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Abstract

A total perfect code in a graph Γ is a subset C of V (Γ) such that every vertex of Γ
is adjacent to exactly one vertex in C. We give necessary and sufficient conditions for a
conjugation-closed subset of a group to be a total perfect code in a Cayley graph of the
group. As an application we show that a Cayley graph on an elementary abelian 2-group
admits a total perfect code if and only if its degree is a power of 2. We also obtain necessary
conditions for a Cayley graph of a group with connection set closed under conjugation to
admit a total perfect code.
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1 Introduction

Let Γ be a graph with vertex set V (Γ) and edge set E(Γ), and let e ≥ 1 be an integer. The

ball with centre v ∈ V (Γ) and radius e is the set of vertices of Γ with distance at most e to v

in Γ. A code in Γ is simply a subset of V (Γ). A code C ⊆ V (Γ) is called a perfect e-code [22]

in Γ if the balls with centres in C and radius e form a partition of V (Γ), that is, every vertex

of Γ is at distance no more than e to exactly one vertex of C. A code C is said to be a total

perfect code [13] in Γ if every vertex of Γ has exactly one neighbour in C. In graph theory,

the ball around v with radius e is also called the e-neighbourhood of v in Γ, a perfect 1-code

in a graph is called an efficient dominating set [7, 23] or independent perfect dominating set

[25], and a total perfect code is called an efficient open dominating set [17]. Similar to perfect

codes, total perfect codes in graphs are fascinating objects of study [17]. Moreover, they have

potential applications in some practical domains, such as placement of Input/Output devices in

a supercomputing network so that each element to be processed is at distance at most one to

exactly one Input/Output device [2]. It is known [12] that deciding whether a graph has a total

perfect code is NP-complete.

The notions above were evolved from the work in [4], which in turn has a root in coding

theory. In the classical setting, a q-ary code is a subset C ⊆ Sn, where S is a nonempty finite

set (the alphabet) of size q and Sn the set of n-tuples (words of length n) from S. A code C is

a perfect e-code if every word in Sn is at distance no more than e to exactly one codeword of

C, where the (Hamming) distance between two words is the number of positions in which they

differ. In the case when S is a finite field GF(q), any subspace of the linear space GF(q)n is

called a linear code. Such a linear code can be expressed as {x ∈ GF(q)n : xMT = 0}, where x
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is treated as a row vector and M is a matrix over GF(q) called the parity check matrix of the

code. See [19, 40] for surveys on perfect codes and related definitions in the classical setting.

In [4], Biggs showed that the proper setting for the perfect code problem is the class of

distance-transitive graphs. In fact, the q-ary perfect e-codes of length n in the classical setting

are precisely the perfect e-codes in Hamming graph H(n, q), which is distance-transitive and is

defined to have q-ary words of length n as vertices and edges joining pairs of words of Hamming

distance one. Perfect codes in distance-transitive graphs were studied in, for example, [3, 4,

16, 18, 36, 37, 38]. Since the fundamental work of Delsarte [8], a great amount of work on

perfect codes in distance-regular graphs and association schemes in general has been produced.

Beginning with [22], perfect codes in general graphs have also attracted considerable attention

in the community of graph theory; see [21, 26, 27, 30, 35, 41] for example.

Perfect codes in Cayley graphs are especially charming objects of study. In [28] sufficient

conditions for Gaussian and Eisenstein-Jacobi graphs to contain perfect e-codes were given; such

graphs are certain Cayley graphs on quotients of the rings of Gaussian and Eisenstein-Jacobi

integers, respectively. These conditions were proved to be necessary in [42] in the more general

setting of cyclotomic graphs. In [29] a certain Cayley graph on the integer quaternions right-

modulo a fixed nonzero element was introduced and perfect 1-codes in it were constructed. In

[39] it was proved that there is no perfect 1-code in any Cayley graph on SL(2, 2f ), f > 1 with

respect to any connection set closed under conjugation. In [7] a methodology for constructing

E-chains of Cayley graphs was given and was used to construct infinite families of E-chains of

Cayley graphs on symmetric groups, where an E-chain is a countable family of nested graphs

each containing a perfect 1-code. In [9] perfect 1-codes in a Cayley graph with connection set

closed under conjugation were studied, yielding necessary conditions in terms of the irreducible

characters of the underlying group. In [25] it was proved that a subset C of a group G closed

under conjugation (or a normal subset as is called in [25]) is a perfect 1-code in a Cayley graph

on G if and only if there exists a covering from the Cayley graph to a complete graph such

that C is a fibre of the corresponding covering projection. Perfect 1-codes in circulants (that is,

Cayley graphs on cyclic groups) were studied in [31, 33].

Total perfect codes have also attracted considerable attention in recent years. In [2] ‘lattice-

like’ total perfect codes in the lattice Zn were constructed, and the authors of this paper con-

jectured that these enumerate all possibilities of such codes. In [6] total perfect codes in the

lattice Z2 and in the grid graphs on tori were studied. In [13] it was proved that the tensor

product of any number of simple graphs has a total perfect code if and only if each factor has

a total perfect code. In [5, 20] the grid graphs that have total perfect codes were characterized.

