition from Gaussian behavior in the central region

to worse-than-Gaussian power-law behavior outside the center. In [24] an overview was given of FP error

rates for the main known attack strategies in the RDM, for a large part of the parameter space.

Until now the CSE method has not been applied to accusation probabilities of guilty users.

1.4 Contributions and outline

In this paper we adapt the CSE method so that it can be used to compute accusation probabilities of

guilty users in the q-ary Tardos fingerprinting scheme. We present a number of consistency checks which

demonstrate that the method (and our implementation) works, and we give ROC curves combining data

on guilty and innocent user accusation probabilities.

The outline is as follows. In Section 2 we introduce notation, briefly summarize the q-ary Tardos scheme,

and give a number of lemmas necessary for computing expectation values. In Section 3 we derive the

probability density function for the guilty user score function in a single content segment. We study the

tails and the first two moments of the distribution, and then compute the Fourier transform. Section 4 first

details the adaptations necessary to make the CSE method work for guilty user scores. Then numerical

results are presented.

2 Preliminaries

2.1 General notation

Vectors are denoted in boldface. Sets will be (mostly) written in calligraphic font. For a scalar x and a

vector p, the notation px stands for
Q
α p

x
α. For vectors p,x, the notation px means

Q
α p

xα
α .

Definition 1 (Generalized Beta function) Let v be a n-ary vector. The Beta function is defined as

B(v) :=

Qn
a=1 Γ (va)

Γ (
Pn
b=1 vb)

. (1)

For parameters v1, · · · , vn > 0 the Beta function has the following Dirichlet integral representation:

B(v) =

Z 1

0
dnx δ

`
1−Pn

a=1xa
´Qn

b=1x
−1+vb
b . (2)
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2.2 The q-ary Tardos scheme

We briefly summarize the most important aspects of the Tardos scheme. The number of symbols in a

codeword is m. The number of users is n. The alphabet is Q, with size q. Xji ∈ Q stands for the i’th

symbol in the codeword of user j. The whole matrix of codewords is denoted as X.

Two-step code generation.

m bias vectors p(i) ∈ [0, 1]q are independently drawn according to a Dirichlet distribution F , with

F (p) = δ(1−Pβ∈Q pβ) · 1

B(κ1q)

Q
α∈Q p

−1+κ
α . (3)

Here 1q stands for the vector (1, · · · , 1) of length q. All elements Xji are drawn independently according

to Pr[Xji = α|p(i)] = p
(i)
α .

Attack.

The coalition is a subset of the set of all users. We denote the coalition as C, with size c. The i’th segment

of the attacked content contains a symbol yi ∈ Q. We define vectors σ(i) ∈ {0, . . . , c}q as

σ
(i)
α = |{j ∈ C : Xji = α}| (4)

satisfying
P
α∈Q σ

(i)
α = c. In words: σ

(i)
α counts how many colluders have received symbol α in segment i.

For fixed q and c, we define the set of possible σ values as Sqc =
˘
σ ∈ {0, . . . , c}q|Pα∈Q σα = c

¯
.

The attack strategy may be nondeterministic. As usual, it is assumed that this strategy is segment-

symmetric (the same in all segments), symbol-symmetric (invariant under permutation of the alphabet)

and attacker-symmetric (invariant under permutation of the attackers). The strategy is expressed as

probabilities θy|σ that apply independently for each segment. Omitting the column index,

Pr[y|σ] = θy|σ. (5)

Some often studied strategies are listed below.
Strategy Abbrev. Description θy|σ

Minority Voting MinV Select symbol that occurs least often

Majority Voting MajV Select symbol that occurs most often

Interleaving Int Select random attacker’s symbol σy/c

µ̃-minimizing µ̃-min Select σy > 0 that minimizes µ̃ (see below)

Random Symbol RS Choose uniformly from received symbols
[σy>0]

|{α∈Q:σα>0}|
Accusation.

The watermark detector sees the symbols yi. For each user j, a score Sj is computed,

Sj =
Pm
i=1S

(i)
j where S

(i)
j = g[Xji==yi](p

(i)
yi ), (6)

where the expression [Xji == yi] evaluates to 1 if Xji = yi and to 0 otherwise, and the functions g0 and

g1 are defined as

g1(p) =
p

(1− p)/p ; g0(p) = −
p
p/(1− p). (7)

The total score of the coalition is SC =
P
j∈C Sj . The choice (7) is the unique choice that, for innocent

users, yields zero average accusation and variance equal to 1 independent of p,

pg1(p) + (1− p)g0(p) = 0 ; p[g1(p)]2 + (1− p)[g0(p)]2 = 1. (8)

This has been shown to have optimal properties for q = 2 [6,29]. Its unique properties (8) also hold for

q ≥ 3; that is the main motivation for using (7). A user j is ‘accused’ if his score Sj exceeds a threshold Z,

i.e. if Sj > Z. The list of accused users is denoted as L. The False Positive and False negative error

probability are defined as PFP = Pr[L \ C 6= ∅] and PFN = Pr[L ∩ C = ∅].
The parameter µ̃ is defined as 1

mE[S], where E stands for the expectation value over all random variables.

The µ̃ depends on q, κ, the collusion strategy, and weakly on c. In the limit of large c it converges to a

finite value, and the code length scales as m ∝ c2/µ̃2.
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2.3 Expectation values

We will need to compute expectation values over several of the random variables mentioned above. To

this end we list a number of lemmas, most of which are from the literature.

Expectation over p: Let r(p) be an arbitrary function. Then the expectation over p is defined as

Ep[r(p)] :=

Z 1

0
dqp F (p)r(p). (9)

The following lemma is helpful when one component of p has a special status, for instance py, with y the

symbol chosen by the attackers. The rest of p is denoted as p\y.

Lemma 1 (Marginals of the Dirichlet distribution) Let r be any function of p. The expectation

value Ep can be split into two parts as

Ep[r(p)] = Epy
h
Ep\y|py [r(p)]

i
, (10)

with

Epy [· · · ] =
1

B(κ, κ[q − 1])

Z 1

0
dpy p

−1+κ
y (1− py)−1+κ[q−1][· · · ] (11)

Ep\y|py [r(p)] =
1

B(κ1q−1)

Z 1

0
dq−1t δ(1−

X
β∈Q\{y}

tβ) t−1+κr(p)
˛̨̨
p\y=(1−py)t

. (12)

Proof: See Appendix A �

Expectation over σ|p: Let r(σ) be an arbitrary function. Then

Eσ|p[r(σ)] :=
X
σ∈Sqc

 
c

σ

!
pσr(σ). (13)

Expectation over y|σ: Let r(y) be an arbitrary function. Then

Ey|σ[r(y)] :=
P
y∈Q θy|σr(y). (14)

Expectation over y|p: We introduce the notation Ty|p to denote the following sum,

Ty|p =
X
σ∈Sqc

 
c

σ

!
pσθy|σ, (15)

where the condition
P
α pα = 1 is not enforced. This will allow us to write several important expressions

compactly in terms of partial derivatives of T . The notation τy|p is defined as Ty|p where we do enforce

the ‘on-shell’ condition
P
α pα = 1. It represents the conditional probability that y occurs given p.

