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Abstract

A method for finding an optimum n-dimensional commutative group code of a given order M is

presented. The approach explores the structure of lattices related to these codes and provides a

significant reduction in the number of non-isometric cases to be analyzed. The classical factor-

ization of matrices into Hermite and Smith normal forms and also basis reduction of lattices are

used to characterize isometric commutative group codes. Several examples of optimum commu-

tative group codes are also presented.
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1. Introduction

The design of spherical codes for signal transmission through a Gaussian channel is a clas-

sical problem in coding theory, where group codes have proved useful [1, 2] since their ap-

pearance in the pioneering work of Slepian [3]. The special attention devoted to these codes is

largely due to their symmetry and homogeneity which arise from their special algebraic structure

[4, 5]. The interest in such group codes has persisted with various studies have been developed

[6, 7, 8, 9, 10, 11], including some proposing applications in turbo concatenated and low density

∗Correspondence author
Email addresses: cristiano.torezzan@fca.unicamp.br (Cristiano Torezzan),

joao.strapasson@fca.unicamp.br (João E. Strapasson), sueli@ime.unicamp.br (Sueli I. R. Costa),
rogerms@usp.br (Rogerio M. Siqueira)

1FAPESP: 05/58102-7
2FAPESP: 07/00514-3
3FAPESP: 02/07473-7, CNPq: 304573/2002

Preprint submitted to arXiv November 7, 2018

ar
X

iv
:1

20
5.

40
67

v2
  [

cs
.I

T
] 

 2
3 

M
ar

 2
01

3



schemes [12, 13, 14, 15, 16]. Recently it has been shown that the Shannon capacity of cer-

tain important channels, as the AWGN channel with m-PSK modulation, can be achieved using

commutative group codes [17] and they will be focused here.

One of the underlying difficulties in the design of a group code is the finding of an ini-

tial vector which maximizes the minimum distance of the associated code, for a fixed group of

orthogonal matrices; the so called initial vector problem. This problem still does not have a

general solution, although various important cases have been studied, including reflexion group

codes [18] and permutation group codes [19]. Besides, Biglieri and Elia have shown [20] that

for cyclic group codes the problem can be formulated as a linear programming problem. Here

we extend their ideas and show that for any commutative group code, the initial vector problem

can also be solved in the same way.

Furthermore, this paper deals with the more general problem of determining an optimum

commutative group code in Rn for a given order M. We derive a two-step algorithm which

leads to the finding of a code with maximum minimum distance for a fixed number of points M.

Our approach explores the connection between even dimensional commutative group codes and

lattices related to them in the half of the dimension [21, 22]. Using basis reduction of lattices and

the classical factorizations of matrices into Hermite and Smith normal forms, we characterize

a set of relevant cases to be analyzed, after discarding isometric codes. The reduction process

presented here can also be used in the solution of other problems where lattices [23], in particular

orthogonal sub-lattices, are involved; including coding and decoding process [24, 25, 26, 27],

image compression [28], spherical codes on torus layers [29] and also the enticing lattice based

cryptography [30, 31, 32].

This paper is organized as follows. Commutative group codes and some of their properties

are presented in Section 2. We then discuss the initial vector problem for those codes and charac-

terize it as a linear programming problem in Section 3. The main results are presented in Section

4, where we prove a simple, but useful, extended Hermite normal form (theorem 4.1) which

allows the characterization of isometric lattices by coordinate permutation; in this section we

also derive theorems 4.2 and 4.5 which provide a significant reduction in the number of codes

to be checked in the search for an optimum one. Our method is presented as a pseudo-code

(Algorithm 1), and some examples of optimal codes in several dimensions are given.
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2. Commutative group codes

Let On be the multiplicative group of orthogonal matrices n × n and Gn(M) be the set of all

order M commutative subgroups in On.

A commutative group code C is a set of M vectors which is the orbit of an initial vector x0 on

the unit sphere S n−1 ⊂ Rn by a given G ∈ Gn(M), i.e.

C := Gx0 = {gx0, g ∈ G} .

We assume that C is substantial, i.e., not contained in a hyperplane.

The minimum distance in C is defined as:

d := min
x, y ∈ C

x , y

||x − y|| = min
gi ∈ G

gi , In

||gix − x||,

where ||.|| and In denote the standard Euclidean norm and the identity matrix of order n respec-

tively.

