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Abstract

Planar functions in odd characteristic were introduced by Dembowski and Ostrom in order to
construct finite projective planes in 1968. They were also used in the constructions of DES-like
iterated ciphers, error-correcting codes, and signal sets. Recently, a new notion of pseudo-planar
functions in even characteristic was proposed by Zhou. These new pseudo-planar functions, as an
analogue of planar functions in odd characteristic, also bring about finite projective planes. There
are three known infinite families of pseudo-planar monomial functions constructed by Schmidt
and Zhou, and Scherr and Zieve. In this paper, three new classes of pseudo-planar binomials are
provided. Moreover, we find that each pseudo-planar function gives an association scheme which is
defined on a Galois ring.
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scheme
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1 Introduction

Let q = pn where p is an odd prime and n is a positive integer. A function f : Fq → Fq is planar if
the mapping

x → f(x+ ǫ)− f(x) (1)

is a permutation of Fq for each ǫ ∈ F
∗
q. Planar functions were introduced by Dembowski and Ostrom [8]

to construct finite projective planes over finite fields with odd characteristic. Apart from this, planar
functions emerge from many other applications. In the cryptography literature, they are called perfect
nonlinear functions [18], and used in the constructions of DES-like iterated ciphers, since they are op-
timally resistant to differential cryptanalysis. Carlet, Ding, and Yuan [7, 9, 23], among others, utilized
planar functions to construct error-correcting codes, which are then employed to design secret sharing
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Table 1: The known pseudo-planar monomials on F2n

Function Condition Reference

ax2
k

a ∈ F
∗
2n trivial

ax2
k+1 n = 2k, a ∈ F

∗
2n/2 ,Trn/2(a) = 0 [20, Theorem 6]

ax4
k(4k+1) n = 6k, a ∈ F

∗
2n , a is a (4k − 1)-th

[19, Theorem 1.1]
power but not a 3(4k − 1)-th power

schemes. Planar functions are also applied to the construction of authentication codes [10], constant
composition codes [12] and signal sets [11]. Besides, planar functions induce many combinatorial
objects such as skew Hadamard difference sets and Paley type partial difference sets [22].

When p = 2, there are no planar functions over F2n , since if x satisfies f(x+ ǫ) − f(x) = d, then
so does x + ǫ. As an alternative, a function f : F2n → F2n is said to be almost perfect nonlinear
if the mapping (1) is 2-to-1 for every ǫ ∈ F

∗
2n . However, there is no apparent link between almost

perfect nonlinear functions and finite projective planes. Recently, Zhou [24] put forward a definition of
“planar” functions over finite fields with characteristic two, which give rise to finite projective planes.
From now on, we call a function f : F2n → F2n pseudo-planar if

x → f(x+ ǫ) + f(x) + ǫx

is a permutation on F2n for each ǫ ∈ F
∗
2n . Note that Zhou [24] called such functions “planar”, and the

term “pseudo-planar” was first used by Abdukhalikov [1] to avoid confusion with planar functions in
odd characteristic.

The pseudo-planar monomial functions have been investigated by Schmidt and Zhou [20], and
Scherr and Zieve [19]. They are listed in Table 1, where Trn/2 denotes the trace function from F2n/2

to F2. In this paper, we construct three new classes of pseudo-planar binomial functions, at least
two of them are infinite families. Association schemes form a central part of algebraic combinatorics,
and play important roles in several branches of mathematics, such as coding theory and graph theory.
One interesting result we obtained is that pseudo-planar functions will always give 5-class association
schemes which are defined on Galois rings. Our construction can be regarded as an analogue of the
one studied by Liebler and Mena [16], and Bonnecaze and Duursma [5]. Similar (but symmetric)
4-class association schemes were constructed by Abdukhalikov, Bannai and Suda [2], and LeCompte,
Martin and Owens [14]. Analogous to the case of almost perfect nonlinear functions, we define the
Fourier spectrum of pseudo-planar functions. With the information obtained from eigenmatrices of
those association schemes, we completely determine the Fourier spectrum.

The rest of this paper is organized as follows. Section 2 contains the background of the mathemat-
ical objectives involved. Section 3 presents the construction of three classes of pseudo-planar binomial
functions. Section 4 investigates the association schemes arising from pseudo-planar functions. Sec-
tion 5 concludes this paper.
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2 Preliminaries

2.1 Relative difference sets and the inversion formula

Let G be a finite abelian group and letN be a subgroup of G. A subsetD of G is a relative difference set
(RDS) with parameters (|G|/|N |, |N |, |D|, λ) and forbidden subgroup N if the list of nonzero differences
of D comprises every element in G \ N exactly λ times, and no element of N\{0}. The group ring
Z[G] is a free abelian group with a basis {g | g ∈ G}. For any set A whose elements belong to G
(A may be a multiset), we identify A and the group ring element

∑
g∈A dgg throughout the rest of

the paper, where dg is the multiplicity of g appears in A. Given any A =
∑

dgg ∈ Z[G], we define
A(−1) =

∑
dgg

−1, in which g−1 is the inverse of g with respect to the operation of group G. Using the
language of group ring, a relative difference set D in G with forbidden group N can be expressed in a
succinct way:

DD(−1) = |D|1G + λ(G−N),

where 1G is the identity of group G.
For a finite abelian group G, denote its character group by Ĝ. For any A =

∑
dgg and χ ∈ Ĝ,

define χ(A) =
∑

dgχ(g). The following inversion formula shows that A is completely determined

by its character value χ(A), where χ ranges over Ĝ. For convenience, we will denote d1G by [A]0
throughout this paper.

