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Abstract

Anonymous Hierarchical Identity-Based Encryption (HIBE)is an extension of Identity-Based En-
cryption (IBE), and it provides not only a message hiding property but also an identity hiding property.
Anonymous HIBE schemes can be applicable to anonymous communication systems and public key
encryption systems with keyword searching. However, previous anonymous HIBE schemes have some
disadvantages that the security was proven in the weaker model, the size of ciphertexts is not short, or
the construction was based on composite order bilinear groups. In this paper, we propose the first effi-
cient anonymous HIBE scheme with short ciphertexts in primeorder (asymmetric) bilinear groups, and
prove its security in the full model with an efficient reduction. To achieve this, we use the dual system
encryption methodology of Waters. We also present the benchmark results of our scheme by measuring
the performance of our implementation.
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1 Introduction

Hierarchical Identity-Based Encryption (HIBE) is an extension of Identity-Based Encryption (IBE) that
uses an identity as a public key. In HIBE, a user’s identity isrepresented as a hierarchical tree structure
and an upper level user can delegate the private key generation capability to a lower level user. Horwitz
and Lynn introduced the concept of HIBE to reduce the burden of the private-key generator of IBE [27].
After the introduction of HIBE, it was shown that HIBE can have various applications like identity-based
signature [25], public-key broadcast encryption [20], forward-secure public key encryption [14], and chosen-
ciphertext secure HIBE [15].

Recently, as a result of the increasing concern with users’ privacy, the need for cryptographic systems
that protect users’ privacy also increases. Anonymous HIBEcan provide users’ privacy by supporting not
only the message hiding property but also theidentity hiding property that hides identity information in
ciphertexts. Abdalla et al. formalized the concept of anonymous HIBE [1]. After that, Boyen and Waters
proposed the first secure anonymous HIBE scheme without random oracles [13]. The main applications
of anonymous HIBE are anonymous communication systems thatprovide anonymity between a received
message and a true sender and public key encryption systems with keyword searching that enable keyword
searches on encrypted data [8].

The security model of anonymous HIBE is defined as a game between a challenger and an adversary.
In this game, the adversary adaptively requests private keys in the private key query step and selects two
hierarchical identitiesID0, ID1 and two messagesM0,M1 in the challenge step. Next, the adversary is given
a challenge ciphertext ofIDγ ,Mγ whereγ is a random bit chosen by the challenger. The adversary wins the
game if he can correctly guessγ . The security model is divided as a selective model where theadversary
should commit the target hierarchical identities in the initial step and a full model where the adversary can
select the target hierarchical identities in the challengestep. Generally a selectively secure HIBE scheme is
converted to a fully secure HIBE scheme, but the reduction isinefficient [5]. The efficiency of the reduction
is important not only for theoretical reasons but also for practical reasons.

Let AdvA be the advantage of an adversaryA that breaks a scheme andAdvB be the advantage of an
algorithmB that breaks an assumption using the adversaryA. Suppose thatAdvA ≤ L ·AdvB whereL
is a reduction loss. Letλ ,k be the security level of the scheme and the assumption, respectively. If the
assumption provides thek-bit security, then it guarantees thatAdvB ≤ 1/2k for any PPT algorithmB. Then
we can deriveAdvA ≤ L ·1/2k from two inequalitiesAdvA ≤ L ·AdvB andAdvB ≤ 1/2k. To construct the
scheme that provides theλ -bit security, it should be guaranteed thatAdvA ≤ 1/2λ for any PPT adversary
A. It is easy to achieve this by settingL ·1/2k ≤ 1/2λ sinceAdvA ≤ L ·1/2k. Thus we can derive a relation
k ≥ λ + log2(L). This relation says that the bit sizek of a group order for the assumption should be larger
thanλ + log2(L) to construct the scheme with theλ -bit security. For example, if there is a selectively secure
scheme with a hierarchical depthl = 10, then we should selectk = 880 sinceλ = 80 andL = 2λ l . Therefore,
an ideal anonymous HIBE scheme should be fully secure with a reduction loss less thanc ·q for a polynomial
valueq and a constantc.

To construct a fully secure HIBE scheme with an efficient reduction, the new proof methodology named
the dual system encryption method was proposed by Waters [45]. In the dual system encryption method,
ciphertexts and private keys can be a normal type or a semi-functional type, and the semi-functional types
of ciphertexts and private keys are only used in security proofs. Additionally, the normal type and the
semi-functional type are indistinguishable, and the semi-functional ciphertexts are not decrypted by using
the semi-functional private keys. The proof of the dual system encryption method consists of hybrid games
that change a normal ciphertext and normal private keys to a semi-functional ciphertext and semi-functional
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private keys. Using this methodology, Waters proposed a fully secure HIBE scheme with linear-size cipher-
texts and a fully secure HIBE scheme with constant-size ciphertexts [33, 45]. The dual system encryption
method can be used to prove the security of fully secure attribute-based encryption [31], fully secure predi-
cate encryption [37], and leakage-resilient cryptography[32].

The first secure anonymous HIBE scheme was proposed by Boyen and Waters [13], and it was proven
to be selectively secure without random oracles. After the first construction of anonymous HIBE, several
anonymous HIBE schemes were presented, but they were only proved to be secure in the selective model
[21,29,41]. Recently, De Caro et al. proposed a fully secureanonymous HIBE scheme with short ciphertexts
by using the dual system encryption method [16]. However, their scheme is inefficient since the scheme is
based on composite order groups where the group order is a product of four prime numbers. One may
use the conversion method of Freeman [22] to construct a scheme in prime order groups from a scheme in
composite order groups, but this method can not be applied tothe dual system encryption method of Lewko
and Waters [33] since it does not provide the parameter hiding property in composite order groups1. Lewko
recently devised another conversion method for the dual system encryption method and constructed a (non-
anonymous) unbounded HIBE scheme with linear-size ciphertexts in prime order groups [30]. However, this
method is not known to be applicable for the construction of an anonymous HIBE scheme with constant-size
ciphertexts since it uses dual pairing vector spaces (DPVS)2.

Anonymous HIBE can also be constructed from Predicate Encryption (PE) with the delegation ca-
pability. Shi and Waters constructed an anonymous HIBE scheme with linear-size ciphertexts from a
delegatable Hidden Vector Encryption (dHVE) scheme [42] and Okamoto and Takashima constructed an
anonymous HIBE scheme with linear-size ciphertexts from a Hierarchical Inner Product Encryption (HIPE)
scheme [31, 36, 37, 39]. However, currently known anonymousHIBE schemes from PE schemes with the
delegation capability only have linear-size ciphertexts.It is also possible to derive anonymous HIBE from
anonymous Spatial Encryption (SE) [11, 19]. However, thereis no known anonymous SE scheme with
constant-size ciphertexts. Thus the construction of efficient and fully secure anonymous HIBE with short
ciphertexts is an unsolved problem.

1.1 Our Contributions

Motivated by the above challenge, we propose the first fully secure and anonymous HIBE scheme with short
ciphertexts in prime order (asymmetric) bilinear groups. The comparison between previous HIBE schemes
and ours is given in Table 1. To construct a fully secure and anonymous HIBE scheme, we use the IBE
scheme in prime order (asymmetric) bilinear groups of Lewkoand Waters [33]. Note that their IBE scheme
does not even converted to a (non-anonymous) HIBE scheme with short ciphertexts since it does not support
private key re-randomization3.

To construct an anonymous HIBE scheme, we should devise techniques for private key re-randomization
and ciphertext anonymization. The private key re-randomization process is required in the delegation algo-

1Lewko and Waters used the parameter hiding property of composite order groups to prove the full security of their HIBE
scheme using the dual system encryption technique [33]. Theparameter hiding property of composite orderN = pqr is stated that
an exponentZN has one-to-one correspondence with(Zp,Zq,Zr) because of Chinese Remainder Theorem (CRT) andZq andZr

values are information theoretically hidden to an adversary even ifZp value is revealed to the adversary.
2The dimensions of DPVS is generally proportional to the sizeof an identity vector in the scheme that uses DPVS [30,36,39].

Thus an HIBE scheme based on DPVS that supportsl-depth has linear-size of ciphertexts since it requires at leastl-dimensions in
DPVS. To reduce the dimensions of DPVS, one may try to use the technique of Okamoto and Takashima [38], but it only applied
to non-anonymous schemes since it should reveal the identity of ciphertexts.

3To support private key re-randomization using a public key,some elements ˆg, û, ĥ ∈ Ĝ in a private key should be moved to a
public key. However, these elements cannot be moved to the public key since the proof of dual system encryption goes wrong.
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Table 1: Comparison between previous HIBE schemes and ours

Scheme ANON R.L. Prime PP Size SK Size CT Size Assumption

GS-HIBE [25] No Ω(ql) Yes O(λ ) O(lλ ) O(lλ ) BDH (ROM)

BB-HIBE [5] No Ω(2λ l) Yes O(lλ ) O(lλ ) O(lλ ) DBDH

BBG-HIBE [7] No Ω(2λ l) Yes O(lλ ) O(lλ ) 2k+ kT q-Type

CS-HIBE [18] No Ω(ql) Yes O(lλ ) O(lλ ) O(lλ ) DBDH

Waters-HIBE [45] No Ω(q2) Yes O(lλ ) O(lλ ) O(lλ ) DBDH, DLIN

LW-HIBE [33] No Ω(q) No O(lλ ) O(lλ ) 2k+ kT Static

LW-HIBE [34] No Ω(q) No O(λ ) O(lλ ) O(lλ ) Static

OT-HIPE [38] No Ω(q) Yes O(l4λ ) O(l2λ ) 133k+ kT DLIN

Lewko-HIBE [30] No Ω(q) Yes O(λ ) O(lλ ) O(lλ ) DLIN

BW-HIBE [13] Yes Ω(2λ l) Yes O(l2λ ) O(l2λ ) O(lλ ) DBDH, DLIN

SKOS-HIBE [41] Yes Ω(2λ l) No O(lλ ) O(lλ ) 3k+ kT q-Type

Ducas-HIBE [21] Yes Ω(2λ l) Yes O(lλ ) O(lλ ) 3k+ kT q-Type

LL-HIBE [29] Yes Ω(2λ l) Yes O(lλ ) O(lλ ) 6k+ kT q-Type

DIP-HIBE [16] Yes Ω(q) No O(lλ ) O(lλ ) 2k+ kT Static

LOSTW-HIPE [31] Yes Ω(lq) Yes O(l4λ ) O(l3λ ) O(l2λ ) q-Type

OT-HIPE [37] Yes Ω(l2q) Yes O(l3λ ) O(l4λ ) O(l2λ ) DLIN

OT-HIPE [39] Yes Ω(lq) Yes O(l2λ ) O(l2λ ) O(lλ ) DLIN

Ours Yes Ω(q) Yes O(lλ ) O(lλ ) 6k+ kT Static

ANON = anonymity, R.L. = reduction loss, Prime = prime order bilinear groups

λ = security parameter,l = hierarchical depth,q = polynomial value,k,kT = the bit size of groupG andGT

rithm of HIBE and anonymous HIBE. In HIBE, private keys are simply re-randomized using the public
elements of public parameters. However, private keys of anonymous HIBE cannot be simply re-randomized
using the public elements because an attacker can break anonymity using the public elements. To solve this
problem, we may use theprivate re-randomization technique of Boyen and Waters [13] that re-randomizes
private keys using the private elements of private keys. Nevertheless, if the private re-randomization tech-
nique is used in the dual system encryption method, then additional random values in semi-functional pri-
vate keys are not completely randomized in the proof that distinguishes a normal private key from a semi-
functional private key.

To resolve this difficulty, we define two types of semi-functional private keys as semi-functional type-1
and semi-functional type-2, and we show that it is hard to distinguish these two types of semi-functional
private keys. The main idea to provide ciphertext anonymityis that the Decisional Diffie-Hellman (DDH)
assumption still holds in asymmetric bilinear groups of prime order. We prove the anonymity property of our
scheme by introducing a new assumption since the simple DDH assumption is not enough for the security
proof. Furthermore, we implemented our anonymous HIBE scheme using the PBC library to support our
claim of efficiency and we measured the performance of our scheme.
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1.2 Related Work

IBE was introduced to solve the certificate management problem in public key encryption systems, but it
additionally requires a Private-Key Generator (PKG) [9, 10]. HIBE was invented to reduce the burden of
the IBE’s PKG by re-arranging an identity as a hierarchical tree structure and by allowing the delegation of
private key generation from upper level users to lower levelusers [27]. Gentry and Silverberg proposed the
first HIBE scheme in the random oracle model [25]. Canetti et al. constructed the first HIBE scheme without
random oracles and introduced a selective model to prove thesecurity of their scheme [14]. The selective
model was widely used in the security proof of IBE and HIBE even though it is weaker than the full model.
For instance, Boneh and Boyen proposed an efficient HIBE scheme with linear-size ciphertexts [5, 6], and
Boneh et al. proposed an HIBE scheme with constant-size ciphertexts [7].

To construct a fully secure HIBE scheme, Boneh and Boyen showed that a selectively secure HIBE
scheme is naturally converted to a fully secure HIBE scheme with exponential loss of a reduction efficiency
[5]. However, this approach has a serious problem – that is, the efficiency of the reduction is 1/Ω(2λ l)
whereλ is a security parameter andl is the maximum hierarchical depth. To remedy this situation, Waters
proposed an HIBE scheme by extending his fully secure IBE scheme with an efficient reduction to a HIBE
scheme [44], and Chatterjee and Sarkar improved the efficiency of Waters’ scheme [18]. However, these
schemes also have the problem of an inefficient reduction 1/Ω(ql) in the hierarchical setting whereq is a
polynomial value. Gentry and Halevi proposed another fullysecure HIBE scheme with an efficient reduction
by using complex assumptions [24]. Recently, Waters introduced the dual system encryption method that
can be used to construct a fully secure HIBE scheme with an efficient reduction under simple assumptions
[33,45].

Anonymous IBE is related to public key encryption with keyword search (PEKS) [8, 23], and the con-
cept of anonymous HIBE was introduced by Abdalla et al. [1] byextending the concept of anonymous IBE.
Boyen and Waters proposed the first anonymous HIBE scheme without random oracles and proved its se-
curity in the selective model [13]. For the construction of anonymous HIBE, they devised a linear splitting
technique for ciphertext anonymity and a private re-randomization technique for private key randomization.
Seo et al. proposed the first anonymous HIBE scheme with shortciphertexts in composite order bilinear
groups [41]. Ducas constructed anonymous HIBE schemes using asymmetric bilinear groups of prime or-
der [21]. Lee and Lee proposed an efficient anonymous HIBE scheme with short ciphertexts that is secure in
all types of bilinear groups of prime order [29]. De Caro et al. proposed the first fully secure and anonymous
HIBE scheme with short ciphertexts using the dual system encryption method in composite order bilinear
groups [16].

HIBE schemes also can be constructed from Attribute Based Encryption (ABE) schemes [26] and
Predicate Encryption (PE) schemes with delegation capabilities [36, 42]. PE schemes with linear-size ci-
phertexts that have the delegation capability include the dHVE scheme of Shi and Waters in composite
order bilinear groups [42] and HIPE schemes of Okamoto and Takashima based on dual pairing vector
spaces [31, 36, 37, 39]. A non-anonymous HIPE scheme based ondual pairing vector spaces can have
constant-size ciphertexts, but the ciphertext should contain a linear-size identity vector [38]. Though bi-
linear groups were widely used in the construction of HIBE, some HIBE schemes were designed in lat-
tices [3,4,17].

5



2 Preliminaries

We define anonymous HIBE and give the formal definition of its full model security. LetI be an identity
space andM be a message space. A hierarchical identityID of depthc is defined as an identity vector
(I1, . . . , Ic) ∈ I

c. A hierarchical identityID = (I1, . . . , Ic) of depthc is a prefix of a hierarchical identity
ID′ = (I′1, . . . , I

′
d) of depthd if c≤ d and for alli ∈ {1, . . . ,c}, Ii = I′i .

2.1 Anonymous HIBE

An anonymous HIBE scheme consists of five algorithms (Setup, KeyGen, Delegate, Encrypt, Decrypt).
Formally it is defined as:

Setup(1λ , l). The setup algorithm takes as input a security parameter 1λ and a maximum hierarchical depth
l. It outputs a master keyMK and public parametersPP.

KeyGen(ID,MK,PP). The key generation algorithm takes as input a hierarchical identity ID of depthm
wherem≤ l, the master keyMK, and the public parametersPP. It outputs a private keySKID for ID.

Delegate(ID′,SKID,PP). The delegation algorithm takes as input a hierarchical identity ID′ of depthm+1
wherem+1≤ l, a private keySKID for a hierarchical identityID of depthm, and the public parameters
PP. If ID is a prefix ofID′, then it outputs a delegated private keySKID′ for ID′.

Encrypt (ID,M,PP). The encryption algorithm takes as input a hierarchical identity ID of depthn where
n≤ l, a messageM ∈M, and the public parametersPP. It outputs a ciphertextCT for ID andM.

Decrypt(CT,SKID,PP). The decryption algorithm takes as input a ciphertextCT for a hierarchical identity
ID′, a private keySKID for a hierarchical identityID, and the public parametersPP. If ID = ID′, then
it outputs an encrypted messageM.

The correctness property of anonymous HIBE is defined as follows: For allMK,PP generated bySetup,
all ID, ID′ ∈ In, anySKID generated byKeyGen, and anyM, it is required that

• If ID = ID′, thenDecrypt(Encrypt(ID′,M,PP),SKID,PP) = M.

• If ID 6= ID′, thenDecrypt(Encrypt(ID′,M,PP),SKID,PP) =⊥ with all but negligible probability.

The second condition of the correctness property is not a trivial one to satisfy since the decryption algorithm
of anonymous HIBE cannot easily check whetherID = ID′ or not because of anonymity. One possible re-
laxation is to use a computational condition instead of a statistical condition. For a computational condition,
we can use weak robustness of Abdalla et al. [2].

The security property of anonymous HIBE under a chosen plaintext attack is defined in terms of the
following experiment between a challengerC and a PPT adversaryA:

1. Setup: C runsSetup(1λ , l) to generate a master keyMK and public parametersPP. It keepsMK to
itself and givesPP toA.

2. Query 1: A may adaptively request a polynomial number of private keys for hierarchical identities
ID1, . . . , IDq1 of arbitrary depths. In response,C gives the corresponding private keysSKID1, . . . ,SKIDq1

toA by runningKeyGen(IDi,MK,PP).
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3. Challenge: A submits two hierarchical identitiesID∗0, ID∗1 ∈ I
n and two messagesM∗0,M

∗
1 with equal

length subject to the restriction: for allIDi of private key queries,IDi is not a prefix ofID∗0 and
ID∗1. C flips a random coinγ ∈ {0,1} and gives the challenge ciphertextCT ∗ to A by running
Encrypt(ID∗γ ,M

∗
γ ,PP).

4. Query 2: A may continue to request a polynomial number of private keys for hierarchical identities
IDq1+1, . . . , IDq subject to the restriction as before.

5. Guess: A outputs a guessγ ′ ∈ {0,1} of γ , and wins the game ifγ ′ = γ .

The advantage ofA is defined asAdvAHIBE
A (λ ) =

∣

∣Pr[γ = γ ′]−1/2
∣

∣ where the probability is taken over all
the randomness of the experiment. An anonymous HIBE scheme is fully secure under a chosen plaintext
attack if for all PPT adversaryA, the advantage ofA in the above experiment is negligible in the security
parameterλ .

The security experiment of anonymous HIBE can be relaxed to complete one introduced by Shi and
Waters [42] that traces the path of delegation. Our definition of the security experiment that does not trace
the path of delegation is stronger than the complete one of Shi and Waters. Thus if an anonymous HIBE
scheme is secure in the security experiment of this section,then the scheme is also secure in the complete
one.

2.2 Asymmetric Bilinear Groups

LetG,Ĝ andGT be multiplicative cyclic groups of prime orderp with the security parameterλ . Let g, ĝ be
generators ofG,Ĝ. The bilinear mape : G× Ĝ→GT has the following properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy:∃g, ĝ such thate(g, ĝ) has orderp, that is,e(g, ĝ) is a generator ofGT .

We say thatG,Ĝ,GT are bilinear groups with no efficiently computable isomorphisms if the group opera-
tions inG,Ĝ, andGT as well as the bilinear mape are all efficiently computable, but there are no efficiently
computable isomorphisms betweenG andĜ.

2.3 Complexity Assumptions

We introduce five assumptions under asymmetric bilinear groups of prime order. Assumptions 1 and 2
were introduced in Lewko and Waters [33], and Assumptions 3 and 4 are well-known. Assumption 5
(Asymmetric 3-Party Diffie-Hellman) is an asymmetric version of the Composite 3-Party Diffie-Hellman
assumption introduced by Boneh and Waters [12] with a slightmodification by augmenting one additional
element, and it is secure in the generic group model.

Assumption 1 (LW1) Let (p,G,Ĝ,GT ,e) be a description of the asymmetric bilinear group of prime order
p with the security parameterλ . Let g, ĝ be generators ofG,Ĝ respectively. The assumption is that if the
challenge values

D = ((p,G,Ĝ,GT ,e),g,g
a,gb,gab2

,gb2
,gb3

,gc,gac,gbc,gb2c,gb3c, ĝ, ĝb) andT

are given, no PPT algorithmB can distinguishT = T0 = gab2c from T = T1 = gd with more than a negligible
advantage. The advantage ofB is defined asAdvA1

B (λ ) =
∣

∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]
∣

∣ where the
probability is taken over the random choice ofa,b,c,d ∈ Zp.

7



Assumption 2 (LW2) Let (p,G,Ĝ,GT ,e) be a description of the asymmetric bilinear group of prime order
p with the security parameterλ . Let g, ĝ be generators ofG,Ĝ respectively. The assumption is that if the
challenge values

D = ((p,G,Ĝ,GT ,e),g,g
a,ga2

,gbx,gabx,ga2x, ĝ, ĝa, ĝb, ĝc) andT

are given, no PPT algorithmB can distinguishT = T0 = ĝbc from T = T1 = ĝd with more than a negligible
advantage. The advantage ofB is defined asAdvA2

B (λ ) =
∣

∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]
∣

∣ where the
probability is taken over the random choice ofa,b,c,x,d ∈ Zp.

Assumption 3 (Symmetric eXternal Diffie-Hellman)Let (p,G,Ĝ,GT ,e) be a description of the asymmet-
ric bilinear group of prime orderp with the security parameterλ . Let g, ĝ be generators ofG,Ĝ respectively.
The assumption is that if the challenge values

D = ((p,G,Ĝ,GT ,e),g, ĝ, ĝ
a, ĝb) andT

are given, no PPT algorithmB can distinguishT = T0 = ĝab from T = T1 = ĝc with more than a negligible
advantage. The advantage ofB is defined asAdvA3

B (λ ) =
∣

∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]
∣

∣ where the
probability is taken over the random choice ofa,b,c ∈ Zp.

Assumption 4 (Decisional Bilinear Diffie-Hellman)Let (p,G,Ĝ,GT ,e) be a description of the asymmetric
bilinear group of prime orderp with the security parameterλ . Let g, ĝ be generators ofG,Ĝ respectively.
The assumption is that if the challenge values

D = ((p,G,Ĝ,GT ,e), g,ga,gb,gc, ĝ, ĝa, ĝb, ĝc) andT

are given, no PPT algorithmB can distinguishT = T0 = e(g, ĝ)abc from T = T1 = e(g, ĝ)d with more than a
negligible advantage. The advantage ofB is defined asAdvA4

B (λ ) =
∣

∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]
∣

∣

where the probability is taken over the random choice ofa,b,c,d ∈ Zp.

Assumption 5 (Asymmetric 3-Party Diffie-Hellman)Let (p,G,Ĝ,GT ,e) be a description of the asymmet-
ric bilinear group of prime orderp with the security parameterλ . Let g, ĝ be generators ofG,Ĝ respectively.
The assumption is that if the challenge values

D = ((p,G,Ĝ,GT ,e), g,ga,gb,gc,gab,ga2b, ĝ, ĝa, ĝb) andT

are given, no PPT algorithmB can distinguishT = T0 = gabc from T = T1 = gd with more than a negligible
advantage. The advantage ofB is defined asAdvA5

B (λ ) =
∣

∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]
∣

∣ where the
probability is taken over the random choice ofa,b,c,d ∈ Zp.

3 Anonymous HIBE

We construct an anonymous HIBE scheme in prime order (asymmetric) bilinear groups and prove its full
model security under static assumptions.

3.1 Construction

Let I = Z
∗
p. Our anonymous HIBE scheme is described as follows:
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Setup(1λ , l): This algorithm first generates the asymmetric bilinear groupsG,Ĝ,GT of prime orderp of
bit size Θ(λ ). It chooses random elementsg ∈ G and ĝ ∈ Ĝ. It also chooses random exponents
ν ,φ1,φ2 ∈ Zp and setsτ = φ1+ νφ2. Next, it selects random exponentsyh,{yui}

l
i=1,yw,α ∈ Zp and

setsh = gyh , ĥ = ĝyh ,{ui = gyui , ûi = ĝyui}l
i=1, ŵ = ĝyw . It outputs a master keyMK = (ĝ, ĝα , ĥ,{ûi}

l
i=1)

and public parameters as

PP =
(

g,gν ,g−τ , h,hν ,h−τ , {ui,u
ν
i ,u
−τ
i }

l
i=1, ŵφ1, ŵφ2, ŵ, Ω = e(g, ĝ)α

)

.

KeyGen(ID,MK,PP): This algorithm takes as input a hierarchical identityID = (I1, . . . , Im) ∈ I
m and the

master keyMK. It first selects random exponentsr1,c1,c2,{c3,i}
l
i=m+1∈Zp and creates the decryption

and delegation components of a private key as

K1,1 = ĝα(ĥ
m

∏
i=1

ûIi
i )

r1(ŵφ1)c1, K1,2 = (ŵφ2)c1, K1,3 = ŵc1,

K2,1 = ĝr1(ŵφ1)c2, K2,2 = (ŵφ2)c2, K2,3 = ŵc2,
{

L3,i,1 = ûr1
i (ŵ

φ1)c3,i , L3,i,2 = (ŵφ2)c3,i , L3,i,3 = ŵc3,i
}l

i=m+1.

Next, it selects random exponentsr2,c4,c5,{c6,i}
l
i=m+1 ∈ Zp and creates the randomization compo-

nents of the private key as

R1,1 = (ĥ
m

∏
i=1

ûIi
i )

r2(ŵφ1)c4, R1,2 = (ŵφ2)c4, R1,3 = ŵc4,

R2,1 = ĝr2(ŵφ1)c5, R2,2 = (ŵφ2)c5, R2,3 = ŵc5,
{

R3,i,1 = ûr2
i (ŵ

φ1)c6,i , R3,i,2 = (ŵφ2)c6,i , R3,i,3 = ŵc6,i
}l

i=m+1.

Finally, it outputs a private key as

SKID =
(

K1,1,K1,2,K1,3, K2,1,K2,2,K2,3, {L3,i,1,L3,i,2,L3,i,3}
l
i=m+1,

R1,1,R1,2,R1,3, R2,1,R2,2,R2,3, {R3,i,1,R3,i,2,R3,i,3}
l
i=m+1

)

.

Delegate(ID′,SKID,PP): This algorithm takes as input a hierarchical identityID′ = (I1, . . . , Im+1) ∈ I
m+1

and a private keySKID for a hierarchical identityID = (I1, . . . , Im) ∈ I
m whereID is a prefix ofID′.

Let (W1,W2,W3) = (ŵφ1, ŵφ2, ŵ). It first selects random exponentsγ1,δ1,δ2,{δ3,i}
l
i=m+2 ∈ Zp and

creates the decryption and delegation components of a delegated private key as

(

K′1,k = K1,kLIm+1
3,m+1,k · (R1,kRIm+1

3,m+1,k)
γ1W δ1

k

)

1≤k≤3,
(

K′2,k = K2,k ·R
γ1
2,kW

δ2
k

)

1≤k≤3,
{(

L′3,i,k = L3,i,k ·R
γ1
3,i,kW

δ3,i

k

)

1≤k≤3

}l
i=m+2.

Next, it selects random exponentsγ2,δ4,δ5,{δ6,i}
l
i=m+2 ∈ Zp and creates the randomization compo-

nents of the delegated private key as

(

R′1,k = (R1,kRIm+1
3,m+1,k)

γ2W δ4
k

)

1≤k≤3,
(

R′2,k = Rγ2
2,kW

δ5
k

)

1≤k≤3,
{(

R′3,i,k = Rγ2
3,i,kW

δ6,i

k

)

1≤k≤3

}l
i=m+2.

9



Finally, it outputs a delegated private key as

SKID′ =
(

K′1,1,K
′
1,2,K

′
1,3, K′2,1,K

′
2,2,K

′
2,3, {L

′
3,i,1,L

′
3,i,2,L

′
3,i,3}

l
i=m+2,

R′1,1,R
′
1,2,R

′
1,3, R′2,1,R

′
2,2,R

′
2,3, {R

′
3,i,1,R

′
3,i,2,R

′
3,i,3}

l
i=m+2

)

.

The distribution of the delegated private key is the same as the original private key since the random
values are defined asr′1 = r1 + r2γ1,r′2 = r2γ2 wherer1,r2 are random exponents in the private key
SKID. Note thatc1,c2,{c3,i},c4,c5,{c6,i} are perfectly re-randomized since ˆwφ1, ŵφ2, ŵ are publicly
known andδ1,δ2,{δ3,i},δ4,δ5,{δ6,i} are chosen randomly.

Encrypt( ID,M,PP): This algorithm takes as input a hierarchical identityID = (I1, . . . , In) ∈ I
n, a message

M ∈ GT , and the public parameterPP. It selects a random exponentt ∈ Zp and outputs a ciphertext
as

CT =
(

C = ΩtM, C1,1 = gt , C1,2 = (gν)t , C1,3 = (g−τ)t ,

C2,1 = (h
n

∏
i=1

uIi
i )

t , C2,2 = (hν
n

∏
i=1

(uν
i )

Ii)t , C2,3 = (h−τ
n

∏
i=1

(u−τ
i )Ii)t

)

.

Decrypt(CT,SKID,PP): This algorithm takes as input a ciphertextCT and a private keySKID for a hierar-
chical identityID = (I1, . . . , In). It outputs the encrypted message as

M←C ·
3

∏
i=1

e(C1,i,K1,i)
−1 ·

3

∏
i=1

e(C2,i,K2,i).

3.2 Correctness

The first condition of the correctness property can be easilychecked by the following equation as

3

∏
i=1

e(C1,i,K1,i)
−1 ·

3

∏
i=1

e(C2,i,K2,i) = e(gt , ĝα(ĥ
n

∏
i=1

ûIi
i )

r1)−1 · e((h
n

∏
i=1

uIi
i )

t , ĝr1) = e(g, ĝ)−αt

since the inner product of(1,ν ,−τ) and(φ1,φ2,1) are zero. The second condition of the correctness prop-
erty can be satisfied by using the technique of Boneh and Waters [12] that uses the limited message space.
If we use a computational condition instead of a statisticalcondition, then we can achieve weak robustness
by using the transformation of Abdalla et al. [2].

3.3 Security Analysis

Theorem 3.1.The above anonymous HIBE scheme is fully secure under a chosen plaintext attack if Assump-
tions 1, 2, 3, 4 and 5 hold. That is, for any PPT adversary A, there exist PPT algorithms B1,B2,B3,B4, and
B5 such that

AdvAHIBE
A (λ )≤ AdvA1

B1
(λ )+q

(

AdvA2
B2
(λ )+AdvA3

B3
(λ )

)

+AdvA4
B4
(λ )+AdvA5

B5
(λ ).

where q is the maximum number of private key queries of A.
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Proof. To prove the security of our scheme, we use the dual system encryption technique of [33, 45]. We
first describe a semi-functional key generation algorithm and a semi-functional encryption algorithm. They
are not used in a real system, but they are used in the securityproof. For semi-functionality, we setf =
gy f , f̂ = ĝy f wherey f is a random exponent inZp.

KeyGenSF-1. The semi-functional type-1 key generation algorithm first creates a normal private key using
the master key. Let(K′1,1, . . . ,{R

′
3,i,1, . . . ,R

′
3,i,3}

l
i=m+1) be the normal private key of a hierarchical iden-

tity ID = (I1, . . . , Im) with random exponentsr1,r2,c1,c2,{c3,i},c4,c5,{c6,i} ∈ Zp. It selects random
exponentssk,1,zk,1,{zk,2,i}

l
i=m+1,sk,2 ∈ Zp and outputs a semi-functional type-1 private key as

K1,1 = K′1,1( f̂−ν)sk,1zk,1, K1,2 = K′1,2 f̂ sk,1zk,1, K1,3 = K′1,3,

K2,1 = K′2,1( f̂−ν)sk,1, K2,2 = K′2,2 f̂ sk,1, K2,3 = K′2,3,
{

L3,i,1 = L′3,i,1( f̂−ν)sk,1zk,2,i, L3,i,2 = L′3,i,2 f̂ sk,1zk,2,i , L3,i,3 = L′3,i,3
}l

i=m+1,

R1,1 = R′1,1( f̂−ν)sk,2zk,1, R1,2 = R′1,2 f̂ sk,2zk,1, R1,3 = R′1,3,

R2,1 = R′2,1( f̂−ν)sk,2, R2,2 = R′2,2 f̂ sk,2, R2,3 = R′2,3,
{

R3,i,1 = R′3,i,1( f̂−ν)sk,2zk,2,i, R3,i,2 = R′3,i,2 f̂ sk,2zk,2,i , R3,i,3 = R′3,i,3
}l

i=m+1.

Note that the randomization components should contain the semi-functional part since this semi-
functional part enables the correct simulation of the security proof for anonymity.

KeyGenSF-2. The semi-functional type-2 key generation algorithm first creates a normal private key using
the master key. Let(K′1,1, . . . ,{R

′
3,i,1, . . . ,R

′
3,i,3}

l
i=m+1) be the normal private key of a hierarchical

identity ID = (I1, . . . , Im). It selects random exponentssk,1,zk,1,{zk,2,i}
l
i=m+1,sk,2,zk,3,{zk,4,i}

l
i=m+1 ∈

Zp and outputs a semi-functional type-2 private key the same asthe semi-functional type-1 private
key except that the randomization components are generatedas

R1,1 = R′1,1( f̂−ν)sk,2zk,3, R1,2 = R′1,2 f̂ sk,2zk,3, R1,3 = R′1,3,

R2,1 = R′2,1( f̂−ν)sk,2, R2,2 = R′2,2 f̂ sk,2, R2,3 = R′2,3,
{

R3,i,1 = R′3,i,1( f̂−ν)sk,2zk,4,i , R3,i,2 = R′3,i,2 f̂ sk,2zk,4,i, R3,i,3 = R′3,i,3
}l

i=m+1.

Note that new random exponentszk,3,{zk,4,i}
l
i=1 are chosen to generate the randomization components

of the semi-functional type-2 private key, whereas the sameexponentszk,1,{zk,2,i}
l
i=1 of the decryption

and delegation components are used to generate the randomization components in the semi-functional
type-1 private key.

EncryptSF. The semi-functional encryption algorithm first creates a normal ciphertext using the public
parameters. Let(C′,C′1,1, . . . ,C

′
2,3) be the normal ciphertext. It selects random exponentssc,zc ∈ Zp

and outputs a semi-functional ciphertext as

C =C′, C1,1 =C′1,1, C1,2 =C′1,2 f sc , C1,3 =C′1,3( f−φ2)sc ,

C2,1 =C′2,1, C2,2 =C′2,2 f sczc , C2,3 =C′2,3( f−φ2)sczc .

If we decrypt a semi-functional ciphertext by using a semi-functional type-2 private key, then the decryp-
tion fails since an additional elemente( f , f̂ )sc((sk,1zk,1+sk,2zk,3γ)−(sk,1+sk,2γ)zc) remains. Note that the decryption
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can be done after re-randomizing the private key using a random exponentγ . If (sk,1zk,1 + sk,2zk,3γ) =
(sk,1+ sk,2γ)zc, then the decryption algorithm succeeds. However, the probability of this is negligible since
sk,1,sk,2,zk,1,zk,3,zc,γ are randomly chosen. In case of the semi-functional type-1 private key, the addi-
tional random element can be restated ase( f , f̂ )(sk,1+sk,2γ)sc(zk,1−zc). If zk,1 = zc, then the decryption algorithm
succeeds. In this case, we say that the private key isnominally semi-functional type-1.

The security proof consists of a sequence of games. The first game will be the original security game
and the last one will be a game such that the adversary has no advantage. We define the games as follows:

Game G0. This game is the original security game. That is, the privatekeys and the challenge ciphertext
are normal.

Game G1. We first modifyG0 into a new gameG1. This game is almost identical toG0 except that the
challenge ciphertext is semi-functional.

Game G2. Next, we modifyG1 into a gameG2. In this game, the private keys are semi-functional type-2
and the challenge ciphertext is semi-functional. Suppose that an adversary makes at mostq private
key queries. For the security proof, we define a sequence of gamesG1,0, . . . ,G′1,k,G1,k, . . . ,G1,q where
G1,0 = G1. In G′1,k andG1,k, a normal private key is given to the adversary for allj-th private key
queries such thatj > k and a semi-functional type-2 private key is given to the adversary for all j-th
private key queries such thatj < k. However, fork-th private key query, a semi-functional type-1
private key is given to the adversary inG′1,k where as a semi-functional type-2 private key is given in
G1,k. It is obvious thatG1,q is equal toG2.