In what follows, C(M, n, d) denotes a code C in Rn with M points and minimum distance

equal to d. A C(M, n, d) is said to be optimum if d is the largest minimum distance for a fixed M

and n.

As is well known, the minimum distance of a group code C, generated by a finite group G,

may vary significantly depending on the choice of the initial vector x0. Therefore, the search for

an optimum n-dimensional commutative group code with M points requires the consideration of

all G ∈ Gn(M) and solution of the initial vector problem for each G.

A well known real-irreducible representation of a finite commutative group of orthogonal

matrices G can be stated as follows:

Theorem 2.1. ([33] Theorem 12.1) Every commutative group G ∈ Gn(M) can be carried by the

same real orthogonal transformation q into a pseudo-diagonal form:

qgi q
t = [R1(i), . . . ,Rk(i), µ(i)2k+1, . . . , µ(i)n]n×n,

where R j(i) =

 cos( 2πbi j

M ) − sin( 2πbi j

M )

sin( 2πbi j

M ) cos( 2πbi j

M )

 , (1)
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bi j ∈ Z, 0 6 bi j 6 M and µ(i)l = ±1, l = 2k + 1, . . . , n, j = 1, . . . , k,∀gi ∈ G.

3. The initial vector problem

In this section we consider, for each group G ∈ Gn(M), the search for a vector x in S n−1

which maximizes the minimum distance between two points in C = Gx, i.e., the search for an x

that solves:

max
x∈S n−1

(
min

gi∈G,gi,In
||gix − x||2

)
This initial vector problem has been solved only in certain special cases. Biglieri and Elia have

shown in [20] that, for cyclic groups, this search can be reduced to a linear programming problem

(LP). Here, we extend their ideas and present an alternative formulation which also allows the

reduction of the initial vector problem to a LP for any commutative group code.

According to Theorem 2.1, we have:

||gix − x||2 = 2 − 2

 k∑
j=1

(
1 − 2 sin2(

π

M
bi j)

)
(x2

2 j−1 + x2
2 j) +

n−k∑
j=k+1

µ(i) j(x2
j )

 .
Considering

y j =

 x2
2 j−1 + x2

2 j , if j = 1, . . . , k

x2
j+k , if j = k + 1, . . . , n − k

,

we obtain

||gix − x||2 = 2 − 2

 k∑
j=1

(
1 − 2 sin2(

π

M
bi j)

)
y j +

n−k∑
j=k+1

µ(i) jy j

 .
Thus, max

x∈S n−1

(
min
gi,In
||gix − x||2

)
is equivalent to

max min

2 − 2

 k∑
j=1

(
1 − 2 sin2(

π

M
bi j)

)
y j +

n−k∑
j=k+1

µ(i) jy j


 ,

subject to
n−k∑
j=1

y j = 1, y j ≥ 0.
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This max min problem, which is linear in y, can be reduced to the following linear programming

problem:

max z,

subject to



z ≤2 − 2

 k∑
j=1

(
1 − 2 sin2(

π

M
bi j)

)
y j +

n−k∑
j=k+1

µ(i) jy j


n−k∑
k=1

yi =1

yi ≥0

Therefore, the initial vector problem for commutative group codes is equivalent to a linear

programming problem with n − k + 1 variables. Due to the symmetry of the function sin2(x), in

the case where the group G is free of 2 × 2 reflection blocks (n = 2k), the number of constraints

can be reduced to
(⌊

M
2

⌋
+ 1

)
.

4. Optimum commutative group codes

In this section we consider a more general problem of finding a commutative group code of

order M in Rn which has the largest minimum distance. To do this, we must consider all com-

mutative groups G ∈ Gn(M) with the respective best initial vectors and compare the minimum

distances of the correspondent codes.

Let us start by estimating the number of commutative group codes to be checked in order to

find an optimum one.

As usual, we say that two groups G and H are equivalent if they are conjugate, i.e.,

G ≈ H ⇐⇒ ∃ p ∈ On; H = p G pt.