Lemma 2.1. Let G be an abelian group. If A =
∑

g∈G dgg ∈ Z[G], then

dh =
1

|G|
∑

χ∈Ĝ

χ(A)χ(h−1),

for all h ∈ G. In particular, we have

[A]0 =
1

|G|
∑

χ∈Ĝ

χ(A).

2.2 Galois rings

We give a brief introduction to the Galois ring GR(4, n). Let R = GR(4, n), then the additive group of
R can be identified with the abelian group (Zn

4 ,+). Let Z = {2x | x ∈ R}, then Z consists of 0 and the
zero divisors of R, where 0 is the identity with respect to the addition. The unit group R \Z contains
a cyclic subgroup of order 2n − 1 generated by an element ξ. The set T = {ξi | 0 ≤ i ≤ 2n − 2} ∪ {0}
is called Teichmüller system. For any x ∈ R, there exists a unique representation

x = a+ 2b, (2)

where a, b ∈ T . For any x ∈ R, write
√
x for x2

n−1

. If we define the addition on T by

x⊕ y = x+ y + 2
√
xy,
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then (T,⊕, ·) is a finite field with 2n elements. Hence, a pseudo-planar function over F2n can also be
identified with a function from T into itself. For any x ∈ R, we have x = a + 2b for some a, b ∈ T .
The map

σ : a+ 2b 7→ a2 + 2b2

is the Frobenius map of R, which is a ring automorphism. For any a ∈ R, the trace function of R is
the map Tr : R → Z4 defined by

Tr(a) =
n−1∑

i=0

σi(a).

Let i =
√
−1. For any a ∈ R, define the map χa : R → C by

χa(x) = iTr(ax), ∀x ∈ R.

Then the character group R̂ = {χa | a ∈ R}. For more information on Galois rings, please refer to
[13, 16, 21].

2.3 Association schemes

Let X be a nonempty finite set. Let R0, R1, · · · , Rd be a partition of X ×X satisfying that

(i) R0 = {(x, x) | x ∈ X};

(ii) for any 0 ≤ i ≤ d, there exists 0 ≤ i′ ≤ d such that Ri′ = {(y, x) | (x, y) ∈ Ri}.
For each Ri, its adjacency matrix is denoted by Ai, whose (x, y)-th entry is 1 if (x, y) ∈ Ri and 0
otherwise. We call (X, {Ri}di=0) a d-class association scheme if there exist nonnegative integers pki,j
such that

AiAj =

d∑

k=0

pki,jAk,

where 0 ≤ i, j, k ≤ d. The C-linear span of A0, A1, · · · , Ad forms a semisimple algebra of dimension
d+1. Hence, there exists another basis {E0, E1, · · · , Ed} consisting of pairwise orthogonal idempotents.
So we have

Ai =

d∑

j=0

PjiEj

and

Ei =
1

|X|

d∑

j=0

QjiAj

for certain complex numbers Pji, Qji. The matrix P = (Pji) (resp. Q = (Qji)) is called the first (resp.
second) eigenmatrix. Clearly, we have PQ = |X|I, where I denotes the identity matrix of order |X|.

Let {Si | 0 ≤ i ≤ d} be a partition of X. It induces a partition {Ri | 0 ≤ i ≤ d} on X ×X with

Ri = {(x, y) | x− y ∈ Si}.

4



If (X, {Ri}di=0) forms an association scheme, then we call (X, {Si}di=0) a Schur ring.
Assume that (X, {Si}di=0) is a Schur ring. There is an equivalence relation defined on the char-

acter group X̂ of X as follows: χ ∼ χ′ if and only if χ(Si) = χ′(Si) for each 0 ≤ i ≤ d. Denote
by T0, T1, · · · , Td the equivalence classes, with T0 consisting of only the principal character. Then
(X̂, {Ti}di=0) also forms a Schur ring, called the dual of (X, {Si}di=0). The first eigenmatrix of the dual
scheme is equal to the second eigenmatrix of the original scheme. Please refer to [4] or [6] for more
details.

We shall need the following well-known criterion due to Bannai [3] and Muzychuk [17].

Theorem 2.2 (Bannai-Muzychuk criterion). Let P be the first eigenmatrix of an association scheme
(X, {Ri}0≤i≤d), and Λ0 := {0},Λ1, . . . ,Λd′ be a partition of {0, 1, . . . , d}. Then (X, {RΛi}0≤i≤d′) forms
an association scheme if and only if there exists a partition {∆i}0≤i≤d′ of {0, 1, 2, . . . , d} with ∆0 = {0}
such that each (∆i,Λj)-block of P has a constant row sum. Moreover, the constant row sum of the
(∆i,Λj)-block is the (i, j)-th entry of the first eigenmatrix of the fusion scheme.

3 Pseudo-planar binomials

It is well-known that every function from F2n to itself can be uniquely written as a polynomial function
of degree at most 2n − 1. The monomial functions x 7→ cxt for some c ∈ F2n and some integer t
are the simplest nontrivial polynomial functions. An integer t satisfying that 1 ≤ t ≤ 2n − 1 is a
pseudo-planar exponent of F2n if the function x 7→ cxt is pseudo-planar on F2n for some c ∈ F

∗
2n .

The pseudo-planar monomials were first investigated by Schmidt and Zhou [20], and subsequently by
Scherr and Zieve [19]. Moreover, in [20, Conjecture 8], it is conjectured that the only exponents that
give pseudo-planar monomials are those listed in Table 1.