Ey|p[r(y)] =
P
y∈Q τy|pr(y). (16)

Lemma 2 (See Lemma 6 in [23]) For d > 0, v > 0, the following holdsZ ∞
0

du
u2d−1

(1 + u2)d+v
= 1

2B(d, v). (17)

Lemma 3 (See Lemma 3 in [23]) The overall probability distribution for one component of σ is

P1(b) := Pr[σα = b] =

 
c

b

!
B(κ+ b, κ[q − 1] + c− b)

B(κ, κ[q − 1])
for any fixed α ∈ Q. (18)
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Corollary 1 (See Corollary 1 in [23]) Let σ\α denote the vector σ without the component σα. The

probability distribution of σ\α conditioned on σα is given by

Pq−1(x|b) := Pr[σ\α = x|σα = b] =

 
c− b
x

!
B(κ1q−1 + x)

B(κ1q−1)
for any fixed α ∈ Q. (19)

Definition 2 Let α ∈ Q, b ∈ {0, . . . , c}, x ∈ {0, . . . , c}q−1 and σ ∈ Sqc such that σα = b and σ\α = x.

We define

Ψb(x) = θα|σ for the above given form of σ. (20)

Due to the Marking Assumption we have that Ψc(0) = 1 and Ψ0(x) = 0.

Definition 3 Let b ∈ {1, . . . , c}. Consider a segment for which it is given that there exists at least one

symbol α ∈ Q satisfying σα = b, and pick one such symbol. We define Kb as the probability that the

attackers output this particular symbol.

Kb = Ex|bΨb(x) =
P
xPq−1(x|b)Ψb(x). (21)

Lemma 4 (See Lemma 4 in [23]) The numbers Kb satisfy

q
Pc
b=1KbP1(b) = 1. (22)

Lemma 5 (See Theorem 2 in [23]) The expected coalition score in a single segment is

µ̃ = E[S
(i)
C ] = q

cX
b=1

P1(b)KbW (b)


1

2
− κ+

b

c
(κq − 1)

ff
, (23)

with W (b) := c
Γ (b+ κ− 1

2 )

Γ (b+ κ)

Γ (c− b+ κ[q − 1]− 1
2 )

Γ (c− b+ κ[q − 1])
. (24)

3 Properties of the guilty-user score in a single segment

In this section we study the properties of the single-segment score S
(i)
j for a guilty user j ∈ C. In Section 3.1

we derive the probability density function (pdf) ψ for S
(i)
j , and we investigate the first two moments, as well

as the tails of the distribution. In Section 3.2 we compute the Fourier transform (characteristic function)

of ψ and investigate its main properties, such as its power series expansion. The Fourier transform is then

used in Section 4 to implement the CSE method.

3.1 Distribution of the guilty-user score

Throughout this section we will use the shorthand notation u for S
(i)
j . We derive the distribution function

ψ(u) as follows. First we fix p and compute the conditional pdf ψ(u|p). Then the end result follows by

taking the expectation value over p: ψ(u) = Ep[ψ(u|p)]. Because of the different behavior of positive and

negative scores we introduce the notation ψ+ for u > 0 and ψ− for u < 0.

Theorem 1 Let Ty|p and τy|p be functions as defined in Section 2.3. For a guilty user, the probability

distribution of the score conditioned on p is given by

u < 0 : ψ−(u|p) =
X
y∈Q

δ (u− g0(py))
X
σ

 
c

σ

!“
1− σy

c

”
pσθy|σ (25)

=
X
y∈Q

δ (u− g0(py))

»
τy|p −

py
c

∂Ty|p
∂py

–
, (26)

u > 0 : ψ+(u|p) =
X
y∈Q

δ (u− g1(py))
X
σ

 
c

σ

!
σy
c
pσθy|σ (27)

=
1

c

X
y∈Q

δ (u− g1(py)) py
∂Ty|p
∂py

. (28)
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Proof: See Appendix B. �

Theorem 2 For a guilty user, the distribution function ψ of the score in one segment is given by

u < 0 : ψ−(u) =
2q

B(κ, κ[q − 1])

c−1X
b=1

„
1− b

c

« 
c

b

!
(u2)b+κ−

1
2

(1 + u2)
c+κqKb, (29)

u > 0 : ψ+(u) =
2q

B(κ, κ[q − 1])

cX
b=1

b

c

 
c

b

!
(u2)c−b+κ[q−1]− 1

2

(1 + u2)
c+κq Kb. (30)

Proof: See Appendix C. �

The expressions (29,30) are rather complicated. We have double-checked their correctness by verifying the

normalization and the first moment.

Consistency check 1 The function ψ(u) given in Theorem 2 is correctly normalized,
R∞
−∞ du ψ(u) = 1.

Proof: See Appendix D. �

Consistency check 2 The function ψ(u) has the correct first moment,
R∞
−∞ duψ(u)u = µ̃/c.

Proof: See Appendix E. �

Left tail Right tail u ↑ 0 u ↓ 0
Kc−1

|u|3+2κ[q−1]
K1

u3+2κ K1(c− 1)|u|1+2κ u−1+2κ[q−1]

Table 1 Dominant powers of ψ(u) in the tails and near u = 0. All the values above are multiplied by 2q
B(κ,κ[q−1])

.

The behavior in the tails and near u = 0 is summarized in Table 1. The right tail is dominated by the b = 1

term; it is proportional to (1/u)3+2κ. The integral
R∞
0 du ψ+(u)ua converges for a < 2+2κ. The left tail is

dominated by the b = c− 1 term, and is proportional to (1/|u|)3+2κ[q−1]. The integral
R 0
−∞ du ψ−(u)|u|a

converges for a < 2 + 2κ[q − 1]. Hence, for κ ∈ `0, 1
2

´
, the usual choice, the second moment always

exists, but not the third absolute moment. We see that the right tail is heavier than the left tail, meaning

that extreme positive scores are more likely than extreme negative scores. Such a property is obviously

beneficial for accusing guilty users. In case the chosen strategy is MajV, the right tail is dominated by

the b = dc/qe term, which behaves as (1/u)2dc/qe+2κ+1, which for c > q decreases faster than (1/u)3+2κ.