Although the set Gn(M) is infinite, conjugate groups generate isometric codes. Specifically,

given an initial vector x, G ∈ Gn(M) and p ∈ On, the group code generated by G is isometric to

the group code generated by H = p G pt, with initial vector p x. In fact, for each hi = pgi pt ∈ H,

we must have
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‖hi(p x) − p x‖ = ‖(p gi pt) (p x) − p x‖ = ‖p gi x − p x‖ = ‖gi x − x‖.

Thus, the search for optimal commutative group codes can be restricted to groups which are

distinct up to conjugacy. In other words, it is sufficient to consider just one representative for

each class of the quotient Gn(M)/ ≈, resulting in a finite set. In fact, by Theorem 2.1, for each

G ∈ Gn(M) there exists H = qGqt in a pseudo-diagonal form i.e., for each class in quotient

Gn(M)/ ≈, there is a representative in the pseudo-diagonal form. Therefore, in the search for

optimum commutative group codes, it is sufficient to consider only the set of commutative groups

such that their matrices are in the form (1). Let us denote this set by Bn. The cardinality of Bn is

clearly finite, since 0 6 bi j 6 M.

However, the set Bn still has equivalent groups and can be reduced. For instance, let G ∈ Bn

be a group of matrices free of 2 × 2 reflection blocks, i.e., the elements in G have only 2 × 2

rotation matrices as diagonal blocks.

Let

Gi j =

[
cos

( 2πbi j
M

)
− sin

( 2πbi j
M

)
sin

( 2πbi j
M

)
cos

( 2πbi j
M

) ]
be the i-th block of the j-th generator of G. The block Gi j is a rotation by an angle of

(
2πbi j/M

)
.

Note that the rotation block corresponding to M − bi j is a conjugate of the block associated with

bi j:

[
cos

( 2π(M−bi j )
M

)
− sin

( 2π(M−bi j )
M

)
sin

( 2π(M−bi j )
M

)
cos

( 2π(M−bi j )
M

) ]
=

[
cos

( 2πbi j
M

)
sin

( 2πbi j
M

)
− sin

( 2πbi j
M

)
cos

( 2πbi j
M

) ] =
[

1 0
0 −1

]
Gi j

[
1 0
0 −1

]
.

Therefore, up to conjugacy, we can consider bi j ≤ M/2 in (1).

Moreover, the permutation of two consecutive blocks Gi j and G(i+1) j (and hence any two

rotation blocks) results also in a conjugacy in O2k. We next consider only the set Bn and also

discard equivalent groups, as described above.

In [20], Biglieri and Elia present the estimation
(
M/2
n/2

)
for the number of cyclic groups which

must be checked in order to find an optimum one. By discarding isometric codes, as stated above,

and also considering the Ádáms’ condition [34], presented next, we can give a lower estimate for

the number of cases to be tested in the search for an optimum cyclic group code.
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Ádáms’ condition: for a fixed M and a, b ∈ Zk we say that a and b are

Ádám’s-equivalent and denote by a ' b iff there exists α invertible in ZM

such that a = αb mod M.

A generator matrix of a cyclic group G ∈ O2k can be defined by a vector b =
(
b1, b2, · · · , bk

)
with 0 < bi ≤ M and gcd(b1, b2, · · · , bk,M) = 1 to represent the rotation blocks. The Ádám’s

relation, a ' b, implies that two pseudo-diagonal matrices (1) with parameters defined by a and

b generate the same cyclic group.

Thus, the number of distinct cyclic groups is clearly less than
(
M/2
n/2

)
and depends on the

number of invertible elements in ZM , which is given by the Euler phi function of M, ϕ(M).

Moreover, as pointed out above, we can restrict our search to vectors b =
(
b1, b2, · · · , bk

)
, 0 ≤

bi ≤ M/2. Based on these arguments, we can estimate the number of cyclic group codes, up

to symmetry, by (M/2)k/ϕ(M), which is lower than the number
(
M/2
n/2

)
, given in [20]. Table 1

shows a comparison of these values for k = 2 and several values of M. The final column refers

to the number of cyclic group codes effectively tested by Algorithm 1 (derived in Section 4),

which discards additional isometric groups in order to find an optimum code.

Table 1: Different estimations for the number of distinct (non-isometric) order M cyclic group codes in R4 and cases

effectively tested by Algorithm 1.

