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Simultaneous diagonalization of conics in PG(2, q)

Katharina Kusejko (ETH Zürich)

Abstract

Consider two symmetric 3 × 3 matrices A and B with entries in GF (q), for q = pn,
p an odd prime. The zero sets of vTAv and vTBv, for v ∈ GF (q)3 and v 6= 0, can be
viewed as (possibly degenerate) conics in PG(2, q), the Desarguesian plane of order q. Using
combinatorial properties of pencils of conics in PG(2, q), we are able to tell when it is possible
to find a regular matrix S with entries in GF (q), such that STAS and STBS are both diagonal
matrices. This is equivalent to the existence of a collineation, which maps two given conics
into two conics in diagonal form. For two proper conics, we will in particular compare the
situation in PG(2, q) to the real projective plane and compare the geometrical properties of
being diagonalizable with our combinatorial results.
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1 Introduction

A well-known problem in linear algebra is that of finding for two given Hermitian (symmetric) 3×3
matrices A and B over the complex (real) numbers a matrix S, such that S∗AS and S∗BS are
both in diagonal form, where S∗ is the conjugate transpose of S (see for example [6] or [3]). If such
a matrix S can be found, A and B are said to be simultaneously diagonalizable. In this paper, we
show that the situation over finite fields is for some cases rather different to the situation over the
real or complex numbers. For example, if A and B are two real symmetric matrices, a sufficient
but not necessary condition for A and B being simultaneously diagonalizable is that vTAv and
vTBv have no non-trivial common zeros, where v is a column vector. When viewing vTAv and
vTBv as polynomials which define conics in the real projective plane, the condition above would
be equivalent with the conics being disjoint. We will see that for finite projective Desarguesian
planes, not all pairs of disjoint conics are simultaneously diagonalizable. In particular, we obtain the
following condition for two proper disjoint conics in PG(2, q) being simultaneously diagonalizable:

Theorem 1.1. Two proper disjoint conics C and C̃ in PG(2, q) are simultaneously diagonal-
izable if and only if their pencil P(C, C̃) leads to a partition of the form {P, g, C1, ..., Cq−1} or

{P, P̃ , gg̃, C1, ..., Cq−2}, where P , P̃ are points, g is a line, gg̃ a pair of lines and Ci proper conics.

We are therefore interested in geometric conditions, such that the pencil of two proper disjoint
conics is of the form {P, g, C1, ..., Cq−1} or {P, P̃ , gg̃, C1, ..., Cq−2}. The main result concerning

this question is the following theorem about conics C and C̃ in nested position, i.e. all points of C
are external points of C̃ or all points of C are internal points of C̃ and vice versa.

Theorem 1.2. Consider two proper disjoint conics C and C̃ in PG(2, q). The pencil P(C, C̃) is
of the form {P, g, C1, ..., Cq−1} if and only if all pairs of proper conics lie in nested position.

For two proper conics which do intersect in exactly one or exactly three points, we will see that
simultaneous diagonalization is never possible. Two proper conics which intersect in exactly four
points, however, can always be diagonalized simultaneously. For two proper conics which intersect
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in exactly two points, the property of being simultaneously diagonalizable depends again on the
form of their pencil.

We start by reminding the reader of the most important properties of finite projective planes and
their collineations. Moreover, we make some combinatorial considerations used later on in this
paper. After that, we will describe a partition of the plane PG(2, q) by considering the pencil
of conics defined by two given conics and think about its possible shapes. In the main part, we
will then use these pencils to answer the question about simultaneous diagonalization of two given
conics. Moreover, we mention some connections to geometrical properties of simultaneously diag-
onalizable conics. In addition, we will compare our findings to the situation in the real projective
plane.

2 Preliminaries

2.1 The projective plane PG(2, q)

We recall briefly the most important facts and notations about finite fields (see [4]) and finite
projective planes (see [2]).

Let GF (q) be the Galois field of order q = pn for p an odd prime, i.e.

GF (q) = {0, 1, α, α2, α3, ..., αq−2},

for a primitive element α of GF (q).

The finite projective Desarguesian plane constructed over GF (q) is denoted by PG(2, q). The
points of PG(2, q) are given by non-zero column vectors [x, y, z]T for x, y, z ∈ GF (q), where
[λx, λy, λz] = [x, y, z] for all λ ∈ GF (q) \ {0}. Similarly, all lines are denoted by row vectors
[x, y, z].

The main idea for the simultaneous diagonalization of two symmetric matrices A and B with
entries in GF (q) is to consider the zeros of vTAv and vTBv, for v a point in PG(2, q). Such a zero
set corresponds to a line, a point, a pair of lines or a proper conic in PG(2, q).

All points, lines, pairs of lines and proper conics in PG(2, q) can be described as sets of the form

V := V(F (x, y, z)) =
{

[x, y, z]T ∈ PG(2, q)
∣

∣F (x, y, z) = 0
}

(1)

for F (x, y, z) = ax2+ by2+ cz2+dxy+ exz+ fyz with a, b, c, d, e, f ∈ GF (q), where at least one of
the coefficients is different from zero. We call the sets defined by (1) conics, and talk about proper
conics when referring to sets of q + 1 points, no three of them collinear. If the set V corresponds
to a point, a line or a pair of lines in PG(2, q), we refer to these sets as degenerate conics.

Another way to look at (1) is to consider the matrix representation

vTAv (2)

for v = [x, y, z]T and

A =





2a d e
d 2b f
e f 2c



 . (3)

Then the set V defined by (1) corresponds to a proper conic if and only if the corresponding matrix
A is regular. If A corresponds to a singular matrix and (2) is irreducible, the set V = V(vTAv) is
one point only. Otherwise, if (2) splits into one or two linear factors, it corresponds to one or two
lines. Conics whose matrix representation is singular are called degenerate or non-proper conics.