For MinV the left tail is dominated by b = bc/2c, which behaves as (1/|u|)2dc/2e+2κ[q−1]+1 and decreases

faster than (1/|u|)3+2κ[q−1] for c > 2. Since K1 is the coefficient associated with the dominant power in

the right tail, we find that MinV yields the most pronounced right tail. On the left side it is MajV, the

strategy that most emphasizes Kc−1. Fig. 1 illustrates these trends.

Definition 4 We denote the second moment of the pdf ψ as M2,

M2 :=

Z ∞
−∞

du ψ(u)u2. (31)

Definition 5 We denote the variance of the pdf ψ as V ,

V := M2 − µ̃2/c2. (32)

Lemma 6 The second moment M2 as defined in Def. 4 is given by

M2 = q

cX
b=1

KbP1(b)

»„
1− b

c

«
b+ κ

c− b+ κ[q − 1]− 1
+
b

c

c− b+ κ[q − 1]

b+ κ− 1

–
. (33)
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Fig. 1 The pdf ψ of the single-segment score, shown for several strategies. c = 4, q = 3, κ ≈ 1/3

Proof: See Appendix F. !

Remark: The scores of guilty users are not independent. As a consequence, the variance of the coalition

score S
(i)
C is not a simple multiple of V . Let the covariance between two guilty user scores be Kjj′ =

E[S
(i)
j S

(i)
j′ ]− µ̃2/c2. Then we have

E[(S
(i)
C )2] = E[

X
j,j′∈C

S
(i)
j S

(i)
j′ ] = cE[(S

(i)
j )2] +

X
j "=j′

„
E
h
S

(i)
j S

(i)
j′

i
− µ̃2

c2

«
+ µ̃2

„
1− 1

c

«
. (35)

which yields

σ̃2 := Var(S
(i)
C ) = cV +

X
j "=j′

Kjj′ . (36)

In [5] the variance was bounded as σ̃2 < qc− µ̃2. From this bound we learn that the sum
P

j "=j′ Kjj′ scales

at most linearly in c, even though it contains two sums over the coalition. A study of the covariances is

left for future work.

Remark: In the case of the Interleaving attack, we have Ψb(x) = b/c and Kb = b/c. The
P

b summations

in Theorem 2 can be evaluated exactly, and yield

ψInt− (u) = (1− 1
c )

2q

B(κ, κ[q − 1])

(u2)κ+1/2

(1 + u2)2+κq
(37)

ψInt
+ (u) =

2q

B(κ, κ[q − 1])
(c + u2)

(u2)κ[q−1]−1/2

(1 + u2)2+κq
. (38)

The left tail has dominant power (1/|u|)3+2κ[q−1] and the right tail (1/u)3+2κ, which corresponds to the

longest possible tails as listed in Table 1. This does not come as a surprise; the Interleaving attack has

the same tail behavior in the case of innocent users.

2.2 Fourier transform

Definition 5 Let χ : R → C be a function. The Fourier transform of χ is denoted as χ̃ and defined as

χ̃(k) =

Z ∞
−∞

dx e−ikxχ(x) with k ∈ R. (39)

Lemma 8 Let χ be a probability distribution function, and X a random variable with X ∼ χ. Then

dnχ̃(k)

dkn

˛̨̨̨
k=0

= (−i)nE
ˆ
Xn˜ . (40)

Fig. 1 The pdf ψ of the single-segment score, shown for several strategies. c = 4, q = 3, κ ≈ 1/3.

Proof: See Appendix F. �

Remark: The scores of guilty users are not independent. As a consequence, the variance of the coalition

score S
(i)
C is not a simple multiple of V . Let the covariance between two guilty user scores be Kjj′ =

E[S
(i)
j S

(i)
j′ ]− µ̃2/c2. Then we have

E[(S
(i)
C )2] = E[

X
j,j′∈C

S
(i)
j S

(i)
j′ ] = cE[(S

(i)
j )2] +

X
j 6=j′

(E[S
(i)
j S

(i)
j′ ]− µ̃2/c2) + µ̃2(1− 1

c
). (34)

which yields

σ̃2 := Var(S
(i)
C ) = cV +

P
j 6=j′Kjj′ . (35)

In [27] the variance was bounded as σ̃2 < qc − µ̃2. From this bound we learn that the sum
P
j 6=j′ Kjj′

scales at most linearly in c, even though it contains two sums over the coalition. A study of the covariances

is left for future work.

Remark: In the case of the Interleaving attack, we have Ψb(x) = b/c and Kb = b/c. The
P
b summations

in Theorem 2 can be evaluated exactly, and yield

ψInt− (u) = (1− 1
c )

2q

B(κ, κ[q − 1])

(u2)κ+1/2

(1 + u2)2+κq
(36)

ψInt
+ (u) =

2q

B(κ, κ[q − 1])
(c+ u2)

(u2)κ[q−1]−1/2

(1 + u2)2+κq
. (37)

The left tail has dominant power (1/|u|)3+2κ[q−1] and the right tail (1/u)3+2κ, which corresponds to the

longest possible tails as listed in Table 1. This does not come as a surprise; the Interleaving attack has

the same tail behavior in the case of innocent users.

3.2 Fourier transform

Definition 6 Let χ : R→ C be a function. The Fourier transform of χ is denoted as χ̃ and defined as

χ̃(k) =

Z ∞
−∞

dx e−ikxχ(x) with k ∈ R. (38)

Lemma 7 Let χ be a probability distribution function, and X a random variable with X ∼ χ. Then

dnχ̃(k)

dkn

˛̨̨̨
k=0

= (−i)nE
ˆ
Xn˜ . (39)
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Proof:
dnχ̃(k)

dkn =
R

dx
h

dn

dkn e
−ikx

i
χ(x) = (−i)n R dx xne−ikxχ(x). Setting k = 0 gives the result. �

Lemma 8 (From [20], section 2.5.9) Let k ∈ R, Re v > − 1
2 , and d > 0. Let the function Λ be defined

as the following convergent integral,

Λ(d, v; k) :=

Z ∞
0

du
u2d−1

(u2 + 1)v+d
eiku. (40)

This integral can be expressed as

Λ(d, v; k) = (−ik)2vΓ (−2v) 1F2(v + d; v + 1
2 , v + 1;

k2

4
) + 1

2

∞X
j=0

(ik)j

j!
B(d+

j

2
, v − j

2
) (41)

where 1F2 is a hypergeometric function.