M
(

M/2
n/2

) M2

4ϕ(M)
Algorithm 1

32 120 16 14

64 496 32 26

128 2016 64 50

256 8128 128 98

512 32640 256 194

1024 130816 512 386

In what follows, we will focus our attention on the class of commutative group codes, with

generator matrices are free of 2 × 2 reflection blocks. Moreover, it is sufficient to consider

commutative group codes in even dimensions, because, as pointed out in [21], a commutative

group code in odd dimension, n = 2k +1, is generated by a group G ∈ O2k+1 with matrices gi ∈ G

have a form:
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gi = [R1(i), . . . ,Rk(i),±1],∀ 1 ≤ i ≤ M.

This implies that, in a code C(M, 2k+1), the order M must be even, and the code is a union of two

C( M
2 , 2k) contained in parallel hyperplanes. Thus, an optimum commutative group code of order

M in R2k+1 can be determined starting from the known optimal code in the previous dimension,

C( M
2 , 2k), with initial vector

x0 = (δ1, 0, . . . , δk, 0). The search for the best initial vector yθ = (cos θx0, sin θ) is then reduced

to a single-parameter optimizing problem.

The next section is devoted to the development of a method for searching for an optimum

commutative group code free of reflection blocks in even dimensions. Besides providing addi-

tional reduction in the number of cases to be tested, we show how to select and efficiently store

a set of cases which allows to finding of an optimal code by solving the correspondent initial

vector problems.

4.1. Describing non-isometric commutative group codes

Our approach starts with the connection between commutative group codes and lattices [21].

Specifically, let C be a commutative group code in R2k, generated by a group G ∈ Bn/ ≈, with

matrices are free of 2 × 2 reflection blocks. We define the associated lattice ΛG by

ΛG :=
{
(b1, . . . , bk) ∈ Zk : [R(b1), . . . ,R(bk)] ∈ G

}
,

where R(b) denotes the rotation in R2 by an angle of 2πb/M and [R(b1), . . . ,R(bk)] denotes a

pseudo-diagonal matrix, according to (1).

We point out that ΛG contains MZk := {M(z1, z2, . . . , zk), zi ∈ Z} as a sub-lattice. Inside the

hyperbox [0,M)k there are exactly M points of ΛG, which

correspond to representatives of the elements of G, i.e.,

[0,M)k ⊃ {(bi1, bi2, . . . , bik) mod M, i = 1, 2, . . . ,M} .

The lattice ΛG can then be viewed as the translation of these representatives through the

lattice MZk.

If x0 = (δ1, 0, . . . , δk, 0) is an initial vector for the code C, we can also define a lattice ΛG(x0)

by
8



ΛG(x0) :=




2πδ1
M

2πδ2
M

. . .
2πδk

M

 b : b ∈ ΛG

 .
Under these conditions, the code C is the image ψx0 (ΛG(x0)) ⊂ S 2k−1, where

ψx0 (y) =

(
δ1 cos

(
y1

δ1

)
, δ1 sin

(
y1

δ1

)
, . . . , δk cos

(
yk

δk

)
, δk sin

(
yk

δk

))
(2)

is the standard parametrization of the torus with radii δi [21].

We say that two lattices ΛG and ΛH are equivalent, and denote by ΛG ∼ ΛH iff ψ(ΛG(x0))

and ψ(ΛH(y0)) are isometric codes, for some x0, y0 ∈ S 2k−1.

As a consequence of the relation ∼, we proceed to use isometry to discard commutative group

codes to be checked in the searching for an optimum one. This will be done in terms of basis

reduction of the associated lattices, based on results derived in Theorems 4.1 and 4.2.

Theorem 4.1 is closely related to a classical Hermite result. In particular, we have shown that

the columns of the resulting matrix T can be ordered by the gcd (greatest common divisor) of

their elements. In Theorem 4.2, we show that it is sufficient to consider generator matrices of

lattices in a specific triangular form.

Let Mk(Z) be the set of k × k matrices with integer elements. GLk(Z) ⊂ Mk(Z) is the group

of those matrices which are invertible in Mk(Z), the so called unimodular matrices.

Theorem 4.1 (Special Hermite Normal Form). Let B be a k × k matrix with elements in Z.