If C is a given proper conic, a line l intersects C in at most two points. We call l a tangent, if it
intersects C in exactly one point, a secant, if it intersects C in exactly two points and an external
line if it misses C. In finite projective planes of odd order, there is either none or exactly two
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tangents of C through a point off C. A point P is called internal point if there is no tangent to C
through P and external point if there are two tangents to C through P . Recall that (AP )T gives
the polar line of P with respect to C, where A is the matrix representation (3) of the conic C. In
particular, (AP )T is a tangent if and only if P is on C, it is a secant if and only if P is an external
point and an external line otherwise.

An important tool are collinear maps of PG(2, q):

Lemma 2.1. If S is a regular 3 × 3 matrix with coefficients in GF (q), then φS : PG(2, q) →
PG(2, q), P 7→ SP is bijective and collinear, i.e. a set of collinear points is mapped to a set of
collinear points.

The most important result concerning collineations we are going to use is known as the fundamental
theorem of projective geometry, see [2, Section 2.1].

Lemma 2.2. Let {P1, P2, P3, P4} and {Q1, Q2, Q3, Q4} be sets of points in PG(2, q), such that no
three points taken from the same set are collinear. Then there exists a collineation φS such that
φS(Pi) = Qi for i = 1, 2, 3, 4.

2.2 Some combinatorial considerations

In this section, we count the number of proper conics, which intersect in a particular number
of points and use this to count pairs of proper conics which have a certain number of points in
common. The numbers obtained in this section will be used later on to count the number of pencils
of conics in a particular shape. First, we deduce how many proper conics there are through a given
number of points.

Lemma 2.3. In PG(2, q), there are (q−2) proper conics through four given points, (q−1)2 proper
conics through three given points, q2(q − 1) proper conics through two given points and q2(q2 − 1)
proper conics through one given point. Furthermore, there are q5 − q2 proper conics in total.

Proof. To count the number of proper conics through four given points, we use Lemma 2.2 and
suppose, without loss of generality, that [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T and [1, 1, 1]T lie on the proper
conics. It follows that the matrices representing the conics are, up to scaling, of the form

A =





0 1 e
1 0 −1− e
e −1− e 0



 .

We need A to be regular, which leads to the conditions e 6= 0 and e 6= −1. This gives exactly
q− 2 choices for e. For the second statement, let [1, 0, 0]T , [0, 1, 0]T and [0, 0, 1]T be on the proper
conics. Again,

A =





0 1 e
1 0 f
e f 0





needs to be regular, i.e. ef 6= 0, which gives (q − 1)2 choices. Similarly can be proceeded for the
number of conics through two or one fixed points, as well as for the number of proper conics in
total.

Now we can use Lemma 2.3 to compute the following quantity:

Definition 2.1. The number of proper conics in PG(2, q) which intersect any given proper conic
C̃ in exactly k points is denoted by

Nk(q) := #
{

C | C a proper conic, |C ∩ C̃| = k for C̃ fixed
}

.
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Lemma 2.4. In PG(2, q), for q odd, we have:

N5(q) = 1

N4(q) =

(

q + 1

4

)

(q − 3)

N3(q) =

(

q + 1

3

)

((q − 1)2 − 1)− 4N4(q)

N2(q) =

(

q + 1

2

)

(q2(q − 1)− 1)− 6N4(q)− 3N3(q)

N1(q) = (q + 1)(q2(q2 − 1)− 1)− 4N4(q)− 3N3(q)− 2N2(q)

N0(q) = (q5 − q2)−N5(q)−N4(q)−N3(q)−N2(q)−N1(q)

Proof. Since any proper conic is uniquely determined by five of its points, we get N5(q) = 1. Let
us consider the proper conic C̃ and fix four points on C̃. There are q − 3 proper conics, which
intersect C̃ in exactly these four points, since the total number of proper conics through four points
is given by q − 2, as seen in Lemma 2.3. This is true for any set of four points on C̃, which gives
us N4(q) =

(

q+1
4

)

(q − 3).

For the third statement, with the same argument as before, we get
(

q+1
3

)

((q − 1)2 − 1) proper

conics through any three points of the fixed proper conic C̃, not counting C̃ itself. But now, we
also count those proper conics intersecting C̃ in four points, we even count these conics

(

4
3

)

= 4
times. Hence, we have to subtract 4N4(q) to get the desired result.

Similarly for the fourth statement, recall that there are q2(q − 1) − 1 proper conics through any
two points on C̃, not counting C̃ itself. Again, we also count those proper conics intersecting C̃
in exactly four points and now, we even count them

(

4
2

)

= 6 times. In addition, we count those

proper conics intersecting C̃ in exactly three points, namely
(

3
2

)

= 3 times. By subtracting these
expressions, we obtain the claimed number.

To obtain N1(q), a similar discussion can be made. Finally, to find the number of proper conics
which are disjoint to C̃, we just have to subtract the number of all proper conics which intersect
C̃ in exactly one, two, three or four points, as well as C̃ itself, of the number of all proper conics,
which is q5 − q2.

3 Partition of PG(2, q)

In this section, we consider again homogeneous polynomials of degree two with coefficients ai, bi,
ci, di, ei, fi in GF (q), not all zero, i.e.