Notice that in general Λ(d, v; k) is not an entire function of k due to the appearance of the factor k2v

in the first term, which for general v is not an entire function. The hypergeometric function 1F2 has the

sum representation 1F2(α;β1, β2; z) =
P∞
j=0

(α)j
j!(β1)j(β2)j

zj where (α)j = α(α + 1) · · · (α + j − 1) is the

Pochhammer symbol. The radius of convergence is infinity.

Theorem 3 The Fourier transform of ψ is given by

ψ̃(k) =
2q

B(κ, κ[q − 1])

cX
b=1

 
c

b

!
Kb ·

»„
1− b

c

«
Λ(db, vb; k) +

b

c
Λ(Db, Vb;−k)

–
, (42)

with Λ as defined in Lemma 8, and

db = b+ κ ; vb = c− b+ κ[q − 1]

Db = c− b+ κ[q − 1] ; Vb = b+ κ. (43)

Proof: We use the expression for ψ given in Theorem 2. The Fourier integral for the summands in ψ+

is immediately of the form (41) and yields Λ(Db, Vb;−k). The integral over the ψ− terms is of the formR 0
−∞du f(u2)e−iku, which can be rewritten as

R∞
0 du f(u2)eiku; this too has the form (41) and yields

Λ(db, vb; k). �

Corollary 2 For q ≥ 3 and 1
2(q−1)

≤ κ < 1
2 , the ψ̃ has the following power series expansion,

ψ̃(k) = 1− i µ̃
c
k − 1

2M2k
2 +A(−ik)2+2κ +O(k3), (44)

where A :=
2q

B(κ, κ[q − 1])
K1Γ (−2− 2κ). (45)

Proof: Trivially E[u0] = 1. From Consistency check 2 and Lemma 6 we know that E[u] = µ̃
c and E[u2] =

M2. Hence by Lemma 7 we have ψ̃(0) = 1, ψ̃′(0) = −i µ̃c and ψ̃′′(0) = −M2. The expansion in (44) is

consistent with these values. After k2 the powers can be non-integer. The next term in the series expansion

is k2+2κ. The exponent comes from the application of Lemma 8 in Theorem 3: in the first term of (41)

the k2v factor can build irrational powers of k. The minimum value generated is for V1 = 1+κ, with Vb as

defined in (43). Note that the Λ term obtained from vc is not present because it is multiplied by 1− b/c.
The next contribution is vc−1 = 1 + κ[q− 1] which (for q ≥ 3) is larger than V1. Finally, the coefficient A

follows from the Λ(D1, V1,−k) term in (42), taking only the leading term (=1) in the sum representation

of the 1F2 function. �

In order to apply the CSE method we will have to work with a zero-mean pdf. For this reason we introduce

a ‘centered’ version of ψ.
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Definition 7 We define the pdf χ as a shifted version of ψ,

χ(r) := ψ(
µ̃

c
+ r). (46)

We will use shorthand notation r = u − µ̃/c. From the definition it trivially follows that E[r] = 0 and

E[r2] = V .

Lemma 9 The Fourier transform of χ is given by

χ̃(k) = eik
µ̃
c ψ̃(k). (47)

Proof: χ̃(k) =
R∞
−∞dr e−ikrχ(r) =

R∞
−∞du e−ik(u−

µ̃
c )ψ(u) = eik

µ̃
c ψ̃(k). �

Corollary 3 Let 1
2[q−1]

< κ < 1
2 and let χ be as given in Definition 7. Then χ̃ has the following power

series expansion,

χ̃(k) = 1− 1
2V k

2 +A(−ik)2+2κ +O(k3) (48)

with A as given in (45).

Proof: From (47) we can rewrite χ̃(k) as a product of the series expansions of eik
µ̃
c and ψ̃(k). Since

eik
µ̃
c = 1 + i µ̃c k − 1

2
µ̃2

c2
k2 +O(k3), and the ψ̃(k) expansion was given in (44), we have

eik
µ̃
c ψ̃(k) =

»
1 + i

µ̃

c
k − 1

2

µ̃2

c2
k2 +O(k3)

– »
1− i µ̃

c
k − 1

2M2k
2 +A(−ik)2+2κ +O(k3)

–
(49)

= 1 + 0k + (−M2

2
− µ̃2

2c2
+
µ̃2

c2
)k2 +A(−ik)2+2κ +O(k3), (50)

and (48) follows after some simplification. �

Remark: The 1− 1
2V k

2 part of (48) can be also found using Lemma 7, since we know that E[r] = 0 and

E[r2] = V .

In the expression (48) there are no powers between k0 and k2. This makes it possible for us to use the

CSE method.

4 Applying the CSE method to the guilty user score

We are now finally in a position to compute accusation probabilities for guilty users. The Fourier transform

χ̃ serves as the basis; raising it to the power m yields the Fourier-transformed pdf of the total accusation Sj .

The computational steps are almost identical to the case of the innocent score distribution [23], with two

minor differences: (i) The variance of the single-segment pdf is V instead of 1; (ii) The pdf has non-zero

average.

In Section 4.1 we show how these differences affect the theory. In Section 4.2 we discuss how the one-pirate

probability Pr[Sj > Z] is used to obtain an upper bound on PFP. In Section 4.3 we present plots that

demonstrate the convergence of our numerical implementation. Furthermore, we present an ROC curve

combining innocent and guilty accusation probabilities.
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4.1 Adaptations

Below we list the (slight) modifications in the CSE method, as compared to [23], induced by the V 6= 1

variance and the nonzero mean. First, the tail of the Gaussian distribution changes.

Definition 8 We define the function Ω as the probability mass in the right tail of the normal distribution,

Ω(z) := 1√
2π

R∞
z dx e−x

2/2.

Lemma 10 Let V > 0 be the variance defined in (32). Then, for x ∈ R it holds that

1

2πi

Z ∞
−∞

dk
eikx

k
e−

V
2 k

2
= 1

2 −Ω(x/
√
V ). (51)

Proof: From Eq. 9.254.1 in [9] we have that 1
2πi

R∞
−∞dk eikx

k e−k
2/2 = 1

2 −Ω(x). Changing the integration

variable in (51) to k′ = k
√
V immediately yields the result. �

The modified Gaussian tail leads to modifications in all the integrals involving the tail.

Lemma 11 Let V > 0 be the variance defined in (32). For x ∈ R and ν > 0 it holds thatZ ∞
−∞

dk

2π
(i sgn k)α−1|k|ν−1e−

V
2 k

2
eikx =

1

πV
ν
2
Γ (ν)2ν/2 Im

»
i−αH−ν

„
ix√
2V

«–
. (52)

Here H−ν is a Hermite function.