In [24], lexicographic, strong, and disjunctive products of graphs admitting total perfect codes

were characterized, and a similar result was also obtained for the cartesian product of any graph

with the complete graph of two vertices. Total perfect codes are also related to diameter perfect

codes, a notion introduced in [1] for distance regular graphs and adapted in [10] for Lee metric

over Zn and Znq . In fact, when the Manhattan (for Zn) or Lee (for Znq ) distance is considered,

total perfect codes coincide with diameter perfect codes of minimum distance four, in the sense

that if C is a diameter perfect code then C ∪ gC is a total perfect code.

Inspired by [25] and [9], in this paper we prove a few results on total perfect codes in Cayley

graphs. We first give necessary and sufficient conditions for a subset of a finite group closed

under conjugation to be a total perfect code in a Cayley graph of the group (see Theorem 3.3),

akin to [25, Theorem 2] for perfect 1-codes. As a key component for this result and its proof, we

introduce the concept of pseudocovers of graphs (see Definition 2.4). As an application we show

that a Cayley graph on an elementary abelian 2-group admits a total perfect code if and only if

its degree is a power of 2 (see Theorem 4.1). This extends [15, Theorem 9.2.3] from hypercubes

2



to all Cayley graphs on elementary abelian 2-groups, but our proof technique is different from

that in [15]. In §5 we give two necessary conditions (see Theorems 5.5 and 5.10) for a Cayley

graph with connection set a union of conjugacy classes to contain a total perfect code, by using

the irreducible characters of the underlying group. These are parallel to [9, Theorems 6-7] and

their proofs are accomplished by using a similar approach.

2 Preliminaries

All graphs in the paper are undirected without loops and multi-edges, and all groups considered

are finite. Group-theoretic notation and terminology used can be found in most textbooks on

group theory; see [34] for an introduction to group theory and [11] for the theory of characters

of finite groups. We use 1 to denote the identity element of the group under consideration. An

involution in a group is an element of order two. We use Γ[X] to denote the subgraph of a graph

Γ induced by a subset X of V (Γ), and Γ(v) the neighbourhood of a vertex v ∈ V (Γ) in Γ (that

is, the set of vertices adjacent to v in Γ).

The following observation follows from the definition of a total perfect code.

Lemma 2.1. Let Γ be a graph. A subset C of V (Γ) is a total perfect code in Γ if and only if

(a) Γ[C] is a matching; and

(b) {Γ(v) \ C : v ∈ C} is a partition of V (Γ) \ C.

In particular, any total perfect code in Γ must contain an even number of vertices.

A graph Σ is called a cover of a graph Γ with covering projection p : Σ → Γ if there exists

a surjective mapping p : V (Σ)→ V (Γ) such that for each u ∈ V (Σ) the restriction of p to Σ(u)

is a bijection from Σ(u) to Γ(p(u)). We call Σ a k-fold cover of Γ if all fibres p−1(v), v ∈ V (Γ)

have size k. The following two lemmas are analogies of [25, Lemmas 1-2].

Lemma 2.2. Let Γ be a d-regular graph, where d ≥ 1.

(a) If C is a total perfect code in Γ, then

|C| = |V (Γ)|
d

. (1)

In particular, if Γ admits a total perfect code, then d divides |V (Γ)| and |V (Γ)|/d is even.

Thus any regular graph with an odd number of vertices does not admit total perfect codes.

(b) If C1, . . . , Cn are pairwise disjoint total perfect codes in Γ, then the subgraph of Γ with

vertex set ∪ni=1Ci and edges of Γ joining distinct such codes is a c-fold cover of Kn, where

c = |V (Γ)|/d.

Proof (a) By Lemma 2.1, we have d|C| = |V (Γ)|, yielding |C| = |V (Γ)|/d. Thus d is a divisor

of |V (Γ)| and again by Lemma 2.1, |V (Γ)|/d must be even.

(b) By (a), all codes C1, . . . , Cn have size c = |V (Γ)|/d. By the definition of a total perfect

code, the edges of Γ between distinct Ci and Cj form a matching of size c. The union of these

matchings for all pairs (i, j), i 6= j, is precisely the subgraph Σ of Γ with vertex set ∪ni=1Ci and

edges of Γ between distinct codes Ci. Let Kn be the complete graph with vertices v1, . . . , vn.

Define p : ∪ni=1Ci → V (Kn) such that p(u) = vi if and only if u ∈ Ci. Then p is a covering

projection from Σ to Kn so that Σ is a c-fold cover of Kn. 2
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Lemma 2.3. Let p : Σ → Γ be a covering projection. If C is a total perfect code in Γ, then

p−1(C) is a total perfect code in Σ.

Proof Since C is a total perfect code in Γ, by Lemma 2.1, Γ[C] is a matching. Since p is

a covering projection, it follows that Σ[p−1(C)] is a matching. Similarly, since every vertex of

V (Γ) \ C is adjacent to exactly one vertex of C, every vertex of V (Σ) \ p−1(C) is adjacent to

at least one vertex of p−1(C). If a vertex u ∈ V (Σ) \ p−1(C) is adjacent to v, v′ ∈ p−1(C) in Σ,

then p(u) ∈ V (Γ) \ C is adjacent to p(v), p(v′) ∈ C in Γ, which implies p(v) = p(v′) as C is a

total perfect code in Γ. Since Σ is a cover of Γ, we must have v = v′. Therefore, p−1(C) is a

total perfect code in Σ. 2

Definition 2.4. A graph Σ is called a pseudocover of a graph Γ if there exists a surjective

mapping p : V (Σ) → V (Γ) such that Σ[p−1(v)] is a matching for every v ∈ V (Γ) and p is a

covering projection from Σ∗ to Γ, where Σ∗ is the graph obtained from Σ by deleting the matching

in each Σ[p−1(v)]. We call p a pseudocovering, written p : Σ → Γ, and p−1(v), v ∈ V (Γ) the

fibres of p.