Besides pseudo-planar monomial functions, the next simplest cases are pseudo-planar binomials.
In this section, we construct three classes of pseudo-planar binomials on the field F23m . The following
result will be useful.

Lemma 3.1 ([15, p. 362]). Let q be a prime power and Fqr be an extension of Fq. Then the linearized
polynomial

L(x) =

r−1∑

i=0

cix
qi ∈ Fqr [x]

is a permutation of Fqr if and only if

det




c0 cqr−1 cq
2

r−2 · · · cq
r−1

1

c1 cq0 cq
2

r−1 · · · cq
r−1

2

c2 cq1 cq
2

0 · · · cq
r−1

3
...

...
...

...

cr−1 cqr−2 cq
2

r−3 · · · cq
r−1

0




6= 0.
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Let m be a positive integer. The relative trace (resp. norm) from F23m to F2m is denoted by Tr3
(resp. N3) from now on.

Proposition 3.2. Suppose m is an even positive integer, then the function

f(x) = a2
2m+1x2

2m+1 + a−(2m+1)x2
m+1

is pseudo-planar on F23m if and only if

Tr3((a
22m+2m + a−22m−2m−2)(a2

m+1 + ǫ2
m−1)ǫ2

m+2 + a2
m−22mǫ3 + ǫ) 6= 0

for all ǫ ∈ F
∗
23m .

Proof. Set t = 2m. For each ǫ ∈ F
∗
23m ,

f(x+ ǫ) + f(x) + ǫx =at
2+1ǫxt

2

+ a−(t+1)ǫxt + (at
2+1ǫt

2

+ a−(t+1)ǫt + ǫ)x+ (aǫ)t
2+1 + (a−1ǫ)t+1.

Then it suffices to show that the polynomial

Gǫ(x) := at
2+1ǫxt

2

+ a−(t+1)ǫxt + (at
2+1ǫt

2

+ a−(t+1)ǫt + ǫ)x

is a permutation on F23m for any ǫ ∈ F
∗
23m . By Lemma 3.1, we see that Gǫ(x) is a permutation if and

only if

det




at
2+1ǫt

2

+ a−(t+1)ǫt + ǫ at+1ǫt a−(t2+1)ǫt
2

a−(t+1)ǫ at+1ǫ+ a−(t2+t)ǫt
2

+ ǫt at
2+tǫt

2

at
2+1ǫ a−(t2+t)ǫt at

2+tǫt + a−(t2+1)ǫ+ ǫt
2




=Tr3((a
t2+t + a−t2−t−2)(at+1 + ǫt−1)ǫt+2 + at−t2ǫ3 + ǫ)

=Tr3((a
22m+2m + a−22m−2m−2)(a2

m+1 + ǫ2
m−1)ǫ2

m+2 + a2
m−22mǫ3 + ǫ)

6=0.

This finishes the proof.

Remark 3.3. We are unable to simplify the necessary and sufficient conditions in Proposition 3.2 to
provide a more concise criterion. We also cannot decide whether this construction will give infinite
families of pseudo-planar binomials or not.

Here we give two examples. For any a ∈ F
∗
2n , denote the multiplicative order of a by ord (a).

Example 3.4. When m = 2, direct computation via computer program shows that

f(x) = a17x17 + a−5x5

is pseudo-planar on F23m if and only if ord (a) ∈ {9, 63}, which coincides with the condition in Propo-
sition 3.2.
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Example 3.5. When m = 4, direct computation via computer program shows that

f(x) = a257x257 + a−17x17

is pseudo-planar on F23m if and only if ord (a) ∈ {9, 63, 117, 819}, which coincides with the condition
in Proposition 3.2.

In the following of this section, we give two infinite families of pseudo-planar binomials.
Let m be a positive integer. Suppose ǫ ∈ F

∗
23m\F2m and its minimal polynomial over F2m is

Cǫ(x) = x3 +B1x
2 +B2x+B3 ∈ F2m [x] (B3 6= 0).

Denote the three roots of Cǫ(x) by x1(= ǫ), x2(= ǫ2
m
), and x3(= ǫ2

2m
). It follows that

B1 =x1 + x2 + x3 = Tr3(ǫ),

B2 =x1x2 + x1x3 + x2x3,

B3 =x1x2x3 = N3(ǫ).

We can verify that

Tr3(ǫ
3) =x31 + x32 + x33

=(x1 + x2 + x3)
3 + x1x2x3 + (x1 + x2 + x3)(x1x2 + x1x3 + x2x3)

=B3
1 +B3 +B1B2,

Tr3(ǫ
1+2m+1

) =Tr3(x1x
2
2) = x1x

2
2 + x2x

2
3 + x3x

2
1.

Set u1 = Tr3(x1x
2
3) and u2 = Tr3(x1x

2
2). Then we have

u1 + u2 =B3 +B1B2, (3)

u1u2 =B3
1B3 +B3

2 +B2
3 . (4)

We would like to point out that part of the following proof for Proposition 3.6 with m ≡ 1 (mod 3)
is provided by one of the anonymous referee and communicated with the Associate Editor.

Proposition 3.6. Let m be a positive integer and m 6≡ 2 (mod 3). Then

f(x) = x2
m+1 + x2

2m+2m

is pseudo-planar on F23m .

