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Abstract

We present a new bound for the minimum distance of a general pri-
mary linear code. For affine variety codes defined from generalised Cab

polynomials the new bound often improves dramatically on the Feng-Rao
bound for primary codes [1, 10]. The method does not only work for the
minimum distance but can be applied to any generalised Hamming weight.
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1 Introduction
In this paper we present an improvement to the Feng-Rao bound for primary
codes [1, 10, 9]. Our method does not only apply to the minimum distance but
estimates any generalised Hamming weight. In the same way as the Feng-Rao
bound for primary codes suggests an improved code construction our new bound
does also. The new bound is particular suited for affine variety codes for which
it often improves dramatically on the Feng-Rao bound. Interestingly, for such
codes it can be viewed as a simple application of the footprint bound from Gröb-
ner basis theory. We pay particular attention to the case of the affine variety
being defined by a bivariate polynomial that, in the support, has two univariate
monomials of the same weight and all other monomials of lower weight. Such
polynomials can be viewed as a generalisation of the polynomials defining Cab
curves and therefore we name them generalised Cab polynomials. We develop
a method for constructing generalised Cab polynomials with many zeros by the
use of (Fpm ,Fp)-polynomials, that are polynomials returning values in Fp when
evaluated in Fpm (see, [21, Chap. 1]). Here, p is any prime power and m is
∗olav@math.aau.dk
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an integer larger than 1. With this method in hand we can design long affine
variety codes for which our bound produces good results. The new bound of
the present paper is closely related to an improvement of the Feng-Rao bound
for dual codes that we presented recently in [8]. Recall from [9] that the usual
Feng-Rao bound for primary and dual codes can be viewed as consequences
of each other. This result holds when one uses the concept of well-behaving
pairs or one-way well-behaving pairs. For weakly well-behaving pairs a possible
connection is unknown. In a similar way as the proof from [9] breaks down for
weakly well-behaving, it also breaks down when one tries to establish a con-
nection between the new bound from the present paper and the new bound
from [8]. We shall leave it as an open problem to decide if the two bounds are
consequences of each other or not.

In the first part of the paper we concentrate solely on affine variety codes. For
such codes the new method is intuitive. We start by formulating in Section 2 our
new bound at the level of affine variety codes and explain how it gives rise to an
improved code construction Ẽimp(δ). Then we continue in Section 3 by showing
how to construct generalised Cab polynomials with many zeros. In Section 4 we
give a thorough treatment of codes defined from so-called optimal generalised
Cab polynomials demonstrating the strength of our new method. In Section 5
we show how to improve the improved code construction Ẽimp(δ) even further.
This is done for the case of the affine variety being the Klein quartic. Having
up till now only considered the minimum distance, in Section 6 we explain how
to deal with generalised Hamming weights. Then we turn to the level of general
primary linear codes lifting in Section 7 our method to a bound on any primary
linear code. In Section 8 we recall the recent bound from [8] on dual codes, and
in Section 9 we discuss the relation between this bound and the new bound of
the present paper. Section 10 is the conclusion.

2 Improving the Feng-Rao bound for primary affine
variety codes

Affine variety codes were introduced by Fitzgerald and Lax in [4] as follows.
For q a prime power consider an ideal I ⊆ Fq[X1, . . . , Xm] and define

Iq = I + 〈Xq
1 −X1, . . . , X

q
m −Xm〉, (1)

Rq = Fq[X1, . . . , Xm]/Iq.

Let {P1, . . . , Pn} = VFq (Iq) be the corresponding variety over Fq. Here, Pi 6=
Pj for i 6= j. Define the Fq-linear map ev : Rq → Fnq by ev(A + Iq) =
(A(P1), . . . , A(Pn)). It is well-known that this map is a vector space isomor-
phism.

Definition 1. Let L be an Fq vector subspace of Rq. Define C(I, L) = ev(L)

and C⊥(I, L) =
(
C(I, L)

)⊥.
We shall call C(I, L) a primary affine variety code and C⊥(I, L) a dual affine

variety code. For the case of primary affine variety codes both the Feng-Rao
bound and the bound of the present paper can be viewed as consequences of
the footprint bound from Gröbner basis theory as we now explain.
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Definition 2. Let J ⊆ k[X1, . . . , Xm] be an ideal and let ≺ be a fixed monomial
ordering. Here, k is an arbitrary field. Denote by M(X1, . . . , Xm) the mono-
mials in the variables X1, . . . , Xm. The footprint of J with respect to ≺ is the
set

∆≺(J) = {M ∈M(X1, . . . , Xm) |M is not
the leading monomial of any polynomial in J}.

Proposition 3. Let the notation be as in Definition 2. The set {M + J |M ∈
∆≺(J)} constitutes a basis for k[X1, . . . , Xm]/J as a vector space over k.

Proof. See [2, Pro. 4, Sec. 5.3].

We shall make extensive use of the following incidence of the footprint bound
(for a more general version, see [7]).

Corollary 4. Let F1, . . . , Fs ∈ Fq[X1, . . . , Xm]. For any monomial order-
ing ≺ the variety VFq (〈F1, . . . , Fs〉) is of size equal to #∆≺(〈F1, . . . , Fs, X

q
1 −

X1, . . . , X
q
m −Xm〉).

Proof. Follows from Proposition 3 and the fact that the map ev is a bijection.

We next recall the interpretation from [6] of the Feng-Rao bound for primary
affine variety codes.

Definition 5. A basis {B1 + Iq, . . . , Bdim(L) + Iq} for a subspace L ⊆ Rq
where Supp(Bi) ⊆ ∆≺(Iq) for i = 1, . . . ,dim(L) and where lm(B1) ≺ · · · ≺
lm(Bdim(L)), is said to be well-behaving with respect to ≺. Here, lm(F ) means
the leading monomial of the polynomial F .

For fixed ≺ the sequence (lm(B1), . . . , lm(Bdim(L))) is the same for all choices
of well-behaving bases of L. Therefore the following definition makes sense.

Definition 6. Let L be a subspace of Rq and define

�≺(L) = {lm(B1), . . . , lm(Bdim(L))},

where {B1 + Iq, . . . , Bdim(L) + Iq} is any well-behaving basis for L.

The concept of one-way well-behaving plays a crucial role in the Feng-Rao
bound as well as in our new bound. It is a relaxation of the well-behaving
property and the weakly well-behaving property (see [6, 10] for a reference) and
therefore it gives the strongest bounds.

Definition 7. Let G be a Gröbner basis for Iq with respect to ≺. An ordered pair
of monomials (Mi,Mj), Mi,Mj ∈ ∆≺(Iq) is said to be one-way well-behaving
(OWB) if for all H ∈ Fq[X1, . . . , Xm] with Supp(H) ⊆ ∆≺(Iq) and lm(H) = Mi

it holds that
lm(MiMj rem G) = lm(HMj rem G).

Here, F rem G means the remainder of F after division with G (see [2, Sec. 2.3]
for the division algorithm for multivariate polynomials).
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As noted in [6] the concept of OWB is independent of which Gröbner basis
G is used as long as Iq and ≺ are fixed. We are now ready to describe the
Feng-Rao bound for primary affine variety codes. We include the proof from [6,
Th. 4.9].

Theorem 8. Let G be a Gröbner basis for Iq with respect to ≺. Consider a
non-zero word ~c and let A be the unique polynomial such that Supp(A) ⊆ ∆≺(Iq)
and ~c = ev(A). Let lm(A) = P . We have

wH(~c) ≥ #{K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq) such that
(P,N) is OWB and lm(PN rem G) = K}. (2)

A bound on the minimum distance of C(I, L) is found by taking the minimum
of (2) when P runs through �≺(L).

Proof. From Corollary 4 we know that

wH(~c) = n−#∆≺(Iq + 〈A〉)
= #∆≺(Iq)−#∆≺(Iq + 〈A〉)

= #

(
∆≺(Iq)\∆≺(Iq + 〈A〉)

)
. (3)

If N,K ∈ ∆≺(Iq) satisfy that (P,N) is OWB and lm(PN rem G) = K then
K ∈ ∆≺(Iq)\∆≺(Iq + 〈A〉). Hence,

wH(~c) ≥ #{K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq)

such that (P,N) is OWB and lm(PN rem G) = K}.

The Feng-Rao bound is particular suited for affine varieties which satisfy
the order domain conditions [6, Def. 4.22]. For other varieties it does not seem
to produce very good results. The new bound of the present paper solves this
problem for affine varieties which satisfy the first half of the order domain con-
ditions. This gives a lot of freedom as the latter set of varieties is much larger
than the former. In its most general form the order domain conditions involves a
weighted degree monomial ordering with weights in Nr0\{~0}, r a positive integer
(see [6, Def. 4.21]). Here, for simplicity we shall only consider weights in N.

Definition 9. Let w(X1), . . . , w(Xm) ∈ N and define the weight of Xi1
1 · · ·Xim

m

to be the number w(Xi1
1 · · ·Xim

m ) = i1w(X1) + · · · + imw(Xm). The weighted
degree ordering ≺w on M(X1, . . . , Xm) is the ordering with Xi1

1 · · ·Xim
m ≺w

Xj1
1 · · ·Xjm

m if either w(Xi1
1 · · ·Xim

m ) < w(Xj1
1 · · ·Xjm

m ) holds or w(Xi1
1 · · ·Xim

m ) =

w(Xj1
1 · · ·Xjm

m ) holds but Xi1
1 · · ·Xim

m ≺′ Xj1
1 · · ·Xjm

m . Here, ≺′ is some fixed
monomial ordering. When ≺′ is the lexicographic ordering ≺lex with Xm ≺lex
· · · ≺lex X1 we shall call ≺w a weighted degree lexicographic ordering.