A pseudocovering p : Σ → Γ is called a G-pseudocovering if G is a subgroup of Aut(Σ)

and there exists an isomorphism h : Γ → Σ/PG such that the quotient mapping Σ → Σ/PG is

the composition of p and h, where PG is the partition of V (Σ) into G-orbits and Σ/PG is the

quotient graph of Σ with respect to PG.

The following lemma is the counterpart of [25, Theorem 1] for total perfect codes.

Lemma 2.5. Let Γ be a regular graph with E(Γ) 6= ∅ and n a positive integer. Then Γ is a

pseudocover of Kn if and only if V (Γ) admits a partition {C1, . . . , Cn} such that each Ci is a

total perfect code in Γ, i = 1, . . . , n.

Proof The sufficiency follows from Lemma 2.2(b) and Definition 2.4 immediately.

Suppose Γ is a pseudocover of Kn with a pseudocovering projection p : V (Γ) → V (Kn).

Then for each v ∈ V (Kn) the fibre p−1(v) is a total perfect code in Γ, and all such fibres form

a partition of V (Γ) as required. 2

3 Total perfect codes in Cayley graphs

Given a group G and a subset S of G such that 1 6∈ S and S = S−1 := {g−1 : g ∈ S}, the Cayley

graph Cay(G,S) on G with respect to the connection set S is defined to have vertex set G such

that x, y ∈ G are adjacent if and only if xy−1 ∈ S. Obviously, Cay(G,S) is an undirected graph

of degree |S| without loops.

Lemma 3.1. Suppose C ⊆ G is a total perfect code in a Cayley graph Cay(G,S). Then

(a) for every g ∈ S, Cg is a total perfect code in Cay(G,S);

(b) {gC : g ∈ S} is a partition of G;

(c) if S is closed under conjugation, then {Cg : g ∈ S} is a partition of G.

Proof Denote Γ = Cay(G,S).

(a) It is clear that any automorphism of Γ leaves the set of total perfect codes in Γ invariant.

In particular, since for every g ∈ S, ĝ : x 7→ xg, x ∈ G defines an automorphism of Γ, Cg must

be a total perfect code in Γ.
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(b) Suppose g1C ∩ g2C 6= ∅ for distinct g1, g2 ∈ S. Then there exist x1, x2 ∈ C such that

g1x1 = g2x2. Since g1 6= g2, we have x1 6= x2. Thus g1x1 is adjacent to distinct vertices x1, x2

in C, contradicting the assumption that C is a total perfect code in Γ. Thus g1C ∩ g2C = ∅ for

distinct g1, g2 ∈ S. Moreover, since Γ is |S|-regular, we have |C||S| = |G| by (1) and therefore

{gC : g ∈ S} is a partition of G.

(c) Similar to (b), it suffices to prove Cg1 ∩ Cg2 = ∅ for distinct g1, g2 ∈ S. Suppose

otherwise, say, x1g1 = x2g2 for x1, x2 ∈ C. Since g1 6= g2, we have x1 6= x2. Since S is closed

under conjugation, we have h1 := x2g2x
−1
1 = x1g1x

−1
1 ∈ S and h2 := x1g1x

−1
2 = x2g2x

−1
2 ∈ S.

Since h1x1 = x2g2 = x1g1 = h2x2, by (b) above we have h1 = h2 and hence x1 = x2, a

contradiction. 2

The following result follows from Lemmas 2.5 and 3.1 immediately.

Corollary 3.2. Suppose C ⊆ G is a total perfect code in a Cayley graph Cay(G,S). If gC = Cg

for every g ∈ S, then there exists a pseudocovering p : Cay(G,S) → K|S| such that gC, g ∈ S
are the fibres of p. Moreover, if C is a normal subgroup of G, then p is a C-pseudocovering.

The main results in this section are Theorem 3.3 and Corollary 3.4 below, which are coun-

terparts of [25, Theorem 2] and [25, Corollary 2], respectively. As usual we denote S2 := {gg′ :

g, g′ ∈ S} for a subset S of a group.

Theorem 3.3. Suppose C is a subset of a group G closed under conjugation. Then the following

are equivalent:

(a) C is a total perfect code in Cay(G,S);

(b) there exists a pseudocovering p : Cay(G,S)→ K|S| such that gC is a fibre of p for at least

one element g ∈ S;

(c) C satisfies

|C||S| = |G|, C ∩
(
(S2 \ {1})C

)
= ∅.

Proof Denote Γ = Cay(G,S).

(a) ⇒ (b) This follows from Corollary 3.2 immediately.