Ei = aix
2 + biy

2 + ciz
2 + dixy + eixz + fiyz (4)

and the structure of conics Vi := V(Ei) obtained by considering the pencil of such objects over
GF (q). For this, let us define a pencil of conics:

Definition 3.1. Let Vi and Vj be two conics given by the zero sets of polynomials Ei and Ej in
PG(2, q), respectively. Let α be any primitive element of GF (q). Then we define the pencil of Vi

and Vj as
P(Vi, Vj) := {Vi} ∪ {Vj} ∪0≤k≤q−2 {V(Ej + αkEi)}

i.e. the pencil consists of the zero sets of all polynomials obtained by GF (q)-linear combinations of
Ei and Ej.

The main goal in this section is to show that starting with two disjoint conics Vi and Vj , their
pencil leads to a partition of the plane PG(2, q). Note that we do not assume that the starting
conics are proper, i.e. Vi and Vj can correspond to points, lines and pairs of lines as well as to
proper conics.
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Remark 3.1. As a direct consequence of the definition, we mention that if a point P lies in two
conics Vi and Vj , it lies in every element of their pencil P(Vi, Vj).

Since a pencil of two conics is constructed by GF (q)-linear combinations of two equations, the
following statement is immediate as well.

Lemma 3.2. The pencil P(Vi, Vj) is independent of the representatives Vi and Vj .

The next result deals with the question, whether all points of the plane PG(2, q) are in some
element of P(Vi, Vj).

Lemma 3.3. Consider the pencil P(Vi, Vj). Let P be any point in PG(2, q). If P lies in some
W ∈ P(Vi, Vj), then it is either only in W or in every element of P(Vi, Vj). Moreover, every point
P of the plane PG(2, q) is contained in at least one element of P(Vi, Vj).

Proof. The first statement is immediate by Lemma 3.1. For the second statement, let P be an
arbitrary point in PG(2, q) and assume that P does not lie in every element of the pencil P(Vi, Vj).
By the first statement, P can lie in at most one element of P(Vi, Vj). Suppose P neither lies in Vi

nor in Vj , so Ei(P ) 6= 0 and Ej(P ) 6= 0. But then, P lies in the element of P(Vi, Vj) given by the

equation Ej − Ej(P )
Ei(P )Ei.

Corollary 3.4. Let V1 and V2 be disjoint conics. Then the pencil P(Vi, Vj) gives a partition of all
points in PG(2, q).

Proof. Since V1 and V2 are disjoint, no point of PG(2, q) can be in more than one element in
P(Vi, Vj) since otherwise, by Lemma 3.3, such a point would lie in every conic of P(Vi, Vj) and
hence would be a common point of V1 and V2 as well. Moreover, every point of PG(2, q) is contained
in at least one element of P(Vi, Vj) by Lemma 3.3 again.

4 Simultaneous diagonalization

Recall that we are interested in conics given by the zero set of polynomials E of degree two,

E = ax2 + by2 + cz2 + dxy + exz + fyz (5)

where a, b, c, d,e, f ∈ GF (q).

For these polynomials, let us first clarify what we mean by diagonal:

Definition 4.1. We call a polynomial (5) diagonal, if the coefficients of the mixed terms xy, xz
and yz are zero. We call the polynomial diagonalizable if there is a collineation which maps the
zeros of (5) to the zeros of a diagonal polynomial.

Let C be a proper conic with matrix representation A and S any regular matrix. For any point P

on C, SP lies on C̃, which is given by the matrix representation (S−1)
T
AS−1, since

PTAP = 0 ⇔ (SP )T (S−1)
T
AS−1SP = 0.

Therefore, a symmetric matrix A is called diagonalizable, if there exists a regular matrix S, such
that STAS has diagonal form, which means that all entries off the diagonal are zero. In this
chapter we are interested in the existence of a regular matrix S such that for two given matrices
A and B, the matrices STAS and STBS are both in diagonal form.

Remark 4.1. Note that this definition of diagonalizable differs from the definition one might expect
from linear algebra, since we are interested in finding a non-singular matrix S with STAS in
diagonal form, but S is not necessarily orthogonal, i.e. in general, we have ST 6= S−1. What we
are doing is to think about the existence of a collineation which takes two conics simultaneously
into standard form.
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4.1 The disjoint case

We have seen in Corollary 3.4 that a pencil given by two disjoint conics leads to a partition of
the plane. We are now interested in the possible shapes of these partitions. We know that any
conic given by the zero set of a polynomial (5) corresponds either to a proper conic, a point, a
line or a pair of lines. Recall that any two distinct lines always intersect in a unique point, hence
when starting with two disjoint conics, at most one line or one pair of lines can occur in the whole
partition. Since every point has to be contained in exactly one of the q + 1 conics in the pencil,
this observation leads us to exactly three possible shapes for the pencil. In particular, we end up
with either q, q − 1 or q − 2 proper conics. According to this, we define:

Definition 4.2. The three possible shapes of a partition of the plane PG(2, q) given by a pencil
of disjoint conics are denoted by q-form for the partition {P,C1, ..., Cq}, by (q − 1)-form for the
partition {P, g, C1, ..., Cq−1} and by (q − 2)-form for the partition {P,Q, gg̃, C1, ..., Cq−2}, where
P , Q are points, g is a line, gg̃ a pair of lines and Ci proper conics, for 1 ≤ i ≤ q.

By analyzing these three shapes, we find the following condition for simultaneous diagonalization:

Theorem 4.2. Two disjoint conics V1 and V2 in PG(2, q) are simultaneously diagonalizable if and
only if their pencil P(V1, V2) leads to a partition of (q − 1)-form or (q − 2)-form.