Proof: Corollary 2 in [23] states that for x ∈ R and ν > 0:Z ∞
−∞

dk

2π
(i sgn k)α−1|k|ν−1e−k

2/2eikx =
1

π
Γ (ν)2ν/2 Im

»
i−αH−ν

„
ix√

2

«–
. (53)

A change of integration variable to k
√
V in (52) directly leads to the end result. �

The nonzero expectation value E[Sj ] = mµ̃/c gives rise to a ‘shifted’ version of the formula for the

accusation probability. We introduce a shifted accusation threshold ∆,

∆ := Z −mµ̃/c ; ∆̃ := ∆/
√
m. (54)

The accusation probability can be expressed as a function of ∆̃, as shown in the following two theorems.

Theorem 4 Let j be a guilty user. Let Rm denote the accusation probability Pr[Sj > Z]. Then

Rm(∆̃) =
1

2
+

i

2π

Z ∞
−∞

dk
exp ik∆̃

k

»
χ̃

„
k√
m

«–m
. (55)

Proof: Exactly the same as the proof of (Theorem 3 in [23]), but with ∆̃ replacing Z̃. �

Theorem 5 Let j be a guilty user and 1
2[q−1]

< κ < 1
2 . Then it is possible to write

[χ̃(
k√
m

)]m = exp(− 1
2V k

2)
ˆ
1 +

P∞
t=0 ωt(m)(i sgn k)αt |k|νt˜ (56)

where αt are real numbers; the coefficients ωt(m) are real; the powers νt satisfy ν0 = 2+2κ and νt+1 > νt.

The νt are not necessarily integer. All the coefficients ωt(m) are decreasing functions of m. The probability

of accusing user j is given by

Rm(∆̃) = Ω(∆̃/
√
V ) + 1

π

P∞
t=0 ωt(m)Γ (νt)(2/V )νt/2 Im

h
i−αtH−νt(i∆̃/

√
2V )

i
. (57)

Proof: See Appendix G. �



12

4.2 Relation between Pr[Sj > Z] and the False Negative probability

The quantity that we compute, Pr[Sj > Z], is not equal to the quantity we are most interested in, PFN.

Below we explain how we obtain a bound on PFN based on Pr[Sj > Z].

Lemma 12 Let j ∈ C. Let L be the set of accused users, and A = L ∩ C the set of attackers that end up

in L. Then the False Negative probability can be expressed as

PFN = 1− cPr[j ∈ L] + (c− 1) Pr[A = C]. (58)

Proof: We start by writing

Pr[j ∈ L] = Pr[A = {j}] +
X

k∈C\{j}
Pr[A = {j, k}] +

X
(k,`):k,`∈C\{j}

Pr[A = {j, k, `}] + · · ·+ Pr[A = C], (59)

where (k, `) is a pair with k 6= `, and the dots denote summation over all tuplets in C \ {j} up to and

including size c− 2. Next we take the sum
P
j∈C over the whole equation (59). This yields cPr[j ∈ L] =Pc−1

s=1 Pr[|A| = s] + cPr[A = C]. Finally we use 1− PFN =
Pc
s=1 Pr[|A| = s]. �

The CSE method applied to one guilty user does not allow us to compute Pr[A = C]. In order to upper

bound the PFN we will therefore use the following corollary.

Corollary 4 Let j ∈ C. It holds that PFN < 1− Pr[Sj > Z].

Proof: Use Pr[A = C] < Pr[j ∈ A] = Pr[j ∈ L] = Pr[Sj > Z] in Lemma 12. �
Remark. The bound provided in Corollary 4 is not always tight. Note that Pr[L = C] � Pr[j ∈ L] if Z

is ‘significantly’ larger than mµ̃/c, yielding PFN ≈ 1− cPr[Sj > Z]. This is a much smaller number than

what Corollary 4 gives us. However, we have not been able to prove a tight upper bound on PFN.

4.3 Numerical results

We have implemented the CSE formulas of Section 4.1 in Wolfram Mathematica. In this section we present

graphs to demonstrate that our implementation works and that we can generate ROC curves with it; we

do not yet put the method to work to derive many “useful” results, e.g. exhaustive comparison of strategies

for a large region of parameter space. That is left for future work.

Convergence

The convergence of (57) turns out to be rather quick. Often it suffices to take powers only up to νt ≈ 10

in order to get good accuracy. An example is shown in Fig. 2. (The parameters were chosen such that we

are not in the Gaussian regime but in the right tail.)

Consistency check: power law in the tails

In Table 1 we see that the single-segment pdf has a power law (1/u)3+2κ in the right tail (provided that

K1 6= 0). Hence the integrated probability mass beyond Z scales as (1/Z)2+2κ. For large Z we expect to

see the (1/Z)2+2κ scaling also in the Rm(∆̃) curves. (Due to the Central Limit Theorem, the Rm(∆̃) goes

to a Gaussian shape, but only for small ∆̃; for large ∆̃ the original single-segment tail is still there.) We

use this as a consistency check on our CSE implementation. Fig. 3 shows a log-log plot of the right tail

for various strategies. The tails in this plot indeed have the same slope as the curve for m = 1.

ROC curves

One of the most useful types of graph for decision-making problems is the Receiver Operating Charac-

teristic (ROC). We take a slightly different graph, with ε1 and (our upper bound on) PFN on the axes.

This way, being closer to the origin means better performance. An example is shown in Fig. 4. Each curve

corresponds to tracing Z from very low (lots of users get accused: high FP and low FN) to very high

(almost nobody gets accused: low FP and high FN). The order of the curves is consistent with [24]. For

the given choice of parameters, the plotted Z lies outside the Gaussian regime; hence MinV is the strongest

attack and µ̃-min is a very poor attack.



13

10

3.2 Relation between Pr[Sj > Z] and the False Negative probability

The quantity that we compute, Pr[Sj > Z], is not equal to the quantity we are most interested in, PFN.

Below we explain how we obtain a bound on PFN based on Pr[Sj > Z].

Lemma 13 Let j ∈ C. Let L be the set of accused users, and A = L ∩C the set of attackers that end up

in L. Then the False Negative probability can be expressed as

PFN = 1− c Pr[j ∈ L] + (c− 1)Pr[A = C]. (60)

Proof: We start by writing

Pr[j ∈ L] = Pr[A = {j}] +
X

k∈C\{j}
Pr[A = {j, k}] +

X
(k,!):k,!∈C\{j}

Pr[A = {j, k, !}] + · · · + Pr[A = C], (61)

where (k, !) is a pair with k $= !, and the dots denote summation over all tuplets in C \ {j} up to and

including size c− 2. Next we take the sum
P

j∈C over the whole equation (61). This yields c Pr[j ∈ L] =Pc−1
s=1 Pr[|A| = s] + c Pr[A = C]. Finally we use 1− PFN =

Pc
s=1 Pr[|A| = s]. !