(b)⇒ (a) Since K|S| is connected, all fibres of p have the same size. Since one of these fibres is

assumed to be gC for some g ∈ S, all fibres of p should have size |gC| = |C|. Hence |C||S| = |G|.
By Lemma 2.5, gC is a total perfect code in Γ. Since C is closed under conjugation, we have

(gC)g−1 = C. Since g−1 ∈ S, by Lemma 3.1(a), C is a total perfect code in Γ.

(a) ⇒ (c) Suppose that C is a total perfect code in Γ. Since (a) and (b) are equivalent as

proved above, we have |C||S| = |G| by the argument in the previous paragraph. It remains to

prove that C∩
(
(S2 \ {1})C

)
= ∅. Suppose otherwise. Then there exist x1, x2 ∈ C and g1, g2 ∈ S

with g1g2 6= 1 such that x1 = g1g2x2. Thus x1 6= x2 and g−1
1 x1 = g2x2. Hence g2x2 is adjacent

to distinct vertices x1, x2 in C, contradicting the assumption that C is a total perfect code in Γ.

(c)⇒ (a) The assumption C∩
(
(S2 \ {1})C

)
= ∅ implies g1C∩g2C = ∅ for distinct g1, g2 ∈ S.

This together with the assumption |C||S| = |G| implies that {gC : g ∈ S} is a partition of G.

Thus the neighbourhood of C in Γ is given by

∪x∈C Γ(x) = ∪x∈C Sx = ∪g∈S gC = G.

In other words, every element of G\C is adjacent to at least one element of C in Γ. If an element

z ∈ G\C is adjacent to distinct x1, x2 ∈ C, then there exist g1, g2 ∈ S such that z = g1x1 = g2x2.

Since x1 6= x2, we have g1 6= g2 and so x1 = g−1
1 g2x2 ∈ C ∩

(
(S2 \ {1})C

)
, contradicting the
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assumption C ∩
(
(S2 \ {1})C

)
= ∅. Therefore, every element of G \ C is adjacent to a unique

element of C in Γ.

Since {gC : g ∈ S} is a partition of G, every element x ∈ C is of the form x = g1x1 for some

g1 ∈ S and x1 ∈ C, and so x is adjacent to x1 in Γ. If x is also adjacent to some x2 ∈ C with

x2 6= x1, then x = g2x2 for some g2 ∈ S. So g1 6= g2 and g1x1 = g2x2 ∈ g1C ∩ g2C, which is a

contradiction. Therefore, every element of C is adjacent to a unique element of C in Γ. This

together with what we proved in the previous paragraph implies that C is a total perfect code

in Γ. 2

Corollary 3.4. Let N be a normal subgroup of a group G. Then the following are equivalent:

(a) N is a total perfect code in Cay(G,S);

(b) Cay(G,S) is an N -pseudocovering graph of K|S|;

(c) N satisfies

|G : N | = |S|, N ∩ S2 = {1}.

Moreover, if one of these conditions holds, then |N ∩ S| = 1 and the unique element of N ∩ S
must be an involution.

Proof By Corollary 3.2 and Theorem 3.3, to prove the equivalence of (a), (b) and (c), it suffices

to prove that N ∩
(
(S2 \ {1})N

)
= ∅ if and only if N ∩ S2 = {1}.

Suppose N ∩
(
(S2 \ {1})N

)
= ∅. Since N is a subgroup of G, we have 1 ∈ N and so

N ∩ (S2 \ {1}) = ∅. In other words, N ∩ S2 = {1}.
Now suppose N ∩

(
(S2 \ {1})N

)
6= ∅. Then there exist x1, x2 ∈ N and g1, g2 ∈ S such that

x1 = g1g2x2 and g1g2 6= 1. Since N is a subgroup of G, we have x1x
−1
2 = g1g2 ∈ N ∩ S2 and

hence N ∩ S2 6= {1}.
Suppose that one of (a)-(c) holds so that N is a total perfect code in Cay(G,S). Since 1 ∈ N

and the set of neighbours of 1 in N is N ∩ S, we have |N ∩ S| = 1 by the definition of a total

perfect code. Let g be the unique element of N ∩ S. Then g2 ∈ N ∩ S2 and so g2 = 1 by (c). 2

Corollary 3.4 imposes strong conditions for a normal subgroup N of G to be a total perfect

code in Cay(G,S). In the same fashion, one can show that for a normal subgroup N of G and

an element g ∈ S \N , N ∪ gN is a total perfect code in Cay(G,S) if and only if |G : N | = 2|S|,
N ∩ S2 = {1} and N ∩ S = gN ∩ S2 = g−1N ∩ S2 = ∅.

Using additive notation for abelian groups, we write 0, S + S,−S and C + x in place of

1, S2, S−1 and Cx, respectively. Denote C − C = {g − g′ : g, g′ ∈ C} for any subset C of an

abelian group.

Corollary 3.5. Let G be an abelian group. A Cayley graph Cay(G,S) on G admits a total perfect

code if and only if there exists a subset C of G such that |C||S| = |G| and (C−C)∩(S+S) = {0};
under these conditions C is a total perfect code in Cay(G,S). Moreover, a subgroup C of G is

a total perfect code in Cay(G,S) if and only if |C||S| = |G| and C ∩ (S + S) = {0}.