Proof. A similar analysis as the proof of Proposition 3.2 shows that f is pseudo-planar if and only if

N3(ǫ) + Tr3(ǫ
3 + ǫ1+2m+1

) 6= 0

for every ǫ ∈ F
∗
23m . For convenience, we write Mǫ = N3(ǫ) + Tr3(ǫ

3 + ǫ1+2m+1

).
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First suppose ǫ ∈ F
∗
2m. Then Mǫ = N3(ǫ) + Tr3(ǫ

3 + ǫ3) = N3(ǫ) 6= 0.
Now let ǫ ∈ F

∗
23m\F2m . It can be verified that

Mǫ = B3
1 +B1B2 + u2.

We will split our consideration into two parts according to whether B1 = 0 or not.

Suppose B1 = 0. Then Mǫ = u2. Now if Mǫ = 0, from (4), we get B3 = B
3/2
2 . Therefore B2 6= 0,

since otherwise B1 = B2 = B3 = 0, which is impossible. Replace B3 = B
3/2
2 into Cǫ(x), we obtain

(
ǫ

B
1/2
2

)3

+
ǫ

B
1/2
2

+ 1 = 0,

which implies that
ǫ

B
1/2
2

∈ F23 .

That is to say that ǫ = bβ with β := B
1/2
2 ∈ F

∗
2m and b := ǫ/B

1/2
2 ∈ F

∗
23 . If m ≡ 0 (mod 3), then

b ∈ F
∗
23 ⊆ F2m , so ǫ ∈ F2m , which is a contradiction. If m ≡ 1 (mod 3), we see that 2m ≡ 2 (mod 7)

and 2m+1 ≡ 22m ≡ 4 (mod 7). Then

Tr3(ǫ
3) =Tr3((bβ)

3) = β3Tr3(b
3),

Tr3(ǫ
1+2m+1

) =Tr3(b
1+2m+1

β1+2m+1

) = β3Tr3(b
5) = β3Tr3(b

3).

Hence

Mǫ =N3(ǫ) + Tr3((bβ)
3 + (bβ)1+2m+1

) = N3(ǫ) 6= 0

which is a contradiction.
Next suppose B1 6= 0. Without loss of generality we let B1 = 1. Assume that Mǫ = 1+B2+u2 = 0,

then u2 = B2 + 1. Replace it in (3) and (4), we get u1 = B3 + 1, and

B3
2 +B2

3 +B2B3 +B2 + 1 = 0. (5)

If B2 = 0, then B3 = 1, and
ǫ3 + ǫ2 + 1 = 0.

Similarly as above, this finally leads to Mǫ = N3(ǫ) 6= 0, which contradicts the assumption that
Mǫ = 0. If B2 6= 0, we write w = (B3 + 1)/B2. Then (5) becomes B2 = w2 + w. Hence B3 =
B2w + 1 = w3 + w2 + 1. We rewrite Cǫ(x) as

x3 + x2 + (w2 + w)x+ (w3 + w2 + 1) = 0. (6)

8



Let the three roots of the polynomial x3 + x + 1 in F2m be τ1, τ2(= τ21 ), and τ3(= τ41 ). We compute
that

(τ2 + τ1w + 1)3 + (τ2 + τ1w + 1)2 +B2(τ2 + τ1w + 1) +B3

=(τ31 + τ1 + 1)w3 + (τ2τ
2
1 + τ2 + τ1)w

2 + (τ22 τ1 + τ2 + τ1 + 1)w + τ32 + τ2 + 1

=0.

Therefore the element τ2+τ1w+1 is a root of Cǫ(x). Ifm ≡ 0 (mod 3), then τi (1 ≤ i ≤ 3) ∈ F23 ⊆ F2m

and hence τ2 + τ1w + 1 ∈ F2m . This contradicts the fact that Cǫ(x) is irreducible over F2m . If m ≡ 1
(mod 3), we see that

Tr3(ǫ
3) =Tr3((τ2 + τ1w + 1)3)

=(τ2 + τ1w + 1)3 + (τ2 + τ1w + 1)3·2
m
+ (τ2 + τ1w + 1)3·2

2m

=(τ2 + τ1w + 1)3 + (τ3 + τ2w + 1)3 + (τ1 + τ3w + 1)3

=(τ31 + τ32 + τ33 )w
3 + (τ21 τ2 + τ22 τ3 + τ23 τ1 + τ21 + τ22 + τ23 )w

2

+ (τ1τ
2
2 + τ2τ

2
3 + τ23 τ

2
1 + τ1 + τ2 + τ3)w + (τ31 + τ32 + τ33 + τ21 + τ22 + τ23 + τ1 + τ2 + τ3 + 1)

=w3 + w2,

Tr3(ǫ
1+2m+1

) =Tr3((τ2 + τ1w + 1)1+2m+1

)

=Tr3((τ2 + τ1w + 1)(τ1 + τ3w
2 + 1))

=(τ1τ2 + τ2τ3 + τ3τ1)w
3 + (τ1τ2 + τ2τ3 + τ3τ1 + τ1 + τ2 + τ3)w

2

+ (τ21 + τ22 + τ23 + τ1 + τ2 + τ3)w + (τ1τ2 + τ2τ3 + τ3τ1 + 1)

=w3 + w2.

Thus

Mǫ = N3(ǫ) + Tr3(ǫ
3 + ǫ1+2m+1

) = N3(ǫ) 6= 0,

which is also a contradiction.

Remark 3.7. Let m ≡ 2 (mod 3). Suppose ǫ ∈ F23m satisfying ǫ3 + ǫ2 + 1 = 0. (It is not hard to
show that such ǫ exists.) Then we can compute Mǫ = N3(ǫ) + Tr3(ǫ

3 + ǫ1+2m+1

) =
∑6

i=0 ǫ
i = 0. Thus

f(x) = x2
m+1 + x2

2m+2m is not pseudo-planar on F23m .