Proof. In the first part of the proof, we will see that starting with a pencil of two diagonal poly-
nomials yields into a (q − 1)-form or a (q − 2)-form. For this, let E1 and E2 be the polynomials
defining V1 and V2, respectively. Consider

E1 = x2 + b1y
2 + c1z

2 and E2 = x2 + b2y
2 + c2z

2

where b1, b2, c1, c2 6= 0 and b1 6= b2 or c1 6= c2, hence we start with two distinct proper conics. Note
that this is no restriction for q ≥ 5, since in every possible form, there are at least two proper
conics and by Lemma 3.2, the pencil is independent of the choice of representatives. For q = 3, all
pencils in 1-form can be analyzed by hand.

Considering the pencil P(V1, V2), we see that V(E1 − E2) leads to a degenerate conic. Moreover,
V(E1− b1

b2
E2) and V(E1− c1

c2
E2) lead to one or two more degenerate conics, since b1 6= b2 or c1 6= c2.

Hence, we indeed end up with a pencil in (q − 1)-form or (q − 2)-form.

For the other direction, we have to show that all pairs of disjoint conics with a pencil in (q − 1)-
form or (q − 2)-form can be diagonalized simultaneously. For this, let us first look at a pencil in
(q − 1)-form.

We start with two disjoint conics such that their pencil is of (q−1)-form, which means that exactly
two degenerate conics occur, namely one point P and one line g. We can now apply a collineation
to the whole pencil, such that, without loss of generality, the point P is given by [1, 0, 0]T and
the line g is incident with [0, 1, 0]T and [0, 0, 1]T . So we can consider the pencil given by the two
elements g = V(x2) and P = V(y2 + cz2 + fyz), where c and f are chosen such that y2 + cz2+ fyz
is irreducible.

The elements of the pencil P(P, g) are then given by:

P = V(y2 + cz2 + fyz)

g = V(x2)

C0 = V(x2 + y2 + cz2 + fyz)

C1 = V(x2 + αy2 + αcz2 + αfyz)

C2 = V(x2 + α2y2 + α2cz2 + α2fyz)

...

Cq−2 = V(x2 + αq−2y2 + αq−2cz2 + αq−2fyz)
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Now we can apply another collineation such that all these conics are in diagonal form, namely
φS−1 , for the following matrix

S =





1 0 0

0 1 − f
2

0 0 1



 .

Indeed, we have

STAS =





0 0 0
0 1 0

0 0 c− f2

4



 ,

where A is the matrix representation of P . Note that applying φS−1 to g gives g again. Since
φS−1(Ei+Ej) = φS−1(Ei)+φS−1(Ej), we indeed end up with a pencil of diagonal conics, namely:

P̃ = V(y2 + c̃z2)

g̃ = V(x2)

C̃0 = V(x2 + y2 + c̃z2)

C̃1 = V(x2 + αy2 + αc̃z2)

C̃2 = V(x2 + α2y2 + α2c̃z2)

...

C̃q−2 = V(x2 + αq−2y2 + αq−2c̃z2)

for c̃ = c− f2

4 .

Now we look at a pencil in (q − 2)-form. Let us start with two proper disjoint conics C and C̃.
The pencil P(C, C̃) contains a pair of lines and two points. By applying a suitable collineation,
we can assume one of the points to be P = [1, 0, 0]T , i.e. P = V(y2 + cz2 + fyz) for c and f chosen
such that y2 + cz2 + fyz is irreducible. Moreover, by Lemma 2.2, we can assume the pair of lines
to be given by gg̃ with g through [1, 1, 0]T and [0, 0, 1]T and g̃ through [1,−1, 0]T and [0, 0, 1]T , so
we have gg̃ = V(x2 − y2). With the same collineations as before, we can start with diagonal conics
for P and gg̃ and obtain the following pencil:

P = V(y2 + cz2)

gg̃ = V(x2 − y2)

C0 = V(x2 + cz2)

C1 = V(x2 + (α− 1)y2 + αcz2)

C2 = V(x2 + (α2 − 1)y2 + α2cz2)

...

Cq−2 = V(x2 + (αq−2 − 1)y2 + αq−2cz2)

Note that C0 corresponds to the second point in the pencil. Again, we end up with diagonal forms
only.

Remark 4.3. It is well known that all proper conics in PG(2, q2) are projectively equivalent to
x2 + y2 + z2 = 0, see [2, Section 5]. In particular, any conic can be diagonalized. This can also be
seen as a consequence of the above result. To see this, just choose any line g disjoint from C and
look at the pencil P(C, g), which is by construction of (q − 1)-form.

Example 4.4. Let V1 = C and V2 = C̃ be two proper disjoint conics in PG(2, 5) given by

C = V(xy + 3xz + yz) and C̃ = V(x2 + y2 + z2 + xz).

7



We obtain:

V3 = V(x2 + y2 + z2 + xy + 4xz + yz) =
{

[1, 4, 1]T
}

V4 = V(x2 + y2 + z2 + 2xy + 2xz + 2yz)

=
{

[0, 1, 4]T , [1, 0, 4]T , [1, 1, 3]T , [1, 2, 2]T , [1, 3, 1]T , [1, 4, 0]T
}

V5 = V(x2 + y2 + z2 + 4xy + 3xz + 4yz)

V6 = V(x2 + y2 + z2 + 3xy + 3yz)

Since there are four proper conics in this pencil, we can diagonalize C and C̃ simultaneously. The
first step is to perform a collineation φS which maps V3 to [1, 0, 0]T and V4 to the line V(x2), i.e.
we apply

S−1 =





1 0 1
4 1 0
1 4 4





to V3 and V4, which leads to

P = V(y2 + 3z2 + 4yz) and g = V(x2).

As the polynomial defining P is not in diagonal form, we have to perform one more collineation
φT , given by the matrix

T−1 =





1 0 0
0 1 1
0 0 1



 .