Example 3.6. Let Cay(Zn, S) be a circulant graph, where S ⊆ Zn \ {[0]} satisfies −S = S.

By Corollary 3.5, Cay(Zn, S) admits a total perfect code that is a subgroup of Zn if and only if

|S| = m is a divisor of n and for any [g1], [g2] ∈ S, g1 + g2 is not a multiple of m unless it is a

multiple of n. Moreover, in this case C = {[km] : k ∈ Z} is a total perfect code in Cay(Zn, S).

As a concrete example, the circulant Cay(Z18, S) where S = {[1], [9], [17]} admits C =

{[0], [3], [6], [9], [12], [15]} as a total perfect code because |S| divides 18 and [0] is the only common

element of C and S + S = {[0], [2], [8], [10], [16]}.

6



Similarly, Cay(Z20, S) with S = {[1], [2], [10], [18], [19]} admits C = {[0], [5], [10], [15]} as a

total perfect code. 2

4 Total perfect codes in cubelike graphs

The n-dimensional hypercube Qn is the Cayley graph on the elementary abelian 2-group Zn2
with respect to the set of vectors with exactly one nonzero coordinate. In general, any Cayley

graph on Zn2 , n ≥ 1 is said to be cubelike (a notion introduced by L. Lovász according to [32]).

The following result is a generalization of [15, Theorem 9.2.3], where the same necessary and

sufficient condition was given in the special case of hypercubes.

Theorem 4.1. A connected cubelike graph admits a total perfect code if and only if its degree

is a power of 2. Moreover, we give a construction of linear total perfect codes in any cubelike

graph with degree a power of 2.

Proof We identify Zn2 with the additive group of the n-dimensional linear space V (n, 2) over

GF(2). The vectors of V (n, 2) are treated as row vectors and the zero vector of V (n, 2) is denoted

by 0n. Since the operation of Zn2 is addition of vectors, we use C + x and S + S in place of Cx

and S2 respectively.

Let Γ = Cay(Zn2 , S) be a connected cubelike graph with degree d. Then S = {u1, . . . ,ud} ⊆
V (n, 2) \ {0n} for d distinct vectors u1, . . . ,ud ∈ V (n, 2) \ {0n}. Since Γ is connected, S must

be a generating set of Zn2 . In other words, S contains a basis of V (n, 2), and hence n ≤ d.

Suppose Γ admits a total perfect code. By Lemma 2.2, d is a divisor of the order 2n of Γ.

Thus d = 2t for some 1 ≤ t < n ≤ 2t and the necessity is proved.

To prove the sufficiency we assume that the degree of Γ is of the form d = 2t for some integer

t with 1 ≤ t < n ≤ 2t. By Corollary 3.4, it suffices to prove the existence of a subgroup C of Zn2
with index |Zn2 : C| = 2t such that C ∩ (S + S) = {0n}. We achieve this by constructing such a

subgroup C explicitly with the help of an appropriate matrix over GF(2).

Since 1 ≤ t < n ≤ d = 2t, there exists a d× n matrix Q of rank n over GF(2) such that the

rows of QP give all vectors of V (t, 2), where

P =

[
It

0(n−t)×t

]
with It the identity matrix and 0(n−t)×t the zero-matrix of corresponding dimensions. (In fact,

we may add n− t column vectors of dimension d to the d× t matrix whose rows are the vectors

of V (t, 2) such that the resultant matrix Q has rank n.) Since S contains a basis of V (n, 2),

the matrix U with rows u1, . . . ,ud is a d × n matrix of rank n. Since Q and U have the same

dimension and rank, there exists a non-singular n× n matrix R over GF(2) such that Q = UR.

The non-singularity of R implies that M = RP is an n × t matrix with rank t. Thus the null

space {x ∈ V (n, 2) : xM = 0t} of M is an (n − t)-dimensional subspace of V (n, 2). Therefore,

its additive group C is a subgroup of Zn2 with |Zn2 : C| = 2t. On the other hand, since the rows

of UM = U(RP ) = QP give all vectors of V (t, 2), the vectors uiM , i = 1, . . . , d, are pairwise

distinct. In other words, (ui + uj)M 6= 0t for i 6= j, or equivalently C ∩ (S + S) = {0n}.
Therefore, by Corollary 3.4, C is a total perfect code in Γ. Obviously, C is a linear code with

the transpose of M as its parity check matrix. 2

The proof above gives an explicit construction of a linear total perfect code C in the cubelike

graph Cay(Zn2 , S). By Lemma 3.1, the cosets C + ui, i = 1, . . . , d, are all total perfect codes in

Cay(Zn2 , S) and they form a partition of the whole space V (n, 2).
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It was observed by an anonymous referee of this paper that not every total perfect code in

a cubelike graph with degree a power of 2 is of the form C + ui above. For example, let n = 2t,

t ≥ 4, and let C be a non-linear perfect code in Qn−1 containing 0n−1 (there are many such

non-linear perfect codes as seen in [19]). Then {0, 1} ×C is a total perfect code in Qn, but it is

not a coset of a linear total perfect code.

Theorem 4.1 implies the following result.

Corollary 4.2. ([15, Theorem 9.2.3]) The hypercube Qd admits a total perfect code if and only

if d = 2t for some integer t ≥ 1.