Proposition 3.8. Let m be a positive integer and m 6≡ 1 (mod 3). Then

f(x) = x2
2m+1 + x2

2m+2m

is pseudo-planar on F23m .

Proof. A similar analysis to the proof of Proposition 3.2 shows that f is pseudo-planar if and only if

N3(ǫ) + Tr3(ǫ
3 + ǫ2+2m) 6= 0

for every ǫ ∈ F
∗
23m . The remaining discussion is analogous to Proposition 3.6.
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4 Association schemes arising from pseudo-planar functions

Let R = GR(4, n) be a Galois ring. For any set A whose elements belong to R (A may be a multiset),
we identify A and the group ring element

∑
g∈A dgg ∈ Z[R] throughout this section, where dg is the

multiplicity of g ∈ A. It is well known that the Teichmüller system T is a (2n, 2n, 2n, 1)-RDS in R
with respect to Z, where

Z = {2x | x ∈ R}.
Bonnecaze and Duursma in [5] showed that T gives rise to an association scheme. More specifically,
when n ≥ 3, we have four disjoint subsets

Ω0 = {0}, Ω1 = T ∗, Ω2 = {−x | x ∈ Ω1}, Ω3 = Z \ {0},

where T ∗ := T \ {0}. The rest elements of R are divided into two classes. Let Ω4 contain the
remaining ones which appear in the multiset T 2 and let Ω5 contain the remaining ones which do not.
The partition {Ωi | 0 ≤ i ≤ 5} forms a Schur ring over R, which leads to a 5-class association scheme.
For a pseudo-planar function f , the set

Df = {x+ 2
√

f(x) | x ∈ T}

is also a (2n, 2n, 2n, 1)-RDS in R with respect to Z (see [20]). Consequently, it is natural to ask whether
an association scheme can also be obtained from Df or not. In this section, we prove that any relative
difference set Df , which necessarily arises from a pseudo-planar function f , will produce an association
scheme. In fact, the partition of R is obtained in a similar way. At first, we have four subsets

S0 = {0}, S1 = Df \ {0}, S2 = {−x | x ∈ S1} = S(−1)
1 , S3 = Z \ {0}.

Furthermore, the remaining elements of R are divided into two classes. Let S4 contain the remaining
ones which appear in the multiset D2

f and let S5 contain the remaining ones which do not.
Using the following lemma, it is straightforward to verify that {Si | 0 ≤ i ≤ 5} indeed forms a

partition of R.

Lemma 4.1 ([5, Theorem 1]). Let R = GR(4, n) and T be the Teichmüller system.

1. The multiset TT (−1) contains 0 with multiplicity 2n, no other elements of Z, and the elements
outside Z with multiplicity one.

2. The multiset T 2 contains the elements of Z with multiplicity one, and half of the elements outside
Z with multiplicity two.

Now we consider the dual partition of {Si | 0 ≤ i ≤ 5} on the character group R̂. According to [20,
Theorem 3], if f is pseudo-planar then χ(Df ) takes six values when χ ranges over R̂. More precisely,

χa(Df ) =





2n for a = 0 ,

0 for a ∈ Z \ {0},
±2(n−1)/2 ± 2(n−1)/2i for a ∈ R \ Z,
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when n is odd and

χa(Df ) =





2n for a = 0 ,

0 for a ∈ Z \ {0},
±2n/2 or ±2n/2i for a ∈ R \ Z,

when n is even. Furthermore, it is natural to investigate the frequencies of these six values when χ
ranges over R̂. Similar to the case of almost perfect nonlinear functions, we introduce the definition
of Fourier spectrum of a pseudo-planar function f as follows.

Definition 4.1. The Fourier spectrum of a pseudo-planar function f is defined to be the multiset

{χ(Df ) | χ ∈ R̂}.

As a consequence of Theorem 4.4 below, we can show that the Fourier spectrum is the same for
every pseudo-planar function.

Note that χ(S1) = χ(Df )− 1. There is a natural partition {Ei | 0 ≤ i ≤ 5} on the character group

R̂, where χa and χb are in the same class if and only if χa(S1) = χb(S1). The partition {Ei | 0 ≤ i ≤ 5}
is given as follows:

E0 = {χ0},
E1 = {χ ∈ R̂ | χ(S1) = −1} = {χa | a ∈ Z \ {0}},
E2 = {χ ∈ R̂ | χ(S1) = −1 + 2(n−1)/2 + 2(n−1)/2i},
E3 = {χ ∈ R̂ | χ(S1) = −1 + 2(n−1)/2 − 2(n−1)/2i},
E4 = {χ ∈ R̂ | χ(S1) = −1− 2(n−1)/2 + 2(n−1)/2i},
E5 = {χ ∈ R̂ | χ(S1) = −1− 2(n−1)/2 − 2(n−1)/2i},

(7)

when n is odd and
E0 = {χ0},
E1 = {χ ∈ R̂ | χ(S1) = −1} = {χa | a ∈ Z \ {0}},
E2 = {χ ∈ R̂ | χ(S1) = −1 + 2n/2},
E3 = {χ ∈ R̂ | χ(S1) = −1− 2n/2},
E4 = {χ ∈ R̂ | χ(S1) = −1 + 2n/2i},
E5 = {χ ∈ R̂ | χ(S1) = −1− 2n/2i},

(8)

when n is even.
In the following we show that (R, {Si}5i=0) is a Schur ring, whose dual is (R̂, {Ei}5i=0). We first use

Lemma 4.2 and Lemma 4.3 to prove that S4 can be expressed as a linear combination of S2
1 ,S2, and

S3. Then the values of χ(S4) and χ(S5) can be determined where χ ranges over R̂. Combining this
with Bannai-Muzychuk criterion, the result follows.