Combining these two steps gives the following pencil:

P̃ = V(y2 + 2z2)

g̃ = V(x2)

C̃1 = V(x2 + y2 + 2z2)

C̃2 = V(x2 + 2y2 + 4z2)

C̃3 = V(x2 + 4y2 + 3z2)

C̃4 = V(x2 + 3y2 + z2)

Hence, we find a collineation φM with

M−1 = S−1T−1 =





1 0 1
4 1 0
1 4 4









1 0 0
0 1 1
0 0 1



 =





1 0 1
4 1 1
1 4 3





such that

φM (C) =





1 0 0
0 4 0
0 0 3



 and φM (C̃) =





1 0 0
0 3 0
0 0 1



 .

Our next goal is to show that not all pairs of proper disjoint conics in PG(2, q) can be diagonalized
simultaneously, i.e. we have to show that pencils in q-form actually exist.

Lemma 4.5. Let C be a proper conic in PG(2, q). Then there are 1
2 (2q − 3q2 + q3) proper conics

C̃, such that P(C, C̃) is in (q − 1)-form, there are 1
4 (−6q + 5q2 + 5q3 − 5q4 + q5) proper conics C̃

such that P(C, C̃) is in (q − 2)-form and there are 1
8 (6q − 3q2 − 7q3 + 3q4 + q5) proper conics C̃

such that P(C, C̃) is in q-form.
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Proof. Let C be any fixed proper conic. To find the number of proper conics C̃ such that P(C, C̃)
is in (q − 1)-form, we can also look at the number of pencils P(C, g), for g an external line of C.

There are exactly q(q−1)
2 external lines of C. Every such pencil P(C, g) leads to (q − 2) proper

conics C̃. Note that by Lemma 3.2, C̃ ∈ P(C, g) and C̃ ∈ P(C, h) for two lines g and h implies

g = h. Hence, there are q(q−1)(q−2)
2 = 1

2 (2q − 3q2 + q3) proper conics C̃, such that P(C, C̃) is in
(q − 1)-form.

Similarly, to find the number of proper conics C̃ such that P(C, C̃) is in (q − 2)-form, we can
also look at the number of pencils P(C, gg̃), for gg̃ a pair of external lines of C. There are
q(q−1)

2 ( q(q−1)
2 − 1) choices for gg̃ and in every such pencil there are q − 3 proper conics C̃. Hence,

there are q(q−1)
2 ( q(q−1)

2 − 1)(q − 3) = 1
4 (−6q + 5q2 + 5q3 − 5q4 + q5) proper conics C̃, such that

P(C, C̃) is in (q − 2)-form.

By Lemma 2.4, there are 1
8 (2q− 5q2 + 7q3 − 7q4 + 3q5) proper conics C̃, which are disjoint from a

given conic C. Subtracting the number of pencils P(C, C̃) in (q − 1)-form and in (q − 2)-form, we
obtain exactly 1

8 (6q − 3q2 − 7q3 + 3q4 + q5) proper conics C̃ such that P(C, C̃) is in q-form.

Corollary 4.6. For every conic C, there exists a conic C̃, such that C and C̃ cannot be diagonalized
simultaneously in PG(2, q).

Proof. By Lemma 4.5, for every fixed proper conic C, there are 1
8 (6q−3q2−7q3+3q4+ q5) proper

conics C̃ such that P(C, C̃) is in q-form, a number which is strictly greater than zero, for all q ≥ 3.
By Theorem 4.2, these pairs of conics C and C̃ cannot be diagonalized simultaneously.

Remark 4.7. In the real projective plane, all pairs of disjoint conics can be diagonalized simulta-
neously (see [6]). Note that in this case, two disjoint conics C and C̃ have the property that either
all points of C are external points of C̃ or all points of C are internal points of C̃, as they do
not intersect. In PG(2, q) however, the two conics can be disjoint without having this property,
i.e. C can contain external points of C̃ as well as internal points. We will show in the remaining
part of this subsection, that if all conics in a pencil are disjoint and for each pair of proper conics
in this pencil, one conic consists of only external points or only internal points of the other one,
simultaneous diagonalization is still possible.

We are therefore interested in the following property of conic pairs:

Definition 4.3. Let C and C̃ be two proper conics in PG(2, q). We say that C and C̃ are in
nested position if every point of C is an external point of C̃ or every point of C is internal point
of C̃ and vice versa, i.e. every point of C̃ is an external point of C or every point of C̃ is internal
point of C.

Remark 4.8. Note that if C consists of internal points of C̃, that does not imply that C̃ consists
of external points of C. In particular, in the finite projective plane PG(2, q) it is possible that two
conics C and C̃ are such that C consists of internal points of C̃ and C̃ consists of internal points
of C as well. Because of that, we need to write down both conditions in the definition above.

The interested reader can refer to [1] for information about the maximal number of external points
on C with respect to another given conic C̃ as well as the number of conics C and C̃ which lie in
nested position. Moreover, about the construction of conics consisting only of external points of a
given conic, one can have a look at [5].

We will use the following well-known result about nested conics:

Lemma 4.9. Let C and C̃ be in nested position. Then C and C̃ are disjoint and have no tangents
in common.

Proof. The points of C are either all external or all internal to C̄. Thus, C does not contain a
point of C̃ and hence, they are disjoint. For the second property, we have to distinguish two cases.
We start with C consisting of internal points of C̃ only. In this case, no point of C is incident
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with a tangent of C̃, i.e. the two conics have no tangents in common. For C consisting of external
points of C̃ only, we know that through every point of C there are exactly two tangents of C̃ .
There are q + 1 points on C and there are q + 1 tangents of C̃. As every point of C is incident
with two tangents of C̃, also every tangent of C̃ need to be incident with two points of C, hence
every tangent of C̃ is a secant of C.

