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Abstract

We present a new bound for the minimum distance of a general pri-
mary linear code. For affine variety codes defined from generalised Cyp
polynomials the new bound often improves dramatically on the Feng-Rao
bound for primary codes [IJ, [10]. The method does not only work for the
minimum distance but can be applied to any generalised Hamming weight.
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1 Introduction

In this paper we present an improvement to the Feng-Rao bound for primary
codes [I} 10, @]. Our method does not only apply to the minimum distance but
estimates any generalised Hamming weight. In the same way as the Feng-Rao
bound for primary codes suggests an improved code construction our new bound
does also. The new bound is particular suited for affine variety codes for which
it often improves dramatically on the Feng-Rao bound. Interestingly, for such
codes it can be viewed as a simple application of the footprint bound from Gréb-
ner basis theory. We pay particular attention to the case of the affine variety
being defined by a bivariate polynomial that, in the support, has two univariate
monomials of the same weight and all other monomials of lower weight. Such
polynomials can be viewed as a generalisation of the polynomials defining Cl
curves and therefore we name them generalised Cyp, polynomials. We develop
a method for constructing generalised Cy;, polynomials with many zeros by the
use of (Fpm,F,)-polynomials, that are polynomials returning values in F,, when
evaluated in Fpm (see, [2Il Chap. 1]). Here, p is any prime power and m is
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an integer larger than 1. With this method in hand we can design long affine
variety codes for which our bound produces good results. The new bound of
the present paper is closely related to an improvement of the Feng-Rao bound
for dual codes that we presented recently in [8]. Recall from [J] that the usual
Feng-Rao bound for primary and dual codes can be viewed as consequences
of each other. This result holds when one uses the concept of well-behaving
pairs or one-way well-behaving pairs. For weakly well-behaving pairs a possible
connection is unknown. In a similar way as the proof from [9] breaks down for
weakly well-behaving, it also breaks down when one tries to establish a con-
nection between the new bound from the present paper and the new bound
from [8]. We shall leave it as an open problem to decide if the two bounds are
consequences of each other or not.

In the first part of the paper we concentrate solely on affine variety codes. For
such codes the new method is intuitive. We start by formulating in Section [2]our
new bound at the level of affine variety codes and explain how it gives rise to an
improved code construction Ej;,,(d). Then we continue in Sectionby showing
how to construct generalised Cy;, polynomials with many zeros. In Section [4] we
give a thorough treatment of codes defined from so-called optimal generalised
Cap polynomials demonstrating the strength of our new method. In Section [5]
we show how to improve the improved code construction Ej,,,(d) even further.
This is done for the case of the affine variety being the Klein quartic. Having
up till now only considered the minimum distance, in Section [6] we explain how
to deal with generalised Hamming weights. Then we turn to the level of general
primary linear codes lifting in Section [7] our method to a bound on any primary
linear code. In Section [§] we recall the recent bound from [8] on dual codes, and
in Section [9] we discuss the relation between this bound and the new bound of
the present paper. Section [10]is the conclusion.

2 TImproving the Feng-Rao bound for primary affine
variety codes

Affine variety codes were introduced by Fitzgerald and Lax in [4] as follows.
For ¢ a prime power consider an ideal I C Fy[X,...,X,,] and define

Iq:I+<Xg7Xla~-~ann*Xm>v (1)
R, =F,[X1,..., Xn)/1,.
Let {P1,...,P,} = Vg, (I;) be the corresponding variety over F,. Here, P; #
Pj for i # j. Define the F,-linear map ev : R, — Fy by ev(A + [;) =
(A(Py),..., A(P,)). It is well-known that this map is a vector space isomor-
phism.
Definition 1. Let L be an Fy vector subspace of Ry. Define C(I,L) = ev(L)
and C(I,L) = (C(I, L))"
We shall call C(I, L) a primary affine variety code and C+ (I, L) a dual affine
variety code. For the case of primary affine variety codes both the Feng-Rao

bound and the bound of the present paper can be viewed as consequences of
the footprint bound from Grobner basis theory as we now explain.



Definition 2. Let J C k[X1,...,X,,] be an ideal and let < be a fized monomial
ordering. Here, k is an arbitrary field. Denote by M(X1,...,X,,) the mono-
mials in the variables X1, ..., Xum. The footprint of J with respect to < is the
set

AL(J) = {MeM(Xy,...,X,) | M is not

the leading monomial of any polynomial in J}.

Proposition 3. Let the notation be as in Definition[d The set {M +J | M €
AL ()} constitutes a basis for k[X1, ..., Xm]/J as a vector space over k.

Proof. See |2, Pro. 4, Sec. 5.3]. O

We shall make extensive use of the following incidence of the footprint bound
(for a more general version, see [7]).

Corollary 4. Let Fy,...,Fs € Fy[X1,...,Xn]. For any monomial order-
ing < the variety Vy ((F1,...,Fs)) is of size equal to #AL((F1,..., Fs, X{ —
Xiyo, X9 — X)),

Proof. Follows from Proposition [3| and the fact that the map ev is a bijection.
O

We next recall the interpretation from [6] of the Feng-Rao bound for primary
affine variety codes.

Definition 5. A basis {B1 + Iy, ..., Baim(r) + I} for a subspace L C R,
where Supp(B;) C As(Iy) for ¢ = 1,...,dim(L) and where Im(By) < --- <
Im(Baim(r)), is said to be well-behaving with respect to <. Here, Im(F) means
the leading monomial of the polynomial F.

For fixed < the sequence (Im(By), ..., Im(Bgim(z))) is the same for all choices
of well-behaving bases of L. Therefore the following definition makes sense.

Definition 6. Let L be a subspace of R, and define

O<(L) = {lm(B1),. .., m(Bgim(r)) },
where {B1 + Iy, ..., Baim(z) + 1g} is any well-behaving basis for L.

The concept of one-way well-behaving plays a crucial role in the Feng-Rao
bound as well as in our new bound. It is a relaxation of the well-behaving
property and the weakly well-behaving property (see [6] [10] for a reference) and
therefore it gives the strongest bounds.

Definition 7. Let G be a Grobner basis for I, with respect to <. An ordered pair
of monomials (M;, M;), M;, M; € A(1,) is said to be one-way well-behaving
(OWB) if for all H € Fy[X7, ..., X,,] with Supp(H) C A(1,) and Im(H) = M;
it holds that

Im(M; M; rem G) = Im(HM; rem G).

Here, F' rem G means the remainder of F after division with G (see [3, Sec. 2.3]
for the division algorithm for multivariate polynomials).



As noted in [6] the concept of OWB is independent of which Grébner basis
G is used as long as I, and < are fixed. We are now ready to describe the

Feng-Rao bound for primary affine variety codes. We include the proof from [6],
Th. 4.9].

Theorem 8. Let G be a Grébner basis for I, with respect to <. Consider a
non-zero word ¢ and let A be the unique polynomial such that Supp(A) C AL (1,)
and ¢ = ev(A). Let Im(A) = P. We have

wg(€) > #{KeAL(l,)]|3IN e As(1,) such that
(P,N) is OWB and Im(PN rem G) = K}. (2)

A bound on the minimum distance of C(I, L) is found by taking the minimum
of (@ when P runs through 0% (L).

Proof. From Corollary [ we know that

wir(@) = n—H#AL(I,+ (A))
= #A<(Iq) - #A<(Iq + <A>)

#(apasi, + @) 3)

If N,K € A(I,) satisty that (P,N) is OWB and Im(PN rem G) = K then
K e AL(I)\A<(Iy + (A)). Hence,

such that (P, N) is OWB and Im(PN rem G) = K }.

O

The Feng-Rao bound is particular suited for affine varieties which satisfy
the order domain conditions [6} Def. 4.22]. For other varieties it does not seem
to produce very good results. The new bound of the present paper solves this
problem for affine varieties which satisfy the first half of the order domain con-
ditions. This gives a lot of freedom as the latter set of varieties is much larger
than the former. In its most general form the order domain conditions involves a
weighted degree monomial ordering with weights in NS\{6}, T a positive integer
(see [0, Def. 4.21]). Here, for simplicity we shall only consider weights in N.

Definition 9. Let w(X1),...,w(X,,) € N and define the weight of Xi* - - - Xim

to be the number w(Xi' -+ Xir) = iyw(X1) + -+ + inw(X,,). The weighted

degree ordering <., on M(Xi,...,X,,) is the ordering with X{* -+ Xim <,

X7t X if either w(X5 -+ Xim) < w(XT' -+ XIm) holds orw(X!* - Xim) =
w(X? - XIm) holds but X ... Xim </ XI'... XJm. Here, <' is some fived

monomial ordering. When <’ is the lexicographic ordering <jc. with X, <jcz

- <ex X1 we shall call <., a weighted degree lexicographic ordering.

We now state the order domain conditions which play a central role in the
present paper.