Lemma 4.2. Let R = GR(4, n), and f be a pseudo-planar function over F2n which can be identified
with a map from T to T . Let Df = {x+ 2

√
f(x) | x ∈ T} and S1 = Df \ {0}.

1. The multiset S1S(−1)
1 consists of 0 with multiplicity 2n − 1 and the elements of S4 ∪ S5 with

multiplicity one.

11



2. The multiset S2
1 contains the elements of S3 with multiplicity one. In S2

1 , the multiplicity of an
element outside S3 is either zero or two.

Proof. 1. Since f is pseudo-planar, the set Df is an RDS with DfD
(−1)
f = 2nS0 + (R − Z). It is

easy to verify that S1S(−1)
1 = (2n − 1)S0 + (R− Z − S1 − S2) = (2n − 1)S0 + S4 + S5.

2. For any x, y, z ∈ T ∗, suppose x + 2
√

f(x) + y + 2
√

f(y) = 2z. Then x + 2
√

f(x) = y +
2(
√

f(y)⊕z⊕y). By the unique representation (2), we must have x = y = z. Hence S2
1 contains

the elements of S3 with multiplicity one. Suppose S2
1 = S3 + 2Uf , where Uf =

∑
g∈R\S3

dgg, it

suffices to show that dg = 0 or 1. Since S2
1 = S3+2Uf , applying the principal character, we have

∑

g∈R\S3

dg = (2n − 1)(2n−1 − 1). (9)

Now, we consider the coefficient of 0 in S2
1 (S

(−1)
1 )2. On one hand, S2

1 (S
(−1)
1 )2 = (S1S(−1)

1 )2 =

((2n−1)S0+S4+S5)
2 = (2n−1)2S0+2(2n−1)(S4+S5)+(S4+S5)

2. Since S4+S5 = S(−1)
4 +S(−1)

5

and |S4 ∪ S5| = (2n − 1)(2n − 2), we have [(S4 + S5)
2]0 = (2n − 1)(2n − 2). Consequently,

[S2
1 (S

(−1)
1 )2]0 = (2n − 1)(2n+1 − 3). On the other hand, S2

1 (S
(−1)
1 )2 = (S3 +2Uf )(S3 +2U

(−1)
f ) =

S2
3+2S3Uf+2S3U

(−1)
f +4UfU

(−1)
f . It is easy to check that [S2

1 (S
(−1)
1 )2]0 = 2n−1+4

∑
g∈R\S3

d2g.
Therefore, we have ∑

g∈R\S3

d2g = (2n − 1)(2n−1 − 1). (10)

By Equations (9)-(10), we have ∑

g∈R\S3

dg =
∑

g∈R\S3

d2g,

which implies that dg = 0 or 1.

Now we proceed to determine Uf mentioned in the proof of Lemma 4.2.

Lemma 4.3. Let R = GR(4, n) and f be a pseudo-planar function over F2n. Let Si, 0 ≤ i ≤ 5 be
defined as above. Then we have

1. S2
1 = S3 + 2S4 when n is odd;

2. S2
1 = S3 + 2S2 + 2S4 when n is even.

Proof. We only present the proof for Assertion 2, because a similar method can be applied to Assertion
1. The partition {Ei | 0 ≤ i ≤ 5} is given in (8). Define mi = |Ei| for 0 ≤ i ≤ 5, then m0 = 1 and
m1 = 2n − 1. As a preparation, we first consider the relations between m2, m3, m4 and m5. A
straightforward computation shows that

∑
a∈R χa(Df ) = 22n. On the other hand,

∑

a∈R

χa(Df ) = m0 · 2n +m1 · 0 +m2 · 2n/2 +m3 · (−2n/2) +m4 · 2n/2i+m5 · (−2n/2i)

= 2n + 2n/2(m2 −m3) + 2n/2(m4 −m5)i.

12



Consequently, we have

m2 −m3 = 23n/2 − 2n/2,

m4 −m5 = 0.

By Lemma 4.2, S2
1 = S3 + 2Uf . For any x, y ∈ T , if x + 2

√
f(x) + y + 2

√
f(y) = 0, then x =

y + 2(
√

f(x)⊕
√

f(y)⊕ y). The latter equation implies x = y = 0. Hence, 0 is not an element of S2
1 ,

i.e., Uf ∩ S0 = ∅. By definition, we see that S4 ⊂ Uf and S5 ∩ Uf = ∅. It remains to determine the
relationship between S1, S2 and Uf .

Firstly, we consider S1. By the inversion formula,

[D2
fD

(−1)
f ]0 =

1

|R|
∑

a∈R

χa(D
2
fD

(−1)
f )

=
1

|R|
∑

a∈R

|χa(Df )|2χa(Df )

=
1

|R|(2
3n + 23n/2(m2 −m3) + 23n/2(m4 −m5)i)

= 2n+1 − 1.

Note that
D2

fD
(−1)
f = S2

1S
(−1)
1 + 2S1S(−1)

1 + S2
1 + 2S1 + S2 + S0,

[S1S(−1)
1 ]0 = 2n − 1 and [S0]0 = 1. It follows that [S2

1S
(−1)
1 ]0=0. Hence, S2

1 contains no element of S1,
namely, S1 ∩ Uf = ∅.