The CSE method applied to one guilty user does not allow us to compute Pr[A = C]. In order to upper

bound the PFN we will therefore use the following corollary.

Corollary 4 Let j ∈ C. It holds that PFN < 1− Pr[Sj > Z].

Proof: Use Pr[A = C] < Pr[j ∈ A] = Pr[j ∈ L] = Pr[Sj > Z] in Lemma 13. !
Remark. The bound provided in Corollary 4 is not tight. Note that Pr[L = C] % Pr[j ∈ L] if Z is

‘significantly’ larger than mµ̃/c, yielding PFN ≈ 1 − c Pr[Sj > Z]. This is a much smaller number than

what Corollary 4 gives us. However, we have not been able to prove a tight upper bound on PFN.

3.3 Numerical results

We have implemented the CSE formulas of Section 3.1 in Wolfram Mathematica. In this section we present

graphs to demonstrate that our implementation works and that we can generate ROC curves with it; we

do not yet put the method to work to derive many “useful” results, e.g. exhaustive comparison of strategies

for a large region of parameter space. That is left for future work.

Convergence

The convergence of (59) turns out to be rather quick. Often it suffices to take powers only up to νt ≈ 10

in order to get good accuracy. An example is shown in Fig. 2.

q=3, c=20, m=2000, κ=0.301, ∆̃=5, strategy=Int

νmax

log10 Rm(∆̃)

15 20 25 30

!4.26165

!4.26160

!4.26155

!4.26150

!4.26145

Fig. 2 Rm(∆̃) as a function of the cutoff power νmax.

Consistency check: power law in the tails

In Table 1 we see that the single-segment pdf has a power law (1/u)3+2κ in the right tail (provided that

Fig. 2 Convergence example. Estimated Rm(∆̃) as a function of the cutoff power νmax.

11

K1 != 0). Hence the integrated probability mass beyond Z scales as (1/Z)2+2κ. For large Z we expect to

see the (1/Z)2+2κ scaling also in the Rm(∆̃) curves. (Due to the Central Limit Theorem, the Rm(∆̃) goes

to a Gaussian shape, but only for small ∆̃; for large ∆̃ the original single-segment tail is still there.) We

use this as a consistency check on our CSE implementation. Fig. 3 shows a log-log plot of the right tail

for various strategies. The tails in this plot indeed have the same slope as the curve for m = 1.

q = 10, c = 30, m = 10000, κ = 0.301

∆̃

log10 Rm(∆̃)

MinV

RInt
1

RS

Int
µ̃-min

MajV

Gaussian MajV Gaussian MinV

2 5 10 20 50 100

!8

!6

!4

!2

Fig. 3 Log-log plot of Rm(∆̃) for several strategies. The single-segment tail integral R1(∆̃) for the Int attack is
also plotted.

@ Missing labels and parameter choices in the figures!! @

ROC curves

One of the most useful types of graph for decision-making problems is the Receiver Operating Charac-

teristic (ROC). We take a slightly different graph, with PFP and (our upper bound on) PFN on the axes.

This way, being closer to the origin means better performance. An example is shown in Fig. 4. Each curve

corresponds to tracing Z from very low (lots of users get accused: high FP and low FN) to very high

(almost nobody gets accused: low FP and high FN).

@ Say more about how the strategies perform, and consistency with [?] @@

@ Perhaps plot FN non-logarithmically? @
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5 Conclusions

We have adapted the CSE method so that we can compute guilty user accusation probabilities in the q-ary

Tardos scheme, in the Restricted Digit Model. The main steps are the derivation of ψ(u) (Theorem 2),

taking the Fourier transform (Theorem 3), and executing the changes due to E[u] 6= 0 and Var(u) 6= 1

(Section 4.1). The rest of the work is precisely as for the innocent score pdf. We have implemented the

thus adapted CSE method and done some tests. Convergence of the series expansion seems to be faster

than for the innocent pdf. The large-Z tails have the expected power law (1/∆̃)2+2κ.

Having the CSE method at our disposal for guilty as well as innocent user scores, it now becomes possible

to make full ROC curves such as Fig. 4. These can serve for choosing optimal parameter settings in the

Tardos scheme (even though our bound PFN < Pr[Sguilty < Z] is not tight). An exhaustive study of ROC

curves is left for future work.
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q = 3
c = 5

m = 5000
κ ≈ 1/3

log10 ε1

Pr[Sj < Z]

MinV

RS

Int

MajV / µ̃-min

!16 !14 !12 !10 !8 !6
0.0
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0.4

0.6

0.8

1.0

Fig. 4 Our upper bound on PFN versus PFP. The PFP data is taken from [?].

Appendix

A Proof of Lemma 2

The proof is similar to the steps taken in Appendix D of [4]. First we split the q-dimensional integration
R

dqp F (p)r(p)
as follows,

Ep [r(p)] =
1

B(κ1q)

Z 1

0
dpy p−1+κ

y

Z 1−py

0
dq−1p\yδ

0@1− py −
X

β∈Q\{y}
pβ

1Ap−1+κ
\y

r(p). (62)

Then we write p\y = (1−py)t. We get δ
“
1− py −

P
β∈Q\{y} pβ

”
= (1−py)−1δ

“
1−Pβ∈Q\{y} tβ

”
. Furthermore,

dq−1p\y = (1 − py)q−1dq−1t and p−1+κ
\y

= (1 − py)(q−1)(−1+κ)t−1+κ. Combined with the fact that B(κ1q) =

B(κ, κ[q − 1])B(κ1q−1), these steps yield the end result. !

B Proof of Theorem 1

The guilty user’s symbol is denoted as X. The one-segment score is either g0(py) (when X #= y) or g1(py) (when
X = y). Since no other values are possible, the probability distribution at given p will consist of delta-function
peaks. Each peak is multiplied by the probability that the corresponding event occurs

ψ−(u|p) =
X
y∈Q

δ (u− g0(py)) Pr[u = g0(py)|p] (63)

ψ+(u|p) =
X
y∈Q

δ (u− g1(py)) Pr[u = g1(py)|p]. (64)

Notice that

Pr[u = g0(py)|p] = Pr[X #= y ∧ Y = y|p] ; Pr[u = g1(py)|p] = Pr[X = y ∧ Y = y|p] (65)

and that
Pr[X #= y ∧ Y = y|p] + Pr[X = y ∧ Y = y|p] = Pr[Y = y|p] = τy|p . (66)

Next step is to compute Pr[u = g1(py)|p] in (64). Let be ey a q-ary vector entirely set to 0 except for the y-th
element that is instead equal to 1.