Definition 10. Consider an ideal J C k[X,...,X,,] where k is a field. Let a
weighted degree ordering <., be given. Assume that J possesses a Grobner basis
F with respect to <, such that:



(C1) Any F € F has exactly two monomials of highest weight.
(C2) No two monomials in A< (J) are of the same weight.
Then we say that J and <., satisfy the order domain conditions.

In the following we restrict to weighted degree orderings where <'=<,.
That is, <,, shall always be a weighted degree lexicographic ordering.

Example 1. Consider I = (X? + X — Y3) C F4[X,Y] and Iy accordingly
(see (1)). Choosing X = X1, Y = X, w(X) =3 and w(Y) = 2 we see that the
order domain conditions are satisfied. By inspection we have

AL (L) ={1,Y,X,Y? XY, Y3 XY? XY3}

with corresponding weights {0,2,3,4,5,6,7,9}. Consider a word ¢ = ev(A+ I4)
where A = a1l + @Y + a3X, a1,a2 € Fy and a3 € F\{0}. By Corol-
lary 4| the length is n = 8. We now estimate the Hamming weight wgy () =
#(A<, (I)\A<, (I + (A))) (see (@)) The following elements in A~ (I4)
do not belong to A, (I + (A)). Namely, Im(A-1) = X, Im(A-Y) = XY,
Im(A-Y?) = XY2% Im(A-Y3) = XY3, and Im(A- X rem X?+ X —Y3) =Y3.
Observe that the last calculation holds due to the fact that X%+ X —Y?3 contains
exactly two monomials of the highest weight. We have shown that the Hamming
weight of & is at least 5. With the proof of Theorem [§ in mind an equivalent
formulation of the above is to observe that (X,1), (X,Y), (X,Y?), (X,Y?3),
and (X, X) are OWB. Another equivalent method is guaranteed by the condi-
tion that A< (I) does not contain two monomials of the same weight. This
implies that rather than counting the above OWB pairs we only need to observe
that w(A<, (1)) N (w(X) + w(Ax, (11))) = {3,5,6,7,9}. Again, a set of size
5.

The following Proposition (corresponding to [6, Pro. 4.25]) summarises how
the Feng-Rao bound is supported by the order domain condition.

Proposition 11. Assume I CFy[X1,...,X,,] and <, satisfy the order domain
conditions. Consider I, = I + (X{ — X1,..., X% — X,,,). A pair (P,N) where
PN e AL, (I;) is OWB if w(P)+w(N) € w(Ax, (Ig))-

The order domain conditions historically [I3} 20, ] [6] were designed to sup-
port the Feng-Rao bounds and therefore it is not surprising that the bound does
not work very well without them. The improvement to the Feng-Rao bound that
we introduce below allows us to consider relaxed conditions in that we can pro-
duce good estimates in the case that the order domain condition (C1) is satisfied
but (C2) is not. The following example illustrates the idea in our improvement
to Theorem [

Example 2. Consider [ = (X*+ X2+ X —-Y%-Y®-V3) CF[X,Y]. Let <y
be the weighted degree lexicographic ordering (Definition @ given by X = Xq,
Y = X5, w(X) =3 and w(Y) = 2. From [22, Sec. 3] and [8, Sec. 4.2] we
know that the variety Vy,(Ig) is of size 32. Combining this observation with
Corollary[f] we see that

A, (Is) ={X*Y?|0<a<4,0<B<8}.



By inspection we see that some weights appear twice in A, (Is), some only
once. Consider ¢ = ev(A + Ig) where Im(A) = X3. That is,

A = al+aY +asX +aY?+as XY +agY? + ar X2
—|—CL8XY2 + a9Y4 + CL10X2Y + CL11XY3 + CL12X3.

Here, a; € Fg, i = 1,...,12 and a12 # 0. Note that A has two monomials

of the highest weight if a;; # 0, namely X2 and XY?3. Following the proof of
Theorem@ we consider P = X3 and look for N, K € A~ (I3) such that (P,N)

is OWB and Im(PN rem G) = K. We have the following possible choices of

(N, K), namely (1, X3), (Y, X3Y), (Y2, X3Y?),..., (Y7, X3Y7), (X3, X2Y%), (X?Y, X2Y7).
From this we conclude that wg (¢) > 10.

Note that X3+ X rem G =YS. However, (X3, X) is not OWB as

XY3 <, X3 but XY3- X rem G = X?Y® =, YO, (4)

Our improved method consists in considering separately two different cases:

XY3 € Supp(A) and XY? ¢ Supp(A).

Case 1: Assume ay; # 0. Following we see that Im(A - X rem G) = X2Y3.
In a similar way we derive Im(A-XY rem G) = X2Y* and Im(A-XY? rem G) =
X2Y5. From this we conclude

AL, (I, +(A) C{XYP | 0<a<3,0<B<8, and if a =2 then B < 3}
and therefore that wi (€) > n — #A, (Is+ (4)) =32 —19 =13.

Case 2: Assume ay1 = 0. This means that we do not have to worry about
and consequently Im(A - X rem G) = Y holds. In a similar way we derive
Im(A-X2 rem G) = XYS Im(A- XY rem G) =Y7, and Im(A - X%Y rem G) =
XY7. We conclude that

AL, (Ig+(4) C{XY?|0<a<3,0<8<6}

and therefore from the proof of Theorem@ we have that wy (€) > n—#A~, (Is+
(A)) =32—-18 = 14.

In conclusion wy (€) > min{13,14} = 13.
With Example [2] in mind we now improve upon Theorem [8

Definition 12. Let G be a Grébner basis for I, with respect to a fized arbitrary
monomial ordering <. Write A, (Iy) = {M, ..., My} with My < --- < M,. Let
Z ={1,...,n} and consider I' C I. An ordered pair of monomials (M;, M;),
1 <i,j < nis said to be strongly one-way well-behaving (SOWB) with respect
to Z' if for all H with Supp(H) C {M, | s € I'}, M; € Supp(H) it holds that
Im(M; M; rem G) = Im(HM; rem G).

In the following, when writing A (I,) = {Ma, ..., M,}, we shall always as-
sume that M; < --- < M, holds. ‘
Consider a non-zero codeword ¢ = ev(A + I,), where A = >"'_, asMs, i > 2,
as; € Fyfor s=1,...,%¢ and a; # 0. Let v be an integer 1 < v < i. We consider



v + 1 different cases that cover all possibilities:
Case 1: a;—1 # 0.

Case 2: ;1 = 0, ;2 7é 0.

Case v: a;—1 =aj—9 ="+ =Qj—pt1 =0, @;—y # 0.
Case vtl:a;_1 = = aj_, =

For each of the above v 4 1 cases we shall estimate n — #A_ (I, + (4)). Then
the minimal obtained value constitutes a lower bound on wy (€). Note that in
Example 2] we used v = 1.

Theorem 13. Let < be a fized arbitrary monomial ordering. Consider ¢ =
ev(di_jasMs +1,), as € Fy, s = 1,...,4, and a; # 0. Let v be an integer
0<wv<i. Wehave

wir(@) > min{#L(1), ..., #£(v + 1)}
where fort =1,... v we define L(t) as follows:

L(1) = {KeAs(l,)|3M; e As(1,) such that either
(M;, M;) is OWB and Im(M;M; rem G) = K or
(M;—1, Mj;) is SOWB with respect to {1,...,i}
and Im(M;_M; rem G) = K },

L£(2) = {KeAi(,) |3M; e AL(I,) such that either
(M;, M;) is SOWB with respect to {1,...,1— 2,1}
and Im(M;M; rem G) = K or
(M;—2, M;) is SOWB with respect to {1,...,i— 2,1}
and Im(M;_oM; rem G) = K},

Lv) = {KeAs(l,)]|3IM; e A(I,) such that either
(M;, M;) is SOWB with respect to {1,...,1—v,i}
and Im(M;M; rem G) = K or
(M;—y, M;) is SOWB with respect to {1,...,i —v,i}
and Im(M;_,M; rem G) = K},

Finally,

Lw+1) = {KeAL(I,)]|3IM; € AL(Iy) such that (M;, M;) is SOWB
with respect to {1,...,i—v —1,i} and Im(M;M; rem G) = K}



Given a code C(I,L) write O<(L) = {M,,..., My, }. A lower bound on
the minimum distance is obtained by repeating the above calculation for each
i € {i1,...,idim(r)}- For each choice of i an appropriate value v is chosen.

Proof. If v = 0 then only the last set is present and this set equals the set in .
For v > 0 the v + 1 expressions correspond to the v + 1 cases described prior to

the theorem (in the same order). The proof technique resembles the arguments
used in Example [2] O

Remark 14. Consider anideal I C Fy[X4,..., Xy] and a corresponding weighted
degree lexicographic ordering <., such that the order domain condition (C1) is
satisfied but (C2) is not. Let F be a Grobner basis for I with respect to <.
Assume Theorem is used to estimate the Hamming weight of ¢ = ev(A + 1)
where Im(A) = M;. A natural choice of v is the unique non-negative integer
which satisfies w(M;) = w(M;—1) = -+ = w(M;—y) > w(M;_y_1). To see
why this choice of v is natural, note that when reducing AM; modulo F the
weight of the leading monomial remains the same. Hence, the leading monomial
of AM; rem F can not be equal to M;M; rem F fort < i—wv —1. On the
other hand as illustrated in Example[3 this may happen when t > i —v. For I
and <, such that both order domain conditions are satisfied the above choice
of v is v =0 and Theorem [I3 therefore simplifies to the usual Feng-Rao bound
Theorem [ in this case.