We now state the order domain conditions which play a central role in the
present paper.

Definition 10. Consider an ideal J ⊆ k[X1, . . . , Xm] where k is a field. Let a
weighted degree ordering ≺w be given. Assume that J possesses a Gröbner basis
F with respect to ≺w such that:
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(C1) Any F ∈ F has exactly two monomials of highest weight.

(C2) No two monomials in ∆≺w(J) are of the same weight.

Then we say that J and ≺w satisfy the order domain conditions.

In the following we restrict to weighted degree orderings where ≺′=≺lex.
That is, ≺w shall always be a weighted degree lexicographic ordering.

Example 1. Consider I = 〈X2 + X − Y 3〉 ⊆ F4[X,Y ] and I4 accordingly
(see (1)). Choosing X = X1, Y = X2, w(X) = 3 and w(Y ) = 2 we see that the
order domain conditions are satisfied. By inspection we have

∆≺w(I4) = {1, Y,X, Y 2, XY, Y 3, XY 2, XY 3}

with corresponding weights {0, 2, 3, 4, 5, 6, 7, 9}. Consider a word ~c = ev(A+ I4)
where A = a11 + a2Y + a3X, a1, a2 ∈ F4 and a3 ∈ F4\{0}. By Corol-
lary 4 the length is n = 8. We now estimate the Hamming weight wH(~c) =
#
(
∆≺w(I4)\∆≺w(I4 + 〈A〉)

)
(see (3)). The following elements in ∆≺w(I4)

do not belong to ∆≺w(I4 + 〈A〉). Namely, lm(A · 1) = X, lm(A · Y ) = XY ,
lm(A · Y 2) = XY 2, lm(A · Y 3) = XY 3, and lm(A ·X rem X2 +X − Y 3) = Y 3.
Observe that the last calculation holds due to the fact that X2 +X−Y 3 contains
exactly two monomials of the highest weight. We have shown that the Hamming
weight of ~c is at least 5. With the proof of Theorem 8 in mind an equivalent
formulation of the above is to observe that (X, 1), (X,Y ), (X,Y 2), (X,Y 3),
and (X,X) are OWB. Another equivalent method is guaranteed by the condi-
tion that ∆≺w(I) does not contain two monomials of the same weight. This
implies that rather than counting the above OWB pairs we only need to observe
that w(∆≺w(I4)) ∩

(
w(X) + w(∆≺w(I4))

)
= {3, 5, 6, 7, 9}. Again, a set of size

5.

The following Proposition (corresponding to [6, Pro. 4.25]) summarises how
the Feng-Rao bound is supported by the order domain condition.

Proposition 11. Assume I ⊆ Fq[X1, . . . , Xm] and ≺w satisfy the order domain
conditions. Consider Iq = I + 〈Xq

1 −X1, . . . , X
q
m −Xm〉. A pair (P,N) where

P,N ∈ ∆≺w(Iq) is OWB if w(P ) + w(N) ∈ w(∆≺w(Iq)).

The order domain conditions historically [13, 20, 1, 6] were designed to sup-
port the Feng-Rao bounds and therefore it is not surprising that the bound does
not work very well without them. The improvement to the Feng-Rao bound that
we introduce below allows us to consider relaxed conditions in that we can pro-
duce good estimates in the case that the order domain condition (C1) is satisfied
but (C2) is not. The following example illustrates the idea in our improvement
to Theorem 8.

Example 2. Consider I = 〈X4 +X2 +X−Y 6−Y 5−Y 3〉 ⊆ F8[X,Y ]. Let ≺w
be the weighted degree lexicographic ordering (Definition 9) given by X = X1,
Y = X2, w(X) = 3 and w(Y ) = 2. From [22, Sec. 3] and [8, Sec. 4.2] we
know that the variety VF8

(I8) is of size 32. Combining this observation with
Corollary 4 we see that

∆≺w(I8) = {XαY β | 0 ≤ α < 4, 0 ≤ β < 8}.
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By inspection we see that some weights appear twice in ∆≺w(I8), some only
once. Consider ~c = ev(A+ I8) where lm(A) = X3. That is,

A = a11 + a2Y + a3X + a4Y
2 + a5XY + a6Y

3 + a7X
2

+a8XY
2 + a9Y

4 + a10X
2Y + a11XY

3 + a12X
3.

Here, ai ∈ F8, i = 1, . . . , 12 and a12 6= 0. Note that A has two monomials
of the highest weight if a11 6= 0, namely X3 and XY 3. Following the proof of
Theorem 8 we consider P = X3 and look for N,K ∈ ∆≺w(I8) such that (P,N)
is OWB and lm(PN rem G) = K. We have the following possible choices of
(N,K), namely (1, X3), (Y,X3Y ), (Y 2, X3Y 2), . . . , (Y 7, X3Y 7), (X3, X2Y 6), (X3Y,X2Y 7).
From this we conclude that wH(~c) ≥ 10.
Note that X3 ·X rem G = Y 6. However, (X3, X) is not OWB as

XY 3 ≺w X3 but XY 3 ·X rem G = X2Y 3 �w Y 6. (4)

Our improved method consists in considering separately two different cases:
XY 3 ∈ Supp(A) and XY 3 /∈ Supp(A).

Case 1: Assume a11 6= 0. Following (4) we see that lm(A ·X rem G) = X2Y 3.
In a similar way we derive lm(A·XY rem G) = X2Y 4 and lm(A·XY 2 rem G) =
X2Y 5. From this we conclude

∆≺w(Iq + 〈A〉) ⊆ {XαY β | 0 ≤ α < 3, 0 ≤ β < 8, and if α = 2 then β < 3}

and therefore that wH(~c) ≥ n−#∆≺w(I8 + 〈A〉) = 32− 19 = 13.

Case 2: Assume a11 = 0. This means that we do not have to worry about (4)
and consequently lm(A · X rem G) = Y 6 holds. In a similar way we derive
lm(A ·X2 rem G) = XY 6, lm(A ·XY rem G) = Y 7, and lm(A ·X2Y rem G) =
XY 7. We conclude that

∆≺w(Iq + 〈A〉) ⊆ {XαY β | 0 ≤ α < 3, 0 ≤ β < 6}

and therefore from the proof of Theorem 8 we have that wH(~c) ≥ n−#∆≺w(I8+
〈A〉) = 32− 18 = 14.

In conclusion wH(~c) ≥ min{13, 14} = 13.

With Example 2 in mind we now improve upon Theorem 8.

Definition 12. Let G be a Gröbner basis for Iq with respect to a fixed arbitrary
monomial ordering ≺. Write ∆≺(Iq) = {M1, . . . ,Mn} withM1 ≺ · · · ≺Mn. Let
I = {1, . . . , n} and consider I ′ ⊆ I. An ordered pair of monomials (Mi,Mj),
1 ≤ i, j ≤ n is said to be strongly one-way well-behaving (SOWB) with respect
to I ′ if for all H with Supp(H) ⊆ {Ms | s ∈ I ′}, Mi ∈ Supp(H) it holds that
lm(MiMj rem G) = lm(HMj rem G).

In the following, when writing ∆≺(Iq) = {M1, . . . ,Mn}, we shall always as-
sume that M1 ≺ · · · ≺Mn holds.
Consider a non-zero codeword ~c = ev(A + Iq), where A =

∑i
s=1 asMs, i ≥ 2,

as ∈ Fq for s = 1, . . . , i and ai 6= 0. Let v be an integer 1 ≤ v < i. We consider
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v + 1 different cases that cover all possibilities:

Case 1: ai−1 6= 0.

Case 2: ai−1 = 0, ai−2 6= 0.

...

Case v: ai−1 = ai−2 = · · · = ai−v+1 = 0, ai−v 6= 0.

Case v+1: ai−1 = · · · = ai−v = 0.

For each of the above v + 1 cases we shall estimate n −#∆≺(Iq + 〈A〉). Then
the minimal obtained value constitutes a lower bound on wH(~c). Note that in
Example 2 we used v = 1.

Theorem 13. Let ≺ be a fixed arbitrary monomial ordering. Consider ~c =
ev(
∑i
s=1 asMs + Iq), as ∈ Fq, s = 1, . . . , i, and ai 6= 0. Let v be an integer

0 ≤ v < i. We have

wH(~c) ≥ min{#L(1), . . . ,#L(v + 1)}

where for t = 1, . . . , v we define L(t) as follows:

L(1) =
{
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that either

(Mi,Mj) is OWB and lm(MiMj rem G) = K or
(Mi−1,Mj) is SOWB with respect to {1, . . . , i}
and lm(Mi−1Mj rem G) = K

}
,

L(2) =
{
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that either

(Mi,Mj) is SOWB with respect to {1, . . . , i− 2, i}
and lm(MiMj rem G) = K or

(Mi−2,Mj) is SOWB with respect to {1, . . . , i− 2, i}
and lm(Mi−2Mj rem G) = K

}
,

...