In [15, Section 9.2.1] the sufficiency was proved by showing that the direct sum of {0, 1} and

the well known Hamming code Ht (that is, adding 0 or 1 at the beginning of each codeword of

Ht) is a total perfect code of size 2n−t. This code is exactly the code C constructed in the proof

of Theorem 4.1 in the special case Qd = Cay(Zd2, S) with d = 2t, where S = {e1, . . . , ed} is the

standard basis of V (d, 2). This is because in this case the columns of the parity check matrix

of C (that is, the rows of M) are all vectors of V (t, 2) whilst the columns of the parity check

matrix of Ht are all nonzero vectors of V (t, 2). Note that C + ei, i = 1, . . . , d, are also total

perfect codes in Qd. A related conjecture [15, 9.4.1] asserts that, if d = 2t, t ≥ 3, then every

dominating set of Qd with minimum size is a total perfect code.

Example 4.3. By Corollary 4.2, Q4 admits total perfect codes. Choose

M =


1 0
0 1
1 1
0 0

 .
Clearly M has rank 2 and its rows are pairwise distinct. The additive group of the null space of

M is C0 = {(0, 0, 0, 0), (1, 1, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1)}. By Corollary 4.2, C0 is a total perfect

code in Q4. Moreover, by Lemma 3.1, the following are all total perfect codes in Q4: C0 + e1 =

{(1, 0, 0, 0), (0, 1, 1, 0), (1, 0, 0, 1), (0, 1, 1, 1)}; C0+e2 = {(0, 1, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (1, 0, 1, 1)};
C0 + e3 = {(0, 0, 1, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1)}. (Note that C0 + e4 = C0.) These four

codes form a partition of V (4, 2); see Figure 1 for an illustration. 2

0000	
  
0100	
  

0010	
   0110	
  

1010	
  

1100	
  

1110	
  

0001	
   0101	
  

1000	
  

0011	
   0111	
  

1101	
  

1011	
   1111	
  

1001	
  

Figure 1: Total perfect codes in Q4.

In contrast to Zn2 , by Lemma 2.2(a), for any odd prime p, any Cayley graph on Znp does not

admit any total perfect code.
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5 Necessary conditions

Interesting necessary conditions for the existence of a perfect 1-code in a directed Cayley graph

were given in [9] by using characters of the underlying group. In this section we prove analogous

results for total perfect codes in undirected Cayley graphs with connection sets a union of

conjugacy classes of the underlying group, by adapting the methodologies in [9]. We begin with

a necessary condition for the existence of a total perfect code in a regular (but not necessarily

Cayley) graph in terms of equitable partitions, and then apply it to two specific equitable

partitions of the above-mentioned Cayley graphs.

5.1 Total perfect codes and equitable partitions

In this subsection Γ = (V,E) is a d-regular graph, where d ≥ 1, with adjacent matrix

A = (auv)u,v∈V .

An equitable partition [14, Section 9.3] of Γ is a partition π = {V1, . . . , Vm} of V such that

for every pair i, j, the number of neighbours of u ∈ Vi in Vj is a constant bij independent of the

choice of u. In [9] an equitable partition is called a regular partition.

Denote by CV the vector space of functions from V to the field of complex numbers C, with

addition and scalar multiplication defined in the usual way. As V is finite, we may identify every

f ∈ CV with the column vector (f(v))v∈V . For each v ∈ V , define δv ∈ CV such that δv(u) = 1

if u = v and δv(u) = 0 if u 6= v. Then every f ∈ CV can be written as f =
∑

v∈V f(v)δv. Define

the ‘adjacency’ linear mapping [9] by

ϕ : CV → CV, δv 7→ ϕ(δv) :=
∑

u∈Γ(v)

δu =
∑
u∈V

auvδu. (2)

It is straightforward to verify [9] that the matrix of ϕ with respect to the ‘standard’ basis

{δv : v ∈ V } of CV is exactly the adjacency matrix A of Γ. Alternatively, if CV is viewed as a

vector space of column vectors, then ϕ maps f ∈ CV to Af .

Define δU =
∑

v∈U δv ∈ CV for every U ⊆ V . That is, δU (u) = 1 if u ∈ U and 0 otherwise.

In particular, δV is the constant function 1 on V (all-one column vector). It is not difficult to

verify the following result.

Lemma 5.1. ([9, Lemma 2(ii)]; see also [14, Lemma 9.3.2]) Let Γ = (V,E) be a d-regular

graph. A partition {V1, . . . , Vm} of V is equitable if and only if the subspace of CV spanned by

δV1 , . . . , δVm is invariant under the linear mapping ϕ.

In the sequel, for an equitable partition π = {V1, . . . , Vm} we denote by CVπ the subspace

of CV spanned by δV1 , . . . , δVm . Then dim(CVπ) = m. Denote by ϕπ the restriction of ϕ to

CVπ. It is straightforward to verify that the matrix Aπ of ϕπ with respect to the ‘standard’

basis δV1 , . . . , δVm of CVπ is given by

Aπ = (bij)1≤i,j≤m,

where as before bij = |Γ(u) ∩ Vj | for u ∈ Vi.