Theorem [13| can be applied to any code C(I, L). However, it is not clear if
there is any advantage in considering other choices of L than L = Spang, {ev(M;, +
I),...,ev(M;, + 1I,)}. When 44 = 1,...,i; = k we shall denote the corre-
sponding code by E(k). Observe that Theorem [13| suggests an improved code
construction as follows.

Definition 15. Fix non-negative numbers vy, ..., v, and calculate for each M;,
i =1,...,n the number in Theorem |15 where v = v;. Call these number (i),
i =1,...,n. We define Eimp(é) to be the code with L = Spang {ev(M; + 1g) |
o(i) > 6}.

Proposition 16. The minimum distance of Eimp(é) satisfies d(ff?imp(é)) >9.

The above improved code construction is in the spirit of Feng and Rao’s work.
When improved codes are constructed on the basis of the Feng-Rao bound, The-
orem [8] rather than on the basis of the improved bound of the present paper,
Theorem the notation used is F(4) (see [6l, Def. 4.38]). In Sectionwe shall
see that one can sometimes derive even further improved codes from Theorem[13]
than Ejy,p(0).

We conclude this section by noting that in a straight forward manner one

can enhance the above bound to deal also with generalised Hamming weights.
We postpone the discussion of the details to Section [0}

3 Generalised C; polynomials

As mentioned in the previous section good candidates for our new bound are
affine variety codes where the order domain condition (C1) is satisfied, but the



order domain condition (C2) is not. A particular simple class of curves that
satisfy the order domain conditions are the well-known C,; curves. They were
introduced by Miura in [I7), 18| [19] to facilitate the use of the Feng-Rao bound
for dual codes. In this section we introduce generalised C,; polynomials which
corresponds to allowing the same weight to occur more than once in the foot-
print (condition (C2)). It should be stressed that we make no assumption that
generalised C,;, polynomials are irreducible as it has no implication for our anal-
ysis.

From [I9, App. B and the lemma at p. 1416] we have a complete characterisa-
tion of Cyp curves. We shall adapt the description in [I6] which is an English
translation of Miura’s results. From [I6] Th. 1] we have:

Theorem 17. Let k be the algebraic closure of a perfect field k, X C k? be a
possibly reducible affine algebraic set defined over k, x,y the coordinate of the
affine plane k%, and a, b relatively prime positive integers. The following two
conditions are equivalent:

e X is an absolutely irreducible algebraic curve with exactly one k rational
place @ at infinity, and the pole divisors of x and y are bQ and aQ,
respectively.

o X is defined by a bivariate polynomial of the form

. o
0,02 + oy’ + E a; 52"y’ (5)
ib+ja<ab

where o; ; € k for all i, and o0, agp are non-zero.

The definition of Cy, curves given in the literature is that of . We recall
the following result from [I9]. We adapt the description from [I6, Cor. 3].

Proposition 18. Let F(X,Y) € k[X,Y] be a polynomial of the form (@), Q a
unique place at infinity of the Cyp curve defined by F(X,Y). Then

(XY +(F(X,Y))|0<i<a—1,0<j}

is a k-basis for k[X,Y]/(F(X,Y)) and the elements in the basis have pairwise
distinct discrete valuations at Q. If the Cyp curve is non-singular, then

KX, Y]/(F(X,Y)) = £(Q)
and a basis of L(mQ) is
{(XYT 4+ (F(X,Y))|0<i<a—1,0<jai+bj <m}
for any non-negative integer m.

Let w(X) and w(Y'), respectively, be minus the discrete valuation of x at
@ and minus the discrete valuation of y at @, respectively. Consider the cor-
responding weighted degree lexicographic ordering with X = X; and Y = X,.
If we combine with the first part of Proposition [18| we see that Cy;, curves
satisfy the order domain conditions. Observe, that we can consider the related
affine variety codes C(I,L) and C*(I, L) regardless of the curve being non-
singular or not. This point of view is taken in [I3] Sec. 4.2]. If the curve is
non-singular the corresponding affine variety code description does not have
an algebraic geometric code counterpart. We now introduce generalised Cyg
polynomials.



Definition 19. Let w(X) = m and w(Y') = Zed(apy Where a and b are two
different positive integers. Given a field k, let F(X,Y) = X*+aY*+R(X,Y) C
E[X,Y], o € k\{0}, be such that all monomials in the support of R have smaller
weight than w(X?) = w(Y?) = 2 Then F(X,Y) is called a generalized

ged(a,b) *
Cap polynomial.

Miura in [I7) Sec. 4.1.4] treated the curves related to irreducible generalized
Cqp polynomials. Besides that we do not require the generalized C,;, polynomi-
als to be irreducible, our point of view is different from Miura’s as we will use
for the code construction the algebra F,[X,Y]/(F(X,Y)). For generalized Cy;,
polynomials this algebra does not in general equal a space L(m1 Py +---+m4Py),
Py, ..., P, being rational places. We mention that the variations of C,; curves
considered by Feng and Rao in [3] is different from Definition

For the code construction we would like to have generalised C,; polynomials
with many zeros and at the same time to have a variety of possible a, b to choose
from, as these parameters turn out to play a crucial role in our bound for the
minimum distance. As we shall now demonstrate there is a simple technique
for deriving this when the field under consideration is not prime. The situation
is in contrast to Cyy, curves for which it is only known how to get many points
for restricted classes of @ and b. Our method builds on ideas from [22] and [17]
Sec. 5.

Let p be a prime power and ¢ = p™ where m > 2 is an integer. The technique
that we shall employ involves letting F(X,Y) = G(X) — H(Y) where both G
and H are (F,m,F,)-polynomials.

Definition 20. Let m be an integer, m > 2. A polynomial F(X) € Fpm[X] is
called an (Fpm,Fp)-polynomial if F(vy) € F), holds for all v € Fpm.

An obvious characterisation of (F,m,F,)-polynomials is that F(X) = (X?" —
X)Q(X) + F'(X), where F'(X) is an (Fpm,F,)-polynomial of degree less than
p™. Here, we used the convention that deg(0) = —oo. By Fermat’s little theorem
the set of (Fpm,F,)-polynomials of degree less than p™ constitutes a vector space
over F,,. Clearly, one could derive a basis by Lagrange interpolation. For our
purpose, however, it is interesting to know what are the possible degrees of the
polynomials in the vector space.

Proposition 21. Let C;,,...,C;, be the different cyclotomic cosets modulo
p™ — 1 (multiplication by p). Here, for s = 1,...,t it is assumed that iy is
chosen as the smallest element in the given coset. For s =1,...,t, F; (X) =
Zlecig X! is an (Fym,F,)-polynomial. Furthermore, the polynomial XP" ~1 is
an (Fym, F,)-polynomial.

Proof. For all the polynomials F' in the proposition we have FP = F. O

The set {F},, ..., F;,, X?" ~'} contains two of the most prominent (F,m,F,)-
polynomials, namely the trace polynomial F;(X) = X? +XP" T XP
X and the norm polynomial X®”~1/(=1)  Note that the norm polynomial
equals Fi,m_1)/(p—1) if p > 2. For p = 2 it equals X?P" =1 Observe also that
except for the constant polynomial F = 1, the trace polynomial is of lowest

t?
m—1

10



possible degree.
From [12] Prop. 3.2] we have:

Proposition 22. A polynomial F(X) € Fpm[X] is an (Fpm,F,)-polynomial of
degree less than p™ — 1 if and only if

F(X) = F,(H(X)) rem (X?"~t 1)
for some H(X) € Fpm [X].
From Proposition [21| and Proposition [22| we conclude:

Corollary 23. Let F'(X) be an (F,m,F,)-polynomial of degree less than p™.
Then deg(F) € {deg(F3,),-..,deg(F;,),p™ — 1}.

We now return to the question of designing generalised Cg;, polynomials
F(X,Y)=G((X)— H(Y) with many zeros. One way of doing this is to choose
G(X) to be the trace polynomial [22, Sec. 3|. As is well-known this polynomial
maps exactly p”~! elements from F,~ to each value in F,. Hence, such a poly-
nomial F(X,Y) must have p*™~! zeros. However, there are other polynomials
in the above set with properties similar to the trace polynomial.

Proposition 24. Consider the polynomials F;,, s = 1,...,t related to a field
extension Fpm /F,,, m > 2 (Proposition . We have ged(is,p™ — 1) =1 if and
only if for each n € F, there exists exactly p™' v € Fpm such that F; (y) = 1.

