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Abstract

For a given elliptic curve E over a finite field of odd characteristic and a ratio-
nal function f on E we first study the linear complexity profiles of the sequences
f(nG), n = 1, 2, . . . which complements earlier results of Hess and Shparlinski. We
use Edwards coordinates to be able to deal with many f where Hess and Shpar-
linski’s result does not apply. Moreover, we study the linear complexities of the
(generalized) elliptic curve power generators f(enG), n = 1, 2, . . . We present large
families of functions f such that the linear complexity profiles of these sequences
are large.
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1 Introduction

The linear complexity profile L(sn, N), N = 1, 2, . . . , of a sequence (sn) over a ring R is
a non-decreasing sequence where the N -th term is defined as the length L of a shortest
linear recurrence relation

sn+L = cL−1sn+L−1 + · · ·+ c1sn+1 + c0sn, 0 ≤ n ≤ N − L− 1

for some c0, . . . , cL−1 ∈ R, that (sn) satisfies, with the convention that L(sn, N) = 0 if
the first N elements of (sn) are all zeros, and L(sn, N) = N if s0 = · · · = sN−2 = 0 and
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sN−1 6= 0. The value
L(sn) = sup

N≥1

L(sn, N)

is called the linear complexity of the sequence (sn).
The linear complexity profile measures the unpredictability of a sequence and thus its

suitability in cryptography. For more details see [9, 12, 17].
A common method for generating pseudorandom sequences is the linear method.

Namely, for integers a, b,m and ϑ with gcd(a,m) = gcd(ϑ,m) = 1 we define the se-
quence (xn) as

xn ≡ axn−1 + b (mod m), 0 ≤ xn < m, n = 1, 2, . . . (1)

with the initial value x0 = ϑ, see [7, 13]. Although linear generators have many applica-
tions including Monte-Carlo integration, they have linear complexity profile L(xn, N) ≤ 2;
so they are highly predictable and thus unsuitable in cryptography.

A more adequate method for cryptographic applications is the power generator. Namely,
let ϑ, m and e be integers such that gcd(ϑ,m) = 1. Then one can define the sequence
(un) by the recurrence relation

un ≡ uen−1 (mod m), 0 ≤ un < m, n = 1, 2, . . . (2)

with the initial value u0 = ϑ.
Two special cases of the power generator (both for m = pq the product of two primes)

are the RSA generator, when gcd(e, ϕ(m)) = 1, where ϕ is the Euler function, and the
Blum-Blum-Shub generator (or square generator), when e = 2. The linear complexities
of these generator were studied by Griffin and Shparlinski [5], and Shparlinski [14].

For more background on pseudorandom number generation we refer to the survey
articles [15, 18] and the monographs [11, 13].

In this paper we study the linear complexities of the elliptic curve analogues of the
sequences defined by (1) and (2).

In Section 2 we summarize some basic facts about elliptic curves. In Section 3, we
define the elliptic curve generators and elliptic curve power generators with respect to a
rational function of the curve. Next, by using Edwards coordinates we state a complement
to a result of Hess and Shparlinski [6] for a large family of functions where [6, Theorem 4]
is not applicable. Then we present an extension of a result of Lange and Shparlinski [8] on
the linear complexity of the elliptic curve power generator defined via the first coordinate
to analogues defined via more general rational functions. Finally, in Sections 4 and 5 we
present the proofs.

We emphasize the two new ideas in the proofs compared to [6, 8]. First, the method
of [6] fails if a certain pole divisor on the elliptic curve is not of a very special form, see
Section 3.1 for more details. However, if we use Edwards coordinates some different but
rather mild conditions have to be satisfied. Consequently, we can deal with many more
functions not covered by [6]. Secondly, a more general linear independence property than
in [8] from [10] is used to extend the results of [8].

We use the notation A(x) ≪ B(x) or B(x) ≫ A(x) if |A(x)| ≤ cB(x) holds for some
positive constant c.
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2 Elliptic curves

Let Fq be the finite field of q elements with a prime power q, and let E be an elliptic
curve defined by the Weierstrass equation

y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6

with a1, a2, a3, a4, a6 ∈ Fq and non-zero discriminant (see [16]).
The Fq-rational points E(Fq) of E form an Abelian group (with respect to the usual

’geometric’ addition which we denote by ⊕) with the point at infinity O as the neutral
element. We also recall that

|#E(Fq)− q − 1| ≤ 2q1/2,

where #E(Fq) is the cardinality of E(Fq).
For a positive integer m let E[m] be the set of m-torsion points :

E[m] = {P ∈ E(Fq) : mP = O},

where Fq is the algebraic closure of Fq. It is well-known, see for example [16, Theorem 3.2]
that for m with gcd(m, q) = 1 we have

E[m] ∼= Zm × Zm.