L(v) =
{
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that either

(Mi,Mj) is SOWB with respect to {1, . . . , i− v, i}
and lm(MiMj rem G) = K or

(Mi−v,Mj) is SOWB with respect to {1, . . . , i− v, i}
and lm(Mi−vMj rem G) = K

}
,

Finally,

L(v + 1) =
{
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that (Mi,Mj) is SOWB

with respect to {1, . . . , i− v − 1, i} and lm(MiMj rem G) = K
}
.

7



Given a code C(I, L) write �≺(L) = {Mi1 , . . . ,Midim(L)
}. A lower bound on

the minimum distance is obtained by repeating the above calculation for each
i ∈ {i1, . . . , idim(L)}. For each choice of i an appropriate value v is chosen.

Proof. If v = 0 then only the last set is present and this set equals the set in (2).
For v > 0 the v+ 1 expressions correspond to the v+ 1 cases described prior to
the theorem (in the same order). The proof technique resembles the arguments
used in Example 2.

Remark 14. Consider an ideal I ⊆ Fq[X1, . . . , Xm] and a corresponding weighted
degree lexicographic ordering ≺w such that the order domain condition (C1) is
satisfied but (C2) is not. Let F be a Gröbner basis for I with respect to ≺w.
Assume Theorem 13 is used to estimate the Hamming weight of ~c = ev(A+ Iq)
where lm(A) = Mi. A natural choice of v is the unique non-negative integer
which satisfies w(Mi) = w(Mi−1) = · · · = w(Mi−v) > w(Mi−v−1). To see
why this choice of v is natural, note that when reducing AMj modulo F the
weight of the leading monomial remains the same. Hence, the leading monomial
of AMj rem F can not be equal to MtMj rem F for t ≤ i − v − 1. On the
other hand as illustrated in Example 2 this may happen when t ≥ i − v. For I
and ≺w such that both order domain conditions are satisfied the above choice
of v is v = 0 and Theorem 13 therefore simplifies to the usual Feng-Rao bound
Theorem 8 in this case.

Theorem 13 can be applied to any code C(I, L). However, it is not clear if
there is any advantage in considering other choices of L than L = SpanFq{ev(Mi1+
Iq), . . . , ev(Mik + Iq)}. When i1 = 1, . . . , ik = k we shall denote the corre-
sponding code by E(k). Observe that Theorem 13 suggests an improved code
construction as follows.

Definition 15. Fix non-negative numbers v1, . . . , vn and calculate for each Mi,
i = 1, . . . , n the number in Theorem 13 where v = vi. Call these number σ̃(i),
i = 1, . . . , n. We define Ẽimp(δ) to be the code with L = SpanFq{ev(Mi + Iq) |
σ̃(i) ≥ δ}.

Proposition 16. The minimum distance of Ẽimp(δ) satisfies d(Ẽimp(δ)) ≥ δ.

The above improved code construction is in the spirit of Feng and Rao’s work.
When improved codes are constructed on the basis of the Feng-Rao bound, The-
orem 8, rather than on the basis of the improved bound of the present paper,
Theorem 13, the notation used is Ẽ(δ) (see [6, Def. 4.38]). In Section 5 we shall
see that one can sometimes derive even further improved codes from Theorem 13
than Ẽimp(δ).

We conclude this section by noting that in a straight forward manner one
can enhance the above bound to deal also with generalised Hamming weights.
We postpone the discussion of the details to Section 6.

3 Generalised Cab polynomials
As mentioned in the previous section good candidates for our new bound are
affine variety codes where the order domain condition (C1) is satisfied, but the
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order domain condition (C2) is not. A particular simple class of curves that
satisfy the order domain conditions are the well-known Cab curves. They were
introduced by Miura in [17, 18, 19] to facilitate the use of the Feng-Rao bound
for dual codes. In this section we introduce generalised Cab polynomials which
corresponds to allowing the same weight to occur more than once in the foot-
print (condition (C2)). It should be stressed that we make no assumption that
generalised Cab polynomials are irreducible as it has no implication for our anal-
ysis.
From [19, App. B and the lemma at p. 1416] we have a complete characterisa-
tion of Cab curves. We shall adapt the description in [16] which is an English
translation of Miura’s results. From [16, Th. 1] we have:

Theorem 17. Let k̄ be the algebraic closure of a perfect field k, X ⊆ k̄2 be a
possibly reducible affine algebraic set defined over k, x, y the coordinate of the
affine plane k̄2, and a, b relatively prime positive integers. The following two
conditions are equivalent:

• X is an absolutely irreducible algebraic curve with exactly one k rational
place Q at infinity, and the pole divisors of x and y are bQ and aQ,
respectively.

• X is defined by a bivariate polynomial of the form

αa,0x
a + α0,by

b +
∑

ib+ja<ab

αi,jx
iyj , (5)

where αi,j ∈ k for all i, j and αa,0, α0,b are non-zero.

The definition of Cab curves given in the literature is that of (5). We recall
the following result from [19]. We adapt the description from [16, Cor. 3].

Proposition 18. Let F (X,Y ) ∈ k[X,Y ] be a polynomial of the form (5), Q a
unique place at infinity of the Cab curve defined by F (X,Y ). Then

{XiY j + 〈F (X,Y )〉 | 0 ≤ i ≤ a− 1, 0 ≤ j}

is a k-basis for k[X,Y ]/〈F (X,Y )〉 and the elements in the basis have pairwise
distinct discrete valuations at Q. If the Cab curve is non-singular, then

k[X,Y ]/〈F (X,Y )〉 = L(∞Q)

and a basis of L(mQ) is

{XiY j + 〈F (X,Y )〉 | 0 ≤ i ≤ a− 1, 0 ≤ j, ai+ bj ≤ m}

for any non-negative integer m.

Let w(X) and w(Y ), respectively, be minus the discrete valuation of x at
Q and minus the discrete valuation of y at Q, respectively. Consider the cor-
responding weighted degree lexicographic ordering with X = X1 and Y = X2.
If we combine (5) with the first part of Proposition 18 we see that Cab curves
satisfy the order domain conditions. Observe, that we can consider the related
affine variety codes C(I, L) and C⊥(I, L) regardless of the curve being non-
singular or not. This point of view is taken in [13, Sec. 4.2]. If the curve is
non-singular the corresponding affine variety code description does not have
an algebraic geometric code counterpart. We now introduce generalised Cab
polynomials.

9



Definition 19. Let w(X) = b
gcd(a,b) and w(Y ) = a

gcd(a,b) where a and b are two
different positive integers. Given a field k, let F (X,Y ) = Xa+αY b+R(X,Y ) ⊆
k[X,Y ], α ∈ k\{0}, be such that all monomials in the support of R have smaller
weight than w(Xa) = w(Y b) = ab

gcd(a,b) . Then F (X,Y ) is called a generalized
Cab polynomial.

Miura in [17, Sec. 4.1.4] treated the curves related to irreducible generalized
Cab polynomials. Besides that we do not require the generalized Cab polynomi-
als to be irreducible, our point of view is different from Miura’s as we will use
for the code construction the algebra Fq[X,Y ]/〈F (X,Y )〉. For generalized Cab
polynomials this algebra does not in general equal a space L(m1P1+· · ·+msPs),
P1, . . . , Ps being rational places. We mention that the variations of Cab curves
considered by Feng and Rao in [3] is different from Definition 19.

For the code construction we would like to have generalised Cab polynomials
with many zeros and at the same time to have a variety of possible a, b to choose
from, as these parameters turn out to play a crucial role in our bound for the
minimum distance. As we shall now demonstrate there is a simple technique
for deriving this when the field under consideration is not prime. The situation
is in contrast to Cab curves for which it is only known how to get many points
for restricted classes of a and b. Our method builds on ideas from [22] and [17,
Sec. 5].
Let p be a prime power and q = pm where m ≥ 2 is an integer. The technique
that we shall employ involves letting F (X,Y ) = G(X) − H(Y ) where both G
and H are (Fpm ,Fp)-polynomials.

Definition 20. Let m be an integer, m ≥ 2. A polynomial F (X) ∈ Fpm [X] is
called an (Fpm ,Fp)-polynomial if F (γ) ∈ Fp holds for all γ ∈ Fpm .

An obvious characterisation of (Fpm ,Fp)-polynomials is that F (X) = (Xpm−
X)Q(X) + F ′(X), where F ′(X) is an (Fpm ,Fp)-polynomial of degree less than
pm. Here, we used the convention that deg(0) = −∞. By Fermat’s little theorem
the set of (Fpm ,Fp)-polynomials of degree less than pm constitutes a vector space
over Fp. Clearly, one could derive a basis by Lagrange interpolation. For our
purpose, however, it is interesting to know what are the possible degrees of the
polynomials in the vector space.

Proposition 21. Let Ci1 , . . . , Cit be the different cyclotomic cosets modulo
pm − 1 (multiplication by p). Here, for s = 1, . . . , t it is assumed that is is
chosen as the smallest element in the given coset. For s = 1, . . . , t, Fis(X) =∑
l∈Cis

X l, is an (Fpm ,Fp)-polynomial. Furthermore, the polynomial Xpm−1 is
an (Fpm ,Fp)-polynomial.

Proof. For all the polynomials F in the proposition we have F p = F .