Proof. We have F;_(X) = Fy(X*) mod (X9"~! — 1), where Fy(X) is the trace
polynomial. Under the condition that ged(is, p™ — 1) = 1 the monomial X'
defines a bijective map from Fpm» — F,m. This proves the “only if” part. We
leave the “if” part for the reader. [

Example 3. Consider first the field extension Fg/Fo. The non-trivial cyclo-
tomic cosets modulo 7 are Cy = {1,2,4}, and C3 = {3,6,5}. From this we
find the following (Fg,Fa)-polynomials: Fi(X) = X* + X2 + X, F3(X) =
X6 4+ X5+ X3, and X". The first two polynomials have the property described
in Proposition[2]} This is a consequence of 7 being a prime.

Consider next the field extension F16/Fy. The non-trivial cyclotomic cosets mod-
ulo 15 are Cy = {1,2,4,8}, C5 = {3,6,12,9}, C5 = {5,10}, C7 = {7,14,13,11}.
Hence, we get the following (F16, Fa)-polynomials Fy(X) = X8+ X* + X% + X,
F3(X)= X2+ X%+ X0+ X3 F5(X) = X104 X5 Fp(X) = XM+ X1+ x4
X7, and X'5. The polynomials with the property described in Proposition
are F1(X), F7(X).

Consider finally the field extension Fso/Fo. Observe that 31 is a prime. Hence,
all the polynomials F;_, is > 0, have the property of Proposition |24l These are
Fi(X)=X"U 4+ X8+ X4+ X2+ X, F3(X) = X+ X7+ X2+ X6 + X3,
F5(X) — X20—|—X18—|—X10+X9+X5, F7(X) — X28+X25 —|—X19 +X14 —|—X7,
Fii(X) = X6+ X224+ X2 4 X183 + XU and Fi5(X) = X30 + X2 + X27 +
X23 +X15,

4 Codes from optimal generalised C;, polynomi-
als

In this section we consider codes from generalised Cyp polynomials over Iy with
n = aq zeros. These polynomials are optimal in the sense that a bivariate

11



polynomial with leading monomial X can have no more zeros over I, as is
seen from the footprint bound Corollary ] Hence, we shall call them optimal
generalised Cqp, polynomials. We list a couple of properties of optimal generalised
C,p polynomials F(X,Y) = X*+aY?+ R(X,Y). It holds that a < b and that
{F(X,Y),Y? — Y} constitutes a Groébner basis G for I, = (F(X,Y), X? —
X,Y?-Y) with respect to <,,. Here, and in the remaining part of the section,
<w is the weighted degree lexicographic ordering in Definition [J] with weights
as in Definition [19| and with X = X3, Y = X,. Furthermore, {M;,..., M} =
AL (1) = {X"Y™ | 0 <43 < a,0 < iy < g}. Recall, that we assume
Ml <w  =w Mn~

From the previous section we have a simple method for constructing optimal
generalised Cy, polynomials over F, = F,m, where p is a prime power and m
is an integer greater or equal to 2. The method consists in letting F(X,Y) =
G(X)—H(Y) where G(X) is the trace polynomial and H(Y’) is an arbitrary non-
trivial (Fpm,Fp)-polynomial. We stress that the results of the present section
hold for any optimal generalised Cg, polynomial over arbitrary finite field F,.
The main result of the section is:

Theorem 25. Let I, be defined from an optimal generalised Cqp polynomial
and let the weights w(X) and w(Y) be as in Definition [I9 Consider ¢ =
ev(>Xi_jasMy+1,), as € Fy, s = 1,...,i and a; # 0. Write M; = XY 2
and T = oy rem w(Y). We have that

wp(€) > (a — a1)(q — az) + € where

0 ifg—b<ax<gq
T(qg— a2 —D) if0<a; <a—wy)
and 0 < as <q—>
e=<ai(qg—az—Db) ifa—wlY)<a <aand
q—w(X)—alf;ﬁ(();g <oy <q—h
T(@g— o —w(X)) ifa—wlY) <o <a and
Ogaggq—w(X)—alzji)(é;.

The proof of Theorem [25] calls for a definition and some lemmas. Recall from
Theorem 13| that we need to estimate the size of the sets L(u), u=1,...,v+ 1.
For this purpose we introduce the following related sets:

Definition 26. Let the notation be as in Definition [I9 and Theorem [25. For
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arbitrary a1, a2, 0 < a1 < a, 0 < as < q we define

Bl(XouYaz) = {X’YlY’Yz | a1 <y <a,ap <y < q},

By(X1Yo2) =

{)(71}/72 \al —T§71 < oq,
if T#0

a2+b§*yg<q} and 0 <as<qg—»>

0 otherwise,
and foru=1,... gcd(a,b)

By(X™1Y*2 ) =

{X'“Y’V2 la—w¥)u <y < ay,

if a—wlY)<a <a
a2+w(X>uS72<f1} O{nd o<(a2)<qib

0 otherwise.

Remark 27. Note that w(X)ged(a,b) =b and w(Y') ged(a, b) = a, thus:
B3 (XY, ged(a, b)) = {X%YW [0<m <a,a2+b< 7 < Q}~

Furthermore for any choice of w € {1,...,gcd(a,b)} and M € AL(I,) we have
that Bl(M)mBQ(M) = B1(M)ﬁB3(M,U) = 0. IfBg,(M, ’LL) #* 0 then BQ(M) -
B3(M, u)

Before continuing with the lemmas we illustrate Definition 26| with an ex-
ample.

Example 4. Consider an optimal generalised Cqp, polynomial F(X,Y) = X% —
Y12+ R(X,Y) € For[X,Y]. We havea =9, b =12, w(X) =4, w(Y) =3, and
AL, (1) ={X0Y%= [0<i; <9,0<iy <27}

We first treat the case X*1Y 2 = X°Y'6. We have ap > q—b, thus Ba(X*1Y*2) =
B3(X*1Y*2 u) =0 for any u. For an illustration see Figure .

Now consider the case XY 2 = X°Y*. We have as < g—b andT =2 # 0 and
therefore Bo(X 1Y “2) is non-empty. Because T = 2, the width of Bo(X 1Y 2)
is 2. Turning to B3(X*'Y*2 u) we see that aq < a —w(Y) and therefore the
sets Bs(X*1Y*2 u)’s are empty. See Figurefor an illustration.

Consider next the case XY = X8Y3 We have as < ¢ — b and a1 >
a — w(Y) and therefore Bo(X*1Y*?) and Bs(X*'Y*2 u) for u = 1,2,3 are
non-empty. The situation regarding Ba(X1Y *2) is similar to the case X°Y*.
The set B3(X*Y*2 u) can be thought of as an improvement to Bo(X*1Y2),
We see that v1 runs from a —w(Y)u to oy and 2 from ag + w(X)u to q. For
an illustration see Figure[3.
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Y26 78
Y25 75
Y24 72
Y23 69
Y22 66
Y21 63
Y20 60
Y19 57
Y18 54
Y17 51
Y16 48
Y15 45
Y14 42
Y13 39
Y12 36
Y11 33
Y10 30
Y9 27
Y3 24
Y7 21
Y6 18
¥5 15
Y4 12
Y3 9
Y2 6
Y1 3
10
;
Figure 1
Xory o2
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not present.

Y26
Y25
Y24
Y23
Y22
Y21
Y20
Y19
Y18
Y17
Y16
Y15
Y14
Y13
Y12
Y11
Y10
Ya
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y
1