On the other hand, if m = pνm′ with p ∤ m′, where p is the characteristic of Fq, then
either

E[m] ∼= Zm′ × Zm′ or E[m] ∼= Zm × Zm′ .

In 2007, Edwards introduced an alternative representation of elliptic curves called
Edwards curves [3] (see also [1, 16]). For a finite field Fq of odd characteristic, an Edwards
curve C is defined by the equation

u2 + v2 = c2(1 + du2v2),

where c, d ∈ Fq, d 6= 0, 1, c 6= 0. For a non-square d over Fq the addition is defined by

(u1, v1)⊕ (u2, v2) =

(

u1v2 + u2v1
c(1 + du1u2v1v2)

,
v1v2 − u1u2

c(1− du1u2v1v2)

)

. (3)

The points of the curve form a group with respect to this addition, with (0, c) as the
neutral element. We remark, that every Edwards curve is birationally equivalent to an
elliptic curve. On the other hand, if E(Fq) has points of order four and a unique point of
order two, then E is birationally equivalent to an Edwards curve with c = 1 (see Theorem
2.1 in [1]). Namely, C, with c = 1, is isomorphic to the elliptic curve E defined by

y2 = x3 + 2(1 + d)x2 + (1− d)2x
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where the isomorphism is given by

ψ : E(Fq) \ {O, (0, 0)} → C \ {(0, 1), (0,−1)}

(x, y) 7→
{

u = 2x
y

v = x−1+d
x+1−d

.
(4)

(Note that the other two points in E(Fq) with y = 0 are not in E(Fq).) We can extend
ψ by setting ψ(O) = (0, 1) and ψ((0, 0)) = (0,−1).

All the Fq-rational points of the Edwards curve are affine, but there are two ideal
points (points at infinity) Ω1 and Ω2 over the quadratic extension Fq2 . More precisely,
let us consider the embedding of C into the projective plane

U2Z2 + V 2Z2 = c(Z4 + dU2V 2).

The affine points (u, v) correspond to (u : v : 1), u, v ∈ Fq, and the ideal points are Ω1 =
(1 : 0 : 0) and Ω2 = (0 : 1 : 0). The addition (U1 : V1 : Z1)⊕ (U2 : V2 : Z2) = (U3 : V3 : Z3)
with projective coordinates is defined by

A = Z1Z2; B = A2; C = U1 · U2; D = V1 · V2; E = d · C ·D;F = B −E; G = B + E;

U3 = A · F · ((U1 + V1) · (U2 + V2)− C −D); V3 = A ·G · (D − C); Z3 = c · F ·G.
(5)

We remark that the addition laws (3) and (5) are not complete over the quadratic
extension Fq2 but they can be extended to sets of two addition laws which allows the
addition on Edwards curve over arbitrary field extensions (see [2]).

3 Main results

In this section we present results on the linear complexity of the elliptic curve analogues
of the linear generator (1) and the power generator (2). These results will be proven in
Sections 4 and 5.

3.1 Elliptic curve generator

For f ∈ Fq(E) the elliptic curve generator (wn) with respect to f is the sequence

wn = f(nG), n = 1, 2, . . . ,

with G ∈ E(Fq).
The linear complexity profile of the sequence (wn) has already been studied for special

functions f , [6, 15]. In particular, Hess and Shparlinski [6] proved that if the pole divisor
(f)∞ of f is of the form

(f)∞ = (1 + δ)H
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for some place H of the curve and

δ =

{

1 if degH = 1,
0 if degH ≥ 2,

then

L(wn, N) ≥ min

{

N

(1 + δ) degH + 2
,

t

(1 + δ) degH + 1

}

where t is the order of G.
By using Edwards coordinates, we can give another large family of functions f such

that the linear complexity profiles of the corresponding sequences are large.

Theorem 1. Let C be an Edwards curve and f ∈ Fq(C) such that Ω1 or Ω2 is a pole
of f . If G ∈ C of order t and wn = f(nG), then

L(wn, N) ≥ min

{

t− deg f

4 deg f
,
N − deg f

4 deg f + 1

}

, N ≥ deg f.

We remark that deg f is the degree of the pole divisor of f , especially, deg u = deg v =
2, where u and v are the coordinate functions.

Example 3.1. Let f ∈ Fq(C) (with c = 1) be the sum of the coordinate functions:
f(u, v) = u+v. Then Theorem 1 implies that the linear complexity profile of the sequence
wn = (u+ v)(nG) satisfies

L(wn, N) ≥ min

{

t− 4

16
,
N − 4

17

}

, N ≥ 4,

since both Ω1 and Ω2 are poles. On the other hand, transforming the coordinates into an
elliptic curve we get by (4)

(u+ v)(nG) =

(

2
x

y
+
x− 1 + d

x+ 1− d

)

(nG),

where G = ψ−1(G) is the isomorphic image of G on E(Fq). Since the pole divisor of

g(x, y) = 2
x

y
+
x− 1 + d

x+ 1− d
∈ Fq(E)

is
(g)∞ =

(

x2 + 2(1 + d)x+ (1− d)2
)

0
+ (x+ 1− d)

0
,

the Hess-Shparlinski bound cannot be applied. (Here (h)0 is the zero divisor of h ∈ E(Fq).)
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3.2 Elliptic curve power generator

For a positive integer e > 1 and a point G ∈ E(Fq) of order |G| with gcd(e, |G|) = 1,
consider the elliptic curve analogue of (2) defined by

Gn = eGn−1 = enG0, n = 1, 2, . . . (6)

(with G0 = G). Determining e from a pair (Gn, Gn−1) would solve the discrete logarithm
problem on E, while computing Gn from previous elements (without knowing e) is related
to the elliptic curve Diffie-Hellman problem, thus the generator (6) is thought to be
‘secure’.

Clearly, the sequence (Gn) is periodic, and the period length is the multiplicative
order t of e modulo |G|.

In this section we study the sequences obtained from the coordinates of (6). Namely,
for an f ∈ Fq(E) the elliptic curve power generator (rn) with respect to f is the sequence

rn = f(Gn) = f(enG), n = 1, 2, . . .

The linear complexity of the sequence (rn) for the coordinate function f(x, y) = x
was studied by Lange and Shparlinski [8]. They proved, that if E is non-supersingular,
then

L(rn) ≫ t|G|−2/3.

We can extend their result.

Theorem 2. Let Fq be a finite field, let E be an elliptic curve over Fq and let f ∈ Fq[E]
be a non-constant function of degree deg f < |G|δ for some δ < 1. If the multiplicative
order of e modulo |G| is t, then

L(rn) ≫
t

|G|2/3(deg f)1/3 ,

where the implied constant depends on δ.

4 Proof of Theorem 1

Theorem 1 is based on the following lemma.

Lemma 1. Let f ∈ Fq(C) be a rational function such that Ω1 or Ω2 is a pole of f and G
a point on C of order t. Then, for any integer L with 1 ≤ L < t/8 and any coefficients
c0, . . . , cL ∈ Fq with cL 6= 0 we have that

F (Q) =

L
∑

l=0

clf(Q⊕ lG) ∈ Fq(C) (7)

is not constant and has degree

degF ≤ (4L+ 1) deg f.
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Proof. We may assume t > 8. Write (un, vn) = nG. First we show, that for 1 ≤ j < L <
t/8 we have u2Lv

2
L 6= u2jv

2
j . Indeed, consider the function

H(u, v) = u2v2 − u2Lv
2

L.

It has at most degH = 8 zeros. On the other hand, the set of zeros is closed under the
transformations

(u, v) 7→ (v, u), (u, v) 7→ (−u, v). (8)

Note that (v, u), (−u, v) ∈ C(Fq). If there were a j with 1 ≤ j < L < t/8 and H(uj, vj) =
0, then the orbit of {(uj, vj), (uL, vL)} under the transformations (8) would contain 16
zeros of H (since 1 ≤ j < L < t/8), a contradiction.

By (3) we have in C(Fq)

F (u, v) =

L
∑

l=0

clf

(

uvl + ulv

c(1 + duulvvl)
,

vvl − uul
c(1− duulvvl)

)

. (9)

Define P1, P2 ∈ Fq2(C) by

P1 =

(

1√
duL

,
−1√
dvL

)

and P2 =

(

1√
dvL

,
1√
duL

)

.