The set {Fi1 , . . . , Fit , Xpm−1} contains two of the most prominent (Fpm ,Fp)-
polynomials, namely the trace polynomial F1(X) = Xpm−1

+Xpm−2

+· · ·+Xp+
X and the norm polynomial X(pm−1)/(p−1). Note that the norm polynomial
equals F(pm−1)/(p−1) if p > 2. For p = 2 it equals Xpm−1. Observe also that
except for the constant polynomial F0 = 1, the trace polynomial is of lowest
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possible degree.
From [12, Prop. 3.2] we have:

Proposition 22. A polynomial F (X) ∈ Fpm [X] is an (Fpm ,Fp)-polynomial of
degree less than pm − 1 if and only if

F (X) = F1(H(X)) rem (Xpm−1 − 1)

for some H(X) ∈ Fpm [X].

From Proposition 21 and Proposition 22 we conclude:

Corollary 23. Let F (X) be an (Fpm ,Fp)-polynomial of degree less than pm.
Then deg(F ) ∈ {deg(Fi1), . . . ,deg(Fit), p

m − 1}.
We now return to the question of designing generalised Cab polynomials

F (X,Y ) = G(X)−H(Y ) with many zeros. One way of doing this is to choose
G(X) to be the trace polynomial [22, Sec. 3]. As is well-known this polynomial
maps exactly pm−1 elements from Fpm to each value in Fp. Hence, such a poly-
nomial F (X,Y ) must have p2m−1 zeros. However, there are other polynomials
in the above set with properties similar to the trace polynomial.

Proposition 24. Consider the polynomials Fis , s = 1, . . . , t related to a field
extension Fpm/Fp, m ≥ 2 (Proposition 21). We have gcd(is, p

m − 1) = 1 if and
only if for each η ∈ Fp there exists exactly pm−1 γ ∈ Fpm such that Fis(γ) = η.

Proof. We have Fis(X) = F1(Xis) mod (Xqm−1 − 1), where F1(X) is the trace
polynomial. Under the condition that gcd(is, p

m − 1) = 1 the monomial Xis

defines a bijective map from Fpm → Fpm . This proves the “only if” part. We
leave the “if” part for the reader.

Example 3. Consider first the field extension F8/F2. The non-trivial cyclo-
tomic cosets modulo 7 are C1 = {1, 2, 4}, and C3 = {3, 6, 5}. From this we
find the following (F8,F2)-polynomials: F1(X) = X4 + X2 + X, F3(X) =
X6 +X5 +X3, and X7. The first two polynomials have the property described
in Proposition 24. This is a consequence of 7 being a prime.
Consider next the field extension F16/F2. The non-trivial cyclotomic cosets mod-
ulo 15 are C1 = {1, 2, 4, 8}, C3 = {3, 6, 12, 9}, C5 = {5, 10}, C7 = {7, 14, 13, 11}.
Hence, we get the following (F16,F2)-polynomials F1(X) = X8 +X4 +X2 +X,
F3(X) = X12+X9+X6+X3, F5(X) = X10+X5, F7(X) = X14+X13+X11+
X7, and X15. The polynomials with the property described in Proposition 24
are F1(X), F7(X).
Consider finally the field extension F32/F2. Observe that 31 is a prime. Hence,
all the polynomials Fis , is > 0, have the property of Proposition 24. These are
F1(X) = X16 + X8 + X4 + X2 + X, F3(X) = X24 + X17 + X12 + X6 + X3,
F5(X) = X20 +X18 +X10 +X9 +X5, F7(X) = X28 +X25 +X19 +X14 +X7,
F11(X) = X26 + X22 + X21 + X13 + X11, and F15(X) = X30 + X29 + X27 +
X23 +X15.

4 Codes from optimal generalised Cab polynomi-
als

In this section we consider codes from generalised Cab polynomials over Fq with
n = aq zeros. These polynomials are optimal in the sense that a bivariate
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polynomial with leading monomial Xa can have no more zeros over Fq, as is
seen from the footprint bound Corollary 4. Hence, we shall call them optimal
generalised Cab polynomials. We list a couple of properties of optimal generalised
Cab polynomials F (X,Y ) = Xa +αY b +R(X,Y ). It holds that a < b and that
{F (X,Y ), Y q − Y } constitutes a Gröbner basis G for Iq = 〈F (X,Y ), Xq −
X,Y q − Y 〉 with respect to ≺w. Here, and in the remaining part of the section,
≺w is the weighted degree lexicographic ordering in Definition 9 with weights
as in Definition 19 and with X = X1, Y = X2. Furthermore, {M1, . . . ,Mn} =
∆≺w(Iq) = {Xi1Y i2 | 0 ≤ i1 < a, 0 ≤ i2 < q}. Recall, that we assume
M1 ≺w · · · ≺w Mn.
From the previous section we have a simple method for constructing optimal
generalised Cab polynomials over Fq = Fpm , where p is a prime power and m
is an integer greater or equal to 2. The method consists in letting F (X,Y ) =
G(X)−H(Y ) where G(X) is the trace polynomial andH(Y ) is an arbitrary non-
trivial (Fpm ,Fp)-polynomial. We stress that the results of the present section
hold for any optimal generalised Cab polynomial over arbitrary finite field Fq.
The main result of the section is:

Theorem 25. Let Iq be defined from an optimal generalised Cab polynomial
and let the weights w(X) and w(Y ) be as in Definition 19. Consider ~c =

ev(
∑i
s=1 asMs + Iq), as ∈ Fq, s = 1, . . . , i and ai 6= 0. Write Mi = Xα1Y α2

and T = α1 rem w(Y ). We have that

wH(~c) ≥ (a− α1)(q − α2) + ε where

ε =



0 if q − b ≤ α2 < q

T (q − α2 − b) if 0 ≤ α1 ≤ a− w(Y )

and 0 ≤ α2 < q − b
α1(q − α2 − b) if a− w(Y ) < α1 < a and

q − w(X)− α1
b−w(X)
a−w(Y ) < α2 < q − b

T (q − α2 − w(X)) if a− w(Y ) < α1 < a and
0 ≤ α2 ≤ q − w(X)− α1

b−w(X)
a−w(Y ) .

The proof of Theorem 25 calls for a definition and some lemmas. Recall from
Theorem 13 that we need to estimate the size of the sets L(u), u = 1, . . . , v+ 1.
For this purpose we introduce the following related sets:

Definition 26. Let the notation be as in Definition 19 and Theorem 25. For
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arbitrary α1, α2, 0 ≤ α1 < a, 0 ≤ α2 < q we define

B1(Xα1Y α2) = {Xγ1Y γ2 | α1 ≤ γ1 < a, α2 ≤ γ2 < q},

B2(Xα1Y α2) =

{
Xγ1Y γ2 | α1 − T ≤ γ1 < α1,

α2 + b ≤ γ2 < q

}
if T 6= 0
and 0 ≤ α2 < q − b

∅ otherwise,

and for u = 1, . . . , gcd(a, b)

B3(Xα1Y α2 , u) =

{
Xγ1Y γ2 | a− w(Y )u ≤ γ1 < α1,

α2 + w(X)u ≤ γ2 < q

}
if a− w(Y ) < α1 < a
and 0 ≤ α2 < q − b

∅ otherwise.

Remark 27. Note that w(X) gcd(a, b) = b and w(Y ) gcd(a, b) = a, thus:

B3(Xα1Y α2 , gcd(a, b)) =

{
Xγ1Y γ2 | 0 ≤ γ1 < α1, α2 + b ≤ γ2 < q

}
.

Furthermore for any choice of u ∈ {1, . . . , gcd(a, b)} and M ∈ ∆≺(Iq) we have
that B1(M)∩B2(M) = B1(M)∩B3(M,u) = ∅. If B3(M,u) 6= ∅ then B2(M) ⊆
B3(M,u).

Before continuing with the lemmas we illustrate Definition 26 with an ex-
ample.

Example 4. Consider an optimal generalised Cab polynomial F (X,Y ) = X9−
Y 12 +R(X,Y ) ∈ F27[X,Y ]. We have a = 9, b = 12, w(X) = 4, w(Y ) = 3, and
∆≺w(Iq) = {Xi1Y i2 | 0 ≤ i1 < 9, 0 ≤ i2 < 27}.
We first treat the case Xα1Y α2 = X5Y 16. We have α2 ≥ q−b, thus B2(Xα1Y α2) =
B3(Xα1Y α2 , u) = ∅ for any u. For an illustration see Figure 1.
Now consider the case Xα1Y α2 = X5Y 4. We have α2 < q−b and T = 2 6= 0 and
therefore B2(Xα1Y α2) is non-empty. Because T = 2, the width of B2(Xα1Y α2)
is 2. Turning to B3(Xα1Y α2 , u) we see that α1 < a − w(Y ) and therefore the
sets B3(Xα1Y α2 , u)’s are empty. See Figure 1 for an illustration.
Consider next the case Xα1Y α2 = X8Y 3. We have α2 < q − b and α1 >

a − w(Y ) and therefore B2(Xα1Y α2) and B3(Xα1Y α2 , u) for u = 1, 2, 3 are
non-empty. The situation regarding B2(Xα1Y α2) is similar to the case X5Y 4.
The set B3(Xα1Y α2 , u) can be thought of as an improvement to B2(Xα1Y α2).
We see that γ1 runs from a− w(Y )u to α1 and γ2 from α2 + w(X)u to q. For
an illustration see Figure 2.
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Figure 1: Left part: Xα1Y α2 = X5Y 16. Only B1 present. Right part:
Xα1Y α2 = X5Y 4. Light grey area is B1, medium grey area is B2. B3 is
not present.