78
75

a2
79
76
73
70
87
64
61
58
55
52
49
46
43
40
37
34
31
28
25
22
19
16
13
10
7

4

86 90 94 OB 102 108 110 Y26 78 B2 86 90 94 9B 102 106 110
83 87 91 085 93 103 107 Y25 70 79 83 8 91 95 99 103 107
80 84 83 902 98 100 104 Y24 72 76 80 84 88 92 95 100 104
77 81 85 89 93 oFr 101 Y23 69 73 77 81 85 89 93 97 1M
74 78 82 86 90 94 98 Y22 66 70 74 78 82 86 90 94 98
7 7 79 B3 8 91 95 Y21 63 67 T1 73 79 83 BT 91 95
68 72 76 B0 B4 BB 092 Y20 60 B4 638 72 76 80 B4 BB 92
69 69 73 TT 81 B B9 Y19 57 61 65 69 73 77 &1 85 89
62 66 70 T4 78 B2 B85 Y18 54 58 62 66 70 T4 78 B2 86
59 63 67 T 7 79 B3 Y17 51 55 59 83 67 T1 7™ 79 B3
56 60 64 68 72 76 B0 Y16 48 52 56 60 64 6B 72 76 80
53 57 61 65 6 73 77 Y15 45 49 53 57 61 65 89 T3 77
50 54 58 B2 66 70 74 Y14 42 46 50 54 58 62 66 T0 T4
47 51 55 59 63 67 ™ Y13 39 43 47 51 55 358 83 67 T
44 48 352 56 60 64 B8 Y12 36 40 44 48 52 96 60 64 6B
41 45 49 53 57 81 865 Y11 33 37 1 45 49 53 57 61 65
38 42 46 50 54 58 62 Y10 30 34 38 42 46 B0 54 5B 62
35 39 43 47 51 55 59 Y9 27 31 35 39 43 47 51 55 59
32 36 40 44 48 52 56 Y8 24 28 32 ¥ 40 44 45 32 36
29 3 I M 45 49 53 Y7 21 25 29 3 I M 45 49 33
26 30 34 38 42 46 50 Y6 18 22 26 30 34 3B 42 46 50
23 27 31 3B 39 43 47 ¥3 15 19 23 27 31 35 39 43 47
20 24 28 32 36 40 44 Y4 12 16 20 24 28 32 36 40 44
17 21 25 29 3 337 M Y3 9 13 17 21 25 29 3 I M
14 18 22 26 30 34 38 Y2 6 10 14 18 22 26 30 34 38
1 15 19 23 27 31 35 Y13 7 1" 15 19 23 27 3 35
8 12 16 20 24 28 32 1 0 4 8 12 16 20 24 28 32
X2 X3 X4 X5 X6 X7 X8 1 X Xz X3 X4 X9 X6 X7 X8
Left part: X*Y*2 X°Y1'6. Only B; present. Right part:
X°Y?. Light grey area is B;, medium grey area is By. Bj is
86 90 94 93 102 106 110 Y26 102 106 110
83 87 91 95 99 103 107 Y25 99 103 107
80 84 88 92 95 100 104 Y24 96 100 104
77 81 85 489 93 97 101 Y23 93 9r 10
74 78 82 86 90 94 98 Y22 90 94 98
7 7 79 83 8F 91 99 Y21 &F 91 99
68 72 76 80 84 388 92 Y20 44 838 92
65 69 73 77 81 85 89 Y19 81 85 89
62 66 70 74 76 82 85 Y18 78 82 486
59 63 67 T1 7> 79 83 Y17 75 79 83
96 60 B4 68 72 76 80 Y16 T2 76 80
53 57 61 69 Y15 63 73 77
50 54 58 62 Y14 66 70 T4
47 51 55 959 Y13 63 67 T
44 48 52 36 Y12 60 64 66
41 45 49 33 Y1 97 61 63
38 42 46 50 Y10 42 54 58 82
35 39 43 47 Yo 39 51 55 59
32 38 40 44 Y8 36 48 52 D6
29 3 3T M4 Y7 33 45 49 53
26 30 34 38 Y6 30 42 46 B0
23 27T 31 3 Y5 7 39 43 47
20 24 28 32 Y4 12 16 20 24 28 32 36 40 44
17 21 25 29 Y3 9 13 17 21 25 29 33 3IF M
14 18 22 26 Y2 6 10 14 18 22 26 30 34 38
11 1% 19 23 Y 3 7 11 15 19 23 2r AN 35
8 12 16 20 10 4 8 12 16 20 24 28 32
xX2 X3 X4 X5 X6 X7 X8 1 X X2 X3 X4 X5 X6 X7 X3

Figure 2: In both parts XY = X8Y3. Left part: Light grey area is By,
medium grey area is Bs, and dark grey area plus medium grey area correspond
to B3(X*Y?2 1). Right part: Light grey area is By, medium grey area is Ba,
and dark grey area plus medium grey area correspond to Bs(X*1Y 2 3).

Lemma 28. Consider ¢ = ev(Zizl asMs+1,), as €Fg, s=1,...,1, and a; #
0. Let M; = XY 2 and v = oy div w(Y') (that is, v satisfies o = w(Y )v+T,
where T = aq rem w(Y')). It holds that:

o Bi(X*Y*2) C L(u) foru
e By(X*1Y*2) C L(u) foru

1,...,04+1.

1,...,04+1.

e B3 (X*1Y*2 ged(a, b)) C L(v+1).
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o B3(X“Y* u) C L(u) foru=1,...,v.

Proof.

By (X*1Y*2) C L(u) foru=1,...,0+1:

Assume M; = XY € B(X*1Y*?). We have a1 <y < a and ag < vy < gq.
Choosing M; = XM=Y~ we get Im(M;M; rem G) = M;. Let ¢ €
{1,...,i—1}, then by the properties of a monomial ordering M; M; <, M;M;
holds. This means that (M;, M;) is SOWB with respect the set {1,...,4}. Thus
M e L(u) foru=1,...,0v4+ 1

Bo(X*Y*2) C L(u) foru=1,...,v+ 1

IfT =0o0r g—0b< as < q then the result follows trivially.

Assume T # O and 0 < ag < ¢—b. Let M; = X"Y"2 € By(X*“1Y*2). We have
ar —T < v <oy and ag +b < 72 < g. Choosing M; = Xn-crtayyz—oz—b
(which belongs to A<, (I;) by the definition of By) we get

Im(M;M; rem G) = Im(M;M; — XY PF(X|Y)) = XY,

We want to prove that (M;, M;) is SOWB with respect the set {1,...,:}. We
consider M with ¢/ € {1,...,i —1}. If w(M;) < w(M;) then the proof follows
from w(M; M;) < w(M;M;) using the fact that reducing modulo F' does not
change the weight of the leading monomial. If w(M;) = w(M;) then there
exists an integer z with a; — zw(Y) > 0 such that My = X1 —2w(V)yeetzw¥),
Therefore v, — zw(Y) > 0.

Now M M; = Xotn—2w¥)y2=b+zw(X) and therefore

Im(M;i Mj rem G) = lm(My M; — XN~z yr-brzwX) px y))
= X ymtawX) o xmyre

Again we employed the fact that reducing modulo F' does not change the weight
of the leading monomial. We conclude that lm(M; M; rem G) <, XY 7> and
that (M;,M;) is SOWB with respect the set {1,...,i}. Thus M; € L(u) for
u=1,...,0v+1.

B3(X*1Y*2 ged(a, b)) C L(v+1):

If0<a; <a—w(Y) or g—b< as < q then the result follows trivially.
Assume a—w(Y) < a3 < aand 0 < g < ¢—b, then v = ged(a,b)—1. Let M; =
XY € B3(X*1Y 2 ged(a,b)). We have 0 <1 < a7 and as + b < 75 < gq.
Choosing M; = Xmn—ertayrz=a2=b we get Im(M;M; rem G) = M;. We want
to prove that (M;, M;) is SOWB with respect the set {1,...,i—v—1}. We con-
sider My with ¢/ € {1,...,i—1}. If w(My) < w(M;) the proof follows because
w(M; M) < w(M;M;) using the fact that reducing modulo F' does not change
the weight of the leading monomial. As v = ged(a,b) — 1 there does not exists
any i’ € {1,...,i—v—1,i} such that w(M;) = w(M;). From this it follows that
(M;, M;) is SOWB with respect the set {1,...,i—v—1} and thus M; € L(v+1).

B3(X*1Y*2 u) C L(u) foru=1,...,v:

Ifg—b<ay<qgor0<a; <a—w(Y) then the result follows trivially.
Assume a—w(Y) < a3 < aand 0 < ay < ¢—b, then v = ged(a,b) —1. Let M; =
XYY" € B3(X*“Y2 y). We have a — w(Y)u <y < ag and ag + w(X)u <
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v2 < ¢. By the definition of <,, and the form of A (I,) we have that M;_, =
Xo—wY)uyastw(X)u  Choosing M; = Xn-ertwYjuyrz—a—w()u we get,
Im(M;_,M; rem G) = M;. Note that M;_,, and M, are in A (I,) because
v=ged(a,b)—1,a—w(Y) < a; <aand 0 < as < ¢—b. We want to prove that
(M;, M;) is SOWB with respect the set {1,...,7 —u,i}. We consider M;, with
i e{l,...,i—1}. If w(My) < w(M;) then the proof follows from w(M; M;) <
w(M;M;) using the fact that reducing modulo F' does not change the weight
of the leading monomial. The monomials M;, which satisfy w(M;) = w(M;_.,)
are M; and M;_, for z = wu,...,v. However, M;M; rem G <, M;_,M; rem G
because y1 +w(Y)u > a and M, M; <, M;_, M, for any t =u+1,...,v due
to the properties of a monomial ordering. From this it follows that (M;, M)
is SOWB with respect the set {1,...,4 — u,i} and thus M; € L(u), for u =
1,...,v. O

Lemma 29. Consider ¢ = ev(Zizl asMs + 1), as € Fg, s = 1,...,1, and
a; #0. Write M; = X*1Y*2, Foru=1,...,v+ 1, withv = oy divw(Y), we
have that:
Bi(X™Y?) U By(XY*2) C L(u),
Bi(X®Y°2) U B3(X“Y°2, ) C L(u).
Proof. The lemma follows directly from Remark [27] and Lemma [28] O

It is not hard to compute the cardinality of the sets By, By and Bj3. For
u=1,...,gcd(a,b), we have that:
#B1(XY?) = (a —a1)(q — az),
—ap—0b) 0L -b
pxenyes) = [lamen b K0S <y
0 otherwise,
(wY)u—a+a1)(g—az—w(X)u) f0<ay<qg—>band
#B3(XMY 2, u) = a—wlY)<a <a
0 otherwise.
Thus, for u = 1,...,v+ 1 by Lemma 29 we get:
a(g—as—b) if0<as<qg-—0>
0 otherwise

#L(u) > (@ —a1)(g — az) + {

Andifa—w(Y) <oy <a:

(wY)u—a+a1)(g—as —w(X)u) if0<ay<qg-—1>
0 otherwise.

#L(u) > (a—al)(q—a2)+{

Now we can prove Theorem

Proof of Theorem[25 Let v = ay divw(Y). If 0 < oy < a — w(Y) then we
obtain

wn(@ > min{#L(1),..., #L -+ 1)}
(@ —a1)(g—az) +
{al(q—ag—b) f0<as<qg-—0»

0 otherwise.

2
>
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Ifa —w(Y) < aq < a, then v = ged(a,b) — 1 and we obtain

w (C) 1),...,#L(v+1)}
q— o)+

min{#L(
(@ —aa)(

>
>

min{(w¥Y)u—a+a1)(g—ae —w(X)u) Ju=1,...,v+1} f0<ay<qg-—">
0 otherwise.

The function f(u) = (w(Y)u —a+ a1)(g — az — w(X)u) is a concave parabola,
thus we have minimum in v« = 1 or u = v + 1 = ged(a,b). By inspection
F(1) = ((¥) —a+a1)(q - az — w(X)) = T(q - as — w(X)) and f(ged(a, b)) =
(w(Y) ged(a,b) —a+a1)(g—as —w(X) ged(a, b)) = a1 (¢—az —b). We therefore
get the biimplication:

f(1) < f(ged(a, b)),

b—w(X)

(6] S q—U)(X) —alm,

and the theorem follows. O

Remark 30. If for codes from optimal generalised Cyp, polynomials rather than
applying Theorem we apply the usual Feng-Rao bound (Theorem@ then the
e in Theorem [23] should be replaced with:

0 ifg—b<ax<gq
T(g—az—b) and0<az<gq—b.

We see that our new bound improves the Feng-Rao bound by

0 fqg—b<ay<gq
or0<a; <a—w()
(o —=T)g—a2—0b) ifa—w(Y) <o <aand
q—w(X)—alz:Z((f,; <ap<q-—b
T(b—w(X)) ifa—w(Y) <o <a and

0<ay Sq—w(X)—all;:Z(();g.

Remark 31. It is possible to show that Theorem [25 is the strongest possible
result one can derive from Theorem[13 regarding the minimum distance of codes
from optimal generalised Cyp, polynomials.

In the following we apply Theorem in a number of cases where F'(X,Y) =
G(X)—H(Y) € Fpn[X,Y] with G(X) being the trace polynomial and H(Y)
being an (Fpm,F,)-polynomial of another degree. Recall from the discussion at
the beginning of the section that these are optimal generalised Cy; polynomials.
The strength of our new bound Theorem [I3] and Theorem [25] lies in the cases
where a and b are not relatively prime, as for a and b relatively prime it reduces
to the usual Feng-Rao bound for primary codes (see the last part of Remark.
The well-known norm-trace polynomial corresponds to choosing H(Y') to be the
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Figure 3: Improved codes from Example 5| A o corresponds to (a,b) = (4,6),
and an * corresponds to (a,b) = (4,7) (the norm-trace codes).

norm polynomial. This gives a = p™~! and b = (p™—1)/(p—1) which are clearly
relatively prime. The related codes, which are called norm-trace codes, are one-
point algebraic geometric codes. As a measure for how good is our new code
constructions it seems fair to compare the outcome of Theorem [25] for the cases
of ged(a, b) > 1 with the parameters of the one-point algebraic geometric codes
from norm-trace curves over the same alphabet. The two corresponding sets
of ideals have the same footprint A< (I,) and consequently the corresponding
codes are of the same length. We remind the reader that it was shown in [5]
that the Feng-Rao bound gives the true parameters of the norm-trace codes.

Example 5. In this ezample we consider optimal generalised Cgp polynomials
derived from (Fg,Fy)-polynomials. The trace polynomial G(X) is of degree a = 4
and from Ezample[3 we see that besides the norm polynomial which is of degree
b= T we can choose H(Y) as F3(Y) = Y% +Y® + Y3 which is of degree b = 6.
The corresponding codes are of length n = 32 over the alphabet Fs. In Figure[3
below we compare the parameters of the related two sequences of improved codes
Eimp(0) (Definition . For few choices of § the norm-trace code is the best,
but for many choices of 8, from (a,b) = (4,6) we get better codes. We note
that the latter sequence of codes contains two non-trivial codes that has the best
known parameters according to the linear code bound at [I1)f, namely [n,k,d]
equal to [32,2,28] and [32,15,12].

Example 6. In this ezample we consider optimal generalised Cgup polynomials
derived from (Fi6,F2)-polynomials. The trace polynomial G(X) is of degree
a = 8 and from Ezample [J we see that besides the norm polynomial which is
of degree b = 15 we can choose H(Y) to be of degree 10, 12 and 14. The
corresponding codes are of length n = 128 over the alphabet F14. In Figure
below we compare the parameters of the related two sequences of improved codes
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Figure 4: Improved codes from Example[6] A o corresponds to (a,b) = (8,10),
and an * corresponds to (a,b) = (8,15) (the norm-trace codes).

Eimp(é) when b =10 and when b = 15 (the norm-trace codes). For most choices
of § from (a,b) = (8,10) we get the best codes. The norm-trace codes are never
strictly best.

Example 7. In this ezample we consider optimal generalised Cg,p polynomials
derived from (Fsa,Fa)-polynomials. The trace polynomial G(X) is of degree
a = 16 and from Ezample [] we see that besides the norm-polynomial which is
of degree b = 31 we can choose H(Y') to be of degree 20, 24, 26, 28 and 30. The
corresponding codes are of length n = 512 over the alphabet Fsy. In Figure [3]
below we compare the parameters of the related three sequences of improved codes
Eimp(0) when b =20, b =26 and when b = 31 (the norm-trace codes). For no
choices of § the norm-trace codes are strictly best (this holds for all values of
k/n). For some choices b = 20 gives the best codes for other choices the best
parameters are found by choosing b = 26.

Example 8. In this example we consider optimal generalised Cyp, polynomials
derived from (Fg4,F2)-polynomials. The trace polynomial G(X) is of degree
a = 32 and by studying cyclotomic cosets we see that as an alternative to the
norm polynomial which is of degree b = 63 we can for instance choose an H(Y)
of degree 42. The corresponding codes are of length n = 2048 over the alphabet
Fes. In Figure[q below we compare the parameters of the related two sequences
of improved codes Ejm,p(d) when b = 42 and when b = 63 (the norm-trace codes).
As is seen the first codes outperforms the last codes for all parameters.

5 A new construction of improved codes

In Definition we presented a Feng-Rao style improved code construction
Eimp(0). As shall be demonstrated in this section it is sometimes possible to do
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even better. Recall that the idea behind Theorem [I3]is to consider case 1 up
till case v+1 as described prior to the theorem. Consider a general codeword

K3
E=ev(Y a.M,+1;) € C(I,L)
s=1
a; # 0, where L is some fixed known subspace of Fy. From L we might a priori
be able to conclude that certain ass equal zero for all codewords as above. This
corresponds to saying that a priori we might know that some of the cases case 1
up to case v do not happen. Clearly we could then leave out the corresponding
sets in Theorem This might result in a higher estimate on wg(¢). We
illustrate the phenomenon with an example in which we also show how to derive
improved codes based on this observation.

Example 9. In this example we consider the Klein quartic X3Y + Y3 + X €
Fs[X,Y]. Let w(X) = 2 and w(Y) = 3. The ideal I = (X3Y + Y3 + X) C
Fs[X, Y] and the corresponding weighted degree lexicographic ordering <., satisfy
order domain condition (C1) but not (C2) (as usual, in the definition of <., we
choose X = X7 andY = X5). Hence, it makes sense to apply Theorem . The
footprint of Is = (X3Y + Y3 + X, X® + X, Y® +Y) is (for a reference see [6,
Ez. 4.19] and [3, Ex. 3.5]):

AL (Is) = {1,X,V, X% XY, Y2 X3 X%V, XY? X' Y3 X?Y?,

X5 XY3 v X6 X?y3 Xy4 X7, Y5, X%y Y6}
written in increasing order with respect to <,,. Consider
c= ev(all +as X +asY +asX?+as XY +agY? + a7 X3 + Ig),

ar # 0. We have w(X?) = w(Y?) > w(XY). Hence, by Remark[1] we choose
v=1.
By inspection the set corresponding to case 1 is

L£(1)={Xx3 X* X° X6 X7 X?y*}.

(Note that X2Y* belongs to L(1) of the following reason: We have Im(X3X> rem X8+
X) =X and Im(Y2X® rem X3Y + Y3 + X) = X2Y*, and from w(Y2X%) =
w(X?2Y*) > w(X) we conclude that (Y2, X5) is SOWB with respect to {1,2,3,4,5,6,7}.)
The set corresponding to case 2 is

L£(2) ={X3 X4 V3 X5 XV3 v* X6 X%y3 XY* X7, Y5 X?v* Yo}

If we know a priori that ag = 0 then we can conclude from the above that
wy (6) > #L(2) = 13. Without such an information we can only conclude

wp (€) > min{#L(1), #L(2)} = 6.
It can be shown using Theorem that Eimp(ll) = C(I,L) where
L = ev(Spang {14 Is, X + I3,Y + I, X* + I, XY + I, Y + I5}).

That is, a code with parameters [n, k,d] equal to [22,6,> 11].
If instead we choose

L = ev(Spang {1+ Is, X + Is, Y + Is, X* + Is, XY + Is, X° + Is})

then we do not need to consider the case 1 described above. By inspection the
code parameters [n, k,d] of C(I,L) are [22,6,> 12].

21



6 Generalised Hamming weights

As mentioned at the end of Section [2]it is possible to lift Theorem [13]to also deal
with generalised Hamming weights. Recall that these parameters are important
in the analysis of the wiretap channel of type II as well as in the analysis of
secret, sharing schemes based on coding theory, see [23], [I5] and [14].

Definition 32. Let C' C Fy be a code of dimension k. Fort=1,...,k the tth
generalised Hamming weight is

di(C) = min{#Supp D | D is a subspace of C of dimension t}.

Here, Supp D means the entries for which some word in D 1is different from
zero.

Clearly, d; is nothing but the usual minimum distance. In Proposition

below we lift Theorem [13|to deal with the second generalised Hamming weight.
From this the reader can understand how to treat any generalised Hamming
weight.
Proposition 33. Let D C Fj be a subspace of dimension 2. Write D =
Spanmq{ev(zz;:o asMy), ev(3-2 o bsMy)}. Here, AL(I,) = {Mi,...,M,}, as €
Fy, bs € Fq with a;, # 0 and by, # 0. Without loss of generality we may assume
i1 # 9. Let v1 and vy be integers satisfying 0 < v; < i1 and 0 < vy < ig. We
have

#Supp(D) > min{#L(21,22) | 1 <z1 <v1+1,1 <29 <wg + 1}
The above sets are defined as follows: For z =1,...,v;

L(z,va+1) =
{K € AL(1,) | 3M; € AL(1,) such that either (M;,, M;) is SOWB
with respect to {1,...,i1 — z,i1} and Im(M;, M; rem G) = K
or
(M;,—, M;) is SOWB with respect to {1,...,41 — 2,41}
and Im(M;,_,M; rem G) = K
or
(M;,, M;) is SOWB with respect to {1,...,is — vy — 1}
and Im(M;,M; rem G) = K }.

Forz=1,...,v9, L(v1 + 1, 2) is defined in a similar way.
Forzi=1,...,v1 and zo0 = 1,...,v3 we have
E(Zl,ZQ) =

{K € AL(1,) | 3M; € A (1,) such that for some u € {1,2}

(M;,, M;) is SOWB with respect to {1,... %y — Zu, v}
and Im(M;, M; rem G) = K

or

(M;,—»,, M;) is SOWB with respect to {1,...,%y, — 2y, iy}

and lm(M;, ., M; rem G) = K },
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and finally

L(v1+1ve+1)=

{K e Ax(1,) | IM; € AL(I,) such that (M;,, M;) is SOWB
with respect to {1,...,4, — v, — 1} and Im(M;, M; rem G) = K
for some u € {1,2}}.

The second generalised Hamming weight of C(I,L) is found by repeating the
above process for all possible choices of i1 < ia corresponding to the cases that

D C C(I,L).

Proof. The proof is a straight forward enhancement of the proof for Theorem 13}
O

For the choice of v1 and v in Proposition [33| we refer to Remark Admit-
tedly, the proposition is rather technical. Nevertheless even its generalisation to
higher generalised Hamming weights can often be quite manageable. We shall
comment further on this in Section

7 Formulation at linear code level

As mentioned in the introduction the Feng-Rao bound for primary codes in
its most general form is a bound on any linear code described by means of a
generator matrix. All other versions of the bound, such as the order bound for
primary codes and the Feng-Rao bound for primary affine variety codes, can be
viewed as corollaries to it. Below we reformulate the new bound in Theorem [13]
at the linear code level.

Let n be a positive integer and ¢ a prime power. Consider a fixed ordered triple
U, V,W) where U = {ty,...,Un}, V = {01,...,0,}, and W = {@y,...,W,}
are three (possibly different) bases for Fy as a vector space over ;. We shall
always denote by Z the set {1,...,n}.

Definition 34. Consider a basis A = {dy,...,d,} for Fy as a vector space over
Fy. We define a function pa: ¥y — {0,1,...,n} as follows. For ¢ € F,\{0} we
let pa(é) =i ifce SpanFq{d'l, A d’i}\SpanFq{dl, ...,@i—1}. Here, we used the
notion Spang, () = {0}. Finally, we let p4(0) = 0.

The component wise product plays a crucial role in the linear code enhancement
of Theorem [T3}

Definition 35. The component wise product of two vectors i and v in Fy is
defined by (ug, ..., un) * (V1,...,0,) = (U101, - .., UpVy).

Definition 36. Let (U, V, W) and I be as above. Consider I' CZ. An ordered
pair (i,7) € Z' x T is said to be one-way well-behaving (OWB) with respect to
' if pw(ty * ;) < pw(t; * ;) holds for all i’ € T with i' < 1.

The following theorem is a first generalisation of the Feng-Rao bound for
primary codes. The generalisation compared to the usual Feng-Rao bound [I},[10]
is that we allow Z’ to be different from {1,...,#Z’'}. This is in the spirit of
Section [l
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Theorem 37. Consider ¢ = 22:1 ast;, with as €Fy, s =1,...,t, a; #0 and
i1 < - <1y. We have

wy(6) > #{l €T |3j €L such that pw(u;, = 7;) =1, (6)
(it,7) is OWB with respect to {i1,... ,it}}.

Proof. Let l; < --- <, be the indexes [ counted in @ Denote by 71, ..., j, the
corresponding j-values from @ By assumption ¢ * ¥},,...,C* U;_ are linearly
independent and therefore

Spang {C* ¥j,,...,C* U;, } = ¢* Spang {¥,,..., ), }

is a vector space of dimension o. The theorem follows from the fact that ¢ Fy
is a vector space of dimension wg (€) containing the above space. O

A slight modification of Definition [36 and the above proof allows for further
improvements.

Definition 38. Let 7' C Z. A pair (i,7) € ' x T is called strongly one-way
well-behaving (SOWB) with respect to I' if pyy (s * U;) < pw(U; * T;) holds for
all ! € T\{i}.

The following theorem is the linear code interpretation of Theorem [I3] Be-
sides working for a larger class of codes, it is slightly stronger in that we for-
mulate it in such a way that it supports the technique explained in Section [5}
Concretely, what makes it stronger than Theorem [13]is the presence of the set
7.

Theorem 39. Consider a non-zero codeword ¢ = 21:1 aytly, a; € Fq fort =
1,...,4, a; # 0. Let v be an integer 0 < v < i. Assume that for some set
IcC {1,...,i—1} we know a priori that a, =0 whenz € L. Let z1 < -+ < z5 be
the numbers in {z € {i—v,...,i—1} |z ¢ I}. WriteZ* = {z € {1,...,i—v—1} |
z¢ I}, We have

wy (€) > min{L'(1),...,L (s + 1)}

where fort =1,...,s we define L'(t) as follows:

L'(1) = {leZ|3z€{z,i} and j €T suchthat pw(d,*v;) =1
(z,7) is SOWB with respect to IT*U{z,.. .,zs,i}},
L£'(2) = {leT|3z€{z-1,i} and j €T suchthat pw(t.*7;) =1

(z,7) is SOWB with respect to IT*U{z,.. .,zs,l,i}},

L'(s) = {le€Z|3ze{xn,i} and jET such that py(i.*v;) =1
(z,j) is SOWB with respect to T*U{z1,i}}.

Finally,

L'(s+1) = {leT|3jeTl suchthat pw(u; x7;) =1
(i,7) is OWB with respect to I* U {i}}.

To establish a lower bound on the minimum distance of a code C we repeat the
above process for each i € py(C). For each such i we choose a corresponding v,
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defining an s, and we determine the sets L'(1),...,L (s+1) and calculate their
cardinalities. The smallest cardinality found when i runs through py(C) serves
as a lower bound on the minimum distance.