Pr[u = g1(py)|p] = Pr[Xji = y]Pr[Y = y|Xji = y, p] (67)

= py

X
σ∈Sqc

“ c− 1

σ− ey

”
pσ−eyθy|σ . (68)

Fig. 4 Example ‘ROC’ curve. Our upper bound Pr[Sj < Z] on PFN versus the probability ε1 of accusing a fixed
innocent user. The ε1 data is taken from [24].
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22. A. Simone and B. Škorić. Asymptotically false-positive-maximizing attack on non-binary Tardos codes. In
Information Hiding, pages 14–27, 2011.
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Appendix

A Proof of Lemma 1

The proof is similar to the steps taken in Appendix D of [23]. First we split the q-dimensional integrationR
dqp F (p)r(p) as follows,

Ep[r(p)] =
1

B(κ1q)

Z 1

0
dpy p

−1+κ
y

Z 1−py

0
dq−1p\yδ

“
1− py −

P
β∈Q\{y} pβ

”
p−1+κ
\y r(p). (60)

Then we write p\y = (1− py)t. We get δ(1− py −
P
β∈Q\{y} pβ) = (1− py)−1δ(1−Pβ∈Q\{y} tβ). Furthermore,

dq−1p\y = (1 − py)q−1dq−1t and p−1+κ
\y = (1 − py)(q−1)(−1+κ)t−1+κ. Combined with the fact that B(κ1q) =

B(κ, κ[q − 1])B(κ1q−1), these steps yield the end result. �

B Proof of Theorem 1

The guilty user’s symbol is denoted as X. The one-segment score is either g0(py) (when X 6= y) or g1(py) (when
X = y). Since no other values are possible, the probability distribution at given p will consist of delta-function
peaks. Each peak is multiplied by the probability that the corresponding event occurs

ψ−(u|p) =
P
y∈Q δ (u− g0(py)) Pr[u = g0(py)|p] (61)

ψ+(u|p) =
P
y∈Q δ (u− g1(py)) Pr[u = g1(py)|p]. (62)

Notice that

Pr[u = g0(py)|p] = Pr[X 6= y ∧ Y = y|p] ; Pr[u = g1(py)|p] = Pr[X = y ∧ Y = y|p] (63)

and that
Pr[X 6= y ∧ Y = y|p] + Pr[X = y ∧ Y = y|p] = Pr[Y = y|p] = τy|p. (64)

Next step is to compute Pr[u = g1(py)|p] in (62). Let be ey a q-ary vector entirely set to 0 except for the y-th
element that is instead equal to 1.

Pr[u = g1(py)|p] = Pr[Xji = y]Pr[Y = y|Xji = y,p] = py
X
σ∈Sqc

“ c− 1

σ − ey
”
pσ−eyθy|σ . (65)

The last equation is obtained as follows: Pr[Xji = y] = py ; Pr[Y = y|Xji = y,p] is equal to the sum over all the
possible σ vectors that have at least one occurrence of y (expressed with the condition σy > 0). Knowing that
Xji = y, the multinomial factor is needed to count the remaining c− 1 pirate symbols in σ, subtracting 1 from σy
(using the ey vector).

Pr[u = g1(py)|p] =
X
σ∈Sqc

σy

c

“ c
σ

”
pσθy|σ . (66)
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In the last equation we used pσ = pypσ−ey and
` c−1
σ−ey

´
=

σy
c

`c
σ

´
. Then the condition σy > 0 becomes superfluous

and (27) trivially follows. Notice that

py
∂Ty|p
∂py

= py
∂

∂py

X
σ∈Sqc

“ c
σ

”
pσθy|σ =

X
σ∈Sqc

“ c
σ

”
θy|σpy

∂pσ

∂py
=

X
σ∈Sqc

“ c
σ

”
θy|σσypσ (67)

proving that (28)=(27) and (26)=(25). Finally, from (64) combined with (63) we have

ψ−(u|p) =
P
y∈Q δ (u− g0(py))

`
τy|p − Pr[X = y ∧ Y = y|p]

´
. (68)

This, together with (66), completes the proof. �

C Proof of Theorem 2

The full ψ(u), without conditioning, is obtained by taking the expectation over p of (25)+(27).

ψ(u) = Ep[ψ(u|p)] = Θ(−u)Ep[ψ−(u|p)] +Θ(u)Ep[ψ+(u|p)]. (69)

We first prove (29) starting from Ep[ψ−(u|p)] with ψ−(u|p) as given in (25).

Ep[ψ−(u|p)] = Ep

24X
y∈Q

δ (u− g0(py))
X
σ∈Sqc

“ c
σ

”“
1− σy

c

”
pσθy|σ

35 (70)

=
X
y∈Q

X
σ∈Sqc

“ c
σ

”“
1− σy

c

”
θy|σEp [δ (u− g0(py))pσ ] . (71)

From Lemma 1 and p
σ\y
\y = (1− py)c−σy

Q
α∈Q\{y} t

σα
α we have that

Ep [δ (u− g0(py))pσ ] =
1

B(κ1q)

Z 1

0
dpy δ (u− g0(py)) p

σy+κ−1
y (1− py)c−σy+κ[q−1]−1

Z 1

0
dq−1t δ(1−

X
β∈Q\{y}

tβ)
Y

α∈Q\{y}
tσα+κ−1
α . (72)

The second integral in (72) evaluates to B(σ\y +κ1q−1), having the structure shown in Def. 1. In order to evaluate
the py-integral we have to rewrite the delta function into the form δ (py − · · · ). We use the rule

δ (u− w(p)) =
δ
`
p− winv(u)

´
|dw/dp| (73)

for any monotonic function w(p). This gives

δ (u− g0(p)) = Θ(−u)
2|u|

(1 + u2)2
δ

„
p− u2

1 + u2

«
. (74)

We substitute (74) into (72) and solve the integral

Ep [δ (u− g0(py))pσ ] = 2|u|Θ(−u)

„
1

1 + u2

«2 B(σ\y + κ1q−1)

B(κ1q)

Z 1

0
dpy δ

„
py − u2

1 + u2

«
p
σy+κ−1
y (1− py)c−σy+κ[q−1]−1

= 2|u|Θ(−u)

„
1

1 + u2

«2 B(σ\y + κ1q−1)

B(κ1q)

„
u2

1 + u2

«σy+κ−1 „
1

1 + u2

«c−σy+κ[q−1]−1

= 2Θ(−u)
B(σ\y + κ1q−1)

B(κ1q)

(u2)σy+κ−1/2

(1 + u2)c+κq
. (75)