Game G3. We now define a new game. This game differs fromG2 where the challenge ciphertext compo-
nentC is replaced by a random element inGT .

Game G4. Finally, we changeG3 to a new gameG4. In this game, the semi-functional ciphertext compo-
nents(C2,1,C2,2,C2,3) are formed as(Pt ,(Pν)t f sczc ,(P−τ)t( f−φ2)sczc) whereP is a random element in
G. In this game, the challenge ciphertext gives no information about the random coinγ . Therefore,
the adversary can win this game with probability at most 1/2.

Let AdvG j

A
be the advantage ofA in G j for j = 0, . . . ,4. LetAdv

G1,k

A
andAdv

G′1,k
A

be the advantage ofA in

G1,k andG′1,k for k = 0, . . . ,q. It is clear thatAdvAHIBE
A (λ ) = AdvG0

A
, AdvG1,0

A
= AdvG1

A
, Adv

G1,q

A
= AdvG2

A
,

andAdvG4
A

= 0. From the following five Lemmas, we obtain that it is hard to distinguishGi−1 from Gi

under the given assumptions. Therefore, we have that

AdvAHIBE
A (λ ) = AdvG0

A
+

3

∑
i=1

(

AdvGi
A
−AdvGi

A

)

−AdvG4
A
≤

4

∑
i=1

∣

∣AdvGi−1
A
−AdvGi

A

∣

∣

= AdvA1
B1
(λ )+

q

∑
k=1

(

AdvA2
B2
(λ )+AdvA3

B3
(λ )

)

+AdvA4
B4
(λ )+AdvA5

B5
(λ ).

This completes our proof of Theorem 3.1.

Lemma 3.2. If Assumption 1 holds, then no PPT algorithm can distinguish between G0 and G1 with a
non-negligible advantage. That is, for any adversary A, there exists a PPT algorithm B1 such that

∣

∣AdvG0
A
−

AdvG1
A

∣

∣= AdvA1
B1
(λ ).
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Lemma 3.3. If Assumption 2 holds, then no PPT algorithm can distinguish between G1,k−1 and G′1,k with
a non-negligible advantage. That is, for any adversary A, there exists a PPT algorithm B2 such that
∣

∣Adv
G1,k−1

A
−Adv

G′1,k
A

∣

∣= AdvA2
B2
(λ ).

Lemma 3.4. If Assumption 3 holds, then no PPT algorithm can distinguish between G′1,k and G1,k with a

non-negligible advantage. That is, for any adversaryA, there exists a PPT algorithm B3 such that
∣

∣Adv
G′1,k
A
−

Adv
G1,k

A

∣

∣= AdvA3
B3
(λ ).

Lemma 3.5. If Assumption 4 holds, then no PPT algorithm can distinguish between G2 and G3 with a
non-negligible advantage. That is, for any adversary A, there exists a PPT algorithm B4 such that

∣

∣AdvG2
A
−

AdvG3
A

∣

∣= AdvA4
B4
(λ ).

Lemma 3.6. If Assumption 5 holds, then no PPT algorithm can distinguish between G3 and G4 with a
non-negligible advantage. That is, for any adversary A, there exists a PPT algorithm B5 such that

∣

∣AdvG3
A
−

AdvG4
A

∣

∣= AdvA5
B5
(λ ).

The security proof of Lemmas 3.2, 3.3, 3.4, 3.5, and 3.6 are given in Section 5.

3.4 Extensions

Relaxed Security Model.The original security experiment of anonymous HIBE requires that an adversary
should select two hierarchical identitiesID∗0, ID∗1 ∈ I

n with equal depthn [1]. One possible relaxation of
the security experiment of anonymous HIBE is to allow the adversary to select two hierarchical identities
ID∗0 ∈ I

n1, ID∗1 ∈ I
n2 with different depthsn1,n2. Our scheme is also fully secure in this relaxed security

experiment since the ciphertext size is constant. The two challenge hierarchical identities with different
depths only matter in the security proof that distinguishesG3 from G4. In that proof, we showed that the
adversary cannot distinguish the challenge hierarchical identity ID∗γ from a random value. Thus our scheme
is secure in this relaxed experiment since the ciphertext size does not reveal the depth of the hierarchical
identity.

4 Performance Analysis

In this section, we analyze the running time of our scheme, and then we measure the performance of the
scheme by implementing it.

4.1 Runtime Analysis

To analyze the efficiency of our scheme, we use the abstract cost of expensive mathematical operations. In
bilinear groups, the expensive operations are exponentiation operations and pairing operations. Additionally,
the efficiency of exponentiations and pairings can be improved by doingm-term exponentiations andm-term
pairings respectively. The abstract cost of these operations is defined as follows:

• MPairCost(G,Ĝ,m): m-term pairing∏m
i=1e(gi, ĥi) wheregi ∈G,hi ∈ Ĝ

• PairCost(G,Ĝ): pairinge(g, ĥ) whereg ∈G,h ∈ Ĝ

• MExpCost(G,m): m-term exponentiation∏m
i=1 gai

i wheregi ∈G
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• ExpCost(G): exponentiationga whereg ∈G

Let l be the maximum number of hierarchical depth andd be the depth ofID. We define the abstract costs
of the setup algorithm, the key generation algorithm, the delegation algorithm, the encryption algorithm, and
the decryption algorithm asSetupCost,GenCost,DelCost,EncCost,DecCost respectively. The abstract
costs of these algorithm are obtained as follows:

SetupCost(l)≥ (2l +4)∗ExpCost(G)+2∗ExpCost(Ĝ)+PairCost(G,Ĝ),

GenCost(l,d)≥ (4(l−d)+4)∗ExpCost(Ĝ)+ (2(l−d)+2)∗MExpCost(Ĝ,2)

+
d
m
∗MExpCost(Ĝ,m),

DelCost(l,d)≥ (6(l−d)+6)∗MExpCost(Ĝ,2)+9∗ExpCost(Ĝ),

EncCost(d)≥
3d
m
∗MExpCost(G,m)+6∗ExpCost(G)+ExpCost(GT ),

DecCost≥ 2∗MPairCost(G,Ĝ,3).

In asymmetric bilinear groups, the bit size ofĜ and the bit size ofGT increase proportionally to the
embedding degree of asymmetric bilinear groups. Thus the cost of exponentiation in̂G is higher than the
cost of exponentiation inG. In our scheme, the cost of the key generation algorithm and the cost of the
delegation algorithm are higher than the cost of other algorithm since our scheme uses group elements in
G for ciphertexts and group elements inĜ for private keys, and these costs decrease proportionally to the
depth ofID. The cost of the encryption algorithm is small since it usesm-term exponentiations inG, and
the cost of the decryption algorithm is constant.

4.2 Implementation

To show the efficiency of our scheme, we present the implementation of our scheme and analyze the per-
formance of it. We use the Pairing Based Cryptography (PBC) library [35] to implement our scheme, and
we use a notebook computer with an Intel Core i5 2.53 GHz CPU asa test machine. We select a 175-bit
Miyaji-Nakabayashi-Takano (MNT) curve with embedding degree 6. In the 175-bit MNT curve, the group
size ofG is about 175 bits, the group size ofĜ is about 525 bits, and the group size ofGT is about 1050 bits.
The PBC library on the test machine can compute an exponentiation ofG in 1.6 ms, an exponentiation ofĜ
in 20.3 ms, an exponentiation ofGT in 4.7 ms, and a pairing in 15.6 ms. Additionally, the PBC library can
compute a three-term multi-exponentiation ofG in 2.1 ms, a two-term multi-exponentiation ofĜ in 27.3 ms,
a three-term multi-exponentiation ofĜ in 28.6 ms, and a three-term multi-pairing in 31.2 ms. Therefore, we
can obtain the cost of our scheme using the 175-bit MNT curve on the test machine as follows:

GenCost(l,d)≥ 135.8∗ (l−d)+9.5∗d+135.8 ms,

DelCost(l,d)≥ 163.8∗ (l−d)+346.5 ms,

EncCost(d)≥ 2.1∗d +14.3 ms,

DecCost≥ 62.4 ms.

Let l = 30. The performance results of each algorithms are described in Figure 1. The setup algorithm
takes about 0.936 seconds to generate the public parametersand the master key. The key generation algo-
rithm and the delegation algorithm for one depth take about 4.259 seconds and 5.257 seconds respectively.
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Figure 1: Performance of our HIBE scheme

One method to improve the performance of the key generation algorithm is to preprocess the public param-
eters and the master key. If the preprocessing method is used, then the cost of the key generation algorithm
is reduced to 1/5. This method also can be used in the delegation algorithm.

5 Proof of Lemmas

In this section, we give the security proofs of Lemmas for ourHIBE scheme.

5.1 Proof of Lemma 3.2 (Indistinguishability of G0 and G1)

In this proof, private keys are normal and the challenge ciphertext should be normal or semi-functional
depending on theT value of the given assumption. The main idea of this proof is that a simulator can only
create normal private keys since an element for semi-functional private keys is not given in the assumption
and the simulator embeds theT element of the assumption into the challenge ciphertext.

Simulator. Suppose there exists an adversaryA that distinguishes betweenG0 and G1 with a non-
negligible advantage. A simulatorB1 that breaks Assumption 1 usingA is given: a challenge tuple
D = ((p,G,Ĝ,GT ,e),k,ka,kb,kab2

,kb2
,kb3

,kc,kac,kbc,kb2c,kb3c, k̂, k̂b) andT whereT = T0 = kab2c or T =

T1 = kab2c+d . ThenB1 that interacts withA is described as follows:B1 first chooses random exponents
φ2,B,{Ai}

l
i=1,α ∈ Zp and random blinding valuesyg,yh,{yui}

l
i=1,yw ∈ Zp. It implicitly sets ν = a,φ1 =

b,τ = b+aφ2 and creates the public parameters as

g = kb2
kyg , gν = kab2

(ka)yg , g−τ = (kb3
(kb)yg(kab2

)φ2(ka)ygφ2)−1,

h = (kb2
)Bkyh , hν = (kab2

)B(ka)yh , h−τ = ((kb3
)B(kb)yh(kab2

)Bφ2(ka)yhφ2)−1,
{

ui = (kb2
)Aikyui , uν

i = (kab2
)Ai(ka)yui , u−τ

i = ((kb3
)Ai(kb)yui (kab2

)Aiφ2(ka)yui φ2)−1}l
i=1,

ŵφ1 = (k̂b)yw , ŵφ2 = k̂ywφ2, ŵ = k̂yw , Ω = (e(kb3
, k̂b) · e(kb2

, k̂)2yg · e(k, k̂)y2
g)α .

It also implicitly sets ˆg = k̂b2
k̂yg , ĥ = k̂b2Bk̂yh , ûi = k̂b2Ai k̂yui for the master key, but it cannot create these

elements sincêkb2
is not given. Additionally, it setsf = k, f̂ = k̂ for the semi-functional ciphertext and

15



private key. Let∆(ID) = yh +∑m
i=1 yuiIi andΓ(ID) = B+∑m

i=1 AiIi whereID = (I1, . . . , Im). A adaptively
requests a private key forID = (I1, . . . , Im). To response the private key query,B1 first selects random
exponentsr1,c′1,c

′
2,{c

′
3,i}

l
i=m+1 ∈ Zp. It implicitly sets c1 = −b(α +Γ(ID)r1)/yw + c′1, c2 = −br1/yw +

c′2, {c3,i = −bAir1/yw + c′3,i}
l
i=m+1 and creates the decryption and delegation components of a private key

as

K1,1 = k̂ygα+∆(ID)r1(ŵφ1)c′1, K1,2 = (K1,3)
φ2, K1,3 = (k̂b)−(α+Γ(ID)r1)ŵc′1,

K2,1 = k̂ygr1(ŵφ1)c′2, K2,2 = (K2,3)
φ2, K2,3 = (k̂b)−r1ŵc′2,

{

L3,i,1 = k̂yui r1(ŵφ1)c′3,i , L3,i,2 = (L3,i,3)
φ2, L3,i,3 = (k̂b)−Air1ŵc′3,i

}l
i=m+1.

It also creates the randomization components of a private key similarly by selecting random exponents
r2,c′4,c

′
5,{c

′
6,i}

l
i=n+1 ∈ Zp except thatR1,1 does not have ˆgα . We omit the detailed description of these. In

the challenge step,A submits two challenge hierarchical identitiesID∗0 = (I∗0,1, . . . , I
∗
0,n), ID∗1 = (I∗1,1, . . . , I

∗
1,n)

and two messagesM∗0,M
∗
1. B1 flips a random coinγ ∈ {0,1} internally. It implicitly setst = c and creates a

challenge ciphertext as

C = (e(kb3c, k̂b) · e(kb2c, k̂)2yg · e(kc, k̂)y2
g)α ·M∗γ ,

C1,1 = kb2c(kc)yg , C1,2 = T (kac)yg , C1,3 = ((kb3c)(kbc)yg(T )φ2(kac)ygφ2)−1,

C2,1 = (kb2c)Γ(ID∗γ )(kc)∆(ID∗γ ), C2,2 = (T )Γ(ID∗γ )(kac)∆(ID∗γ ),

C2,3 =
(

(kb3c)Γ(ID∗γ )(kbc)∆(ID∗γ )(T )φ2Γ(ID∗γ )(kac)φ2∆(ID∗γ )
)−1

.

Finally,A outputs a guessγ ′. If γ = γ ′, B1 outputs 0. Otherwise, it outputs 1.

Analysis. We first show that the distribution of the simulation usingD,T = T0 = kab2c is the same asG0.
The public parameters are correctly distributed since the random blinding valuesyg,yh,{yui},yw are used.
The private key is correctly distributed as

K1,1 = ĝα(ĥ
m

∏
i=1

ûIi
i )

r1(ŵφ1)c1 = (k̂b2+yg)α(k̂b2B+yh

m

∏
i=1

k̂(b
2Ai+yui )Ii)r1(k̂byw)−b(α+Γ(ID)r1)/yw+c′1

= k̂ygα+∆(ID)r1(ŵφ1)c′1,

K2,1 = ĝr1(ŵφ1)c2 = (k̂b2+yg)r1(k̂byw)−br1/yw+c′2 = k̂ygr1(ŵφ1)c′2,

L3,i,1 = ûr1
i (ŵ

φ1)c3,i = (k̂b2Ai+yui )r1(k̂byw)−bAir1/yw+c′3,i = k̂yui r1(ŵφ1)c′3,i .

Note that it can create a normal private key sincec1,c2,{c3,i},c4,c5,{c6,i} enable the cancellation ofk̂b2
,

but it cannot create a semi-functional private key sincek̂a is not given. The challenge ciphertext is correctly
distributed as

C1,1 = gt = (kb2+yg)c = kb2c(kc)yg , C1,2 = (gν)t = k(b
2+yg)ac = T0(k

ac)yg ,

C1,3 = (g−τ)t = (k(b
2+yg)(b+aφ2)c)−1 = ((kb3c)(kbc)yg(T0)

φ2(kac)ygφ2)−1,

C2,1 = (h
n

∏
i=1

u
I∗γ,i
i )t = (kb2B+yh

n

∏
i=1

k(b
2Ai+yui )I

∗
γ,i)c = (kb2c)Γ(ID∗γ )(kc)∆(ID∗γ ),

C2,2 = (hν
n

∏
i=1

(uν
i )

I∗γ,i)t = (k(b
2B+yh)a

n

∏
i=1

k(b
2Ai+yui )aI∗γ,i)c = (T0)

Γ(ID∗γ )(kac)∆(ID∗γ ),
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C2,3 = (h−τ
n

∏
i=1

(u−τ
i )I∗γ,i)t = ((k(b

2B+yh)(b+aφ2)
n

∏
i=1

k(b
2Ai+yui )(b+aφ2)I∗γ,i)c)−1

= ((kb3c)Γ(ID∗γ )(kbc)∆(ID∗γ )(T0)
φ2Γ(ID∗γ )(kac)φ2∆(ID∗γ ))−1.

We next show that the distribution of the simulation usingD,T = T1 = kab2c+d is the same asG1. We only
consider the distribution of the challenge ciphertext since T is only used in the challenge ciphertext. The
only difference betweenT0 andT1 is thatT1 additionally haskd . ThusC1,2,C1,3,C2,2,C2,3 components that
haveT in the simulation additionally havekd,(kd)−φ2,(kd)Γ(ID∗γ ),(kd)−φ2Γ(ID∗γ ) respectively. If we implicitly
set sc = d,zc = Γ(ID∗γ), then the challenge ciphertext is semi-functional. The distribution of this semi-
functional challenge ciphertext is the same asG1 sinceB,{Ai} for zc are information theoretically hidden
to A. We obtain Pr[B1(D,T0) = 0]− 1/2 = AdvG0

A
and Pr[B1(D,T1) = 0]− 1/2 = AdvG1

A
from the above

analysis. Thus, we can easily derive the advantage ofB1 as

AdvA1
B1
(λ ) =

∣

∣Pr[B1(D,T0) = 0]−Pr[B1(D,T1) = 0]
∣

∣=
∣

∣AdvG0
A
−AdvG1

A

∣

∣.

This completes our proof.

5.2 Proof of Lemma 3.3 (Indistinguishability of G1,k−1 and G′1,k)

In this proof, the challenge ciphertext is semi-functionaland thek-th private key should be normal or semi-
functional type-1 depending on theT value of the given assumption. However, the paradox of dual system
encryption occurs in this proof since a simulator can createa semi-functional ciphertext to check the type
of the k-th private key by decrypting the semi-functional ciphertext using thek-the private key. The main
idea to solve this paradox is to use a nominally semi-functional type-1 private key. If thek-th private key is
nominally semi-functional type-1, thenzk,1 of the nominally semi-functional private key is the same as the
zc of a semi-functional challenge ciphertext. Thus the simulator cannot distinguish the type ofk-th private
key since the decryption of the semi-functional ciphertextusing thek-th private key always succeeds.

Before proving this lemma, we introduce Assumption 2-A as follows: Let (p,G,Ĝ,GT ,e) be a descrip-
tion of the asymmetric bilinear group of prime orderp. Let g, ĝ be generators ofG,Ĝ respectively. As-
sumption 2-A is that if the challenge valuesD = ((p,G,Ĝ,GT ,e),k,ka,ka2

,kbx,kabx,ka2x, k̂, k̂a, k̂b, k̂y1, k̂y2)
andT = (D1,D2) are given, no PPT algorithm can distinguishT = (k̂by1, k̂by2) from T = (k̂d1, k̂d2) with more
than a negligible advantage. It is easy to show that if there exists an adversary that breaks Assumption
2-A, then an algorithm can break Assumption 2 with the same probability by settingk̂y1 = (k̂b)r1k̂s1, k̂y2 =
(k̂b)r2k̂s2,D1 = (T )r1(k̂c)s1,D2 = (T )r1(k̂c)s1 wherek̂b, k̂c,T are given in Assumption 2 andr1,r2,s1,s2 are
random exponents inZp. The simulated values are correctly distributed since there exists one-to-one corre-
spondence between{r1,s1,r2,s2} and{y1,y2,d1,d2}.

Simulator. Suppose there exists an adversaryA that distinguishes betweenG1,k−1 and G′1,k with a
non-negligible advantage. A simulatorB2 that breaks Assumption 2-A usingA is given: a challenge tuple
D = ((p,G,Ĝ,GT ,e),k,ka,ka2

,kbx,kabx,ka2x, k̂, k̂a, k̂b, k̂y1, k̂y2) andT = (D1,D2) whereT = T0 = (D0
1,D

0
2) =

(k̂by1, k̂by2) or T = T1 = (D1
1,D

1
2) = (k̂by1+d1, k̂by2+d2). ThenB2 that interacts withA is described as follows:

B2 first chooses random exponentsν ,yτ ,B,{Ai}
l
i=1,α ∈Zp and random blinding valuesyh,{yui}

l
i=1,yw ∈Zp.

It implicitly setsφ1 =−νb+(a+ yτ),φ2 = b,τ = a+ yτ and creates the public parameters as

g = ka, gν = (ka)ν , g−τ = (ka2
(ka)yτ )−1,

h = (ka)Bkyh , hν = (ka)Bνkyhν , h−τ = ((ka2
)B(ka)yh+Byτ kyhyτ )−1,
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{

ui = (ka)Aikyui , uν
i = (ka)Aiνkyui ν , u−τ

i = ((ka2
)Ai(ka)yui+Aiyτ kyui yτ )−1}l

i=1,

ŵφ1 = ((k̂b)−ν k̂ak̂yτ )yw , ŵφ2 = (k̂b)yw , ŵ = k̂yw , Ω = e(ka, k̂a)α .

It also sets ˆg = k̂a, ĝα = (k̂a)α , ĥ = (k̂a)Bk̂yh ,{ûi = (k̂a)Ai k̂yui}l
i=1 for the master key. Additionally, it sets

f = k, f̂ = k̂ for the semi-functional ciphertext and private key. Let∆(ID) = yh +∑m
i=1 yuiIi andΓ(ID) =

B+∑m
i=1AiIi whereID = (I1, . . . , Im). A adaptively requests a private key forID = (I1, . . . , Im). If this is a

j-th private key query, thenB2 handles this query as follows:

• Case j < k : It creates a semi-functional private key by callingKeyGenSF-2since it knows the master
key and the tuple( f̂−ν , f̂ ,1) for the semi-functional private key.

• Case j = k : It first selects random exponentsr′1,c
′
1,c
′
2,{c

′
3,i}

l
i=m+1 ∈ Zp. It implicitly setsr1 =−y1+

r′1, c1 = y1Γ(ID)/yw + c′1, c2 = y1/yw + c′2, {c3,i = y1Ai/yw + c′3,i}
l
i=m+1 and creates the decryption

and delegation components of a private key as

K1,1 = ĝα(k̂y1)−∆(ID)(ĥ
m

∏
i=1

ûIi
i )

r′1(D1)
−νΓ(ID)(k̂y1)yτ Γ(ID)(ŵφ1)c′1,

K1,2 = (D1)
Γ(ID)(ŵφ2)c′1, K1,3 = (k̂y1)Γ(ID)ŵc′1,

K2,1 = ĝr′1(D1)
−ν(k̂y1)yτ (ŵφ1)c′2,K2,2 = D1(ŵ

φ2)c′2, K2,3 = k̂y1ŵc′2,
{

L3,i,1 = (k̂y1)−yui û
r′1
i (D1)

−νAi(k̂y1)yτ Ai(ŵφ1)c′3,i , L3,i,2 = (D1)
Ai(ŵφ2)c′3,i ,

L3,i,3 = (k̂y1)Aiŵc′3,i
}l

i=m+1.

It also creates the randomization components of a private key similarly by selecting random expo-
nentsr′2,c

′
4,c
′
5,{c

′
6,i}

l
i=m+1 ∈ Zp except that it useŝky2,D2 instead ofk̂y1,D1. We omit the detailed

description of these.

• Case j > k : It creates a normal private key by callingKeyGen since it knows the master key.

In the challenge step,A submits two challenge hierarchical identitiesID∗0=(I∗0,1, . . . , I
∗
0,n), ID∗1 =(I∗1,1, . . . , I

∗
1,n)

and two messagesM∗0,M
∗
1. B2 flips a random coinγ ∈ {0,1} internally and chooses a random exponent

t ′ ∈ Zp. It implicitly setst = bx+ t ′, sc =−a2x, zc = Γ(ID∗γ) and creates a semi-functional ciphertext as

C = e(kabx, k̂a)α · e(ka, k̂a)αt ′ ·M∗γ ,

C1,1 = kabxgt ′ , C1,2 = (kabx)ν(gν)t ′(ka2x)−1, C1,3 = (kabx)−yτ (g−τ)t ′ ,

C2,1 = (kabx)Γ(ID∗γ )(kbx)∆(ID∗γ )(h
n

∏
i=1

u
I∗γ,i
i )t ′ ,

C2,2 = (kabx)Γ(ID∗γ )ν(kbx)∆(ID∗γ )ν(hν
n

∏
i=1

(uν
i )

I∗γ,i)t ′(ka2x)−Γ(ID∗γ ),

C2,3 = (kabx)−Γ(ID∗γ )yτ (kabx)−∆(ID∗γ )(kbx)−∆(ID∗γ )yτ (h−τ
n

∏
i=1

(u−τ
i )I∗γ,i)t ′ .

Finally,A outputs a guessγ ′. If γ = γ ′, B2 outputs 0. Otherwise, it outputs 1.

Analysis. We first show that the distribution of the simulation usingD,T0 = (D0
1,D

0
2) = (k̂by1, k̂by2)

is the same asG1,k−1. The public parameters are correctly distributed since therandom blinding values
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yh,{yui},yw are used. Thek-th private key is correctly distributed as

K1,1 = ĝα(ĥ
m

∏
i=1

ûIi
i )

r1(ŵφ1)c1 = ĝα(k̂aB+yh

m

∏
i=1

k̂(aAi+yui )Ii)−y1+r′1(k̂yw(−νb+a+yτ))y1Γ(ID)/yw+c′1

= ĝα(k̂y1)−∆(ID)(ĥ
m

∏
i=1

ûIi
i )

r′1(D0
1)
−νΓ(ID)(k̂y1)yτ Γ(ID)(ŵφ1)c′1,

K2,1 = ĝr1(ŵφ1)c2 = (k̂a)−y1+r′1(k̂yw(−νb+a+yτ))y1/yw+c′2 = ĝr′1(D0
1)
−ν(k̂y1)yτ (ŵφ1)c′2,

L3,i,1 = ûr1
i (ŵ

φ1)c3,i = (k̂aAi+yui )−y1+r′1(k̂yw(−νb+a+yτ))y1Ai/yw+c′3,i

= (k̂y1)−yui û
r′1
i (D

0
1)
−νAi(k̂y1)yτ Ai(ŵφ1)c′3,i .

The semi-functional challenge ciphertext is correctly distributed as

C1,1 = gt = (ka)bx+t ′ = kabxgt ′ ,

C1,2 = (gν)t f sc = (kaν)bx+t ′k−a2x = (kabx)ν(gν)t ′(ka2x)−1,

C1,3 = (g−τ)t( f−φ2)sc = (ka(−a−yτ ))bx+t ′k−b(−a2x) = (kabx)−yτ (g−τ)t ′ ,

C2,1 = (h
n

∏
i=1

u
I∗γ,i
i )t = (kaB+yh

n

∏
i=1

(kaAi+yui )I∗γ,i)bx+t ′ = (kabx)Γ(ID∗γ )(kbx)∆(ID∗γ )(h
n

∏
i=1

u
I∗γ,i
i )t ′ ,

C2,2 = (hν
n

∏
i=1

(uν
i )

I∗γ,i)t( f sc)zc = (k(aB+yh)ν
n

∏
i=1

(k(aAi+yui )ν)I∗γ,i)bx+t ′k−a2xΓ(ID∗γ )

= (kabx)Γ(ID∗γ )ν(kbx)∆(ID∗γ )ν(hν
n

∏
i=1

(uν
i )

I∗γ,i)t ′(ka2x)−Γ(ID∗γ ),

C2,3 = (h−τ
n

∏
i=1

(u−τ
i )I∗γ,i)t( f−φ2)sczc

= (k(aB+yh)(−a−yτ)
n

∏
i=1

(k(aAi+yui )(−a−yτ ))I∗γ,i)bx+t ′k−b(−a2x)Γ(ID∗γ )

= (kabx)−Γ(ID∗γ )yτ (kabx)−∆(ID∗γ)(kbx)−∆(ID∗γ)yτ (h−τ
n

∏
i=1

(u−τ
i )I∗γ,i)t ′ .

Note that it can create the semi-functional ciphertext withonly fixed zc = Γ(ID∗γ) sincesc,zc enable the

cancellation ofka2bx. Even though the simulator uses the fixedzc, the distribution ofzc is correct since
B,{Ai} for zc are information theoretically hidden toA. We next show that the distribution of the simula-
tion usingD,T1 = (D1

1,D
1
2) = (k̂by1+d1, k̂by2+d2) is the same asG′1,k except thek-th private key is nominally

semi-functional. We only consider the distribution of thek-th private key sinceT = (D1,D2) is only used
in thek-th private key. The only difference betweenT0 = (D0

1,D
0
2) andT1 = (D1

1,D
1
2) is thatT1 = (D1

1,D
1
2)

additionally has(k̂d1, k̂d2). The decryption and delegation componentsK1,1,K1,2,K2,1,K2,2,{L3,i,1,L3,i,2}
that haveD1 in the simulation additionally have(k̂d1)−νΓ(ID),(k̂d1)Γ(ID), (k̂d1)−ν , k̂d1,{(k̂d1)−νAi,(k̂d1)Ai} re-
spectively. The randomization componentsR1,1,R1,2,R2,1,R2,2,{R3,i,1,R3,i,2} that haveD2 in the simulation
also have the additional values except thatk̂d2 is used instead of̂kd1. If we implicitly set sk,1 = d1,zk,1 =
Γ(ID),{zk,2,i = Ai}

l
i=m+1,sk,2 = d2, then the distribution of thek-th private key is the same asG′1,k except

that thek-the private key is nominally semi-functional type-1.
Finally, we show that the adversary cannot distinguish the nominally semi-functional type-1 private key

from the semi-functional type-1 private key. The main idea of this proof is that the adversary cannot request

19



a private key forID that is a prefix of a challenge identityID∗ in the security model. Suppose there exists
an unbounded adversary, then the adversary can gather the values zk,1 = Γ(ID) = B+∑m

i=1AiIi,{zk,2,i =
Ai}

l
i=m+1 from thek-the private key query forID = (I1, . . . , Im) andzc = Γ(ID∗γ) = B+∑n

i=1AiI∗γ ,i from the
challenge ciphertext forID∗γ = (I∗γ ,1, . . . , I

∗
γ ,n). In case ofn≥ m, the values that are revealed to the adversary

are described as















1 I∗γ ,1 · · · I∗γ ,m I∗γ ,m+1 · · · 0
1 I1 · · · Im 0 · · · 0
0 0 · · · 0 1 · · · 0
...

...
. . .

...
...

.. .
...

0 0 · · · 0 0 · · · 1







































B
A1
...

Am

Am+1
...

Al

























=















zc

zk,1

zk,2,m+1
...

zk,2,l















.

It is easy to show that the row rank of the above(l −m + 2)× (l + 1) matrix is l −m + 2 since there
exists an indexj such thatI j 6= I∗γ , j. It means that the above matrix is non-singular. In case ofn < m, the
revealed values to the adversary also can be described as a similar matrix equation as the above one. The
row rank of this(l−m+2)× (l +1) matrix is l−m+2 sinceIm 6= 0. Therefore these values look random
to the unbounded adversary since the matrixes for two cases are non-singular andB,A1, . . . ,Al are chosen

randomly. We obtain Pr[B2(D,T0) = 0]−1/2= AdvG1,k−1

A
and Pr[B2(D,T1) = 0]−1/2= Adv

G′1,k
A

from the
above analysis. Thus, we can easily derive the advantage ofB2 as

AdvA2
B2
(λ ) =

∣

∣Pr[B2(D,T0) = 0]−Pr[B2(D,T1) = 0]
∣

∣=
∣

∣Adv
G1,k−1

A
−Adv

G′1,k
A

∣

∣.

This completes our proof.

5.3 Proof of Lemma 3.4 (Indistinguishability of G′1,k and G1,k)

In this proof, the challenge ciphertext is semi-functionaland thek-th private key should be semi-functional
type-1 or semi-functional type-2 depending on theT value of the given assumption. The main idea of this
proof is to show that the semi-functional type-1 and semi-functional type-2 private keys are computationally
indistinguishable using the given assumption.

Before proving this lemma, we introduce Assumption 3-A as follows: Let (p,G,Ĝ,GT ,e) be a de-
scription of the asymmetric bilinear group of prime orderp. Let g, ĝ be generators ofG,Ĝ respectively.
Assumption 3-A is that if the challenge valuesD = ((p,G,Ĝ,GT ,e),k, k̂, k̂x1, k̂x2,1, . . . , k̂x2,l , k̂y) andT =
(D1,D2,1, . . . ,D2,l) are given, no PPT algorithm can distinguishT = T0 = (k̂x1y, k̂x2,1y, . . . , k̂x2,ly) from T =
T1 = (k̂d1, k̂d2,1, . . . , k̂d2,l) with more than a negligible advantage. It is easy to show thatif there exists an
adversary that breaks Assumption 3-A, then an algorithm canbreak Assumption 3 with the same probability
by settingk̂x1 = (k̂a)r1 k̂s1,{k̂x2,i = (k̂a)r2,i k̂s2,i}l

i=1, k̂
y = k̂b,D1 = (T )r1(k̂b)s1,{D2,i = (T )r2,i(k̂b)s2,i}l

i=1 where
k̂a, k̂b,T are given in Assumption 3 andr1,s1,{r2,i,s2,i}

l
i=1 are random exponents inZp. The simulated val-

ues are correctly distributed since there exists one-to-one correspondence between{r1,s1,{r2,i},{s2,i}} and
{x1,{x2,i},d1,{d2,i}}.

Simulator. Suppose there exists an adversaryA that distinguishes betweenG′1,k andG1,k with a non-
negligible advantage. A simulatorB3 that breaks Assumption 3-A usingA is given: a challenge tuple
D = ((p,G,Ĝ,GT ,e),k, k̂, k̂x1, k̂x2,1, . . . , k̂x2,l , k̂y) and T = (D1, . . . ,D2,l) where T = T0 = (D0

1, . . . ,D
0
2,l) =
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(k̂x1y, k̂x2,1y, . . . , k̂x2,ly) or T = T1 = (D1
1, . . . ,D

1
2,l) = (k̂d1, k̂d2,1, . . . , k̂d2,l ). ThenB3 that interacts withA is

described as follows:B3 first chooses random exponentsν ,φ1,φ2,α ∈ Zp and random blinding values
yg,yh,{yui}

l
i=1,yw ∈ Zp. It implicitly sets τ = φ1 + νφ2 and setsg = kyg , ĝ = k̂yg ,h = kyh , ĥ = k̂yh ,{ui =

kyui , ûi = k̂yui}l
i=1, ŵ = k̂yw . It creates the public parameters as

PP =
(

g,gν ,g−τ , h,hν ,h−τ , {ui,u
ν
i ,u
−τ
i }

l
i=1, ŵφ1, ŵφ2, ŵ,Ω = e(g, ĝ)α)

and the master key asMK = (ĝ, ĝα , ĥ,{ûi}
l
i=1). Additionally, it sets f = k, f̂ = k̂ for the semi-functional

ciphertext and private key. Let∆(ID) = yh +∑m
i=1 yui Ii whereID = (I1, . . . , Im). A adaptively requests a

private key forID = (I1, . . . , Im). If this is a j-th private key query, thenB3 handles this query as follows:

• Case j < k : It creates a semi-functional private key by callingKeyGenSF-2since it knows the master
key and the tuple( f̂−ν , f̂ ,1) for the semi-functional private key.

• Case j = k : It first selects random exponentsr1,c1,c2,{c3,i}
l
i=m+1,sk,1 ∈ Zp. It implicitly setszk,1 =

x1, {zk,2,i = x2,i}
l
i=m+1 and creates the decryption and delegation components of a private key as

K1,1 = ĝα(ĥ
m

∏
i=1

ûIi
i )

r1(ŵφ1)c1(k̂x1)−νsk,1, K1,2 = (ŵφ2)c1(k̂x1)sk,1, K1,3 = ŵc1,

K2,1 = ĝr1(ŵφ1)c2 k̂−νsk,1, K2,2 = (ŵφ2)c2 k̂sk,1, K2,3 = ŵc2,
{

L3,i,1 = ûr1
i (ŵ

φ1)c3,i(k̂x2,i)−νsk,1, L3,i,2 = (ŵφ2)c3,i(k̂x2,i)sk,1, L3,i,3 = ŵc3,i
}l

i=m+1.

Next, it selects random exponentsr2,c4,c5,{c6,i}
l
i=m+1 ∈ Zp. It implicitly setssk,2 = y and creates the

randomization components of a private key as

R1,1 = (ĥ
m

∏
i=1

ûIi
i )

r2(ŵφ1)c4(D1)
−ν , R1,2 = (ŵφ2)c4D1, R1,3 = ŵc4,

R2,1 = ĝr2(ŵφ1)c5(k̂y)−ν , R2,2 = (ŵφ2)c5 k̂y, R2,3 = ŵc5,
{

R3,i,1 = ûr2
i (ŵ

φ1)c6,i(D2,i)
−ν , R3,i,2 = (ŵφ2)c6,i D2,i, R3,i,3 = ŵc6,i

}l
i=m+1.

• Case j > k : It creates a normal private key by callingKeyGen since it knows the master key.

In the challenge step,A submits two challenge hierarchical identitiesID∗0=(I∗0,1, . . . , I
∗
0,n), ID∗1 =(I∗1,1, . . . , I

∗
1,n)

and two messagesM∗0,M
∗
1. B3 flips a random coinγ ∈ {0,1} internally. It creates a semi-functional chal-

lenge ciphertext by callingEncryptSF on the messageMγ and the hierarchical identityID∗γ since it knows
the tuple(1, f , f−φ2) for the semi-functional ciphertext. Finally,A outputs a guessγ ′. If γ = γ ′, B3 outputs
0. Otherwise, it outputs 1.