Secondly, we consider S2. By the inversion formula,

[D3
f ]0 =

1

|R|
∑

a∈R

χa(Df )
3

=
1

|R|(2
3n + 23n/2(m2 −m3)− 23n/2(m4 −m5)i)

= 2n+1 − 1.

From
D3

f = (S0 + S1)
3 = S0 + 3S1 + 3S2

1 + S3
1 ,

[S0]0 = 1, and [S1]0 = [S2
1 ]0 = 0, it follows that [S2

1S
(−1)
2 ]0 = [S3

1 ]0 = 2n+1 − 2. By Lemma 4.2, S2
1

contains each element of S2 with multiplicity at most two. On the other hand, we have [S2
1S

(−1)
2 ]0 =

2|S2|. Hence, each element of S2 appears in S2
1 with multiplicity exactly two. Therefore, when n is

even, we have S2
1 = S3 + 2S2 + 2S4.

The partition {Si | 0 ≤ i ≤ 5} of R induces a partition {Ri | 0 ≤ i ≤ 5} of R×R, where

Ri = {(x, y) ∈ R×R | x− y ∈ Si} (0 ≤ i ≤ 5).

Now we are ready to prove that (R, {Ri}5i=0) indeed forms an association scheme.
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Theorem 4.4. Let R = GR(4, n) and Si, 0 ≤ i ≤ 5 be defined as above. Then (R, {Si}5i=0) is a Schur

ring, whose dual is (R̂, {Ei}5i=0). If n ≥ 3, then (R, {Ri}5i=0) forms a 5-class association scheme, whose
first eigenmatrix is given as follows. When n is odd, suppose b = 2(n−1)/2, we have

P =




1 2 b2 − 1 2 b2 − 1 2 b2 − 1 2 b4 − 3 b2 + 1 2 b4 − 3 b2 + 1

1 −1 −1 2 b2 − 1 −b2 + 1 −b2 + 1

1 −1 + b+ bi −1 + b− bi −1 (1− b) (1− bi) (1− b) (1 + bi)

1 −1 + b− bi −1 + b+ bi −1 (1− b) (1 + bi) (1− b) (1− bi)

1 −1− b+ bi −1− b− bi −1 (1 + b) (1− bi) (1 + b) (1 + bi)

1 −1− b− bi −1− b+ bi −1 (1 + b) (1 + bi) (1 + b) (1− bi)




. (11)

When n is even, suppose b = 2(n−2)/2, we have

P =




1 4 b2 − 1 4 b2 − 1 4 b2 − 1 8 b4 − 10 b2 + 2 8 b4 − 2 b2

1 −1 −1 4 b2 − 1 −2 b2 + 2 −2 b2

1 2 b− 1 2 b− 1 −1 2 b2 − 4 b+ 2 −2 b2

1 −2 b− 1 −2 b− 1 −1 2 b2 + 4 b+ 2 −2 b2

1 −1 + 2 bi −1− 2 bi −1 −2 b2 + 2 2 b2

1 −1− 2 bi −1 + 2 bi −1 −2 b2 + 2 2 b2




. (12)

The second eigenmatrix is listed in Appendix.

Proof. According to the Bannai-Muzychuk criterion, it suffices to prove that χj(Si) is a constant for
any χj ∈ Ej , where 0 ≤ i, j ≤ 5. This is trivially true for any 0 ≤ j ≤ 5 and 0 ≤ i ≤ 3, which can be
verified by direct computations. By Lemma 4.3, we can obtain χj(S4) for any 0 ≤ j ≤ 5. Then we get
the values of χj(S5). The information of χj(S4) and χj(S5) completes the proof.

Remark 4.5.

(1) When n = 1, we have S4 = S5 = ∅. Then (R, {Ri}5i=0) is a 3-class association scheme. When
n = 2, we get S4 = ∅. Then (R, {Ri}5i=0) forms a 4-class association scheme, whose first eigenmatrix
can be easily determined as a submatrix of (11) or (12).

(2) The 5-class association scheme investigated in [5] can be regarded as a special case of our construc-
tion where the pseudo-planar function f = 0.

Corollary 4.6. Suppose f is a pseudo-planar function over F2n . Then the Fourier spectrum {χ(Df ) |
χ ∈ R̂} is that listed in Tables 2 or 3.

Proof. Note that the frequency of each value can be obtained from the cardinality of the set |Ei|.
According to the second eigenmatrices listed in Appendix, the result now follows.
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Table 2: Fourier spectrum, n odd, b = 2(n−1)/2

Value Frequency

2b2 1

0 2b2 − 1

b+ bi b(2b3+2b2−b−1)
2

b− bi b(2b3+2b2−b−1)
2

−b+ bi b(2b3−2b2−b+1)
2

−b− bi b(2b3−2b2−b+1)
2

Table 3: Fourier spectrum, n even, b = 2(n−2)/2

Value Frequency

4b2 1

0 4b2 − 1

2b b(4b3 + 4b2 − b− 1)

−2b b(4b3 − 4b2 − b+ 1)

2bi b2(4b2 − 1)

−2bi b2(4b2 − 1)
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5 Concluding remarks

In this paper, three new classes of pseudo-planar binomial functions are provided. In addition, we
present a class of association schemes derived from pseudo-planar functions, which can be considered
as a natural generalization of the one studied in [5].