Remark 4.10. As a direct consequence of the definitions, we know that the property of two proper
conics lying in nested position is invariant under collineations.

Theorem 4.11. The only pencil of two proper disjoint conics C and C̃ in PG(2, q) for q odd, where
all pairs of proper conics lie in nested position, is a pencil P(C, C̃) in (q − 1)-form. Moreover, a
pencil P(C, C̃) in (q−1)-form has the property that all pairs of proper conics lie in nested position.

Proof. The first statement can be proven by combinatorial considerations only, namely by excluding

that such a pencil can be in q-form or (q− 2)-form. There are q(q+1)
2 external points for any fixed

proper conic C. Assume that all pairs of proper conics in a pencil in q-form are in nested position.
For this, we have to consider two cases, namely the unique point P in the pencil being an external
point or an internal point of C. Let P be an external point of C. By our assumption, this gives
k(q + 1) + 1 external points of C, for an integer k, depending on the number of proper conics in
the pencil consisting of external points of C only. This means

k(q + 1) + 1 =
q(q + 1)

2

and therefore k = q

2 − 1
q+1 , which is not an integer, because q is odd. Hence, this case is not

possible.

Now, let P be an internal point of C. Again, by assumption, this would imply k(q + 1) = q(q+1)
2

for an integer k, which is not possible for q odd. Because of this, not all pairs of proper conics in
a pencil of q-form can be in nested position.

To exclude that such a pencil can be in (q − 2)-form, assume again that all pairs of conics lie
in nested position. Here, we have to consider different cases of how many points of gg̃, P, P̃ are
external points of C. The lines g and g̃ intersect in exactly one point, say R. If R is an external
point of C, there are two tangents of C through R. Since every two lines intersect, every other
of the remaining q − 1 tangents of C must intersect both g and g̃ in different points, which gives
1 + (q − 1) = q external points on gg̃. For the case that R is an internal point of C, by the same
argument, we obtain q+1 external points on gg̃. Moreover, the two points P and P̃ can be either
external points or internal points of C, which gives us in total q, q+1, q+2 or q+3 external points
not on any proper conic of the pencil. Hence, we obtain the condition

k(q + 1) + i =
q(q + 1)

2

for some integer k and i ∈ {−1, 0, 1, 2}, which is not possible for q odd and q ≥ 5. Hence, not all
pairs of proper conics in a pencil of (q−2)-form can be in nested position. Note that the statement
is trivially true for q = 3 as well, since a pencil in q-form for q = 3 consists of only four elements,
which are two points, one pair of lines and only one proper conic. Hence, we do not even have two
proper conics in this case.

To show the second statement, remember that by Lemma 4.10, the property of lying in nested
position is invariant under collineations. By assumption, the pencil is in (q − 1)-form and hence
can be transformed into a pencil of diagonal conics, as shown in Theorem 4.2. Therefore, it is
enough to show that in the following pencil, where c is chosen to be a non-square, all pairs of
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proper conics lie in nested position:

P = V(y2 + cz2)

g = V(x2)

C0 = V(x2 + y2 + cz2)

C1 = V(x2 + αy2 + αcz2)

C2 = V(x2 + α2y2 + α2cz2)

...

Cq−2 = V(x2 + αq−2y2 + αq−2cz2)

So, let Ci and Cj be given by

Ci = V(x2 + αiy2 + αicz2) and Cj = V(x2 + αjy2 + αjcz2).

Since all points of PG(2, q) with a zero x-coordinate lie on the line g = V(x2), every point P of
Ci can be written in the form P = [1, p2, p3]

T and in particular, we have p22 = −α−i − cp23. The
conics Ci and Cj lie in nested position if either for all such points P of Ci, (AjP )T is a secant of
Cj or this happens for no such point P , where Aj is the matrix representation of Cj , i.e.

Aj =





1 0 0
0 αj 0
0 0 cαj



 .

We know that [1, αip2, cα
ip3] is a secant of Cj if and only if α−jx+p2y+cp3z = 0 has two solutions

for points [x, y, z]T in Cj . Since the x-coordinate of such points is not zero, we are looking for

solutions of the form [1,±
√
−α−j − cz2, z]T . Hence, we have to find solutions of

z2 − 2αi−jp3z + α−jc−1 + αi−jp23 − αi−2jc−1 = 0.

This quadratic equation is solvable for z if and only if its discriminant is a square in GF (q),
i.e. if and only if α2i−2jp23 − α−jc−1 − p23α

i−j + αi−2jc−1 is a square in GF (q), which is the
same as (αip23 + c−1)(αi − αj) being a square in GF (q). Since [1, p2, p3]

T lies on Ci, we know
αip23 + c−1 = −c−1αip22. The condition is therefore that (−αic−1)(αi − αj) needs to be a square,
which is independent of the point P , and hence C and C̃ are nested.

4.2 The non-disjoint case

Note that two non-disjoint proper conics can intersect in exactly one, two, three or four points.
If they intersect in more than four points, they are actually the same, since any proper conic is
uniquely defined by five of its points. To study the question whether or not two proper non-disjoint
conics can be diagonalized simultaneously, we look at the following results, each concerned with a
different number of intersection points. For all cases, we assume simultaneous diagonalization for
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the two proper conics we start with. Hence, in all proofs, we have to consider the following pencil:

C1 = V(x2 + by2 + cz2)

C2 = V(x2 + b̃y2 + c̃z2)

V0 = V((1 + 1)x2 + (b+ b̃)y2 + (c+ c̃)z2)

V1 = V((1 + α)x2 + (b + αb̃)y2 + (c+ αc̃)z2)

V2 = V((1 + α2)x2 + (b+ α2b̃)y2 + (c+ α2c̃)z2)

...