Analysis. We first show that the distribution of the simulation usingD,T0 = (D0
1, . . . ,D

0
2,l) is the same

asG′1,k. It is easy to check that the private key components are correctly distributed except the randomiza-
tion components of thek-th private key. If we implicitly setzk,1 = x1,{zk,2,i = x2,i}

l
i=m+1,sk,2 = y, then the

randomization components of thek-th private key have the same distribution asG′1,k. We next show that the
distribution of the simulation usingD,T1 = (D1

1, . . . ,D
1
2,l) is the same asG1,k. We only consider the distri-

bution of the randomization components of thek-th private key sinceT is only used in the randomization
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components of thek-th private key. If we implicitly setsk,2 = y, zk,3 = d1/y, {zk,4,i = d2,i/y}l
i=m+1, then the

randomization components are correctly distributed as

R1,1 = (ĥ
m

∏
i=1

ûIi
i )

r2(ŵφ1)c4( f̂−ν)sk,2zk,3 = (ĥ
m

∏
i=1

ûIi
i )

r2(ŵφ1)c4(k̂−ν)y·d1/y = (ĥ
m

∏
i=1

ûIi
i )

r2(ŵφ1)c4(D1
1)
−ν ,

R3,i,1 = ûr2
i (ŵ

φ1)c6,i( f̂−ν)sk,2zk,4,i = ûr2
i (ŵ

φ1)c6,i(k̂−ν)y·d2,i/y = ûr2
i (ŵ

φ1)c6,i(D1
2,i)
−ν .

From the above analysis, we can obtain Pr[B3(D,T0) = 0]−1/2= Adv
G′1,k
A

and Pr[B3(D,T1) = 0]−1/2=

AdvG1,k

A
. Thus, we can easily derive the advantage ofB3 as

AdvA3
B3
(λ ) =

∣

∣Pr[B3(D,T0) = 0]−Pr[B3(D,T1) = 0]
∣

∣=
∣

∣Adv
G′1,k
A
−Adv

G1,k

A

∣

∣.

This completes our proof.

5.4 Proof of Lemma 3.5 (Indistinguishability of G2 and G3)

In this proof, private keys and the challenge ciphertext aresemi-functional type-2 and semi-functional re-
spectively, but a session key should be correct or random depending on theT value of the given assumption.
The main idea of this proof is to enforce a simulator to solve the Computational Diffie-Hellman (CDH) prob-
lem in order to create the normal types of private keys and ciphertexts. However, the simulator can generate
the semi-functional types of private keys and ciphertexts since an additional random value in semi-functional
types enables the cancellation of the CDH value.

Simulator. Suppose there exists an adversaryA that distinguishes betweenG2 and G3 with a non-
negligible advantage. A simulatorB4 that breaks Assumption 4 usingA is given: a challenge tupleD =
((p,G,Ĝ,GT ,e),k,ka,kb,kc, k̂, k̂a, k̂b, k̂c) andT whereT = T0 = e(k, k̂)abc or T = T1 = e(k, k̂)d . ThenB4 that
interacts withA is described as follows:B4 first chooses random exponentsφ1,φ2∈Zp and random blinding
valuesyg,yh,{yui}

l
i=1,yw ∈Zp. It setsg = kyg ,h = kyh ,{ui = kyui}l

i=1, ĝ = k̂yg , ĥ = k̂yh ,{ûi = k̂yui}l
i=1, ŵ = k̂yw .

It implicitly setsν = a,τ = φ1+aφ2,α = ab and creates the public parameters as

g, gν = (ka)yg , g−τ = k−ygφ1(ka)−ygφ2, h, hν = (ka)yh , h−τ = k−yhφ1(ka)−yhφ2,
{

ui, uν
i = (ka)yui , u−τ

i = k−yui φ1(ka)−yui φ2
}l

i=1, ŵφ1, ŵφ2, ŵ, Ω = e(ka, k̂b)y2
g .

Additionally, it sets f = k, f̂ = k̂ for the semi-functional ciphertext and private key. Let∆(ID) = yh +

∑m
i=1yui Ii whereID = (I1, . . . , Im). A adaptively requests a private key forID = (I1, . . . , Im). To response

the private key query,B4 first selects random exponentsr1,c1,c2,{c3,i}
l
i=m+1,sk,1,z′k,1,{zk,2,i}

l
i=m+1 ∈ Zp.

It implicitly sets zk,1 = byg/sk,1 + z′k,1 and creates the decryption and delegation components of a semi-
functional private key as

K1,1 = (ĥ
m

∏
i=1

ûIi
i )

r1(ŵφ1)c1(k̂a)−sk,1z′k,1, K1,2 = (ŵφ2)c1(k̂b)yg k̂sk,1z′k,1, K1,3 = ŵc1,

K2,1 = ĝr1(ŵφ1)c2(k̂a)−sk,1, K2,2 = (ŵφ2)c2 k̂sk,1, K2,3 = ŵc2,
{

L3,i,1 = ûr1
i (ŵ

φ1)c3,i(k̂a)−sk,1zk,2,i , L3,i,2 = (ŵφ2)c3,i k̂sk,1zk,2,i, L3,i,3 = ŵc3,i
}l

i=m+1.

Next, it selects random exponentsr2,c4,c5,{c6,i}
l
i=m+1,sk,2,zk,3,{zk,4,i}

l
i=m+1 ∈ Zp and creates the random-

ization components of a semi-functional private key. In thechallenge step,A submits two challenge hierar-
chical identitiesID∗0 = (I∗0,1, . . . , I

∗
0,n), ID∗1 = (I∗1,1, . . . , I

∗
1,n) and two messagesM∗0,M

∗
1. B4 flips a random coin
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γ ∈ {0,1} internally and chooses random exponentss′c,z
′
c ∈Zp. It implicitly setst = c, sc =−acyg+s′c, zc =

−ac∆(ID∗γ)/sc + z′c/sc and creates the semi-functional ciphertext as

C = (T )y2
g ·M∗γ , C1,1 = (kc)yg , C1,2 = ks′c , C1,3 = (kc)−ygφ1k−φ2s′c ,

C2,1 = (kc)∆(ID∗γ ), C2,2 = kz′c , C2,3 = (kc)−∆(ID∗γ )φ1k−φ2z′c .

Finally,A outputs a guessγ ′. If γ = γ ′, B4 outputs 0. Otherwise, it outputs 1.

Analysis. We first show that the distribution of the simulation usingD,T0 = e(k, k̂)abc is the same asG2.
The public parameters are correctly distributed since the random blinding valuesyg,yh,{yui},yw are used.
The semi-functional private key is correctly distributed as

K1,1 = ĝα(ĥ
m

∏
i=1

ûIi
i )

r1(ŵφ1)c1( f̂−ν)sk,1zk,1 = k̂ygab(ĥ
m

∏
i=1

ûIi
i )

r1(ŵφ1)c1(k̂−a)sk,1·(byg/sk,1+z′k,1)

= (ĥ
m

∏
i=1

ûIi
i )

r1(ŵφ1)c1(k̂a)−sk,1z′k,1.

Note that it can only create a semi-functional private key sincezk,1 = byg/sk,1+ z′k,1 enables the cancellation

of k̂ab. The semi-functional challenge ciphertext is correctly distributed as

C = e(g, ĝ)αtM∗γ = e(kyg , k̂yg)abcM∗γ = (T )y2
g M∗γ ,

C1,1 = gt = (kyg)c = (kc)yg ,

C1,2 = (gν)t f sc = (kyga)ck−acyg+s′c = ks′c ,

C1,3 = (g−τ)t( f−φ2)sc = (k−yg(φ1+aφ2))ck−φ2(−acyg+s′c) = (kc)−ygφ1k−φ2s′c ,

C2,1 = (h
n

∏
i=1

u
I∗γ,i
i )t = (kyh

n

∏
i=1

kyui I
∗
γ,i)c = (kc)∆(ID∗γ ),

C2,2 = (hν
n

∏
i=1

(uν
i )

I∗γ,i)t f sczc = (kyha
n

∏
i=1

kyui aI∗γ,i)cksc(−ac∆(ID∗γ )/sc+z′c/sc) = kz′c ,

C2,3 = (h−τ
n

∏
i=1

(u−τ
i )I∗γ,i)t( f−φ2)sczc

= (k−yh(φ1+aφ2)
n

∏
i=1

k−yui (φ1+aφ2)I∗γ,i)c(k−φ2)sc(−ac∆(ID∗γ )/sc+z′c/sc) = (kc)−∆(ID∗γ )φ1k−φ2z′c .

Note that it can create a semi-functional ciphertext sincesc,zc enable the cancellation ofkac. We next show
that the distribution of the simulation usingD,T1 = e(k, k̂)d is the same asG3. It is obvious thatC is a
random element sinceT1 = e(k, k̂)d . From the above analysis, we obtain Pr[B4(D,T0) = 0]−1/2 = AdvG2

A

and Pr[B4(D,T1) = 0]−1/2= AdvG3
A

. Thus, we can easily derive the advantage ofB4 as

AdvA4
B4
(λ ) =

∣

∣Pr[B4(D,T0) = 0]−Pr[B4(D,T1) = 0]
∣

∣=
∣

∣AdvG2
A
−AdvG3

A

∣

∣.

This completes our proof.

5.5 Proof of Lemma 3.6 (Indistinguishability of G3 and G4)

In this proof, private keys and the challenge ciphertext aresemi-functional type-2 and semi-functional re-
spectively, and the elements of the challenge ciphertext should be well-formed or random depending on
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the T value of the given assumption. The idea to generate semi-functional type-2 private keys and semi-
functional ciphertexts is similar to Lemma 3.5, but it uses adifferent assumption. To prove anonymity,
the simulator embeds theT value of the assumption into the all elements of the challenge ciphertext that
contains an identity.

Simulator. Suppose there exists an adversaryA that distinguishes betweenG3 and G4 with a non-
negligible advantage. A simulatorB5 that breaks Assumption 5 usingA is given: a challenge tupleD =
((p,G,Ĝ,GT ,e),k,ka,kb,kc,kab,ka2b, k̂, k̂a, k̂b) andT whereT = T0 = kabc or T = T1 = kd . ThenB5 that
interacts withA is described as follows:B5 first chooses random exponentsφ1,φ2,α ∈ Zp and random
blinding valuesyg,yh,{yui}

l
i=1,yw ∈ Zp. It setsg = kyg ,h = (kab)yh ,{ui = (kab)yui}l

i=1, ĝ = k̂yg , ŵ = k̂yw , ĝα =
k̂ygα . It implicitly setsν = a,τ = φ1+aφ2 and publishes the public parameters as

g, gν = (ka)yg , g−τ = k−ygφ1(ka)−ygφ2, h, hν = (ka2b)yh , h−τ = (kab)−yhφ1(ka2b)−yhφ2,
{

ui,u
ν
i = (ka2b)yui ,u−τ

i = (kab)−yui φ1(ka2b)−yui φ2
}l

i=1, ŵφ1, ŵφ2, ŵ, Ω = e(k, k̂)y2
gα .

It also implicitly setŝh= (k̂ab)yh ,{ûi = (k̂ab)yui} for the master key, but it cannot create these values sincek̂ab

is not given. Additionally, it setsf = k, f̂ = k̂ for the semi-functional ciphertext and private key. Let∆(ID)=
yh+∑m

i=1yui Ii whereID = (I1, . . . , Im). A adaptively requests a private key forID = (I1, . . . , Im). To response
the private key query,B5 first selects random exponentsr1,c1,c2,{c3,i}

l
i=m+1,sk,1,z′k,1,{z

′
k,2,i}

l
i=m+1 ∈ Zp. It

implicitly setszk,1 = b∆(ID)r1/sk,1 + z′k,1, {zk,2,i = byui r1/sk,1 + z′k,2,i}
l
i=m+1 and creates the decryption and

delegation components of a semi-functional private key as

K1,1 = ĝα(ŵφ1)c1(k̂a)−sk,1z′k,1, K1,2 = (ŵφ2)c1(k̂b)∆(ID)r1k̂sk,1z′k,1, K1,3 = ŵc1,

K2,1 = ĝr1(ŵφ1)c2(k̂a)−sk,1, K2,2 = (ŵφ2)c2 k̂sk,1, K2,3 = ŵc2,
{

L3,i,1 = (ŵφ1)c3,i(k̂a)−sk,1z′k,2,i , L3,i,2 = (ŵφ2)c3,i(k̂b)yui r1k̂sk,1z′k,2,i , L3,i,3 = ŵc3,i
}l

i=m+1.