Then there is an upper triangular matrix T = U B V, with U ∈ GLk(Z) and V a permutation

matrix. Moreover, T satisfies the following conditions:

1. 0 < T (i, i) 6 T (i + 1, i + 1), ∀ 1 6 i 6 k − 1;

2. 0 6 T ([1 : i − 1], i) < T (i, i), ∀ 2 6 i 6 k;

3. T (i, i) 6 gcd (T ([i : j], j)) , ∀ 1 6 i < j 6 k;

where T ([p : q], r) are the elements in the rows p to q of the r-th column of T .

Proof :

The proof is made by induction on k. For k = 1 it is trivial. Suppose the statement is valid

for n < k.
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Let V1 be a matrix which permutes the columns of B, such that the gcd of the column elements

of the matrix B V1 are in increasing order.

Let d1 = gcd((B V1)i,1) be the gcd of the elements in the first column of B V1, and Ũ1 be a

unimodular matrix, such that

Ũ1 B V1 =



d1

a2 d1

...

ak d1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
B̄k,k−1


, (3)

i.e., the product of its first row by the first column of B V1 is equal to d1.

Let

Û1 =



1 0 · · · 0

−a2

...

−ak

Ik−1


, (4)

be the matrix which provides the Gaussian elimination in the first column of BV1. We thus obtain

Û1Ũ1︸︷︷︸
=U1

B V1 =



d1

0
...

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
B̃k,k−1


. (5)

Let B1 be the (k − 1) × (k − 1) submatrix of U1 B V1, obtained by removing the first row and

first column. By the induction hypothesis there exists a unimodular matrix Ũ and a permutation

matrix Ṽ such that T̃ = Ũ B̃1 Ṽ .
Then,
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 1 0

0 Ũ

 U1 B V1

 1 0

0 Ṽ

 =

 1 0

0 Ũ


 d1 e

0 B1


 1 0

0 Ṽ


=

 d1 e

0 Ũ B1


 1 0

0 Ṽ


=

 d1 e Ṽ

0 Ũ B1 Ṽ


=

 d1 e Ṽ

0 T̃

 = T. (6)

If T (1, j) < 0 or T (1, j) > T ( j, j) for some j > 1, we can apply the elementary operation

`1 ← `1 −

⌊
T1, j

T j, j

⌋
` j, or equivalently left-multiply T by a unimodular matrix Ū j, to conclude the

proof.

In contrast to the standard Hermite normal form [35], here the unimodular matrix U is op-

erating on the left side of B. In other words, if the rows of B contain the generator vectors of a

k-dimensional lattice, then matrix U represents a change of basis in this lattice. Moreover, the

permutation matrix V , which does not appear in the standard Hermite normal form, allows us to

sort the columns of T by their greatest common divisor, which will be useful in order to discard

isometric codes. We remark that the matrix V , operating on the right side of B, represents an

isometry by coordinate permutation. Thus the lattices generated by T and B can be different, but

they are isometric.

Theorem 4.2. Every commutative group code C ⊂ S 2k−1, generated by a group G ∈ O2k free of

2×2 reflection blocks is isometric to a code obtained as image by ψ of a lattice ΛG(x0). Moreover

the associated lattice ΛG has a generator matrix T satisfying the following conditions:

1. T is upper triangular according to Theorem 4.1;

2. det(T ) = Mk−1;

3. There is a matrix W, with integer elements satisfying W T = M Ik, where Ik is the k × k

identity matrix;

4. The elements of the diagonal of T satisfy T (i, i) =
M
ai

where ai is a divisor of M and

(ai)i · (ai+1 · · · ak) 6 M, ∀i = 1, . . . , k.
11



Proof :

1 - Let B be a generator matrix of the lattice ΛT . By Theorem 4.1, there exists an upper

triangular matrix T such that T = U B V . Since the matrix U is unimodular, it defines a change

of basis in the lattice generated by B, while V is an isometry by coordinate permutation. Both

operations are isometries in lattices, thus, matrices B and T = U B V define lattices which are

equivalent and which, therefore, generate isometric commutative group codes.

2 - The lattice ΛG contains the sublattice MZk and the cardinality of the quotient
ΛG

MZk must

be equal to M, the number of points in the code. Therefore, since det(M Ik) = Mk we conclude

that det(T ) = Mk−1.