V q−1

2

= V((b − b̃)y2 + (c− c̃)z2)

...

Vq−2 = V((1 + αq−2)x2 + (b+ αq−2 b̃)y2 + (c+ αq−2c̃)z2)

for b, b̃, c, c̃ 6= 0 and b 6= b̃ or c 6= c̃. Note that V q−1

2

is a degenerate conic, since α
q−1

2 = −1. Since

b+ kb̃ and c+ kc̃ runs through all elements of GF (q) for k = 0, ..., q − 1, there are exactly two or
three degenerate conics in this pencil.

Remark 4.12. Note that in a pencil of conics which contains more than three degenerate conics,
all conics are degenerate. This can for example be seen by setting b = 0 and c̃ = 0 in the above
pencil, i.e. we start with two degenerate conics. Of course, V q−1

2

is still a degenerate conic. To

obtain more than three degenerate conics, we necessarily need c = 0 or b̃ = 0 as well, hence all
conics in the pencil are degenerate.

Theorem 4.13. No two proper conics C1 and C2 in PG(2, q), which intersect in exactly one point,
can be diagonalized simultaneously.

Proof. Let C1 and C2 intersect in exactly one point, say P , and assume that C1 and C2 can be
diagonalized simultaneously. We know that all elements in the pencil P(C1, C2) must contain P as
well and we have to distinguish the cases of P itself occurring as an element in the pencil or not.

Let us start by assuming that P itself is a conic of the pencil. Since we only have q+1 elements in
the pencil and every point of the plane PG(2, q) needs to occur in one of these, there has to be a
degenerate conic corresponding to a pair of lines as well. Indeed, this gives 1+2q+(q−1)q = q2+q+1
different points in the q + 1 conics of the pencil, as no point except P occurs in more than one
element of the pencil. As there are equally many points on a proper conic and on a line, the
remaining q− 1 conics can correspond to lines or proper conics. There are two or three degenerate
conics in the pencil of C1 and C2, hence we have to distinguish further.

First, assume that the pencil is of the form {P, gg̃, C1, ..., Cq−1}. In this case, we have exactly two
degenerate conics and two of the elements of the pencil above must correspond to a point and a
pair of lines, respectively. This means b− b̃ 6= 0 and c− c̃ 6= 0 as otherwise, V q−1

2

would correspond

to a line. As the degenerate conics are exactly two, there exists a k such that b + αk b̃ = 0 and
c+ αk c̃ = 0. But then, the conic Vk is a line, which is a contradiction.

Now, let the pencil be of the form {P, gg̃, g′, C1, ..., Cq−2}. Here, we have three degenerate conics.
Assume that V q−1

2

is a line. Since each zero of x2 + ty2 corresponds to a point or a pair of lines,

depending on t 6= 0, we need b = b̃ or c = c̃ to obtain the line V(z2) or V(y2). In both cases, there
can only be one more degenerate conic, which is a contradiction. So V q−1

2

must correspond to the

point or the pair of lines. In both cases, we have b 6= b̃ and c 6= c̃. Since we need three degenerate
conics, there exists a k such that b+αk b̃ = 0 and a k′ with c+αk′

c̃ = 0. For k 6= k′, the conics Vk

and Vk′ both correspond to a point or a pair of lines. As k = k′ leads to only one more degenerate
conic corresponding to a line, we have a contradiction.
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Now assume that P does not occur as an element of the pencil. In this case, assume we have the
pencil {g1, g2, C1, ..., Cq−1} or {g1, g2, g3, C1, ..., Cq−2}. This means that V q−1

2

must correspond to

a line, i.e. b = b̃ or c = c̃. This gives only one more degenerate conic, which corresponds to a point
or a pair of lines, hence we cannot produce the pencils we assumed.

Remark 4.14. Note that the same result is true in the real projective plane as well. A shorter
proof for that is to look at two proper conics in diagonal form, namely C = V(x2 + by2 + cz2)
and C̃ = V(x2 + b̃y2 + c̃z2). Note that if P = [x, y, z]T lies on C and C̃, then so do [x,−y, z]T ,
[x, y,−z]T and [x,−y,−z]T . Since [1, 0, 0]T , [0, 1, 0]T and [0, 0, 1]T do not lie on a proper conic of
this pencil, we obtain exactly two or four intersection points. This argument holds for the real
projective plane as well as for PG(2, q). For this reason, we expect simultaneous diagonalization
to fail for conics with exactly one or exactly three common points. The proof above shows that
these results can be obtained by considering the pencil of conics as well, although the proof is
much longer than the simple argument just mentioned.

Lemma 4.15. Two proper conics C1 and C2 which intersect in exactly two points can be diago-
nalized simultaneously if and only if their pencil is of the form

{g1g̃1, g2, C1, C2, ..., Cq−1}.

Proof. Let C1 and C2 intersect in exactly two points P and Q. None of the elements of the pencil
can correspond to a point, since both P and Q lie in all elements of the pencil. Moreover, since
every point of the plane except P and Q needs to be in exactly one element of the pencil, we
need one pair of lines, since we need (2q + 1) + (q − 1)q = q2 + q + 1 points in total. As there
is exactly one line through P and Q, we only have two possible forms for the pencil, namely
{g1g̃1, g2, C1, C2, ..., Cq−1} or {g1g̃1, C1, C2, ..., Cq}. The second pencil has only one degenerate
conic, so simultaneous diagonalization is not possible in this case, which shows one direction of our
claim.