Then we have
(uL, vL)⊕ P1 = Ω1 and (uL, vL)⊕ P2 = Ω2,

by (5), but all the points (un, vn)⊕ Pi are affine for 0 ≤ n < L and i = 1, 2. Thus if Ωi

is a pole of f , then Pi is a pole of the L-th term of the right hand side of (9), but not a
pole of any other term, so Pi is a pole of F . Hence, F is not constant.

For P = (u0, v0) 6= (0, c) the function fP : Q 7→ f(Q⊕ P ) has degree at most 4 deg f ,
namely, if R is a pole of f , then R⊕ (−(x0, y0)) and R⊕ (−(y0, x0)) are poles of fP and
their multiplicities are at most twice of the multiplicity of R. Thus

deg

(

L
∑

l=0

clflG

)

≤ deg f + L · 4 deg f.

Proof of Theorem 1. We may assume that L < t/8, since otherwise the theorem trivially
holds.

Put cL = −1 and assume that
L
∑

l=0

clwn+l = 0, 0 ≤ n ≤ N − L− 1.

Whence
L
∑

l=0

clf((n+ l)G) = 0, 0 ≤ n ≤ N − L− 1,

so the function F defined in (7) has at least min{N − L, t} zeros, namely the points
nG with 0 ≤ n ≤ min{N − L, t} − 1. On the other hand the degree of F is at most
(4L+ 1) deg f , thus the result follows from Lemma 1.
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5 Proof of Theorem 2

We need the following basic lemma about linear complexity ([14, Lemma 2]).

Lemma 2. Let a sequence (sn) satisfy a linear recurrence relation

sn+L = aL−1sn+L−1 + · · ·+ a1sn+1 + a0sn, n = 1, 2, . . .

over Fq. Then for any T ≥ L+ 1 pairwise distinct non-negative integers j1, . . . , jT there
exist c1, . . . , cT ∈ Fq, not all equal to zero, such that

T
∑

i=1

cisn+ji = 0, n = 1, 2, . . .

We also need the following auxiliary result (Lemma 2 in [4]).

Lemma 3. Let m > 1 be an integer. Then for any K ⊂ Z∗
m of cardinality |K| = K,

any fixed δ > 0 and any integer h ≥ mδ, there exists an integer a ∈ Z∗
m such that the

congruence
k ≡ as mod m, k ∈ K, 0 ≤ s ≤ h− 1,

has

Ta(h) ≫
Kh

m

solutions (k, s).

Proof of Theorem 2. Put
K = {ej : 0 ≤ j < t}.

Then by Lemma 3 there is an a and pairs (j1, s1), . . . , (jT , sT ) such that

eji ≡ asi mod |G|, 0 ≤ ji < t, 0 ≤ si <

( |G|
deg f

)1/3

,

for i = 1, . . . , T , with

T ≫ t

|G|2/3(deg f)1/3 .

If L ≥ T , the theorem follows. Now assume, that L < T . Then by Lemma 2

L+1
∑

i=1

cif
(

en+jiG
)

= 0, n = 1, 2, . . .

Now
en+jiG = ejienG = asie

nG = asiGn

for all n. Thus the function

H(Q) =
L+1
∑

i=1

cif ((asi)Q)
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has at least t ·#E[a] zeros, namely, all points of the form

Gn ⊕ P, n = 1, . . . , t, P ∈ E[a],

and it is not constant as it was proved in [10, Theorem 2].
Clearly, the poles of fs : Q 7→ f(asQ) ∈ Fq(E) are of the form

Q = R⊕ P, where Q is a pole of f , and P ∈ E[as],

thus
deg fs ≤ deg f ·#E[as] ≤ deg f · s2#E[a].

So the degree of H is at most

(L+ 1) · deg f ·
(

max
i=1,...,T

si

)2

·#E[a] ≪ L · deg f ·
( |G|
deg f

)2/3

·#E[a].

Comparing the number of zeros and the degree of H we have

t≪ L · deg f ·
( |G|
deg f

)2/3

which proves the theorem.

Remark 3. This proof is based on a linear independence property for any non-constant f
from the proof of [10, Theorem 2], whereas in [8] only the special case is considered that
f is a linear combination of coordinate functions.
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