Substituting (75) into (71) we have

Ep[ψ−(u|p)] = 2
X
y∈Q

X
σ∈Sqc

“ c
σ

”“
1− σy

c

” B(σ\y + κ1q−1)

B(κ1q)

(u2)σy+κ−1/2

(1 + u2)c+κq
θy|σ . (76)
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Now we change the summations as follows: the
P
σ can be written as

P
b

P
x with b = σy and x = σ\y , so

θy|σ = Ψb(x). Then the summand is a function of only b and x, which allows us to write

X
y

X
σ

“ c
σ

”
→ q

cX
b=0

X
x

“c
b

”“c− b
x

”
. (77)

Now we have

Ep[ψ−(u|p)] = 2q

cX
b=0

X
x

“c
b

”“c− b
x

” c− b
c

B(x+ κ1q−1)

B(κ1q)

(u2)b+κ−1/2

(1 + u2)c+κq
Ψb(x) (78)

where

X
x

“c
b

”“c− b
x

”B(x+ κ1q−1)

B(κ1q)
Ψb(x) =

“c
b

”X
x

“c− b
x

” B(x+ κ1q−1)

B(κ1q−1)B(κ, κ[q − 1])
Ψb(x) (79)

=
“c
b

” 1

B(κ, κ[q − 1])

X
x

Pq−1(x|b)Ψb(x) =
“c
b

” Kb

B(κ, κ[q − 1])
. (80)

In the last line we used Definition 3. Substituting (80) into (78) and removing 0 and c from the b-range, we have (29).

We can use exactly the same steps to obtain (30) from (27). The only significant difference is the delta function
which in this case will be

δ (u− g1(p)) = Θ(u)
2u

(1 + u2)2
δ

„
p− 1

1 + u2

«
. (81)

�

D Proof of consistency check 1

Integration of (29) and (30) gives

Z ∞
−∞

duψ(u) =
2q

B(κ, κ[q − 1])

cX
b=1

“c
b

”
Kb

24„1− b

c

«Z 0

−∞
du

`
u2
´b+κ− 1

2

(1 + u2)c+κq
+
b

c

Z ∞
0

du

`
u2
´c−b+κ[q−1]− 1

2

(1 + u2)c+κq

35 .
(82)

Let be λ := b+ κ and w := c− b+ κ[q − 1]. Applying Lemma 2 we have

2q

B(κ, κ[q − 1])

cX
b=1

“c
b

”
Kb

»„
1− b

c

«
1

2
B(λ,w) +

b

c

1

2
B(w, λ)

–
=

q

B(κ, κ[q − 1])

cX
b=1

“c
b

”
KbB(λ,w). (83)

The result follows applying Lemma 3 followed by Lemma 4. �

E Proof of consistency check 2

Taking (29) and (30), the integral
R∞
−∞du uψ(u) can be written as

2q

B(κ, κ[q − 1])

cX
b=1

“c
b

”
Kb

24„1− b

c

«Z 0

−∞
du

u
`
u2
´b+κ− 1

2

(1 + u2)c+κq
+
b

c

Z ∞
0

du
u
`
u2
´c−b+κ[q−1]− 1

2

(1 + u2)c+κq

35 . (84)

Let λ := b+ κ− 1
2

and w := c− b+ κ[q − 1]− 1
2

. Applying Lemma 2 and the property Γ (x+ 1) = xΓ (x) we have

Z ∞
−∞

duuψ(u) =
2q

B(κ, κ[q − 1])

cX
b=1

“c
b

”
Kb

»„
b

c
− 1

«
Γ (λ)Γ (w)λ

2Γ (c+ κq)
+
b

c

Γ (λ)Γ (w)w

2Γ (c+ κq)

–
. (85)

To obtain µ̃ as in (24) we use Lemma 3 to substitute
`c
b

´
1

B(κ,κ[q−1])
with

P1(b)
B(λ+1/2,w+1/2)

. After some simplifications,

the result follows. �
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F Proof of Lemma 6

The integral
R∞
−∞ du u2ψ(u) can be written as

2q

B(κ, κ[q − 1])

cX
b=1

“c
b

”
Kb

24„1− b

c

«Z 0

−∞
du

u2
`
u2
´b+κ− 1

2

(1 + u2)c+κq
+
b

c

Z ∞
0

du
u2
`
u2
´c−b+κ[q−1]− 1

2

(1 + u2)c+κq

35 . (86)

Let λ := c− b+ κ[q − 1] and w := b+ κ. Applying Lemma 2 with (2) and the property Γ (x+ 1) = xΓ (x), we get

2q

B(κ, κ[q − 1])

cX
b=1

“c
b

”
Kb

»„
1− b

c

«
Γ (λ− 1)Γ (w − 1)w(w − 1)

2Γ (c+ κq)
+
b

c

Γ (λ− 1)Γ (w − 1)λ(λ− 1)

2Γ (c+ κq)

–
. (87)

Then using (18) we have Z ∞
−∞

duu2ψ(u) = q
cX
b=1

KbP1(b)

»„
1− b

c

«
w

λ− 1
+
b

c

λ

w − 1

–
(88)

and (33) follows after some rewriting. �

G Proof of Theorem 5

We start from Corollary 3 and write a general power series expansion,

χ̃(k) = 1− (V/2)k2 +
P∞
t=0 γt|k|rt , (89)

where the rt ≥ 2 + 2κ are powers and the γt ∈ C are coefficients of the form iβt sgn k times a real factor. In this
expression the desired relation χ̃(−k) = [χ̃(k)]∗ evidently holds, and the properties χ̃(0) = 1, χ̃′(0) = 0, χ̃′′(0) = −V
are clearly present. Then we write

[χ̃(k/
√
m)]m = exp[m ln χ̃(k/

√
m)] = e−

V
2 k

2
exp

»
m
P∞
t=0 (

|k|√
m

)r
′
tδt

–
, (90)

where the powers r′t ≥ 2 + 2κ and coefficients δt ∝ iβ′tsgn k are obtained (laboriously) by substituting (89) into the
Taylor series for the logarithm, ln(1 + ε) = ε− ε2/2 + ε3/3− ε4/4 + · · · . It is worth noting that m disappears from
the k2 term, but not from the others. Eq. (56) is obtained from (90) by using the Taylor series for the exp function,

exp ε = 1 + ε+ ε2/2! + ε3/3! + · · · (91)

and (again laboriously) collecting terms with equal powers of k. Since we started out with powers rt ≥ 2 + 2κ,
we end up with powers νt ≥ 2 + 2κ. Finally, (57) follows by applying Lemma 10 and Lemma 11 to evaluate the
integrals that arise when (56) is substituted into Theorem 4. �


