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The structure of dual Grassmann codes ∗

Peter Beelen and Fernando Pinero

Abstract

In this article we study the duals of Grassmann codes, certain codes coming from the
Grassmannian variety. Exploiting their structure, we are able to count and classify all their
minimum weight codewords. In this classification the lines lying on the Grassmannian variety
play a central role. Related codes, namely the affine Grassmann codes, were introduced
more recently in [1], while their duals were introduced and studied in [2]. In this paper we
also classify and count the minimum weight codewords of the dual affine Grassmann codes.
Combining the above classification results, we are able to show that the dual of a Grassmann
code is generated by its minimum weight codewords. We use these properties to establish
that the increase of value of successive generalized Hamming weights of a dual Grassmann
code is 1 or 2.

AMS classification 14G50, 94B27, 14M15

1 Introduction and preliminaries.

The Grassmannian variety is a fundamental mathematical object. It encompasses aspects from
algebra, geometry and combinatorics. For example, the Grassmannian variety plays a role in the
theory of distance-transitive graphs, finite geometries, network design and coding theory. In this
article we are interested in the last of these topics, namely their application in coding theory
for the construction of Grassmann codes [8, 10, 11]. Since their introduction, these codes have
been a recurring object of study and articles have appeared concerning their minimum distance
[8, 12], some of their generalized Hamming weights [3, 4, 6, 8], and their automorphism group
[5].

A variation of these codes, the affine Grassmann codes was introduced in [1] and a broader
class of codes, the affine Grassmann codes of a specified level, in [2]. In the latter article the
duals of affine Grassmann codes were investigated. For future reference we will give a synop-
sis of the definition of these codes and their properties below. After this we will classify the
minimum weight codewords in the dual of both affine Grassmann codes with a specified level
and Grassmann codes and give a link with the geometry of the Grassmannian variety. Finally
we will use this classification for the following purposes: First of all, to determine the exact
number of such minimum weight codewords, secondly to establish that the dual Grassmann code
is generated by its minimum weight codewords, thirdly to establish a growth property of the
generalized Hamming weights, and finally to describe Grassmann codes in a more combinatorial
graph-theoretical way, namely as a Tanner code.

∗The authors gratefully acknowledge the support from the Danish National Research Foundation and the
National Science Foundation of China (Grant No.11061130539) for the Danish-Chinese Center for Applications
of Algebraic Geometry in Coding Theory and Cryptography as well as the support from The Danish Council for
Independent Research (Grant No. DFF–4002-00367).
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In the remainder of this section we give an overview of the theory of (affine) Grassmann
codes and fix the notation that will be used in the remainder of the article. All the material in
this overview is contained in [1, 2] and the reader is kindly referred to these articles for further
details. All material in the subsequent sections is new unless specified otherwise.

Definition 1 Let M = (mij) be an ` × `′ matrix, with ` ≤ `′. Let I ⊆ {1, 2, . . . , `} and
J ⊆ {1, 2, . . . , `′} be subsets both of cardinality h. Then we define the h × h submatrix of M
specified by I and J by

MI,J := (mij)i∈I,j∈J .

Further we call detMI,J an h-minor of M. For the sake of completeness, we define the 0-minor
of M as 1.

We will write M`×`′(Fq) for the set of ` × `′ matrices with entries from Fq. Later on, we
will evaluate matrices in certain functions. To be closer to the usual language when defining
evaluation codes, we will therefore freely identify M`×`′(Fq) with the set of points of the affine
space Aδ(Fq) of dimension δ := ``′. The coordinate ring of this affine space is a polynomial
ring in δ indeterminates Xij , but for convenience, we simply write Fq[X], with X, the ` times
`′ matrix whose entries are the indeterminates Xij . Finally, we fix an ordering P1, P2, . . . , Pqδ

of the points of Aδ(Fq) (or equivalently, an ordering of the matrices in M`×`′(Fq)). With these
notations and conventions in place, we can start to define affine Grassmann codes, but we first
define certain functions and an evaluation map in the following definitions:

Definition 2 Let 0 ≤ h ≤ `. We denote the set of h-minors of the matrix of indeterminates X
by ∆h. Further we write

∆≤r :=

r⋃
h=0

∆h

and denote by Fr ⊂ Fq[X] the Fq-linear subspace generated by the elements of ∆≤r.

Definition 3 Writing δ := ``′, we define ev : Fq[X]→ Fqδq by

ev(f(X)) := (f(P1), f(P2), . . . , f(Pqδ)).

Now that we have both the functions and an evaluation map, we define the following codes as
introduced in [1, 2]:

Definition 4 Let r ≤ ` ≤ `′ be positive integers and define m := ` + `′. Then we define the
affine Grassmann code of level r by

CA(`,m; r) := {ev(f) | f ∈ Fr}.

If r = `, we simply write CA(`,m) and call it the affine Grassmann code.

Given q, the length of CA(`,m; r) is simply given by qδ. The dimension kA(`,m; r) and
minimum distance dA(`,m; r) of CA(`,m; r) can be expressed as follows:

kA(`,m; r) =

r∑
i=0

(
`

r

)(
`′

r

)
(1)
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and

dA(`,m; r) = qδ
r∏
i=1

(
1− 1

qi

)
. (2)

As observed in [2], affine Grassmann codes have several automorphisms. This will be quite
useful later on and therefore we describe some of them explicitly below. We use the notation
GLh(Fq) for the group of nonsingular h× h matrices with entries from Fq.

Definition 5 Let U ∈ M`×`′(Fq), A ∈ GL`′(Fq) and B ∈ GL`(Fq). Then we define the auto-
morphism σU,A,B : CA(`,m; r)→ CA(`,m; r) by

σU,A,B( (f(Pi))i ) := (f(BPiA + U))i for f ∈ Fr.

We denote by H(`,m) the group consisting of such automorphisms.

Note that an element in H(`,m) acts on a codeword simply by permuting the coordinates of
the codeword. As a final preliminary, we paraphrase the results in [2] concerning the dual affine
Grassmann codes with a specified level.

Theorem 6 Let r ≥ 1 and ` ≤ `′. The minimum distance dA⊥(`,m; r) of the code CA(`,m; r)⊥

satisfies:

dA⊥(`,m; r) =

{
3 if q > 2,
4 if q = 2 and `′ > 1.

Furthermore, CA(`,m)⊥ is generated by its minimum weight codewords.

Note that the minimum distance in the cases that r = 0 is trivial to determine, and the
resulting codes are of little theoretical interest. If r = 1, the codes CA(`,m; r) and CA(`,m; r)⊥

both fall within the class of generalized Reed–Muller codes, which have been studied extensively.
To avoid having to deal with these cases separately all the time, we assume in the remainder
of the article that r ≥ 2. Since r ≤ ` ≤ `′, this implies that all these three integers are always
assumed to be at least 2.

If 2 ≤ r < `, it is in general not true that CA(`,m; r)⊥ is generated by its minimum weight
codewords. In [2] this was shown by giving a counter example with q = r = 2 and ` = `′ = 3.
More precisely it was observed in [2] that for q = 2 the sets of minimum weight codewords
in CA(3, 6; 2)⊥ and in CA(3, 6)⊥ are the same, while their dimensions are seen to be distinct
using Equation (1) and the usual relation between the dimensions of a code and its dual. As a
byproduct of the results in the following section, this observation will be explained fully at the
end of the following section. It turns out that a similar phenomenon occurs in general for any
value of q and 2 ≤ r < ` ≤ `′.

2 Classification of minimum weight codewords of CA(`,m; r)⊥.

As a first new contribution, we classify in this section all minimum weight codewords in the
codes CA(`,m; r)⊥ with 2 ≤ r ≤ ` ≤ `′. While it is already known in case r = `, that these
codewords generate CA(`,m; r)⊥, more information for r < ` will be obtainable having such a
classification. It will be convenient to describe the support of minimum weight codewords. Such
a support is in principle just a subset of {1, . . . , qδ} (indicating in which coordinate positions the
non-zero elements occur). However, it will be more convenient to use the points P1, . . . , Pn as
indices, since the i-th coordinate of a codeword c = ev(f) simply is given by f(Pi). The points
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P1, . . . , Pn themselves will as before be identified with `× `′ matrices from M`×`′(Fq). All in all,
the support of a codeword in CA(`,m; r)⊥ will be described as a set of matrices. It will also turn
out to be convenient to have a special notation for some of these matrices:

Definition 7 Let 2 ≤ r ≤ ` ≤ `′ and let i and j be integers satisfying 1 ≤ i ≤ ` and 1 ≤ j ≤ `′.
Then we define Ei,j to be the `× `′ matrix all of whose entries equal 0 except the (i, j)-th entry,
which equals 1. Further for 1 ≤ ρ ≤ `, we write

Dρ := E1,1 + E2,2 + · · ·Eρ,ρ.

We see that

Dρ =

(
Iρ 0
0 0

)
,

where Iρ denotes the identity matrix of rank ρ. Note that the support of a minimum weight
codeword determines the minimum weight codeword itself up to multiplication with a nonzero
constant. Indeed if two linearly independent codewords would exist both of minimum weight
and with the same support, then a suitable linear combination of the two codewords would give
rise to a nonzero codeword of even lower weight, which would be a contradiction.

Already from Theorem 6 one can see that the case q = 2 is different from the case q > 2.
Therefore we will treat these cases separately in two subsections. In both cases however, the
group H(`,m) acts on the set of supports of minimum weight codewords of CA(`,m; r)⊥, giving
rise to orbits of supports of minimum weight codewords. The strategy will be to determine these
orbits and to single out a representative for each orbit, resulting in a complete description of all
possible minimum weight codewords in CA(`,m; r)⊥.

2.1 Classification in case q 6= 2.

If q 6= 2, the minimum distance of CA(`,m; r)⊥ equals 3 by Theorem 6. A codeword c of minimum
weight can therefore be described by its support {N1,N2,N3} and the (nonzero) values of the
coordinates cN1

, cN2
and cN3

of c. Since we have c ∈ CA(`,m; r)⊥, it holds for any f ∈ Fr that

cN1
f(N1) + cN2

f(N2) + cN3
f(N3) = 0. (3)

Note that by choosing f = 1, we immediately obtain that cN3
= −(cN1

+ cN2
). Using this

equation for other choices of f as well, we first show the following theorem:

Theorem 8 Let 2 ≤ r ≤ ` ≤ `′ and let c ∈ CA(`,m; r)⊥ be a weight 3 codeword with support

supp(c) = {N1,N2,N3}.

Then there exists σ ∈ H(`,m) and α ∈ Fq such that c′ := σ(c) has support

supp(c′) = {0,D1, αD1}, with α =
cN2

cN1
+ cN2

and
c′0 = cN1

, c′D1
= cN2

and c′αD1
= −(cN1

+ cN2
).

Conversely, given α ∈ Fq\{0, 1}, there exists a codeword c ∈ CA(`,m; r)⊥ with support
supp(c) = {0,D1, αD1}. Its nonzero coordinates satisfy

cD1
=
−α
α− 1

c0 and cαD1
=

1

α− 1
c0.
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Proof. Suppose that c satisfies the hypothesis of the theorem. First we consider the codeword
d := σN1,I`′ ,I`(c). Then

supp(d) = {0,N2 −N1,N3 −N1}

and
d0 = cN1

, dN2−N1
= cN2

and dN3−N1
= cN3

= −(cN1
+ cN2

).

To simplify the notation we let M = N2 −N1 and N = N3 −N1.
For integers i and j such that 1 ≤ i ≤ ` and 1 ≤ j ≤ `′, let f = det(X{i},{i}). For this

choice of f equation (3) implies that dMMi,j + dNNi,j = 0 or in other words that Ni,j =
cN2

/(cN1
+ cN2

)Mi,j . Since this equation holds for all possible i and j, we obtain that

N =
cN2

cN1 + cN2

M. (4)

Now let f = det(XI,J) be any 2-minor, then equation (3) applied to the codeword d implies that

0 = cN2f(M)− (cN1 + cN2)f(N) = cN2f(M)− (cN1 + cN2)

(
cN2

cN1 + cN2

)2

f(M).

In the last equality we used equation (4) and the fact that f is a 2-minor. Simplifying and using
that cN1

6= 0, cN2
6= 0 and −(cN1

+ cN2
) = cN3

6= 0, we obtain that f(M) = 0. Since this
holds for any 2-minor, we conclude that M has rank 1. Since rankM = 1, there exist matrices
B ∈ GL`(Fq) and A ∈ GL`′(Fq) such that BD1A = M. Then the codeword c′ := σ0,A,B(d) has
the desired properties.

What is left is to show the final converse statement. However, a direct verification shows that
the codeword of weight three with nonzero entries satisfying the relations stated in the theorem
is an element of CA(`,m; r)⊥. Note that one only needs to check equation (3) for the 0-minor
and the 1-minor X11, since all other minors f ∈ Fr are zero for the three matrices in the set
{0,D1, αD1}.

With this classification in place, it will be a fairly easy matter to determine the number of
weight three codewords in CA(`,m; r)⊥. The key ingredient will be the geometric observation
obtained from Theorem 8 that the support of a minimum weight codeword lies on a line (i.e. the
coset of a one-dimensional subspace of M`×`′(Fq)).

Corollary 2.1 Let 2 ≤ r ≤ ` ≤ `′. There are

qδ(q − 2)(q` − 1)(q`
′ − 1)

6

codewords of weight 3 in CA(`,m; r)⊥.

Proof. Let c ∈ CA(`,m; r)⊥ be a minimum weight codeword. Theorem 8 implies that there
exist matrices U ∈ M`×`′(Fq), A ∈ GL`′(Fq) and B ∈ GL`(Fq) and α ∈ Fq\{0, 1} such that
supp(σU,A,B(c)) = {0,D1, αD1}. This means that

supp(c) = {U,U + BD1A,U + αBD1A}.

Defining M := BD1A, we obtain supp(c) = {U,U+M,U+αM}. In the first place note that this
set is contained in a coset of the one-dimensional subspace {βM |β ∈ Fq} of M`×`′(Fq). In the

second place note that rankM = 1 and that any such matrix can be written in the form bTa with
a ∈ F`′q and b ∈ F`q. This description is unique up to multiplying b and simultaneously dividing
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a with a nonzero scalar. Therefore, there exist (q` − 1)(q`
′ − 1)/(q − 1) rank one matrices and

consequently (q`−1)(q`
′−1)/(q−1)2 distinct one-dimensional subspaces of M`×`′(Fq) generated

by a rank one matrix. Any such subspace has qδ−1 cosets, giving rise to qδ−1(q`−1)(q`
′−1)/(q−

1)2 distinct cosets in total.
All possible support sets are obtained by choosing three distinct matrices from the cosets

described above. Indeed by the second part of Theorem 8 any choice gives rise to a valid support
set. Therefore the total number of distinct support sets is(

q

3

)
qδ−1(q` − 1)(q`

′ − 1)

(q − 1)2
.

Finally, the number of minimum weight codewords is simply q − 1 times this amount, since the
support of a minimum weight codeword determines it up to multiplication with a nonzero scalar.

Note that this formula also correctly counts the number of weight 3 codewords of CA(`,m; r)⊥

over F2. Since that code has minimum distance 4, there are no weight three codewords and indeed
the formula in Corollary 2.1 evaluates to 0 for q = 2.

2.2 Classification in case q = 2.

If q = 2, the classification of codewords of CA(`,m; r)⊥ of minimum weight 4 is somewhat
more involved than the classification of weight 3 codewords in the previous subsection. This is
essentially because the geometric description of the possible support sets turns out to be more
complicated. Nevertheless we will see that a similar geometric description can be obtained, but
now it involves two lines instead of just one. We will proceed as before by first obtaining explicit
and simple representatives of the possible support sets of minimum weight codewords under the
action of the group H(`,m)

The support supp(c) of c ∈ CA(`,m; r)⊥ of minimum weight is a set of the form

{M1,M2,M3,M4} ⊂M`×`′(F2).

Since c ∈ CA(`,m; r)⊥ and q = 2, it holds for any f ∈ Fr that

f(M1) + f(M2) + f(M3) + f(M4) = 0. (5)

Note that any nonzero coefficient of a codeword necessarily equals 1, since q = 2. As for the case
q = 2, instead of studying the restrictions imposed on M1, M2, M3, and M4 by equation (5)
directly, we use the action of H(`,m) to simplify the form of these matrices. Since there are more
steps in this simplification when q 6= 2, we will divide these steps in several lemmas to improve
the clarity of the exposition.

Lemma 9 Let c ∈ CA(`,m; r)⊥ where supp(c) = {M1,M2,M3,M4} then there exists a codeword
c′ ∈ CA(`,m; r)⊥ such that

supp(c′) = {0,M2 + M1,M3 + M1,M4 + M1}.

Proof. We use one of the automorphisms defined in Definition 5, namely σM1,I`′ ,I` . Then the
codeword c′ := σM1,I`′ ,I`(c) has the desired property.

With this lemma in mind, we return to the study of equation (5). We first study this equation
in case f is a 1-minor.
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Lemma 10 Let c ∈ CA(`,m; r)⊥ such that supp(c) = {0,M1,M2,M3} then

M1 + M2 = M3.

Proof. Let f = det(X{i},{j}) = Xij for arbitrary i and j satisfying 1 ≤ i ≤ ` and 1 ≤ j ≤ `′.
Since r ≥ 1 (since throughout we assume r ≥ 2), we see from equation (5) that (M1)i,j +
(M2)i,j + (M3)i,j = 0. Since i and j were arbitrary and q = 2, we obtain M1 + M2 = M3.

Note that this lemma could also have been shown using the theory of (binary) Reed–Muller
codes. Indeed it is well known that the supports of minimum weight codewords in a binary Reed–
Muller code RM(a, δ) are very structured: they can be identified with affine (δ− a)-dimensional
linear subspaces (flats) of the affine space Aδ(F2); see for example Thm. 13.4.5 in [7]. Since
one can show that CA(`,m; r)⊥ is a subcode of RM(δ − 2, δ) both of which have minimum
distance four, any minimum weight codeword of CA(`,m; r)⊥ is a minimum weight codeword of
RM(δ − 2, δ). The support of these minimum weight codewords can therefore be identified with
a flat of dimension two. This is in essence the combined statements of Lemmas 9 and 10.

We continue our study of minimum weight codewords by finding a codeword of minimum
weight with an even simpler support than the described Lemma 10.

Lemma 11 Let c ∈ CA(`,m; r)⊥ where supp(c) = {0,M1,M2,M1 + M2} and define

ρ := min{rankM1, rankM2, rank(M1 + M2)}.

Then there exists a codeword c′ ∈ CA(`,m; r)⊥ and a matrix M ∈ M`×`′(F2) with M1,1 = 0,
rankM ≥ ρ and rank(Dρ + M) ≥ ρ, such that

supp(c′) = {0,Dρ,M,Dρ + M}.

Proof. Note that ρ > 0, since all matrices in the support are distinct and hence the zero
matrix only occurs once in supp(c). Moreover, without loss of generality we may assume that
ρ = rankM1. Then there exist matrices B ∈ GL`(F2) and A ∈ GL`′(F2) such that BDρA = M1,
with Dρ as in Definition 7. Then the codeword c′ := σ0,A,B(c) has support

supp(c′) = {0,Dρ,B
−1M2A

−1,Dρ + B−1M2A
−1}.

Note that ranks of the matrices in the supports of c and c′ have not changed under the automor-
phism, since A and B are regular matrices. Therefore Dρ is the matrix of smallest rank among
the non-zero matrices occurring in supp(c′).

Moreover, since ρ > 0, the (1, 1)-th entry of either B−1M2A
−1 or the matrix Dρ+B−1M2A

−1

equals zero. Choosing M to be the matrix among these two having 0 as (1, 1)-th entry, the lemma
follows.

Now we look at the restrictions the 2-minors impose on ρ and M when considering equation
(5).

Lemma 12 Let c ∈ CA(`,m; r)⊥ such that supp(c) = {0,Dρ,M,Dρ + M} as in Lemma 11.
Then Mi,i = 0 for any integer satisfying 1 ≤ i ≤ ρ.

Proof. Note that M1,1 = 0 by Lemma 11. Let f = det(X{1,i},{1,i}). If 1 < i ≤ ρ we have

f(0) = 0, f(Dρ) = 1, f(M) = M1,iMi,1, f(M + Dρ) = Mi,i + 1 + M1,iMi,1.

Therefore equation (5) implies that Mi,i = 0.
This takes care of some of the diagonal entries of M. The remaining diagonal entries, as well

as most other entries of M, are determined in the next lemma.
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Lemma 13 Let c ∈ CA(`,m; r)⊥ such that supp(c) = {0,Dρ,M,Dρ + M}. Let i > 1 and j > 1
be integers and suppose i > ρ or j > ρ. Then Mi,j = 0.

Proof. We consider the 2-minor f = det(X{1,i},{1,j}) where i > ρ or j > ρ. In this case

f(0) = 0, f(Dρ) = 0, f(M) = M1,jMi,1, f(M + Dρ) = Mi,j + M1,jMi,1.

Equation (5) implies the desired result.
We have now proven that if there is a codeword in CA(`,m; r)⊥ with support in {0,Dρ,M,Dρ+

M} then the entries of the four matrices are 0 if they are not lying in the first row, the first
column or in the ρ × ρ submatrix determined by the first ρ rows and columns. We now prove
that in fact ρ = 1, which will imply that undetermined entries in M are restricted to its first row
and column.

Lemma 14 Let c ∈ CA(`,m; r)⊥ such that supp(c) = {0,Dρ,M,Dρ + M}, with ρ and M as in
Lemma 11. Then ρ = 1.

Proof. First of all, let us assume that ρ ≥ 2. We’ll show that Mi,1 = M1,j = 0 for all i > 2 and
j > 2. We consider the 2-minor f = det(X{1,2},{2,j}) with j > 2. Note that Lemma 12 implies
M2,2 = 0. In this case

f(0) = 0, f(Dρ) = 0, f(M) = M1,2M2,j , f(M + Dρ) = M1,j + M1,2M2,j .

Equation (5) implies that M1,j = 0 for any j > 2. Similarly we may prove Mi,1 = 0 whenever
i > 2.

If ρ = 2, the above combined with Lemmas 12 and 13 implies that M may have nonzero
entries only in positions (1, 2) and (2, 1). By the remark after Lemma 11, ρ = 2 is the minimal
rank among the matrices D2, M and D2 + M. Therefore (using q = 2) M1,2 = M2,1 = 1.
However, this implies that the matrix D2 + M has rank 1, a contradiction. Therefore ρ = 2 is
not possible.

Now let us assume that ρ ≥ 3. We will show that this implies that rankM ≤ 2, which
again will give a contradiction by the remark after Lemma 11. We consider the 2-minor f =
det(X{1,i},{1,j}) where 1 < i < j ≤ ρ. In this case

f(0) = 0, f(Dρ) = 0, f(M) = M1,jMi,1, f(M + Dρ) = Mi,j + M1,jMi,1.

Equation (5) then implies that Mi,j = 0. Similarly we may prove Mi,j = 0 in case 1 < j < i ≤ ρ.
Combining this with the first part of the proof and Lemmas 13 and 12, we see that M may have
nonzero entries only in its (1, 2)-th and (2, 1)-th position. This implies that M has rank at most
two, a contradiction.

We have now gathered enough information to state and prove our classification of (the sup-
ports of) weight 4 codewords of CA(`,m; r)⊥. We use notation introduced in Definition 7.

Theorem 15 Let 2 ≤ r ≤ ` ≤ `′ and let c be a codeword of CA(`,m; r)⊥ of minimum weight 4.
Suppose that

supp(c) = {M1,M2,M3,M4}.

There exists an automorphism σ ∈ H(`,m) such that supp(σ(c)) is one of the following:

i) {0,D1,E1,2,D1 + E1,2},

ii) {0,D1,E2,1,D1 + E2,1},
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iii) {0,D1,E1,2 + E2,1,D1 + E1,2 + E2,1}.

Proof. Given c as in the theorem, we know by Lemmas 11 and 14 that there exists τ ∈ H(`,m)
such that supp(τ(c)) = {0,D1,M,D1 +M}, with M a matrix such that M1,1 = 0. Moreover, by
Lemma 13, we know that Mi,j = 0 if i ≥ 1 and j ≥ 1. This implies that the only nonzero entries
of M may occur in its first row or first column, but not in position (1, 1). We can therefore
perform elementary row and column operations that simplify the first row and column of M,
but leave D1 intact. More precisely, if the first row (or column) contains a 1, we may simplify
this row (or column) by moving the 1 to position (1, 2) (or (2, 1)), while removing all other
nonzero entries in the row (or column). In other words, we can find matrices A ∈ GL`′(Fq)
and B ∈ GL`(Fq) such that B−1D1A

−1 = D1 and B−1MA−1 ∈ {E1,2,E2,1,E1,2 + E2,1}. The
automorphism σ := σ0,A,B ◦ τ then has the desired property.

The three cases in the above theorem are representatives of all possible orbits of supports of
weight 4 codewords of CA(`,m; r)⊥ arising under the action of the group H(`,m). This means
we can describe any support of a minimum weight codeword rather explicitly. We state this in
the following corollary:

Corollary 2.2 Let q = 2 and 2 ≤ r ≤ ` ≤ `′. Then the support of a minimum weight codeword
of CA(`,m; r)⊥ is among one of the following three distinct classes of supports:

i) {U,U + bT1 a1,U + bT1 a2,U + bT1 (a1 + a2)},

ii) {U,U + bT1 a1,U + bT2 a1,U + (b1 + b2)Ta1},

iii) {U,U + bT1 a1,U + bT1 a2 + bT2 a1,U + (bT1 a1 + bT2 a1 + bT1 a2)}.

Here U ∈M`×`′(F2), while {a1,a2} ⊂ F`′2 and {b1, b2} ⊂ F`2 are two pairs of linearly independent
vectors. Conversely, any such set occurs as the support set of a minimum weight codeword in
CA(`,m; r)⊥.

Proof. Acting on the three representatives from Theorem 15 with σU,A,B gives a description

of all possible support sets. The matrix M := BD1A is of the form M = bT1 a1 for certain
non-zero vectors b1,a1. In fact bT1 is the first column of B and a1 is first row of A. Similarly
BE1,2B = bT1 a2 and BE2,1B = bT2 a1, with bT2 (resp. a2) the second column of B (resp. the
second row of A). Note that b1 and b2 (resp. a1 and a2) necessarily are linearly independent,
since B (resp. A) is an invertible matrix. This shows the first part of the corollary. Since A and
B may be chosen freely any set of the given three forms occurs as the support set of a minimum
weight codeword.

A geometric description of this corollary is that the support sets lie on a coset of certain
subspaces of M`×`′(F2) of dimension two. The subspaces are not arbitrary, but are generated
by matrices of a specific form. This enables us to count the number of weight 4 codewords in
CA(`,m; r)⊥.

Corollary 2.3 Let q = 2 and assume that 2 ≤ r ≤ ` ≤ `′. The number of minimum weight 4
codewords in CA(`,m; r)⊥ equals

(2` − 1)(2`
′ − 1)2δ−2

3

(
(2`−1 − 1) + (2`

′−1 − 1) + 3(2`−1 − 1)(2`
′−1 − 1)

)
.

Proof. We first count the number of possible supports of type i): As a first step we determine
the number of possibilities for the 2-dimensional subspace

W1 := {0,bT1 a1,b
T
1 a2,b

T
1 (a1 + a2)}.

9



We may choose b1 in 2`−1 distinct ways. Rather than choosing the vectors a1 and a2, we simply
choose a 2-dimensional subspace of F`′2 . This can be done in (2`

′ − 1)(2`
′ − 2)/6 ways. For W1

there are therefore the following number of possible choices:

(2` − 1)(2`
′ − 1)(2`

′−1 − 1)

3
.

Since each W1 has exactly 2δ−2 distinct cosets, this gives a total of

2δ−2(2` − 1)(2`
′ − 1)(2`

′−1 − 1)

3

possibilities for the support in case i). Similarly in case ii) one obtains

2δ−2(2`
′ − 1)(2` − 1)(2`−1 − 1)

3

possibilities.
The last case left to investigate is case iii). We first wish to determine the number of possi-

bilities for
W2 := {0,bT1 a1,b

T
1 a2 + bT2 a1,b

T
1 a1 + bT1 a2 + bT2 a1}.

Note that W2 contains exactly one matrix of rank one, which is determined uniquely by choosing
b1 and a1 since q = 2. Therefore the rank one matrix can be chosen in (2` − 1)(2`

′ − 1) distinct
ways. The vector b2 (resp. a2) should be chosen linearly independent from b1 (resp. a1) and
there are as such 2`

′−2 (resp. 2`
′ − 2) possibilities. However, different choices can give rise to the

same subspace W2. If
bT1 a2 + bT2 a1 = bT1 a′2 + (b′2)Ta1,

then
bT1 (a2 + a′2) = (b2 + b′2)Ta1,

implying that a2 + a′2 = 0 and b2 + b′2 = 0 or that a2 + a′2 = a1 and b1 = b2 + b′2. Similarly if

bT1 a1 + bT1 a2 + bT2 a1 = bT1 a′2 + (b′2)Ta1,

then either a′2 = a1 + a2 = 0 and b′2 = b2 = 0 or a′2 = a2 and b′2 = b1 + b2. This brings the
total number of possibilities for the choice of W2 to:

(2` − 1)(2`
′ − 1)(2` − 2)(2`

′ − 2)

4
.

The rest of the counting is then done as before. Adding all contributions from the three cases
together, one obtains the corollary.

Note that for both the case q = 2 and q 6= 2 the number of minimum weight codewords in
CA(`,m; r)⊥ does not depend on r as long as r ≥ 2. The fact that r ≥ 2 was used in the proofs
several times. Therefore we have in fact shown that the set of minimum weight codewords in
CA(`,m; r)⊥ equals the corresponding set in CA(`,m)⊥. Since the dimension of CA(`,m; r)⊥ does
depend on r (see equation 1), this implies that CA(`,m; r)⊥ cannot possibly be generated by its
minimum weight codewords if r < `. That they do if r = ` was established in [2] and with the
above results, all such minimum weight codewords can be given explicitly. In the coming sections
we will generalize these results to the Grassmann codes C(`,m)⊥.
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3 Classification of minimum weight codewords of C(`,m)⊥.

The affine Grassmann codes investigated above were inspired by Grassmann codes, which are
the topic of this section. We briefly introduce Grassmann codes from this point of view, linking
them to affine Grassmann codes. The `× `′ matrix X of δ indeterminates Xij can be extended
to an ` ×m matrix X′ = (X|I`). Recall here that m = ` + `′. The reason for this is that then
the set of all `-minors of X′ corresponds exactly to the set ∆≤` from Definition 2. A way to
”homogenize” the matrix X′ is to consider an `×m matrix Y of `m indeterminates whose first
`′ columns form X. A natural analogue of the set ∆≤` in this setting is the set of all `× ` minors
of Y. We define this more formally in the following:

Definition 16 Let ` ≤ m and denote by Y = (Yij) an `×m matrix whose entries are indeter-
minates Yij. Then for any J ⊂ {1, . . . ,m} with #J = `, we write fJ := det( (Yij)i∈{1,...,`}, j∈J )
and denote by Λ` the set of all such minors of Y. Further we denote by F` the linear vector
space generated by Λ`.

As before we aim to define an evaluation code where the functions are taken from F`. We also
need to establish the set of evaluation points, i.e. the set of matrices we wish to evaluate these
functions in. A first idea could be to choose as set M`×m(Fq), but this turns out to be a bad
idea. Indeed, if M ∈ M`×m(Fq) and A ∈ GL`(Fq), then f(AM) = det Af(M) for any f ∈ F`,
and f(M) = 0 whenever rankM < `. It is therefore better only to choose matrices M of full rank
` and to avoid matrices that have the same rowspace. It is now clear how the Grassmannian
variety G`,m, which is defined as the set of all `-dimensional subspaces of Fmq , comes in: For
each element V ∈ G`,m one chooses an `×m matrix MV whose rowspace equals V . Once these
matrices are fixed, we can define Grassmann codes from the evaluation code point of view:

Definition 17 Let m be an integer and suppose ` ≤ m. Then we define

C(`,m) := {ev(f) | f ∈ F`},

where ev(f) := (f(MV ))V ∈G`,m .

The usual definition, which is equivalent to ours, uses the language of projective systems
exploiting the Plücker embedding of G`,m [8, 10, 11]. A different choice of the matrices MV does
not alter the code significantly, but produces an equivalent code with the same basic parameters
(weight distribution, possible supports of codewords, etcetera). Therefore, we may choose the
matrices MV as we please. For general q, these parameters (length n(`,m), dimension k(`,m),
and minimum distance d(`,m)) of C(`,m) were determined in [8]. These parameters are

n(`,m) =

[
m

`

]
q

:=

`−1∏
i=0

qm−i − 1

q`−i − 1
,

k(`,m) =

(
m

`

)
, and d(`,m) = q`(m−`).

Note that the length of the code is #G`,m, which is well known to be equal to the Gaussian
binomial coefficient given above. Note that the codes C(`,m) and CA(`,m) are closely related. To
make this precise, let us assume that the matrices MV are chosen of the form (M|I`) whenever
this is possible (this is precisely if the projection p`(V ) of V onto its last ` coordinates has
dimension `). Then the codeword obtained from c ∈ C(`,m) by deleting all coordinates indexed
by V ∈ G`,m such that dim p`(V ) < `, is a codeword of CA(`,m). Therefore CA(`,m) can be
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obtained from C(`,m) by puncturing in these coordinates. Just as we for the affine Grassmann
codes assumed that ` ≥ 2 (since we assumed that r ≥ 2), we will also in this section assume
that ` ≥ 2. In the trivial case that ` = 1, the code C(`,m) is a projective Reed–Muller code,
whose parameters are well known. Since the dual of a projective Reed–Muller code again is a
projective Reed–Muller code, also the dual code is well understood in this case. Another trivial
case occurs when ` = m. In this case the length of the Grassmann code is simply 1. Therefore
we will always assume that 2 ≤ ` < m when considering Grassmann codes. Like in the previous
section, we wish to study the dual code of the codes under consideration. Using Definition 17,

we see that c ∈ Fn(`,m)
q is in C(`,m)⊥ if and only if∑

V ∈G`,m

cV fJ(MV ) = 0, (6)

for all fJ ∈ Λ`. It is not hard to determine the minimum distance of C(`,m)⊥. We do so in the
following lemma:

Lemma 18 Let 2 ≤ ` < m be integers. The minimum distance d⊥(`,m) of C(`,m)⊥ satisfies

d⊥(`,m) = 3.

Proof. It is well known that the map from the Grassmannian G`,m to P(m` )−1 associating to
a subspace V the Plücker coordinates of V , gives rise to a well-defined embedding. Therefore,
d⊥(`,m) 6= 1 (since then a subspace V would exist all of whose Plücker coordinates would be
zero) and d⊥(`,m) 6= 2 (since then two subspaces would exists with the same image under the
above map). Therefore the lemma follows if we can produce a codeword in C(`,m)⊥ of weight
three. For a, b ∈ Fq, consider the `×m matrix

Ma,b :=

(
I`−1 0 0 0
0 a b 0

)
.

For (a, b) 6= (0, 0), we denote by Va,b ∈ G`,m the rowspace of Ma,b. For simplicity we assume
that the matrix MVa,b that was chosen when defining the Grassmann code equals Ma,b. Now we

define c ∈ Fn(`,m)
q coordinate-wise as follows:

cV :=

 1 if V = V1,0 or V = V0,1,
−1 if V = V1,1,

0 otherwise.

We will have finished the proof once we show that c ∈ C(`,m)⊥. However, for all except two
f ∈ Λ` we have f(Ma,b) = 0. The only two exceptions are the `-minors f` (resp. f`+1) determined
by the first ` (resp. the first `− 1 and the (`+ 1)-st) columns. For these minors we have

f`(Ma,b) = a and f`+1(Ma,b) = b.

A direct verification now shows that for all f ∈ Λ` Equation (6) is satisfied, which implies that
c ∈ C(`,m)⊥.

Note that there is no distinction between q = 2 and q > 2 in the statement of Lemma 18,
making the Grassmann codes a slightly more regular class of codes than the affine Grassmann
codes. In the proof of Lemma 18 three spaces of the form Va,b were chosen, but other choices
would have been possible. To describe these possibilities (which are in fact all possibilities), we
introduce the following:
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Definition 19 Assume that ` < m and let Z ∈ G`−1,m, Z ′ ∈ G`+1,m. Then the line of the

Grassmannian πZ
′

Z determined by Z and Z ′ is defined as follows:

πZ
′

Z := {W ∈ G`,m | Z ⊆W ⊆ Z ′}.

We denote the set of all such lines of the Grassmannian by L(G`,m).

Note that any such line contains q + 1 elements. The terminology line is justified by the fact
that under the Plücker embedding, the q+ 1 elements lie on a line inside the projective space. It
is easy to count the number of possible lines in Definition 19, by first choosing Z ′, then Z ⊂ Z ′.
Reasoning like this one obtains:

#L(G`,m) =

[
m

`+ 1

]
q

[
`+ 1

`− 1

]
q

=

[
m

`

]
q

(qm−` − 1)(q` − 1)

(q2 − 1)(q − 1)
. (7)

The sets we have called lines of the Grassmannian, occur in the literature as well (see for example
[4] and [9, Ch.2.2 Ex.2.5]).

Also note that the q + 1 spaces Va,b (with (a, b) 6= (0, 0)) form a line of the Grassmannian
as in Definition 19 (one chooses Z = V0,0 and Z ′ = V1,0 + V0,1). It turns out that lines of a
Grassmannian are the key to classify all minimum weight codewords in C(`,m)⊥. However, we
first give a lemma.

Lemma 20 Let 2 ≤ ` < m and let G ∈ GLm(Fq). Then there exists c ∈ C(`,m)⊥ such that
supp(c) = {U, V,W} if and only if there exist c′ ∈ C(`,m)⊥ such that supp(c′) = {U · G, V ·
G,W ·G}. Moreover, U, V and W lie on a line of the Grassmannian if and only if U ·G, V ·G
and W ·G lie on a line of the Grassmannian

Proof. Note that right multiplication with G induces a permutation on G`,m. This permutation
gives rise to an automorphism of C(`,m) (and hence of C(`,m)⊥). The proof of the last statement
of the lemma is clear: U, V and W lie on πZ

′

Z if and only if U ·G, V ·G and W ·G lie on πZ
′·G

Z·G .
In the above proof some care needs to be taken in order to deal with the ambiguity when

choosing the matrices MV in Definition 17. This means that the automorphism induced by the
permutation in the above proof will in general not be a permutation automorphism. See [5]
for more details as well as a complete determination of the automorphism group. These details
are not important when classifying minimum weight codewords, since these are (up to scaling)
uniquely defined by their support sets. We are now ready to proceed with the main theorem of
this section.

Theorem 21 Let 2 ≤ ` < m and let {U, V,W} ⊂ G`,m. Then there exists a codeword c ∈
C(`,m)⊥ such that supp(c) = {U, V,W} if and only if U , V and W lie on a line of the Grass-
mannian.

Proof. First assume that U, V and W lie on the same line πZ
′

Z . In this case it holds that Z = U∩
V ∩W and Z ′ = spanFq (U, V,W ). Therefore, there exist x,y ∈ Fmq such that U = spanFq (Z,x),
V = spanFq (Z,y), W = spanFq (Z,x + y), and spanFq (U, V,W ) = spanFq (Z,x,y). The choice of
matrices MU ,MV and MW in Definition 4 does not affect the supports of codewords, so when
proving the theorem, we may choose these matrices as we wish. Using that U, V and W lie on
the same line πZ

′

Z , we may choose MU ,MV and MW such that they have the same ` − 1 rows
(generating Z), but having x, y and x+y as final `-th row. The multilinearity of the determinant
then implies that f(MU ) + f(MV ) − f(MW ) = 0 for any `-minor f ∈ Λ`. This implies that
there exists a codeword in c ∈ C(`,m)⊥ such that supp(c) = {U, V,W}.
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Conversely, let U, V and W be three linear spaces in G`,m such that U , V and W represent the
nonzero positions of a minimum weight codeword c ∈ C(`,m)⊥. Given any choice for MU , there
exists G ∈ GLm(Fq) such that MUG = (I`|0). Using Lemma 20, we may assume without loss of
generality that MU = (I`|0). Now let J := {1, 2, . . . , `} and consider the `-minor f := fJ ∈ Λ`.
Since f(MU ) = 1 and cU , cV , cW are nonzero, we may (possibly after interchanging V and W )
assume that f(MV ) 6= 0. Possibly after choosing a different matrix MV with the same row
space V , we may assume that MV = (I`|N) for a suitable matrix N. Note that N 6= 0, since
U 6= V . Applying Lemma 20 with G suitably chosen of the form G =

(
I` 0
C B

)
∈ GLm(Fq), we

may assume that MU = (I`|0) and

MV =



n1,`+1 n1,`+2 · · · n1,m
...

...
...

ni−1,`+1 ni−1,`+2 · · · ni−1,m
I` 1 0 · · · 0

ni+1,`+1 ni+1,`+2 · · · ni+1,m

...
...

...
n`,`+1 n`,`+2 · · · n`,m


.

Now let J ′ = (J ∪ {` + 1}) \ {i} and let f ′ := fJ′ be the `-minor determined by the columns
indexed by elements from J ′. Then Equation (6) implies that f ′(MW ) = −cV f ′(MV )/cW 6= 0.
Therefore, possibly after choosing the matrix MW differently (but keeping its rowspace fixed)
we may assume that

MW =



o1,i 0 o1,`+2 · · · o1,m

Ii−1
... 0

...
...

...
oi−1,i 0 oi−1,`+2 · · · oi−1,m

0 · · · 0 oi,i 0 · · · 0 1 oi,`+2 · · · oi,m
oi+1,i 0 oi+1,`+2 · · · oi+1,m

0
... I`−i

...
...

...
o`,i 0 o`,`+2 · · · o`,m


.

With these choices of MU , MV and MW in place, Equation (6) applied to the minors f and f ′

as above, implies that cW = −cV and cU + cV + oi,icW = 0. Therefore, we may assume without
loss of generality that cV = 1, cW = −1 and cU = oi,i − 1 (which in particular implies that
oi,i 6= 1).

Now we will use Equation (6) for other `-minors to further determine the entries of MV and
MW . From now on in the proof we let 1 ≤ j ≤ `, and j 6= i and `+ 1 < j′ ≤ m.

For J∗ = (J ∪ {j′}) \ {i}, Equation (6) implies that

0 = fJ∗(MV )− fJ∗(MW ) = ±(0− oi,j′) = ∓oi,j′ .

Therefore
oi,j′ = 0 for j′ > `+ 1. (8)

For J∗ = (J ∪ {`+ 1}) \ {j}, Equation (6) implies that

0 = fJ∗(MV )− fJ∗(MW ) = ±
(∣∣∣∣ 0 nj,`+1

1 ni,`+1

∣∣∣∣− ∣∣∣∣ oj,i 0
oi,i 1

∣∣∣∣) = ∓(nj,`+1 + oj,i).

Therefore
oj,i = −nj,`+1 for j 6= i. (9)
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For J∗ = (J ∪ {`+ 1, j′}) \ {i, j}, Equation (6) implies that

0 = fJ∗(MV )− fJ∗(MW ) = ±(nj,j′ − oj,j′).

oj,j′ = nj,j′ for j 6= i and j′ > `+ 1. (10)

Finally, for J∗ = (J ∪ {j′}) \ {j}, Equation (6) implies that

0 = fJ∗(MV )− fJ∗(MW ) = ±(nj,j′ − oi,ioj,j′) = ±nj,j′(1− oi,i),

where in the last equality we used Equation (10). We see that

nj,j′ = 0 for all j 6= i and j′ > `+ 1, (11)

since we already have established that oi,i 6= 1. Combining Equations (8),(9), (10) and (11) we
see that

MV =



n1,`+1

... 0
ni−1,`+1

I` 1 0 · · · 0
ni+1,`+1

... 0
n`,`+1


.

and

MW =



−n1,`+1 0

Ii−1
... 0

... 0
−ni−1,`+1 0

0 · · · 0 oi,i 0 · · · 0 1 0 · · · 0
−ni+1,`+1 0

0
... I`−i

... 0
−n`,`+1 0


.

In order to see ever more clearly how the rowspaces of MU , MV and MW are related, we redefine
MU (resp. MV ) as the following matrix, which has the same rowspace as the original MU (resp.
MV ):

MU =



−n1,`+1 0

Ii−1
... 0

... 0
−ni−1,`+1 0

0 · · · 0 1 0 · · · 0 0 0 · · · 0
−ni+1,`+1 0

0
... I`−i

... 0
−n`,`+1 0


,

MV =



−n1,`+1 0

Ii−1
... 0

... 0
−ni−1,`+1 0

0 · · · 0 1 0 · · · 0 1 0 · · · 0
−ni+1,`+1 0

0
... I`−i

... 0
−n`,`+1 0


.
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With these choices for MU , MV and MW we can clearly identify and compare their rowspaces U ,
V and W . Note that all rows except the i-th row are the same for the three matrices. Therefore
dim(U ∩ V ∩W ) = `− 1. However, since the i-th row of MU is a linear combination of the i-th
rows of MV and MW the fact that dim spanFq (U, V,W ) = `+1 follows. Choosing Z = U∩V ∩W
and Z ′ = spanFq (U, V,W ), we see by Definition 19 that U , V and W lie on the line πZ

′

Z . The
original U , V and W then also lie on a line of the Grassmannian by the second part of Lemma
20. As a corollary we count the number of codewords of C(`,m)⊥ of weight 3.

Corollary 22 Let 2 ≤ ` < m. Then the code C(`,m)⊥ contains

q(qm−` − 1)(q` − 1)

6

[
m

`

]
q

distinct codewords of weight 3.

Proof. Let W ∈ G`,m. By Equation (7), there are
[
m
`

]
q

(qm−`−1)(q`−1)
(q2−)(q−1) distinct lines of the

Grassmannian G`,m. Since a line contains q + 1 elements of G`,m, there are
(
q+1
3

)
subsets of the

lines occurring as the support of a weight 3 codeword. For each such set there are q−1 codewords
of weight 3 having this set as support set (no linearly independent minimum weight codewords
with the same support set exist). Therefore, there are a total of

(q − 1)

(
q + 1

3

)[
m

`

]
q

(qm−` − 1)(q` − 1)

(q2 − 1)(q − 1)

of minimum weight codewords.

4 Generation by minimum weight codewords.

The investigation of the structure of the minimum weight codewords in CA(`,m)⊥ was motivated
in [2] by a wish to decode CA(`,m), even though the ideal decoding algorithm is yet to be found.
Especially the fact that CA(`,m)⊥ is generated by its minimum weight codewords, means that
all information useful for decoding (syndromes, coset leaders, etcetera) is already obtained when
considering the parity checks coming from such syndromes. This motivation also is one of the
reasons to consider the similar question whether or not C(`,m)⊥ is generated by its weight 3
codewords. As we will show in this section, the answer is affirmative. The proof, like the ones in
the previous section, exploits geometric properties of G`,m. We start with the following geometric
concept:

Definition 23 Let 0 ≤ h ≤ ` ≤ m be integers and let M be an (m − `)-dimensional linear
subspace of Fmq . Then we define

Gh`,m(M) := {W ∈ G`,m | dim(W ∩M) = h}.

If h > min{m − `, `}, then Gh`,m(M) = ∅. Note that given M , we may partition G`,m with

the sets Gh`,m(M) for h = 0, 1, . . . , `. Let us denote by e1, . . . , em the standard basis vectors of

Fmq . In the discussion after Definition 17, it was mentioned that CA(`,m) can be obtained from
C(`,m) by puncturing in all coordinates indexed by spaces V whose projection p`(V ) onto its
last ` coordinates satisfies dim p`(V ) < `. The remaining coordinates are indexed exactly by the
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elements of G0`,m(〈e1, . . . , em−`〉). In general G0`,m(M) is an affine part of the projective variety
G`,m.

By adding zeros at the positions not in G0`,m(〈e1, . . . , em−`〉), a codeword of CA(`,m)⊥ can be

interpreted as a codeword of C(`,m)⊥. This identification will implicitly be made in the remainder
of this section, whenever the codes CA(`,m)⊥ and C(`,m)⊥ are compared to each other. To show
that C(`,m)⊥ is generated by its minimum weight codewords, we rely on Theorem 21. In order
to exploit it fully, we first continue our study of triples lying on a line of the Grassmannian.

Lemma 24 Let W ∈ Gh`,m(M) where 0 < h ≤ min {`,m− `}. Then there exist distinct U, V ∈
Gh−1`,m (M) such that U, V and W lie on a line of the Grassmannian.

Proof. Let W ∈ Gh`,m(M). We may assume that W is of the form spanFq (T ∪{y}) where y ∈M
and dimT = ` − 1. Since dimT < ` there exists x such that x 6∈ spanFq (M,T ). This implies

that the linear spaces U = spanFq (T ∪ {x+ y}) and V = spanFq (T ∪ {x}) belong to Gh−1`,m (M).
The last sentence of the proof could be replaced by: This implies that for any α ∈ Fq\{0},

the linear spaces U = spanFq (T ∪ {αx+ y}) and V = spanFq (T ∪ {x}) belong to Gh−1`,m (M). This
shows that if q > 2 there is a considerable amount of choice for the linear spaces U and V . This
will be used implicitly later on to avoid choosing U and V lying at infinity under the Plücker
embedding. Now we consider the weight 4 codewords of CA(`,m)⊥ over F2 as codewords of G⊥`,m
and give a description of them as the sum of two weight three codewords.

Lemma 25 Let c be a weight 4 codeword in CA(`,m)⊥ over the binary field. Then the support
of c is equal to the symmetric difference of two lines of the Grassmannian which have a common
point.

Proof.
From theorem 15 we know that the support of the weight 4 codewords of CA(`,m)⊥ over F2

follow in one of these cases.

• {0,D1,E1,2,D1 + E1,2}

• {0,D1,E2,1,D1 + E2,1}

• {0,D1,E1,2 + E2,1,D1 + E1,2 + E2,1}

Note that the automorphism σU,Im−`,I` of CA(`,m)⊥ is induced by the induced automor-

phism (X|I`) 7→ (X|I`)
(

Im−` 0
U I`

)
of C(`,m). Additionally note that the automorphism σ0,A,I`

of CA(`,m)⊥ is induced by (X|I`) 7→ (X|I`)
(
A 0
0 I`

)
and the automorphism σ0,Im−`,B of CA(`,m)⊥

is induced by (X|I`) 7→ (X|I`)
(

I` 0

0 B−1

)
. Therefore the supports of the weight 4 codewords lie

in the orbit under the automorphism group of C(`,m)⊥ of one of the following.

• {(0|I`), (D1|I`), (E1,2|I`), (D1 + E1,2|I`)}

• {(0|I`), (D1|I`), (E2,1|I`), (D1 + E2,1|I`)}

• {(0|I`), (D1|I`), (E1,2 + E2,1|I`), (D1 + E1,2 + E2,1|I`)}

Note that the support sets are subsets of G0`,m(〈e1, . . . , em−`〉). Each pair of spaces {(0|I`), (D1|I`)},
{(E1,2|I`), (D1+E1,2|I`)}, {(E2,1|I`), (D1+E2,1|I`)} and {(E1,2+E2,1|I`), (D1+E1,2+E2,1|I`)}
is contained in a line of L(G`,m) and the third point of each line is (D1|I` −D1).
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Lemma 26 Let c be a weight 3 codeword in CA(`,m)⊥ over a nonbinary field. Then the support
of c is a set of 3 points on a line of G`,m.

Proof.
From Theorem 8 we know that the support of the weight 3 codewords of CA(`,m)⊥ over Fq is

equal to {0,M, αM}, where M has rank 1. As we saw in the proof of Lemma 25 we may consider
the group of induced automorphisms H(`,m) as the group of automorphisms of G`,m generated by(

Im−` 0
U I`

)
,
(
A 0
0 I`

)
and

(
I` 0

0 B−1

)
. We may then apply an automorphism from H(`,m) to obtain

the set {0,E1,1, αE1,1}. Considering the corresponding positions in G`,m given by the matrices
{(0|I`), (E1,1|I`), (αE1,1|I`)}, we conclude that these three points lie on the same line.

From the previous results, we deduce the main theorem of this section:

Theorem 27 The code C(`,m)⊥ is generated by its minimum weight codewords.

Proof. Let W ∈ G`,m. We know from Theorem 6 and Lemma 26 (for q = 2 Lemma 25)
that the code CA(`,m)⊥ is generated by weight 3 codewords of C(`,m)⊥. Let h > 0. Then for
each W ∈ Gh`,m we can find a codeword of weight 3 of C(`,m)⊥ whose other two positions in its

support lie in Gh−1`,m . This implies that we have #G`,m − #G0`,m(M) independent codewords of

weight 3, in addition to those from CA(`,m)⊥. Therefore C(`,m)⊥ is generated by its weight 3
codewords.

We finish the article by harvesting a consequence of the above explicit results on the weight
three codewords for the generalized Hamming weights of C(`,m)⊥ and CA(`,m)⊥. The tool to
achieve these results is stated in the following:

Theorem 28 Let D be a subcode of C(`,m)⊥ where D does not have dimension 0, nor is it the
full code. Then there exists x ∈ C(`,m)⊥ such that spanFq (D∪x) has support either #supp(D)+1
or #supp(D) + 2.

Proof. The conditions on D imply {} 6= supp(D) 6= Gm,`. Therefore there exist U ∈ supp(D)
and W 6∈ supp(D). Since we can find a sequence of V1, V2, . . . Vn such that Vi ∈ G`,m, V1 = U ,
Vn = W and dimVi ∩ Vi−1 = ` − 1 we may assume dimU ∩ W = ` − 1. (In the sequence
V1, V2, . . . Vn there must be two consecutive elements such that one is in supp(D) and the other
one is not.) If x is a codeword of weight 3 of C(`,m)⊥ which has support in U and W then
supp(x) = {U, V,W}, and supp(spanFq (D∪x)) = supp(D)∪ supp(x) which finishes the proof.

Corollary 29 The generalized Hamming weights of C(`,m)⊥ satisfy:

di+1 − di ∈ {1, 2}

as long as di+1 6=
[
m
`

]
q
.

Proof. This follows directly from Theorem 28: given a subspace of dimension i of weight di,
we may construct a subspace of dimension i+ 1 whose support increases by at most 2.

Corollary 30 For q > 2, the generalized Hamming weights of CA(`,m; r)⊥ satisfy:

di+1 − di ∈ {1, 2}

as long as di+1 6=
[
m
`

]
q
.

Proof. The proof is very similar to that of the previous corollary. The only additional ingredient
is that since q > 2, the linear spaces V and W in the proof of Theorem 28 can be chosen from
G0`,m(〈e1, . . . , em−`〉).
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