Next, it selects random exponentsr2,c4,c5,{c6,i}
l
i=m+1,sk,2,z′k,3,{z

′
k,4,i}

l
i=m+1 ∈ Zp and creates the random-

ization components of a semi-functional private key by implicitly settingzk,3 = b∆(ID)r2/sk,2+z′k,3, {zk,4,i =

byui r2/sk,2 + z′k,4,i}
l
i=m+1. We omit the detailed description of these, since these are similar to the decryp-

tion and delegation components except thatR1,1 does not have ˆgα . In the challenge step,A submits two
challenge hierarchical identitiesID∗0 = (I∗0,1, . . . , I

∗
0,n), ID∗1 = (I∗1,1, . . . , I

∗
1,n) and two messagesM∗0,M

∗
1. B5

flips a random coinγ ∈ {0,1} internally and chooses random exponentsδ ,s′c,z′c ∈ Zp. It implicitly sets
t = c, sc =−acyg + s′c, zc =−a2bc∆(ID∗γ )/sc +abcz′c/sc and creates the semi-functional ciphertext as

C = Ωδ ·M∗γ , C1,1 = (kc)yg , C1,2 = (ka)s′c , C1,3 = (kc)−ygφ1k−φ2s′c ,

C2,1 = (T )∆(ID∗γ ), C2,2 = (T )z′c , C2,3 = (T )−∆(ID∗γ )φ1(T )−z′cφ2.

Finally,A outputs a guessγ ′. If γ = γ ′, B5 outputs 0. Otherwise, it outputs 1.

Analysis. We first show that the distribution of the simulation usingD,T0 = kabc is the same asG3. The
public parameters are correctly distributed since the random blinding values are used. The semi-functional
private key is correctly distributed as

K1,1 = ĝα(ĥ
m

∏
i=1

ûIi
i )

r1(ŵφ1)c1( f̂−ν)sk,1zk,1 = ĝα(k̂ab)∆(ID)r1(ŵφ1)c1(k̂−a)sk,1(b∆(ID)r1/sk,1+z′k,1)

= ĝα(ŵφ1)c1(k̂a)−sk,1z′k,1,
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K2,1 = ĝr1(ŵφ1)c2( f̂−ν)sk,1 = ĝr1(ŵφ1)c2(k̂a)−sk,1,

L3,i,1 = ûr1
i (ŵ

φ1)c3,i( f̂−ν)sk,1zk,2,i = (k̂ab)yui r1(ŵφ1)c3,i(k̂a)−sk,1·(byui r1/sk,1+z′k,2,i)

= (ŵφ1)c3,i(k̂a)−sk,1z′k,2,i .

Note that it can only create a semi-functional type-2 private key sincezk,1,{zk,2,i},zk,3,{zk,4,i} enable the
cancellation of̂kab. The semi-functional challenge ciphertext is correctly distributed as

C1,1 = gt = (kyg)c = (kc)yg ,

C1,2 = (gν)t f sc = (kyga)ck−acyg+s′c = ks′c ,

C1,3 = (g−τ)t( f−φ2)sc = (k−yg(φ1+aφ2))ck−φ2(−acyg+s′c) = (kc)−ygφ1k−φ2s′c ,

C2,1 = (h
n

∏
i=1

u
I∗γ,i
i )t = (kab)∆(ID∗γ )c = (T0)

∆(ID∗γ ),

C2,2 = (h
n

∏
i=1

u
I∗γ,i
i )νt f sczc = ((kab)∆(ID∗γ ))acksc(−a2bc∆(ID∗γ )/sc+abcz′c/sc) = (T0)

z′c ,

C2,3 = (h
n

∏
i=1

u
I∗γ,i
i )−τt( f−φ2)sczc = ((kab)∆(ID∗γ ))−(φ1+aφ2)ck−φ2sc(−a2bc∆(ID∗γ )/sc+abcz′c/sc)

= (T0)
−∆(ID∗γ)φ1(T0)

−z′cφ2.

Note that it can only create a semi-functional ciphertext since sc,zc enable the cancellation ofka2bc. We
next show that the distribution of the simulation usingD,T1 = kd is the same asG4. We only consider
C2,1,C2,2,C2,3 components of the semi-functional challenge ciphertext sinceT is used for these components.
If we implicitly sets P = k∆(ID∗γ )d/c and zc = −ad∆(ID∗γ)/sc + dz′c/sc, then the semi-functional challenge
ciphertext is correctly distributed as

C2,1 = Pc = (k∆(ID∗γ )d/c)c = (T1)
∆(ID∗γ ),

C2,2 = Pνc f sczc = (k∆(ID∗γ )d/c)acksc(−ad∆(ID∗γ )/sc+dz′c/sc) = (T1)
z′c ,

C2,3 = P−τc( f−φ2)sczc = (k∆(ID∗γ )d/c)−(φ1+aφ2)ck−φ2sc(−ad∆(ID∗γ )/sc+dz′c/sc)

= (T1)
−∆(ID∗γ )φ1(T1)

−z′cφ2.

From the above analysis, we obtain Pr[B5(D,T0) = 0]−1/2=AdvG3
A

and Pr[B5(D,T1) = 0]−1/2=AdvG4
A

.
Thus, we can easily derive the advantage ofB5 as

AdvA5
B5
(λ ) =

∣

∣Pr[B5(D,T0) = 0]−Pr[B5(D,T1) = 0]
∣

∣=
∣

∣AdvG3
A
−AdvG4

A

∣

∣.

This completes our proof.

6 Generic Group Model

In this section, we prove that the new assumption of this paper is secure under the generic group model. The
generic group model was introduced by Shoup [43], and it is a tool for analyzing generic algorithms that
work independently of the group representation. In the generic group model, an adversary is given a random
encoding of a group element or an arbitrary index of a group element instead of the actual representation
of a group element. Thus, the adversary performs group operations through oracles that are provided by a
simulator, and the adversary only can check the equality of group elements. The detailed explanation of the
generic group model is given in [7,28].
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6.1 Master Theorem

To analyze the new assumption of this paper, we slightly modify the master theorem of Katz et al. [28]
since the new assumption is defined over asymmetric bilineargroups of prime order. LetG,Ĝ,GT be
asymmetric bilinear groups of prime orderp. The bilinear map is defined ase : G× Ĝ→GT . In the generic
group model, a random group element ofG,Ĝ,GT is represented as a random variablePi,Qi,Ri respectively
wherePi,Qi,Ri are chosen uniformly inZp. We say that a random variable has degreet if the maximum
degree of any variable ist. The generalized definition of dependence and independenceis given as follows:

Definition 6.1. Let P= {P1, . . . ,Pu}, T0,T1 be random variables over G where T0 6= T1, let Q= {Q1, . . . ,Qw}
be random variables over Ĝ, and let R = {R1, . . . ,Rv} be random variables over GT . Let l = max{u,w,v}.
We say that Tb is dependent on P if there exists constants α ,{βi} such that

α ·Tb =
u

∑
i=1

βi ·Pi

where α 6= 0. We say that Tb is independent of P if Tb is not dependent on P. We say that {e(Tb,Qi)}i is
dependent on P∪Q∪R if there exist constants {αi},{βi, j},{γi} such that

w

∑
i=1

αi · e(Tb,Qi) =
u

∑
i=1

w

∑
j=1

βi, j · e(Pi,Q j)+
v

∑
i=1

γi ·Ri

where αi 6= 0 for at least one i. We say that {e(Tb,Qi)}i is independent of P∪Q∪R if {e(Tb,Qi)}i is not
dependent on P∪Q∪R.

We can obtain the following theorem by using the above dependence and independence of random
variables.

Theorem 6.2.Let P = {P1, . . . ,Pu}, T0,T1 be random variables over G where T0 6= T1, let Q = {Q1, . . . ,Qw}
be random variables over Ĝ, and let R = {R1, . . . ,Rv} be random variables over GT . Let l = max{u,w,v}.
Consider the following experiment in the generic group model:

An algorithm is given P = {P1, . . . ,Pu}, Q = {Q1, . . . ,Qw}, and R = {R1, . . . ,Rv}. A random
bit b is chosen, and the adversary is given Tb. The algorithm outputs a bit b′, and succeeds if
b′ = b. The algorithm’s advantage is the absolute value of the difference between its success
probability and 1/2.

If Tb is independent of P for all b ∈ {0,1}, and {e(Tb,Q j)} j is independent of P∪Q∪R for all b ∈ {0,1},
then any algorithm A issuing at most q instructions has an advantage at most 3(q+2l)2t/p.

Proof. The proof consists of a sequence of games. The first game will be the original experiment that is
described in the theorem and the last game will be a game that the algorithm has no advantage. We define
the games as follows:

Game G1. This game is the original game. In this game, the simulator instantiates each of random variables
P,Q,R,Tb by choosing random values for each of the formal variables. Then it gives the handles of
P,Q,R,Tb to the algorithmA. Next,A requests a sequence of multiplication, exponentiation, and
pairing instructions, and is given the handles of results. Finally,A outputs a bitb′.
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Game G2. We slightly modifyG1 into a new gameG2. In this game, the simulator never concretely in-
stantiates the formal variables. Instead it keeps the formal polynomials themselves. Additionally, the
simulator gives identical handles for two elements only if these elements are equal as formal polyno-
mials in each of their components. That is, the simulator of this game assigns different handles forX
andY since these are different polynomials. Note that the simulator of G1 assigned the same handle
for X = (X1, . . . ,Xn) andY = (Y1, . . . ,Yn) if Xi = Yi for all i.

To prove the theorem, we will show that the statistical distance between two gamesG1 andG2 is negli-
gible and the advantage of the algorithm inG2 is zero. Then the advantage of the algorithm in the original
game is bounded by the statistical distance between two games.

We first show that the statistical distance between two gamesG1 andG2 is negligible. The only differ-
ence between two games is the case that two different formal polynomials take the same value by concrete
instantiation. The probability of this event is at mostt/p from the Schwartz-Zippel Lemma [40]. If we
consider all pairs of elements produced by the algorithmA, the statistical distance between two games is at
most 3(q+2l)2t/p sinceA can request at mostq instructions, the maximum size of handles in each group
is at mostq+2l, and there are three different groups.

We next show that the advantage of the algorithm inG2 is zero. In this game, the algorithmA only
can distinguish whether it is givenT0 or T1 if it can generate a formal polynomial that is symbolically
equivalent to some previously generated polynomial for onevalue ofb but not the other. In this case, we have
α ·Tb = ∑u

i=1βi ·Pi whereα 6= 0, or else we have∑w
i=1 αi · e(Tb,Qi) = ∑u

i=1∑w
j=1βi, j · e(Pi,Q j)+∑v

i=1 γi ·Ri

whereαi 6= 0 for at least onei (otherwise, symbolic equality would hold for both value ofb). However, the
above equations are contradict to the independence assumptions of the theorem. Therefore, the advantage
of A in this game is zero.

6.2 Analysis of Asymmetric 3-Party Diffie-Hellman

To apply the master theorem of the previous section, we only need to show the independence ofT0,T1 random
variables. Using the notation of previous section, Assumption 5 (Asymmetric 3-Party Diffie-Hellman) can
be written as

P = {1,A,B,C,AB,A2B}, Q = {1,A,B}, R = {1}, T0 = ABC, T1 = D.

At first, we show the independence ofT1. It is trivial thatT1 is independent ofP since a random variable
D does not exist inP. It is easy to show that{e(T1,Qi)}i is independent ofP∪Q∪R sinceT1 contains a
random variableD that does not exist inP,Q,R. Next, we show the independence ofT0. It is easy to show
thatT0 is independent ofP since the random variables with degree 3 are different. To show the independence
of {e(T0,Qi)}i, we can derive the sets of random variables as

{e(T0,Q j)} j = {ABC,A2BC,AB2C},

{e(Pi,Q j)}i, j = {1,A,B,C,AB,A2B,A2,AC,A3B,B2,BC,AB2,A2B2},

{Ri}= {1}.

The random variables of{e(T0,Qi)}i always containC and the degree of these random variables is greater
than 3. However, the random variables of{e(Pi,Q j)}i, j that containC have the degree at most 2. Thus
{e(T0,Qi)}i is independent ofP∪Q∪R.
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7 Conclusion

In this paper, we proposed an efficient anonymous HIBE schemewith short ciphertexts and proved its full
model security under static assumptions. Though our construction is based on the IBE scheme of Lewko and
Waters [33], it was not trivial to construct an anonymous HIBE scheme, since the randomization components
of private keys cause a problem in the security proof of dual system encryption. We leave it as an interesting
problem to construct a fully secure and anonymous HIBE scheme with short ciphertexts under standard
assumptions.
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