Lemma 5.2. Let Γ = (V,E) be a d-regular graph. A subset C ⊆ V is a total perfect code in Γ

if and only if

ϕ(δC) = δV . (3)

9



Proof We have ϕ(δC)(w) =
∑

v∈C ϕ(δv)(w) =
∑

v∈C awv = |Γ(w) ∩ C| for w ∈ V . From this

and the definition of a total perfect code the result follows immediately. 2

We now prove the following counterpart of [9, Proposition 3] by using a similar approach.

Theorem 5.3. Let Γ = (V,E) be a d-regular graph and C a total perfect code in Γ. Then for

every equitable partition π = {V1, . . . , Vm} of Γ there exists a vector (k1, . . . , km)T ∈ Qm such

that

|Vi ∩ C| =
(

1

d
+ ki

)
|Vi|, i = 1, . . . ,m (4)

Aπ(k1, . . . , km)T = (0, . . . , 0)T . (5)

Proof Define

p : CV → CVπ, f 7→ p(f) :=
m∑
i=1

(∑
v∈Vi f(v)

|Vi|

)
δVi .

Then p is a linear mapping from CV to CVπ. Denote by P the matrix of p with respect to

the ‘standard’ basis {δv : v ∈ V }. It is straightforward to verify that the (u, v)-entry of P is

given by Puv = δVu(v)/|Vu|, where Vu is the unique part Vi of π containing u. Using this and

the assumption that π is equitable, one can verify (see [9]) that PA = AP . In other words,

p ◦ ϕ = ϕ ◦ p.
Since C is a total perfect code, we have ϕ(δC) = δV by (3). This together with p ◦ϕ = ϕ ◦ p

implies (ϕ ◦ p)(δC) = (p ◦ ϕ)(δC) = p(δV ) = δV . Since Γ is d-regular, we have ϕ
(

1
dδV

)
= δV

and hence (ϕ ◦ p)
(

1
dδV

)
= (p ◦ ϕ)

(
1
dδV

)
= p(δV ) = δV . By the definition of p, we have

p(δC) − p
(

1
dδV

)
∈ CVπ. Therefore, ϕπ

(
p(δC)− p

(
1
dδV

))
= 0, that is, p(δC) − p

(
1
dδV

)
∈

Ker(ϕπ). On the other hand, since p(δC) − p
(

1
dδV

)
∈ CVπ, there exists (k1, . . . , km)T ∈ Cm

such that p(δC) − p
(

1
dδV

)
=
∑m

i=1 kiδVi . Since this vector is in Ker(ϕπ) and ϕπ has matrix

Aπ = (bij)1≤i,j≤m with respect to the basis δV1 , . . . , δVm , it follows that (k1, . . . , km)T satisfies (5).

We have p(δC) =
∑m

i=1

(
|Vi∩C|
|Vi|

)
δVi and p

(
1
dδV

)
= 1

dδV = 1
d

∑m
i=1 δVi . Thus

∑m
i=1

(
|Vi∩C|
|Vi|

)
δVi −

1
d

∑m
i=1 δVi =

∑m
i=1 kiδVi . Since δV1 , . . . , δVm are independent, we have |Vi∩C||Vi| −

1
d = ki for each i.

It is obvious that all coordinates ki are rationals. 2

Corollary 5.4. Let Γ = (V,E) be a d-regular graph.

(a) If Γ admits a total perfect code, then for any equitable partition π = {V1, . . . , Vm} of Γ,

either 0 is an eigenvalue of Aπ with an eigenvector (k1, . . . , km) giving by (4), or d divides

|Vi| for each i = 1, . . . ,m.

(b) If Γ admits a total perfect code and d ≥ 2, then 0 is an eigenvalue of Γ (obtained from

the trivial equitable partition {{v} : v ∈ V }) and (kv)v∈V is a corresponding eigenvector,

where kv = 1− 1
d if v ∈ C and kv = −1

d if v /∈ C.

Proof The truth of (a) follows from Theorem 5.3 immediately. Applying (a) to the trivial

equitable partition {{v} : v ∈ V }, we obtain (b) by noting that d ≥ 2 is not a divisor of 1. 2

Part (b) in Corollary 5.4 is parallel to the well known result [14, Lemma 9.3.4] that a regular

graph admitting a perfect 1-code should have −1 as an eigenvalue.
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5.2 A necessary condition

The purpose of this subsection is to establish the following analogy of [9, Theorem 6] by using a

similar approach. Denote by dχ the degree of a character χ of a group. As χ is a class function,

for a conjugacy class K we write χ(K) = χ(x) where x ∈ K.

Theorem 5.5. Let G be a group and S a union of s conjugacy classes of G with 1 6∈ S and

S−1 = S. Let Q be the set of irreducible characters χ of G such that
∑

K
|K|χ(K)

dχ
= 0, where K

runs over all conjugacy classes of G contained in S. If Cay(G,S) admits a total perfect code,

then

(a)
∑

χ∈Q d
2
χ ≥ |S| − 1;

(b) |Q| ≥ s.

In the case when G is abelian, it has exactly |G| irreducible characters all of which are linear.