Proof. The proof is a direct translation of the proof of Theorem O

Remark 40. For v =0 Theorem [39 reduces to Theorem[37. For higher values
of v Theorem [39 is at least as strong as Theorem [37 and sometimes stronger.
In the same way as Theorem [13 was lifted in Section[g to deal with generalised
Hamming weights one can lift Theorem [37 and Theorem [39

8 A related bound for dual codes

In the recent paper [8] we presented a new bound for dual codes. This bound is
an improvement to the Feng-Rao bound for such codes as well as an improvement
to the advisory bound from [22]. The new bound of the present paper can be
viewed as a natural counter part to the bound from [§], the one bound dealing
with primary codes and the other with dual codes.

Definition 41. Consider an ordered triple of bases (U,V, W) for Fy and T as

in Section B We define m : FZ\{@} — T by m(C) =1 if | is the smallest number
in T for which ¢-w; # 0. (Here, and in the following the symbol - means the
usual inner product).

Definition 42. Consider numbers 1 < I, I+ 1,...,1+g<n. A setT' CT is
said to have the p-property with respect to | with exception {l 4+ 1,...,1+ g} if
foralli € I' aj €T exists such that

(1a) pw(u; * U;) =1, and

(1b) for all i' € T’ with i < i either pw(dy * ;) < L or pw(dy * U;) €
{l+1,...,1+4 g} holds.

Assume next that l+g+1 <n. The set ' is said to have the relazed p-property
with respect to (I,1 + g + 1) with exception {I{+1,...,1+ g} if for alli € T’ a
j € T exists such that either conditions (1a) and (1b) above hold or

(2a) pw(tU; *U;) =1+ g+1, and

(2b) (i,j) is OWB with respect to ', and

(2¢c) no ' € I’ with i’ < i satisfies py (U *T;) = 1.
The new bound from [8, Th. 19] reads:

Theorem 43. Consider a non-zero codeword ¢ and let I = m(Z). Choose a
non-negative integer v such that | + v < n. Assume that for some indexes
xe{l+1,...,1+v} we know a priori that ¢- W, = 0. Let 1} < --- <l be the
remaining indexes from {l +1,...,1+v}. Consider the sets T}, 11, ..., I, such
that:

o T has the p-property with respect to I with exception {I+1,...,1+v}.
e Fori=1,...,s, I| has the relazed u-property with respect to (I,1;) with
exception {I+1,...,l, —1}.
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We have

Wi (@) > min{#T, #T, .., #IL}. (7)
To establish a lower bound on the minimum distance of a code C' we repeat the
above process for each | € m(C). For each such | we choose a corresponding
v, we determine sets I as above and we calculate the right side of @ The
smallest value found when 1 runs through m(C) constitutes a lower bound on
the minimum distance.

If we compare Theorem [3] with Theorem [39] we see that to some extend they
have the same flavor. Besides that one deals with dual codes and the other with
primary codes another difference is that we in Theorem (3] has the freedom
to choose appropriate sets Zj),...,Z. whereas the sets £'(1),...,L'(s+ 1) in
Theorem [39] are unique. In [§] it was also shown how to lift Theorem [43|to deal
with generalised Hamming weights. Similar remarks as above hold for the two
bounds when applied to such parameters.

9 A comparison of the new bounds for primary
and dual codes

Recall that it was shown in [9] how the Feng-Rao bound for primary codes and
the Feng-Rao bound for dual codes can be viewed as consequences of each other.
This result holds when the bound is equipped with one of the well-behaving
properties WB or OWB. Regarding the case where WWB is used a possible
connection is unknown. In a similar fashion as the proof in [9] breaks down if
one uses WWB it also breaks down when one tries to prove a correspondence
between Theorem [39)and Theorem [#3] We leave it as an open research problem
to decide if a general connection exists or not.

In Section [ we analysed the performance of primary affine variety codes coming
from optimal generalised Cyj, polynomials. Using the method from Section [§]
one can make a similar analysis for the corresponding dual codes producing
similar code parameters. As an alternative, below we explain how to derive this
result directly from what we have already shown regarding primary codes from
optimal generalised Cy;, polynomials.

Recall that for optimal generalised Cy; polynomials AL, (I,) is a box:

AL (L) ={M,..., M} ={X"Y*"? |0< <a,0<ay <g}

This fact gives us the following crucial implication (as usual we assume M; <,
ce = My):

M; = XY = M, ;11 =X 17y =2 fori=1,... n (8)

Consider codewords ¢ = eV(Z;:1 asMs + Iq), as € Fy, a; # 0, and & € Fy
such that m(¢) = n — i+ 1. Let v be an integer, 0 < v < i. Recall that in
Section [ we determined L(u), v = 1,...,v + 1. If we use Theorem [43| with
{Il+1,...,l+v}={l},...,l.} (no a priori knowledge) then we can choose

i={n—1+1|M e Llv+1)}
and foru=1,...,v

I, ={n—1+1| M e L(u)}
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For S C {1,...,n} define S = {1,...,n}\{n —s+1|s € S}. Consider
L = Spang {ev(M; + 1) | s € S},

L= Spang {ev(Ms + 1) | s € Sy.

As #I[ = #L(v + 1) and for u = 1,...,v, #Z, = #L(u) we conclude that
Theorem [43| produces the same estimate for the minimum distance of C*(I, L)
as Theorem [13| produces for the minimum distance of C(I, L). However, we do
not in general have C(I,L) = C+(I, L) and therefore the above analysis does
not imply that Theorem [I3]is a consequence of Theorem [43] even in the case of
optimal generalised Cy;, polynomials.

The above correspondence regarding the minimum distance immediately carries
over to the generalised Hamming weights. In [8 Sec. 4] we implemented the
enhancement of Theorem to generalised Hamming weights for a couple of
concrete dual affine variety codes coming from optimal generalised Cy; polyno-
mials. As a consequence of the estimates found in [8, Sec. 4] for C+(I, L)
also hold for C(I, L). This demonstrates the usefulness of the method described
in Section [6l

We conclude the section by demonstrating that d(C(I,L)) = d(C*(I,L))
does not hold for all generalised Cy; polynomials.

Example 10. In this example we consider the generalised Cyp, polynomial F(X,Y) =
G(X) — H(Y) € F33[X,Y] where G(X) = X20 + X + X104 X9 4+ X5 and
H(Y)=Y?64+Y24 Y2l 4 Y134 Y Observe that both G and H are (Fsz,Fa)-
polynomials and that G satisfies the condition in Proposition ensuring that

for each n € Fo there exists evactly 2* = 16 v € F3y such that G(y) = 7.

In particular F(X,Y) has exactly 512 zeros in Fzas. As a = degG > 16
{F(X,Y),X32 — X,Y32 — Y} cannot be a Grébner basis with respect to <.,

(it would violate the footprint bound, Corollary , Applying Buchberger’s algo-
rithm we find a Grébner basis and from that the corresponding footprint

A<w(132) = {)(QI)(OC2 ‘ 0<a; <12,0<as < 32}
U {)(Oél)(a2 | 12< a1 < 20,0 < ag < 16}

Recall the improved construction Eimp((S) of primary affine variety codes as
introduced in Definition[I5. In a similar way, as Theorem[13 gives rise to the
above Feng-Rao style improved primary codes, Theorem[{3 gives rise to improved
dual codes. These codes were named Cyin,(0) in [8, Rem. 20]. In a computer
ezperiment we calculated the parameters of these codes. In Figure[7 we plot the
derived relative parameters. As is seen for some designed distances 6, Eipmp(9)
has the highest dimension. For other designed distances 6, CN’f,»m((S) is of highest
dimension.

10 Conclusion
In this paper we proposed a new bound for the minimum distance and the gen-

eralised Hamming weights of general linear code for which a generator matrix
is known. We demonstrated the usefulness of our bound in the case of affine
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Figure 7: Improved codes from Example A o corresponds to Eimp((S), and
an * corresponds to Cim (6).

variety codes where only the first of the two order domain conditions is satisfied.
For this purpose we introduced the concept of generalised Cy;, polynomials. We
touched upon the connection to a bound for dual codes introduced in the recent
paper [8], but leave an investigation of a possible general relation between the
two bounds for further research. It is an interesting question if there exists ex-
amples where our new method improves on the Feng-Rao bound for one-point
algebraic geometric codes. This would require that we do not choose v as in
Remark [14] and that we make extensive use of the polynomials X} — X;. Also
this question is left for further research. The usual Feng-Rao bound for primary
codes comes with a decoding algorithm that corrects up to half the estimated
minimum distance [9]. This result holds when the bound is equipped with the
well-behaving property WB. For the case of WWB or OWB no decoding al-
gorithm is known. Finding a decoding algorithm that corrects up to half the
value guaranteed by Theorem [I3]would impose the missing decoding algorithms
mentioned above.
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