For the other direction, let the pencil be of the form {g1g̃1, g2, C1, C2, ..., Cq−1}. Note that for
two diagonal conics, if they intersect in a point [1, y, z]T they intersect as well in the points
[1,−y, z]T , [1, y,−z]T and [1,−y,−z]T , which gives potentially four intersection points. Hence,
if the two conics we started with are diagonalizable simultaneously and intersect in exactly two
points, they have to intersect in a point with a zero coordinate, e.g. [1, αk, 0]T , which gives
only one more intersection point. As we can transform any three non-collinear points to any
other three non-collinear points, we search for a transformation φS such that φS(P ) = [1, αk, 0]T ,
φS(Q) = [1,−αk, 0]T and φS(g1 ∩ g̃1) = [0, 0, 1]T . Note that the intersection of the pair of lines,
i.e. g1 ∩ g̃1 cannot be P or Q, since then g1 or g̃1 would be the line through P and Q, namely g2,
and the elements g1g̃1 and g2 would have q + 1 common points. So, we indeed obtain, without
loss of generality, g2 = V(z2) and g1g̃1 = V(α2kx2 − y2). All elements of the pencil intersect in
exactly two points, namely [1, αk, 0]T and [1,−αk, 0]T and hence the two conics we started with
are mapped into two diagonal conics, which intersect in exactly those two points as well.

Lemma 4.16. Two proper conics C1 and C2 which intersect in exactly three points, cannot be
diagonalized simultaneously.

Proof. Let C1 and C2 intersect in the points P , Q and R. Note that none of the conics in the
pencil corresponds to a point. Moreover, none of the conics corresponds to a line, as P , Q and
R are not collinear by the definition of a proper conic. Hence, the only degenerate conics which
occur correspond to pairs of lines. The question therefore is how many such pairs there are and
if there is only one possible pencil. For this, note that on a pair of lines, there are always 2q + 1
points. As all conics in question intersect in the same three points, we have to be careful not to
count any point too often. So, we have to solve the following equation:

3 + i(2q − 2) + (q + 1− i)(q − 2) = q2 + q + 1, 0 ≤ i ≤ 3

which gives immediately i = 2, so there are always two degenerate conics which correspond to a
pair of lines. Hence, the pencil of two proper conics which intersect in three points is always of the
form {g1g̃1, g2g̃2, C1, ..., Cq−1}.
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Therefore, the conic V q−1

2

corresponds to a pair of lines, which gives b 6= b̃ and c 6= c̃. There is only

one more degenerate conic, hence there exists a k such that b+αkb̃ = 0 and c+αkc̃ = 0. But then
Vk corresponds to a line, which is a contradiction.

Remark 4.17. We already mentioned in Remark 4.14 that this happens in the real projective plane
as well.

Lemma 4.18. Two proper conics C1 and C2 which intersect in exactly four points can always be
diagonalized simultaneously.

Proof. In the pencil of two proper conics C1 and C2 which intersect in exactly four points, the only
possible degenerate conics correspond to pairs of lines by the same argument as before. Again, we
have to think about the number i of pairs of lines needed to ensure that every point of the plane
is in an element of this pencil. For this, we have to solve

4 + i(2q − 3) + (q + 1− i)(q − 3) = q2 + q + 1

which gives us i = 3. Hence, the pencil of two proper conics which intersect in exactly four points
is always given by {g1g̃1, g2g̃2, g3g̃3, C1, ..., Cq−2}. These four intersection points are such that no
three are on one line and hence by Lemma 2.2, we can choose those points as:

P = [1, 1, 1]T , Q = [1,−1, 1]T , R = [1, 1,−1]T , S = [1,−1,−1]T

There are exactly three different pairs of lines through these four points P , Q, R and S, given by:

g1g̃1 = V(y2 − z2), g2g̃2 = V(x2 − y2), g3g̃3 = V(x2 − z2)

This leads to the following pencil:

g1g̃1 = V(y2 − z2)

g2g̃2 = V(x2 − y2)

g3g̃3 = V(x2 − z2)

C1 = V(x2 + (α− 1)y2 − αz2)

C2 = V(x2 + (α2 − 1)y2 − α2z2)

...

Cq−2 = V(x2 + (αq−2 − 1)y2 − αq−2z2)

Therefore, the two conics we started with are in diagonal form as well.

Remark 4.19. In the real projective plane, two conics which intersect in exactly four points can
always be diagonalized simultaneously as well. This can for example be shown by proving the
existence of a triangle which is self-polar with respect to both conics (see for example [7]).

5 Summary

To finish the discussion about simultaneous diagonalization of two symmetric 3 × 3 matrices over
GF (q) using pencils of conics, we summarize our results in the following table.
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Case Pencil diagonalizable?

|C1 ∩ C2| = 0 {P, g, C1, ..., Cq−1} yes

{P, P̃ , gg̃, C1, ..., Cq−2} yes
{P,C1, ..., Cq} no

|C1 ∩ C2| = 1 {P, gg̃, C1, C2, C3/g3, ..., Cq−1/gq−1} no
{C1, C2, C3/g3, ..., Cq+1/gq+1} no

|C1 ∩ C2| = 2 {gg̃, g′, C1, ..., Cq−1} yes
{gg̃, C1, ..., Cq} no

|C1 ∩ C2| = 3 {g1g̃1, g2g̃2, C1, ..., Cq−1} no
|C1 ∩ C2| = 4 {g1g̃1, g2g̃2, g3g̃3, C1, ..., Cq−2} yes
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