3 - The system x T = M ei must have a solution in Zk for all 1 6 i 6 k, where ei is the i-th

column of Ik. Let W be the matrix with rows containing these solutions; then W T = MIk. 4

4 - The number M must be a multiple of the elements in the diagonal of T (from item 2)

moreover, from Theorem 4.1, we know that

T (i, i) 6 T (i + 1, i + 1) and then
M
ai

6
M

ai+1
which implies that ai+i 6 ai.

From

det(T ) =
M
a1

M
a2

. . .
M
ak

= Mk−1,

we get

(a1 a2 · · · ak) = M ⇒ (ai)i · (ai+1 · · · ak) 6 M.

Not all upper triangular integer matrices T satisfy the conditions of Theorem 4.2. For exam-

ple, for M = 12 and k = 3, the matrix

T =


2 3 0

0 6 6

0 0 12

 ,

4Note that condition 3 is equivalent to saying that (MZk) is a sublattice of ΛG .
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satisfies the hypothesis of Theorem 4.1 and det(T ) = 122 but, in order to obtain W T = 12 I3, we

must have:

W =


6 −3 3/2

0 2 −1

0 0 1

 .
However, in this case, W has non-integer elements.

In order to characterize a commutative group code as an image of a quotient of lattices, it

is also important to determine a set of generators of the correspondent group and its class of

isomorphism. In the Theorem 4.5 we deal with this problem.

Theorem 4.3 ([35], p 76). Let A be a non-singular k × k matrix with coefficients in Z. There is

then a unique diagonal matrix D = (di, j), with di+1,i+1|di,i, such that D = V A U with U and V in

GLk(Z).

This matrix is called the Smith normal form (SNF) of A.

Theorem 4.4 ([35], p 76). Let L be a Z-submodule of a free module L′ and of the same rank.

Then there are positive integers d1, . . . , dk satisfying the following conditions:

1. For every i such that 1 6 i < k we have di+1|di.

2. As Z-modules, we have the isomorphism

L′/L '
⊕

16i6k

(Z/di Z) =
⊕

16i6k

(Zdi )

and in particular [L′ : L] = d1 · · · dk and d1 is the exponent of L′
L .

3. There is a Z-basis {v1, . . . , vk} of L′ such that {d1v1, . . . , dkvk} is a Z-basis of L.

Theorem 4.5. For a commutative group code C, let T be a generator matrix of the lattice ΛG,

according Theorem 4.2 and W = MT−1. The set of generators of the correspondent group and

its class of isomorphism are then obtained from the SNF of W.

Proof :

Let D = V W U be the SNF of W. We know that

13



W T = M Ik ⇒ V−1 D U−1 = M Ik ⇒ D U−1 T = V M Ik.

Since the matrices U−1 e V are unimodular, their product on the left of the generator matrices

T and M Ik define a change of basis in the lattice generated by T and its sublattice MZk. The

classification and generators of the group are derived from Theorem 4.4. In this case, G is

isomorphic to a group Zd1 ⊗ . . . ⊗ Zdk and the rows of U−1 T give the elements bi j which form a

set of generators, according to (1).

As a consequence of these results, we derive a two-step algorithm which searches for an

optimum commutative group code C of order M in an even dimension. The first step consists

of storing all matrices T according to theorem 4.2 and the use of Ádám’s relation to discard

isometric groups. For each one of these matrices T we then establish a linear programming

problem (Section 3) to determine the initial vector x0 which maximizes the minimum distance

of the group code ψx0ΛG(x0) (2). For the optimum case, theorem 4.5 is applied to obtain the

generators and the class of isomorphism of the commutative group. The algorithm is summarized

as a pseudo code in Algorithm 1.

Let us illustrate this method in detail for M = 128 and n = 4.

Let div = {1, 2, 4, 8, 16, 32, 64, 128} be the set of divisors of 128. From Theorem 4.2, we

know that the matrix T , related to a code C(128, 4), has the form

T =

 d1 w

0 d2

 ,with di =
M
ai
, ai ∈ div.