Let D1,D2 ⊂ G be two (2n, 2n, 2n, 1) relative difference sets. They are equivalent if there exist
some α ∈ Aut(G) and a ∈ G such that α(D1) = D2 + a. Suppose f is a function from F2n to itself. It
is proved in [20] that Df is a (2n, 2n, 2n, 1)-RDS in R = GR(4, n) with respect to Z if and only if f
is pseudo-planar. So we say that two pseudo-planar functions f1 and f2 are equivalent if the relative
difference sets Df1 and Df2 are equivalent. By Corollary 4.6, the p-ranks and Smith normal forms
of the relative difference set Df associated with pseudo-planar functions are all the same. Therefore
some other techniques are to be developed to solve the equivalence problem. The equivalence problem
of pseudo-planar functions will be investigated in a manuscript prepared by Yue Zhou.

The following are several open problems.

1. All pseudo-planar binomials constructed in this paper are of type

f(x) = ax2
i+2j + bx2

k+2l ,

where i 6= j, k 6= l, and {i, j} 6= {k, l}. For n ≤ 9, an exhaustive computer search shows that these
pseudo-planar binomials can only exist on the finite field of the form F2n = F23m . Therefore, it
is interesting to examine that whether these pseudo-planar binomials can only exist in F2n with
3|n or not.

2. The necessary and sufficient condition we provided in Proposition 3.2 is not easily handled. It
is desirable if one can derive a simpler characterization.
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Appendix

When n is odd, the second eigenmatrix of the association scheme is

Q =




1 2 b2 − 1 b

2

(
2 b3 + 2 b2 − b− 1

)
b

2

(
2 b3 + 2 b2 − b− 1

)
b

2

(
2 b3 − 2 b2 − b+ 1

)
b

2

(
2 b3 − 2 b2 − b+ 1

)

1 −1 b

2

(
b2 − 1− (b2 + b)i

)
b

2

(
b2 − 1 + (b2 + b)i

)
b

2

(
1− b2 − (b2 − b)i

)
b

2

(
1− b2 + (b2 − b)i

)

1 −1 b

2

(
b2 − 1 + (b2 + b)i

)
b

2

(
b2 − 1− (b2 + b)i

)
b

2

(
1− b2 + (b2 − b)i

)
b

2

(
1− b2 − (b2 − b)i

)

1 2 b2 − 1 − b

2 (1 + b) − b

2 (1 + b) b

2 (1− b) b

2 (1− b)

1 −1 − b

2 (1 + bi) b

2 (−1 + bi) b

2 (1 + bi) b

2 (1− bi)

1 −1 b

2 (−1 + bi) − b

2 (1 + bi) b

2 (1− bi)
b(b2+1)
2(1−bi)




.

When n is even, the second eigenmatrix of the association scheme is

Q =




1 4 b2 − 1 b
(
4 b3 − b+ 4 b2 − 1

)
b
(
4 b3 − 4 b2 − b+ 1

)
b2
(
4 b2 − 1

)
b2
(
4 b2 − 1

)

1 −1 b
(
b+ 2 b2 − 1

)
−
(
2 b2 − b− 1

)
b −b2 (1 + 2 bi) b2 (−1 + 2 bi)

1 −1 b
(
b+ 2 b2 − 1

)
−
(
2 b2 − b− 1

)
b b2 (−1 + 2 bi) −b2 (1 + 2 bi)

1 4 b2 − 1 −b (1 + b) −b (−1 + b) −b2 −b2

1 −1 b (−1 + b) b (1 + b) −b2 −b2

1 −1 −b (1 + b) −b (−1 + b) b2 b2




.

References

[1] K. Abdukhalikov. Symplectic spreads, planar functions and mutually unbiased bases.
arXiv:1306.3478.

[2] K. Abdukhalikov, E. Bannai, and S. Suda. Association schemes related to universally optimal
configurations, Kerdock codes and extremal Euclidean line-sets. J. Combin. Theory Ser. A,
116(2):434–448, 2009.

[3] E. Bannai. Subschemes of some association schemes. J. Algebra, 144(1):167–188, 1991.

[4] E. Bannai and T. Ito. Algebraic combinatorics I. Association schemes. The Benjamin/Cummings
Publishing Co. Inc., Menlo Park, CA, 1984.

[5] A. Bonnecaze and I. M. Duursma. Translates of linear codes over Z4. IEEE Trans. Inform.
Theory, 43(4):1218–1230, 1997.

[6] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs, volume 18. Springer-
Verlag, Berlin, 1989.

17



[7] C. Carlet, C. Ding, and J. Yuan. Linear codes from perfect nonlinear mappings and their secret
sharing schemes. IEEE Trans. Inform. Theory, 51(6):2089–2102, 2005.

[8] P. Dembowski and T. G. Ostrom. Planes of order n with collineation groups of order n2. Math.
Z., 103:239–258, 1968.

[9] C. Ding. Cyclic codes from APN and planar functions. arxiv:1206.4687.

[10] C. Ding and H. Niederreiter. Systematic authentication codes from highly nonlinear functions.
IEEE Trans. Inform. Theory, 50(10):2421–2428, 2004.

[11] C. Ding and J. Yin. Signal sets from functions with optimum nonlinearity. IEEE Trans. Commun.,
55(5):936–940, 2007.

[12] C. Ding and J. Yuan. A family of optimal constant-composition codes. IEEE Trans. Inform.
Theory, 51(10):3668–3671, 2005.

[13] A. Roger Hammons, Jr., P. Vijay Kumar, A. R. Calderbank, N. J. A. Sloane, and Patrick Solé. The
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