Figure 2: In both parts Xα1Y α2 = X8Y 3. Left part: Light grey area is B1,
medium grey area is B2, and dark grey area plus medium grey area correspond
to B3(Xα1Y α2 , 1). Right part: Light grey area is B1, medium grey area is B2,
and dark grey area plus medium grey area correspond to B3(Xα1Y α2 , 3).

Lemma 28. Consider ~c = ev(
∑i
s=1 asMs + Iq), as ∈ Fq, s = 1, . . . , i, and ai 6=

0. Let Mi = Xα1Y α2 and v = α1 div w(Y ) (that is, v satisfies α1 = w(Y )v+T ,
where T = α1 rem w(Y )). It holds that:

• B1(Xα1Y α2) ⊆ L(u) for u = 1, . . . , v + 1.

• B2(Xα1Y α2) ⊆ L(u) for u = 1, . . . , v + 1.

• B3(Xα1Y α2 , gcd(a, b)) ⊆ L(v + 1).
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• B3(Xα1Y α2 , u) ⊆ L(u) for u = 1, . . . , v.

Proof.
B1(Xα1Y α2) ⊆ L(u) for u = 1, . . . , v + 1:
Assume Ml = Xγ1Y γ2 ∈ B1(Xα1Y α2). We have α1 ≤ γ1 < a and α2 ≤ γ2 < q.
Choosing Mj = Xγ1−α1Y γ2−α2 we get lm(MiMj rem G) = Ml. Let i′ ∈
{1, . . . , i− 1}, then by the properties of a monomial ordering Mi′Mj ≺w MiMj

holds. This means that (Mi,Mj) is SOWB with respect the set {1, . . . , i}. Thus
Ml ∈ L(u) for u = 1, . . . , v + 1.

B2(Xα1Y α2) ⊆ L(u) for u = 1, . . . , v + 1:
If T = 0 or q − b ≤ α2 < q then the result follows trivially.
Assume T 6= 0 and 0 ≤ α2 < q− b. Let Ml = Xγ1Y γ2 ∈ B2(Xα1Y α2). We have
α1 − T ≤ γ1 < α1 and α2 + b ≤ γ2 < q. Choosing Mj = Xγ1−α1+aY γ2−α2−b

(which belongs to ∆≺w(Iq) by the definition of B2) we get

lm(MiMj rem G) = lm(MiMj −Xγ1Y γ2−bF (X,Y )) = Xγ1Y γ2 .

We want to prove that (Mi,Mj) is SOWB with respect the set {1, . . . , i}. We
consider Mi′ with i′ ∈ {1, . . . , i− 1}. If w(Mi′) < w(Mi) then the proof follows
from w(Mi′Mj) < w(MiMj) using the fact that reducing modulo F does not
change the weight of the leading monomial. If w(Mi′) = w(Mi) then there
exists an integer z with α1− zw(Y ) ≥ 0 such that Mi′ = Xα1−zw(Y )Y α2+zw(Y ).
Therefore γ1 − zw(Y ) ≥ 0.
Now Mi′Mj = Xa+γ1−zw(Y )Y γ2−b+zw(X) and therefore

lm(Mi′Mj rem G) = lm(Mi′Mj −Xγ1−zw(Y )Y γ2−b+zw(X)F (X,Y ))

= Xγ1−zw(Y )Y γ2+zw(X) ≺w Xγ1Y γ2 .

Again we employed the fact that reducing modulo F does not change the weight
of the leading monomial. We conclude that lm(Mi′Mj rem G) ≺w Xγ1Y γ2 and
that (Mi,Mj) is SOWB with respect the set {1, . . . , i}. Thus Ml ∈ L(u) for
u = 1, . . . , v + 1.

B3(Xα1Y α2 , gcd(a, b)) ⊆ L(v + 1):
If 0 ≤ α1 ≤ a− w(Y ) or q − b ≤ α2 < q then the result follows trivially.
Assume a−w(Y ) < α1 < a and 0 ≤ α2 < q−b, then v = gcd(a, b)−1. LetMl =
Xγ1Y γ2 ∈ B3(Xα1Y α2 , gcd(a, b)). We have 0 ≤ γ1 < α1 and α2 + b ≤ γ2 < q.
Choosing Mj = Xγ1−α1+aY γ2−α2−b we get lm(MiMj rem G) = Ml. We want
to prove that (Mi,Mj) is SOWB with respect the set {1, . . . , i−v−1}. We con-
sider Mi′ with i′ ∈ {1, . . . , i− 1}. If w(Mi′) < w(Mi) the proof follows because
w(Mi′Mj) < w(MiMj) using the fact that reducing modulo F does not change
the weight of the leading monomial. As v = gcd(a, b)− 1 there does not exists
any i′ ∈ {1, . . . , i−v−1, i} such that w(Mi′) = w(Mi). From this it follows that
(Mi,Mj) is SOWB with respect the set {1, . . . , i−v−1} and thusMl ∈ L(v+1).

B3(Xα1Y α2 , u) ⊆ L(u) for u = 1, . . . , v:
If q − b ≤ α2 < q or 0 ≤ α1 ≤ a− w(Y ) then the result follows trivially.
Assume a−w(Y ) < α1 < a and 0 ≤ α2 < q−b, then v = gcd(a, b)−1. LetMl =
Xγ1Y γ2 ∈ B3(Xα1Y α2 , u). We have a − w(Y )u ≤ γ1 < α1 and α2 + w(X)u ≤
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γ2 < q. By the definition of ≺w and the form of ∆≺w(Iq) we have that Mi−u =
Xα1−w(Y )uY α2+w(X)u. Choosing Mj = Xγ1−α1+w(Y )uY γ2−α2−w(Y )u we get
lm(Mi−uMj rem G) = Ml. Note that Mi−u and Mj are in ∆≺w(Iq) because
v = gcd(a, b)−1, a−w(Y ) < α1 < a and 0 ≤ α2 < q−b. We want to prove that
(Mi,Mj) is SOWB with respect the set {1, . . . , i− u, i}. We consider Mi′ with
i′ ∈ {1, . . . , i− 1}. If w(Mi′) < w(Mi) then the proof follows from w(Mi′Mj) <
w(MiMj) using the fact that reducing modulo F does not change the weight
of the leading monomial. The monomials Mi′ which satisfy w(Mi′) = w(Mi−u)
are Mi and Mi−z for z = u, . . . , v. However, MiMj rem G ≺w Mi−uMj rem G
because γ1 +w(Y )u > a and Mi−tMj ≺w Mi−uMj for any t = u+ 1, . . . , v due
to the properties of a monomial ordering. From this it follows that (Mi,Mj)
is SOWB with respect the set {1, . . . , i − u, i} and thus Ml ∈ L(u), for u =
1, . . . , v.

Lemma 29. Consider ~c = ev(
∑i
s=1 asMs + Iq), as ∈ Fq, s = 1, . . . , i, and

ai 6= 0. Write Mi = Xα1Y α2 . For u = 1, . . . , v + 1, with v = α1 div w(Y ), we
have that:

B1(Xα1Y α2) ∪B2(Xα1Y α2) ⊆ L(u),

B1(Xα1Y α2) ∪B3(Xα1Y α2 , u) ⊆ L(u).

Proof. The lemma follows directly from Remark 27 and Lemma 28.

It is not hard to compute the cardinality of the sets B1, B2 and B3. For
u = 1, . . . , gcd(a, b), we have that:

#B1(Xα1Y α2) = (a− α1)(q − α2),

#B2(Xα1Y α2) =

{
α1(q − α2 − b) if 0 ≤ α2 < q − b
0 otherwise,

#B3(Xα1Y α2 , u) =


(w(Y )u− a+ α1)(q − α2 − w(X)u) if 0 ≤ α2 < q − b and

a− w(Y ) < α1 < a

0 otherwise.
Thus, for u = 1, . . . , v + 1 by Lemma 29 we get:

#L(u) ≥ (a− α1)(q − α2) +

{
α1(q − α2 − b) if 0 ≤ α2 < q − b
0 otherwise

And if a− w(Y ) < α1 < a:

#L(u) ≥ (a−α1)(q−α2)+

{
(w(Y )u− a+ α1)(q − α2 − w(X)u) if 0 ≤ α2 < q − b
0 otherwise.

Now we can prove Theorem 25.

Proof of Theorem 25. Let v = α1 div w(Y ). If 0 ≤ α1 ≤ a − w(Y ) then we
obtain

wH(~c) ≥ min{#L(1), . . . ,#L(v + 1)}
≥ (a− α1)(q − α2) +{

α1(q − α2 − b) if 0 ≤ α2 < q − b
0 otherwise.
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If a− w(Y ) < α1 < a, then v = gcd(a, b)− 1 and we obtain

wH(~c) ≥ min{#L(1), . . . ,#L(v + 1)}
≥ (a− α1)(q − α2) +{

min{(w(Y )u− a+ α1)(q − α2 − w(X)u) | u = 1, . . . , v + 1} if 0 ≤ α2 < q − b
0 otherwise.

The function f(u) = (w(Y )u− a+ α1)(q − α2 −w(X)u) is a concave parabola,
thus we have minimum in u = 1 or u = v + 1 = gcd(a, b). By inspection
f(1) = (w(Y )− a+α1)(q−α2−w(X)) = T (q−α2−w(X)) and f(gcd(a, b)) =
(w(Y ) gcd(a, b)−a+α1)(q−α2−w(X) gcd(a, b)) = α1(q−α2−b). We therefore
get the biimplication:

f(1) ≤ f(gcd(a, b)),

m

α2 ≤ q − w(X)− α1
b− w(X)

a− w(Y )
,

and the theorem follows.

Remark 30. If for codes from optimal generalised Cab polynomials rather than
applying Theorem 13 we apply the usual Feng-Rao bound (Theorem 8) then the
ε in Theorem 25 should be replaced with:{

0 if q − b ≤ α2 < q

T (q − α2 − b) and 0 ≤ α2 < q − b.

We see that our new bound improves the Feng-Rao bound by

0 if q − b ≤ α2 < q

or 0 ≤ α1 ≤ a− w(Y )

(α1 − T )(q − α2 − b) if a− w(Y ) < α1 < a and
q − w(X)− α1

b−w(X)
a−w(Y ) < α2 < q − b

T (b− w(X)) if a− w(Y ) < α1 < a and
0 ≤ α2 ≤ q − w(X)− α1

b−w(X)
a−w(Y ) .

Remark 31. It is possible to show that Theorem 25 is the strongest possible
result one can derive from Theorem 13 regarding the minimum distance of codes
from optimal generalised Cab polynomials.

In the following we apply Theorem 25 in a number of cases where F (X,Y ) =
G(X) − H(Y ) ∈ Fpm [X,Y ] with G(X) being the trace polynomial and H(Y )
being an (Fpm ,Fp)-polynomial of another degree. Recall from the discussion at
the beginning of the section that these are optimal generalised Cab polynomials.
The strength of our new bound Theorem 13 and Theorem 25 lies in the cases
where a and b are not relatively prime, as for a and b relatively prime it reduces
to the usual Feng-Rao bound for primary codes (see the last part of Remark 14).
The well-known norm-trace polynomial corresponds to choosing H(Y ) to be the
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Figure 3: Improved codes from Example 5. A ◦ corresponds to (a, b) = (4, 6),
and an ∗ corresponds to (a, b) = (4, 7) (the norm-trace codes).

norm polynomial. This gives a = pm−1 and b = (pm−1)/(p−1) which are clearly
relatively prime. The related codes, which are called norm-trace codes, are one-
point algebraic geometric codes. As a measure for how good is our new code
constructions it seems fair to compare the outcome of Theorem 25 for the cases
of gcd(a, b) > 1 with the parameters of the one-point algebraic geometric codes
from norm-trace curves over the same alphabet. The two corresponding sets
of ideals have the same footprint ∆≺w(Iq) and consequently the corresponding
codes are of the same length. We remind the reader that it was shown in [5]
that the Feng-Rao bound gives the true parameters of the norm-trace codes.

Example 5. In this example we consider optimal generalised Cab polynomials
derived from (F8,F2)-polynomials. The trace polynomial G(X) is of degree a = 4
and from Example 3 we see that besides the norm polynomial which is of degree
b = 7 we can choose H(Y ) as F3(Y ) = Y 6 + Y 5 + Y 3 which is of degree b = 6.
The corresponding codes are of length n = 32 over the alphabet F8. In Figure 3
below we compare the parameters of the related two sequences of improved codes
Ẽimp(δ) (Definition 15). For few choices of δ the norm-trace code is the best,
but for many choices of δ, from (a, b) = (4, 6) we get better codes. We note
that the latter sequence of codes contains two non-trivial codes that has the best
known parameters according to the linear code bound at [11], namely [n, k, d]
equal to [32, 2, 28] and [32, 15, 12].

Example 6. In this example we consider optimal generalised Cab polynomials
derived from (F16,F2)-polynomials. The trace polynomial G(X) is of degree
a = 8 and from Example 3 we see that besides the norm polynomial which is
of degree b = 15 we can choose H(Y ) to be of degree 10, 12 and 14. The
corresponding codes are of length n = 128 over the alphabet F16. In Figure 4
below we compare the parameters of the related two sequences of improved codes
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Figure 4: Improved codes from Example 6. A ◦ corresponds to (a, b) = (8, 10),
and an ∗ corresponds to (a, b) = (8, 15) (the norm-trace codes).

Ẽimp(δ) when b = 10 and when b = 15 (the norm-trace codes). For most choices
of δ from (a, b) = (8, 10) we get the best codes. The norm-trace codes are never
strictly best.

Example 7. In this example we consider optimal generalised Cab polynomials
derived from (F32,F2)-polynomials. The trace polynomial G(X) is of degree
a = 16 and from Example 3 we see that besides the norm-polynomial which is
of degree b = 31 we can choose H(Y ) to be of degree 20, 24, 26, 28 and 30. The
corresponding codes are of length n = 512 over the alphabet F32. In Figure 5
below we compare the parameters of the related three sequences of improved codes
Ẽimp(δ) when b = 20, b = 26 and when b = 31 (the norm-trace codes). For no
choices of δ the norm-trace codes are strictly best (this holds for all values of
k/n). For some choices b = 20 gives the best codes for other choices the best
parameters are found by choosing b = 26.

Example 8. In this example we consider optimal generalised Cab polynomials
derived from (F64,F2)-polynomials. The trace polynomial G(X) is of degree
a = 32 and by studying cyclotomic cosets we see that as an alternative to the
norm polynomial which is of degree b = 63 we can for instance choose an H(Y )
of degree 42. The corresponding codes are of length n = 2048 over the alphabet
F64. In Figure 6 below we compare the parameters of the related two sequences
of improved codes Ẽimp(δ) when b = 42 and when b = 63 (the norm-trace codes).
As is seen the first codes outperforms the last codes for all parameters.

5 A new construction of improved codes
In Definition 15 we presented a Feng-Rao style improved code construction
Ẽimp(δ). As shall be demonstrated in this section it is sometimes possible to do
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Figure 5: Improved codes from Example 7. A ◦ corresponds to (a, b) = (16, 20),
an ∗ to (a, b) = (16, 26), and finally a + corresponds to (a, b) = (16, 31) (the
norm-trace codes).

Figure 6: Improved codes from Example 8. The upper curve corresponds to
(a, b) = (32, 42), the lower curve to (a, b) = (32, 63) (the norm-trace codes)
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even better. Recall that the idea behind Theorem 13 is to consider case 1 up
till case v+1 as described prior to the theorem. Consider a general codeword

~c = ev
( i∑
s=1

asMs + Iq
)
∈ C(I, L)

ai 6= 0, where L is some fixed known subspace of Fnq . From L we might a priori
be able to conclude that certain ass equal zero for all codewords as above. This
corresponds to saying that a priori we might know that some of the cases case 1
up to case v do not happen. Clearly we could then leave out the corresponding
sets in Theorem 13. This might result in a higher estimate on wH(~c). We
illustrate the phenomenon with an example in which we also show how to derive
improved codes based on this observation.

Example 9. In this example we consider the Klein quartic X3Y + Y 3 + X ∈
F8[X,Y ]. Let w(X) = 2 and w(Y ) = 3. The ideal I = 〈X3Y + Y 3 + X〉 ⊆
F8[X,Y ] and the corresponding weighted degree lexicographic ordering ≺w satisfy
order domain condition (C1) but not (C2) (as usual, in the definition of ≺w we
choose X = X1 and Y = X2). Hence, it makes sense to apply Theorem 13. The
footprint of I8 = 〈X3Y + Y 3 + X,X8 + X,Y 8 + Y 〉 is (for a reference see [6,
Ex. 4.19] and [3, Ex. 3.3]):

∆≺w(I8) = {1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, X4, Y 3, X2Y 2,

X5, XY 3, Y 4, X6, X2Y 3, XY 4, X7, Y 5, X2Y 4, Y 6}

written in increasing order with respect to ≺w. Consider

~c = ev
(
a11 + a2X + a3Y + a4X

2 + a5XY + a6Y
2 + a7X

3 + I8
)
,

a7 6= 0. We have w(X3) = w(Y 2) > w(XY ). Hence, by Remark 14 we choose
v = 1.
By inspection the set corresponding to case 1 is

L(1) = {X3, X4, X5, X6, X7, X2Y 4}.

(Note that X2Y 4 belongs to L(1) of the following reason: We have lm(X3X5 rem X8+
X) = X and lm(Y 2X5 rem X3Y + Y 3 + X) = X2Y 4, and from w(Y 2X5) =
w(X2Y 4) > w(X) we conclude that (Y 2, X5) is SOWB with respect to {1, 2, 3, 4, 5, 6, 7}.)
The set corresponding to case 2 is

L(2) = {X3, X4, Y 3, X5, XY 3, Y 4, X6, X2Y 3, XY 4, X7, Y 5, X2Y 4, Y 6}.

If we know a priori that a6 = 0 then we can conclude from the above that
wH(~c) ≥ #L(2) = 13. Without such an information we can only conclude

wH(~c) ≥ min{#L(1),#L(2)} = 6.

It can be shown using Theorem 13 that Ẽimp(11) = C(I, L) where

L = ev
(
SpanF8

{1 + I8, X + I8, Y + I8, X
2 + I8, XY + I8, Y

2 + I8}
)
.

That is, a code with parameters [n, k, d] equal to [22, 6,≥ 11].
If instead we choose

L̃ = ev
(
SpanF8

{1 + I8, X + I8, Y + I8, X
2 + I8, XY + I8, X

3 + I8}
)

then we do not need to consider the case 1 described above. By inspection the
code parameters [n, k, d] of C(I, L̃) are [22, 6,≥ 12].
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6 Generalised Hamming weights
As mentioned at the end of Section 2 it is possible to lift Theorem 13 to also deal
with generalised Hamming weights. Recall that these parameters are important
in the analysis of the wiretap channel of type II as well as in the analysis of
secret sharing schemes based on coding theory, see [23], [15] and [14].

Definition 32. Let C ⊆ Fnq be a code of dimension k. For t = 1, . . . , k the tth
generalised Hamming weight is

dt(C) = min{#SuppD | D is a subspace of C of dimension t}.

Here, SuppD means the entries for which some word in D is different from
zero.

Clearly, d1 is nothing but the usual minimum distance. In Proposition 33
below we lift Theorem 13 to deal with the second generalised Hamming weight.
From this the reader can understand how to treat any generalised Hamming
weight.

Proposition 33. Let D ⊆ Fnq be a subspace of dimension 2. Write D =

SpanFq{ev(
∑i1
s=0 asMs), ev(

∑i2
s=0 bsMs)}. Here, ∆≺(Iq) = {M1, . . . ,Mn}, as ∈

Fq, bs ∈ Fq with ai1 6= 0 and bi2 6= 0. Without loss of generality we may assume
i1 6= i2. Let v1 and v2 be integers satisfying 0 ≤ v1 < i1 and 0 ≤ v2 < i2. We
have

#Supp(D) ≥ min{#L(z1, z2) | 1 ≤ z1 ≤ v1 + 1, 1 ≤ z2 ≤ v2 + 1}.

The above sets are defined as follows: For z = 1, . . . , v1

L(z, v2 + 1) ={
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that either (Mi1 ,Mj) is SOWB
with respect to {1, . . . , i1 − z, i1} and lm(Mi1Mj rem G) = K

or
(Mi1−z,Mj) is SOWB with respect to {1, . . . , i1 − z, i1}
and lm(Mi1−zMj rem G) = K

or
(Mi2 ,Mj) is SOWB with respect to {1, . . . , i2 − v2 − 1}
and lm(Mi2Mj rem G) = K

}
.

For z = 1, . . . , v2, L(v1 + 1, z) is defined in a similar way.
For z1 = 1, . . . , v1 and z2 = 1, . . . , v2 we have

L(z1, z2) ={
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that for some u ∈ {1, 2}

(Miu ,Mj) is SOWB with respect to {1, . . . , iu − zu, iu}
and lm(MiuMj rem G) = K

or
(Miu−zu ,Mj) is SOWB with respect to {1, . . . , iu − zu, iu}
and lm(Miu−zuMj rem G) = K

}
,
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and finally

L(v1 + 1, v2 + 1) ={
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that (Miu ,Mj) is SOWB
with respect to {1, . . . , iu − vu − 1} and lm(MiuMj rem G) = K

for some u ∈ {1, 2}
}
.

The second generalised Hamming weight of C(I, L) is found by repeating the
above process for all possible choices of i1 < i2 corresponding to the cases that
D ⊆ C(I, L).

Proof. The proof is a straight forward enhancement of the proof for Theorem 13.

For the choice of v1 and v2 in Proposition 33 we refer to Remark 14. Admit-
tedly, the proposition is rather technical. Nevertheless even its generalisation to
higher generalised Hamming weights can often be quite manageable. We shall
comment further on this in Section 9.

7 Formulation at linear code level
As mentioned in the introduction the Feng-Rao bound for primary codes in
its most general form is a bound on any linear code described by means of a
generator matrix. All other versions of the bound, such as the order bound for
primary codes and the Feng-Rao bound for primary affine variety codes, can be
viewed as corollaries to it. Below we reformulate the new bound in Theorem 13
at the linear code level.
Let n be a positive integer and q a prime power. Consider a fixed ordered triple
(U ,V,W) where U = {~u1, . . . , ~un}, V = {~v1, . . . , ~vn}, and W = {~w1, . . . , ~wn}
are three (possibly different) bases for Fnq as a vector space over Fq. We shall
always denote by I the set {1, . . . , n}.

Definition 34. Consider a basis A = {~a1, . . . ,~an} for Fnq as a vector space over
Fq. We define a function ρ̄A : Fnq → {0, 1, . . . , n} as follows. For ~c ∈ Fq\{~0} we
let ρ̄A(~c) = i if ~c ∈ SpanFq{~a1, . . . ,~ai}\SpanFq{~a1, . . . ,~ai−1}. Here, we used the
notion SpanFq ∅ = {~0}. Finally, we let ρ̄A(~0) = 0.

The component wise product plays a crucial role in the linear code enhancement
of Theorem 13.

Definition 35. The component wise product of two vectors ~u and ~v in Fnq is
defined by (u1, . . . , un) ∗ (v1, . . . , vn) = (u1v1, . . . , unvn).

Definition 36. Let (U ,V,W) and I be as above. Consider I ′ ⊆ I. An ordered
pair (i, j) ⊆ I ′ × I is said to be one-way well-behaving (OWB) with respect to
I ′ if ρ̄W(~ui′ ∗ ~vj) < ρ̄W(~ui ∗ ~vj) holds for all i′ ∈ I ′ with i′ < i.

The following theorem is a first generalisation of the Feng-Rao bound for
primary codes. The generalisation compared to the usual Feng-Rao bound [1, 10]
is that we allow I ′ to be different from {1, . . . ,#I ′}. This is in the spirit of
Section 5.
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Theorem 37. Consider ~c =
∑t
s=1 as~uis with as ∈ Fq, s = 1, . . . , t, at 6= 0 and

i1 < · · · < it. We have

wH(~c) ≥ #
{
l ∈ I | ∃j ∈ I such that ρ̄W(~uit ∗ ~vj) = l,

(it, j) is OWB with respect to {i1, . . . , it}
}
.

(6)

Proof. Let l1 < · · · < lσ be the indexes l counted in (6). Denote by j1, . . . , jσ the
corresponding j-values from (6). By assumption ~c ∗ ~vj1 , . . . ,~c ∗ ~vjσ are linearly
independent and therefore

SpanFq{~c ∗ ~vj1 , . . . ,~c ∗ ~vjσ} = ~c ∗ SpanFq{~vj1 , . . . , ~vjσ}

is a vector space of dimension σ. The theorem follows from the fact that ~c ∗ Fnq
is a vector space of dimension wH(~c) containing the above space.

A slight modification of Definition 36 and the above proof allows for further
improvements.

Definition 38. Let I ′ ⊆ I. A pair (i, j) ∈ I ′ × I is called strongly one-way
well-behaving (SOWB) with respect to I ′ if ρ̄W(~ui′ ∗~vj) < ρ̄W(~ui ∗~vj) holds for
all i′ ∈ I ′\{i}.

The following theorem is the linear code interpretation of Theorem 13. Be-
sides working for a larger class of codes, it is slightly stronger in that we for-
mulate it in such a way that it supports the technique explained in Section 5.
Concretely, what makes it stronger than Theorem 13 is the presence of the set
Î.

Theorem 39. Consider a non-zero codeword ~c =
∑i
t=1 at~ut, at ∈ Fq for t =

1, . . . , i, ai 6= 0. Let v be an integer 0 ≤ v < i. Assume that for some set
Î ⊆ {1, . . . , i−1} we know a priori that ax = 0 when x ∈ Î. Let z1 < · · · < zs be
the numbers in {z ∈ {i−v, . . . , i−1} | z /∈ Î}. Write I∗ = {z ∈ {1, . . . , i−v−1} |
z /∈ Î}. We have

wH(~c) ≥ min{L′(1), . . . ,L′(s+ 1)}
where for t = 1, . . . , s we define L′(t) as follows:

L′(1) = {l ∈ I | ∃z ∈ {zs, i} and j ∈ I such that ρ̄W(~uz ∗ ~vj) = l

(z, j) is SOWB with respect to I∗ ∪ {z1, . . . , zs, i}
}
,

L′(2) =
{
l ∈ I | ∃z ∈ {zs−1, i} and j ∈ I such that ρ̄W(~uz ∗ ~vj) = l

(z, j) is SOWB with respect to I∗ ∪ {z1, . . . , zs−1, i}
}
,

...
L′(s) =

{
l ∈ I | ∃z ∈ {z1, i} and j ∈ I such that ρ̄W(~uz ∗ ~vj) = l

(z, j) is SOWB with respect to I∗ ∪ {z1, i}
}
.

Finally,

L′(s+ 1) =
{
l ∈ I | ∃j ∈ I such that ρ̄W(~ui ∗ ~vj) = l

(i, j) is OWB with respect to I∗ ∪ {i}
}
.

To establish a lower bound on the minimum distance of a code C we repeat the
above process for each i ∈ ρ̄U (C). For each such i we choose a corresponding v,
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defining an s, and we determine the sets L′(1), . . . ,L′(s+ 1) and calculate their
cardinalities. The smallest cardinality found when i runs through ρ̄U (C) serves
as a lower bound on the minimum distance.

Proof. The proof is a direct translation of the proof of Theorem 13.

Remark 40. For v = 0 Theorem 39 reduces to Theorem 37. For higher values
of v Theorem 39 is at least as strong as Theorem 37 and sometimes stronger.
In the same way as Theorem 13 was lifted in Section 6 to deal with generalised
Hamming weights one can lift Theorem 37 and Theorem 39.