Moreover (d2)2 < 128, i.e., d2 ∈ {1, 2, 4, 8}. We can then store all the possible diagonal of T as

columns of a matrix A:

A =

 1 2 4 8

128 64 32 16

 .
For each column of A, the set of values w in T can then be determined, as established in item 3.

of Theorem 4.1, by considering

a1i 6 gcd(w, a2i ),
14



Algorithm 1: Optimum commutative group code
input : The number of points M and the dimension n = 2k;

output: An optimum commutative group code C(M, n), its set of generators, optimum

initial vector, its isomorphism class and minimum distance.

begin
dist ← 0;

div← {a1, a2, . . . , aw}, the set of divisors of M;

A←
[
diag1|, diag2|, ..., diag j|

]
, a matrix with columns contains all the possible

diagonals for T , according Theorem 4.2, i.e.,

diagi =
( M

ai,1
, M

ai,2
, . . . , M

ai,k

)t
, where ai,k ∈ div, ai,k ≥ ai,k+1 and

∏k
q=1 ai,q = M;

foreach diagi ∈ A do
Step 1: Construct all matrices T , according Theorem 4.2 and use Ádám’s relation

to discard isometric groups;

foreach matrix Tiξ constructed in step 1 do
Step 2: Solve the initial vector problem and get the minimum distance distiξ

and the initial vector x0iξ ;

if distiξ > dist then
dist ← distiξ;

x0 ← x0iξ ;

T ← Tiξ

Apply Theorem 4.5 in T and get the generator of the group G ∈ On and the

correspondent isomorphism class;

Output G, x0, dist and the isomorphism class.

15



In this example, we have

T1 =

 1 w1ξ

0 128

 , where w1ξ ∈ {0, 1, · · · , 64} ;

T2 =

 2 w2ξ

0 64

 , where w2ξ ∈ {0, 2, 4, 6, · · · , 32} ;

T3 =

 4 w3ξ

0 32

 , where w3ξ ∈ {0, 4, 8, 12, 16} ;

T4 =

 8 w4ξ

0 16

 , where w4ξ ∈ {0, 8} .

This amounts to 89 cases to be tested. However some of these lattices are equivalent. For

example, the lattice generated by a matrix T1 which has the first row equal to (1,w1ξ) is equivalent

to a lattice generated by a matrix T1 which has the first row equal to (1,w−1
1ξ ), here w−1

1ξ represents

the inverse of w1ξ in Z128. If w−1
1ξ < w1ξ, we can therefore discard the correspondent matrix in set

T1. This situation occurs for

w1ξ = {17, 27, 33, 35, 39, 41, 43, 45, 49, 51, 53, 55, 57, 59, 61} .

Similarly, the lattice generated by a matrix T2, which has the first row equal to (2, 2b) is

equivalent to a lattice generated by a matrix T2 which has the first row equal to (2, 2b−1). Thus,

in this set we can discard the cases where w2ξ = {18, 26}. Therefore, in order to find an optimum

code C(128, 4) it is sufficient to check 72 codes.

In the implementation of Algorithm 1, these equivalent cases can be discarded during Step

1 and the solution of the initial vector problem, consequently, implemented just for the relevant

cases. Only the matrix which determines the largest minimum distance must be saved.

In this example, the optimum code is associated to the matrix T1,12 =

 1 11

0 128

 .
The correspondent group G ∈ On is then obtained using the SNF of

W = M
(
T1,12

)−1.

In this case, the best C(128, 4) is a cyclic group code with the following generator matrix:
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G(1,11,128) =



cos
(

1 ∗ 2π
128

)
sin

(
1 ∗ 2π
128

)
0 0

− sin
(

1 ∗ 2π
128

)
cos

(
1 ∗ 2π
128

)
0 0

0 0 cos
(

11 ∗ 2π
128

)
sin

(
11 ∗ 2π

128

)
0 0 − sin

(
11 ∗ 2π

128

)
cos

(
11 ∗ 2π

128

)


.

The minimum distance in this code is d = 0.406179 for the best initial vector

x0 = (0.65098, 0, 0.759095, 0)t.

In dimension 4, the number of commutative group codes tested by Algorithm 1 is not much

larger than the number of cyclic group codes tested (Table 1). For M equals to 32 (respectively,

64, 128, 256, 512, 1024), Algorithm 1 checks 21 (respectively, 38, 72, 141, 273, 542) commuta-

tive group codes in order to find an optimum one.

Using this method we have found optimum codes for various values of M in different dimen-

sions and we have present some of them in R4 and R6 in Tables 2 and 3. In both cases, it can be

seen that, when the number of points M increases, the gap between the minimal distance of the

codes and the upper bound [21] decreases. This fact is also illustrated in Figure 1.

Table 2: Some optimum commutative group codes of order M in R4.

M dmin δ1 δ2 Group Gen. (bi j) Bound

10 1.224 0.707 0.707 Z10 (1 3) 1.474

20 0.959 0.678 0.734 Z20 (3 4) 1.054

30 0.831 0.707 0.707 Z30 (3,5) 0.864

40 0.714 0.607 0.794 Z40 (4 5) 0.750

50 0.628 0.707 0.706 Z50 (7 2) 0.672

100 0.468 0.757 0.653 Z5 ⊕ Z20 (0 20), (5 10) 0.476

200 0.330 0.750 0.660 Z200 (93 1) 0.337

300 0.273 0.656 0.754 Z5 ⊕ Z60 (60 120), (10 15) 0.275

400 0.237 0.686 0.727 Z400 (189 1) 0.238

500 0.211 0.674 0.738 Z500 (13 20) 0.213

600 0.193 0.676 0.736 Z600 (191 198) 0.194

700 0.180 0.718 0.695 Z700 (14 25) 0.180

800 0.168 0.670 0.742 Z800 (16 25) 0.168

900 0.158 0.704 0.709 Z900 (197 2) 0.159

1000 0.149 0.716 0.697 Z1000 (33 4) 0.150
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Table 3: Some optimum commutative group codes of order M in R6.
M dmin δ1 δ2 δ3 Group Gen (bi j) Bound

10 1.414 0.632 0.632 0.447 Z10 (3,1,5) 1.820

20 1.240 0.554 0.620 0.554 Z20 (2,5,6) 1.465

30 1.133 0.534 0.654 0.534 Z30 (3,5, 9) 1.287

40 1.044 0.603 0.522 0.603 Z2 ⊕ Z20 (20,0,20), (32,10,4) 1.173

50 0.976 0.604 0.506 0.615 Z50 (7,6, 34) 1.091

100 0.804 0.515 0.684 0.515 Z10 ⊕ Z10 (50, 10, 0), (30, 0, 10) 0.870

200 0.673 0.555 0.619 0.555 Z200 (28, 25, 4) 0.692

300 0.585 0.585 0.498 0.639 Z5 ⊕ Z60 (0, 0, 60), (25, 30, 30) 0.605

400 0.540 0.562 0.605 0.562 Z20 ⊕ Z20 (300, 40, 0), (60, 0, 20) 0.550

500 0.504 0.577 0.577 0.577 Z5 ⊕ Z10, ⊗Z10 (100, 0, 0), (50, 50, 0), (50, 0, 50) 0.511

600 0.472 0.549 0.630 0.549 Z2 ⊕ Z300 (300, 0, 300), (384, 50, 12) 0.481

700 0.445 0.531 0.612 0.585 Z700 (457, 664, 298) 0.457

800 0.427 0.617 0.486 0.617 Z20 ⊕ Z40 (80,0,40),(20,80,60) 0.437

900 0.413 0.592 0.591 0.547 Z3 ⊕ Z300 (0,300,0),(759,36,3) 0.420

1000 0.397 0.560 0.632 0.535 Z1000 (319,694,45) 0.406

Bound for dmin in R6

Bound for dmin in R4

Codes in R6

Codes in R4

50 100 150 200 250 300
M

0.2

0.4

0.6

0.8

1.0

1.2

1.4

dmin

Figure 1: Comparison between the distance of optimal codes found using Algorithm 1 and upper bound [21]: the gap

decreases when M grows.

Although some other group codes, as permutations codes, can outperform commutative

group codes for some parameters [19], they are very special for some applications as transmition
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over symmetric channels [17]. Besides, they may provide homogeneous spherical codes for any

number of codewords and can be used for designing high density spherical codes on flat torus

layers [29].

5. Conclusions

A two-step method for finding an optimum n-dimensional commutative group code of order

M is presented. The approach explores the structure of lattices associated with these codes in

even dimensions and allows a significant reduction in the number of non-isometric cases to be

analyzed. For each of these cases, a linear programming problem is solved to find the initial

vector which maximizes the minimum distance in the code. The method introduced here can

also be used to design more general spherical codes, such as the so called quasi-commutative

group codes, which are constructed on layers of flat tori [29].
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