8 A related bound for dual codes
In the recent paper [8] we presented a new bound for dual codes. This bound is
an improvement to the Feng-Rao bound for such codes as well as an improvement
to the advisory bound from [22]. The new bound of the present paper can be
viewed as a natural counter part to the bound from [8], the one bound dealing
with primary codes and the other with dual codes.

Definition 41. Consider an ordered triple of bases (U ,V,W) for Fnq and I as
in Section 7. We define m : Fnq \{~0} → I by m(~c) = l if l is the smallest number
in I for which ~c · ~wl 6= 0. (Here, and in the following the symbol · means the
usual inner product).

Definition 42. Consider numbers 1 ≤ l, l + 1, . . . , l + g ≤ n. A set I ′ ⊆ I is
said to have the µ-property with respect to l with exception {l + 1, . . . , l + g} if
for all i ∈ I ′ a j ∈ I exists such that

(1a) ρ̄W(~ui ∗ ~vj) = l, and

(1b) for all i′ ∈ I ′ with i′ < i either ρ̄W(~ui′ ∗ ~vj) < l or ρ̄W(~ui′ ∗ ~vj) ∈
{l + 1, . . . , l + g} holds.

Assume next that l+g+1 ≤ n. The set I ′ is said to have the relaxed µ-property
with respect to (l, l + g + 1) with exception {l + 1, . . . , l + g} if for all i ∈ I ′ a
j ∈ I exists such that either conditions (1a) and (1b) above hold or

(2a) ρ̄W(~ui ∗ ~vj) = l + g + 1, and

(2b) (i, j) is OWB with respect to I ′, and

(2c) no i′ ∈ I ′ with i′ < i satisfies ρ̄W(~ui′ ∗ ~vj) = l.

The new bound from [8, Th. 19] reads:

Theorem 43. Consider a non-zero codeword ~c and let l = m(~c). Choose a
non-negative integer v such that l + v ≤ n. Assume that for some indexes
x ∈ {l + 1, . . . , l + v} we know a priori that ~c · ~wx = 0. Let l′1 < · · · < l′s be the
remaining indexes from {l + 1, . . . , l + v}. Consider the sets I ′0, I ′1, . . . , I ′s such
that:

• I ′0 has the µ-property with respect to l with exception {l + 1, . . . , l + v}.

• For i = 1, . . . , s, I ′i has the relaxed µ-property with respect to (l, l′i) with
exception {l + 1, . . . , l′i − 1}.
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We have
wH(~c) ≥ min{#I ′0,#I ′1, . . . ,#I ′s}. (7)

To establish a lower bound on the minimum distance of a code C we repeat the
above process for each l ∈ m(C). For each such l we choose a corresponding
v, we determine sets I ′i as above and we calculate the right side of (7). The
smallest value found when l runs through m(C) constitutes a lower bound on
the minimum distance.

If we compare Theorem 43 with Theorem 39 we see that to some extend they
have the same flavor. Besides that one deals with dual codes and the other with
primary codes another difference is that we in Theorem 43 has the freedom
to choose appropriate sets I ′0, . . . , I ′s whereas the sets L′(1), . . . ,L′(s + 1) in
Theorem 39 are unique. In [8] it was also shown how to lift Theorem 43 to deal
with generalised Hamming weights. Similar remarks as above hold for the two
bounds when applied to such parameters.

9 A comparison of the new bounds for primary
and dual codes

Recall that it was shown in [9] how the Feng-Rao bound for primary codes and
the Feng-Rao bound for dual codes can be viewed as consequences of each other.
This result holds when the bound is equipped with one of the well-behaving
properties WB or OWB. Regarding the case where WWB is used a possible
connection is unknown. In a similar fashion as the proof in [9] breaks down if
one uses WWB it also breaks down when one tries to prove a correspondence
between Theorem 39 and Theorem 43. We leave it as an open research problem
to decide if a general connection exists or not.
In Section 4 we analysed the performance of primary affine variety codes coming
from optimal generalised Cab polynomials. Using the method from Section 8
one can make a similar analysis for the corresponding dual codes producing
similar code parameters. As an alternative, below we explain how to derive this
result directly from what we have already shown regarding primary codes from
optimal generalised Cab polynomials.
Recall that for optimal generalised Cab polynomials ∆≺w(Iq) is a box:

∆≺w(Iq) = {M1, . . . ,Mn} = {Xα1Y α2 | 0 ≤ α1 < a, 0 ≤ α2 < q}.

This fact gives us the following crucial implication (as usual we assume M1 ≺w
· · · ≺w Mn):

Mi = Xα1Y α2 ⇒Mn−i+1 = Xa−1−α1Y q−1−α2 , for i = 1, . . . , n. (8)

Consider codewords ~c = ev
(∑i

s=1 asMs + Iq
)
, as ∈ Fq, ai 6= 0, and ~c′ ∈ Fnq

such that m(~c′) = n − i + 1. Let v be an integer, 0 ≤ v < i. Recall that in
Section 4 we determined L(u), u = 1, . . . , v + 1. If we use Theorem 43 with
{l + 1, . . . , l + v} = {l′1, . . . , l′s} (no a priori knowledge) then we can choose

I ′0 = {n− l + 1 |Ml ∈ L(v + 1)}

and for u = 1, . . . , v
I ′u = {n− l + 1 |Ml ∈ L(u)}.
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For S ⊆ {1, . . . , n} define S̄ = {1, . . . , n}\{n− s+ 1 | s ∈ S}. Consider

L = SpanFq{ev(Ms + Iq) | s ∈ S},

L̄ = SpanFq{ev(Ms + Iq) | s ∈ S̄}.

As #I ′0 = #L(v + 1) and for u = 1, . . . , v, #I ′u = #L(u) we conclude that
Theorem 43 produces the same estimate for the minimum distance of C⊥(I, L̄)
as Theorem 13 produces for the minimum distance of C(I, L). However, we do
not in general have C(I, L) = C⊥(I, L̄) and therefore the above analysis does
not imply that Theorem 13 is a consequence of Theorem 43 even in the case of
optimal generalised Cab polynomials.
The above correspondence regarding the minimum distance immediately carries
over to the generalised Hamming weights. In [8, Sec. 4] we implemented the
enhancement of Theorem 43 to generalised Hamming weights for a couple of
concrete dual affine variety codes coming from optimal generalised Cab polyno-
mials. As a consequence of (8) the estimates found in [8, Sec. 4] for C⊥(I, L̄)
also hold for C(I, L). This demonstrates the usefulness of the method described
in Section 6.

We conclude the section by demonstrating that d
(
C(I, L)

)
= d

(
C⊥(I, L̄)

)
does not hold for all generalised Cab polynomials.

Example 10. In this example we consider the generalised Cab polynomial F (X,Y ) =
G(X) − H(Y ) ∈ F32[X,Y ] where G(X) = X20 + X18 + X10 + X9 + X5 and
H(Y ) = Y 26+Y 22+Y 21+Y 13+Y 11. Observe that both G and H are (F32,F2)-
polynomials and that G satisfies the condition in Proposition 24 ensuring that
for each η ∈ F2 there exists exactly 24 = 16 γ ∈ F32 such that G(γ) = η.
In particular F (X,Y ) has exactly 512 zeros in F32. As a = degG > 16
{F (X,Y ), X32 − X,Y 32 − Y } cannot be a Gröbner basis with respect to ≺w
(it would violate the footprint bound, Corollary 4). Applying Buchberger’s algo-
rithm we find a Gröbner basis and from that the corresponding footprint

∆≺w(I32) = {Xα1Xα2 | 0 ≤ α1 < 12, 0 ≤ α2 < 32}
∪ {Xα1Xα2 | 12 ≤ α1 < 20, 0 ≤ α2 < 16}.

Recall the improved construction Ẽimp(δ) of primary affine variety codes as
introduced in Definition 15. In a similar way, as Theorem 13 gives rise to the
above Feng-Rao style improved primary codes, Theorem 43 gives rise to improved
dual codes. These codes were named C̃fim(δ) in [8, Rem. 20]. In a computer
experiment we calculated the parameters of these codes. In Figure 7 we plot the
derived relative parameters. As is seen for some designed distances δ, Ẽimp(δ)
has the highest dimension. For other designed distances δ, C̃fim(δ) is of highest
dimension.

10 Conclusion
In this paper we proposed a new bound for the minimum distance and the gen-
eralised Hamming weights of general linear code for which a generator matrix
is known. We demonstrated the usefulness of our bound in the case of affine
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Figure 7: Improved codes from Example 10. A ◦ corresponds to Ẽimp(δ), and
an ∗ corresponds to C̃fim(δ).

variety codes where only the first of the two order domain conditions is satisfied.
For this purpose we introduced the concept of generalised Cab polynomials. We
touched upon the connection to a bound for dual codes introduced in the recent
paper [8], but leave an investigation of a possible general relation between the
two bounds for further research. It is an interesting question if there exists ex-
amples where our new method improves on the Feng-Rao bound for one-point
algebraic geometric codes. This would require that we do not choose v as in
Remark 14 and that we make extensive use of the polynomials Xq

i −Xi. Also
this question is left for further research. The usual Feng-Rao bound for primary
codes comes with a decoding algorithm that corrects up to half the estimated
minimum distance [9]. This result holds when the bound is equipped with the
well-behaving property WB. For the case of WWB or OWB no decoding al-
gorithm is known. Finding a decoding algorithm that corrects up to half the
value guaranteed by Theorem 13 would impose the missing decoding algorithms
mentioned above.
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