Thus all dχ = 1 and Q consists of those χ such that χ(S) :=
∑

g∈S χ(g) = 0. Since G is abelian,

we have |S| = s and χ(S), with χ running over all irreducible characters of G, are precisely the

eigenvalues of Cay(G,S). Thus (a) and (b) above yield |Q| ≥ s − 1 and |Q| ≥ s, respectively.

Therefore, Theorem 5.5 implies:

Corollary 5.6. Let G be an abelian group and S a subset of G with 1 6∈ S and S−1 = S. Then

Cay(G,S) admits a total perfect code only if the multiplicity of 0 as an eigenvalue of Cay(G,S)

is at least |S| (that is, G has at least |S| irreducible characters χ such that
∑

g∈S χ(g) = 0).

The rest of this subsection is devoted to the proof of Theorem 5.5. We assume that G and

S are as in Theorem 5.5 and denote Γ = Cay(G,S). To be explicit we assume

S = ∪si=1Ki,

where each Ki is a conjugacy class of G with K−1
i also contained in S. Without loss of generality

we may assume that the set of all conjugacy classes of G is

π = {K1, . . . ,Ks,Ks+1, . . . ,Km}.

Then CGπ is the vector space of class functions of G. Since S is closed under conjugation,

the inner automorphism group Inn(G) of G is a subgroup of Aut(Γ) with respect to its natural

action on G. Since the orbits of Inn(G) on G are precisely the conjugacy classes of G, it follows

that π is an equitable partition of Γ. We will apply Theorem 5.3 to this particular partition in

the proof of Theorem 5.5.

Let

λG : G→ Sym(CG), g 7→ λG(g)

be the left regular permutation representation of G, defined by

(λG(g)f)(x) = f(g−1x), f ∈ CG, x ∈ G.

It can be verified that

λG(g)δv = δgv, g, v ∈ G.

Let ϕ : CG→ CG be the adjacency linear mapping as in (2) for V = G and Γ = Cay(G,S).

Lemma 5.7. ϕ =
∑

g∈S λG(g).

11



Proof We have (
∑

g∈S λG(g))(δv) =
∑

g∈S λG(g)(δv) =
∑

g∈S δgv =
∑

u∈Γ(v) δu = ϕ(δv) for any

v ∈ G. Since {δv : v ∈ G} is a basis of CG, the result follows. 2

We remark that Lemma 5.7 holds for any S ⊂ G that is not necessarily a union of conjugacy

classes of G.

Lemma 5.8. ([9, Lemma 5]) The irreducible characters of G (i) constitute a basis of CGπ, and

(ii) are eigenvectors of ϕπ. More explicitly, for any irreducible character χ of G,

ϕπ(χ) =

(
s∑
i=1

|Ki|χ(Ki)

dχ

)
χ. (6)

The truth of (i) is a well known result in group theory as π is the partition of G into conjugacy

classes. Part (ii) was proved in [9] with the help of [11, (5.4)].

Proof of Theorem 5.5 Suppose that C is a total perfect code in Γ. By Lemma 3.1(a), we

may assume 1 ∈ C without loss of generality. Since S is closed under conjugation, by Lemma

3.1(c), {Cg : g ∈ S} is a partition of G, and hence δCg, g ∈ S are independent vectors of CG.

On the other hand, by Lemma 3.1(a) each Cg with g ∈ S is a total perfect code of Γ. Thus

by Lemma 5.2, f = δCg, g ∈ S are solutions to the linear equation ϕ(f) = δG. Since these are

|S| independent solutions, the homogeneous equation ϕ(f) = 0 has at least |S| − 1 independent

solutions. In other words,

dim(Ker(ϕ)) ≥ |S| − 1. (7)

We now compute dim(Ker(ϕ)) by way of the irreducible characters of G. Let χ1, . . . , χm be

such characters (see Lemma 5.8(i)). It is well known that in the decomposition of the regular

representation into a direct sum of irreducible representations, the number of each irreducible

representation is equal to its degree. Thus, by Lemma 5.7 and (6), we obtain

ϕ =
⊕
W

(
s∑
i=1

|Ki|
dχW

χW (Ki)

)
IdW , (8)

where the direct sum runs over all irreducible representations (ρW ,W ) in the decomposition of

λG (into a direct sum of irreducible representations), and IdW is the identity mapping from W

to itself. Therefore, dim(Ker(ϕ)) =
∑

χ∈Q d
2
χ. This together with (7) yields

∑
χ∈Q d

2
χ ≥ |S| − 1

as claimed in (a).

It remains to prove (b). We may assume Ks+1 = {1} without loss of generality. Choose an

arbitrary element gj ∈ Kj , 1 ≤ j ≤ s+ 1. (Note that gs+1 = 1.) By Lemma 3.1(a), each Cgj is

a total perfect code in Γ.

We now prove that the rank of the matrix (|Ki ∩ Cgj |)1≤i≤m,1≤j≤s+1 is equal to s + 1. We

show first that

|Ki ∩ Cgj | =

{
1, if 1 ≤ i = j ≤ s;
0, if 1 ≤ i 6= j ≤ s.

(9)

Suppose that Ki ∩ Cgj 6= ∅, where 1 ≤ i, j ≤ s. Then there exist x ∈ Ki and y ∈ C such

that x = ygj . As Ki ⊆ S and 1 /∈ S, we have 1 6= x ∈ S. Moreover, since S is closed under

conjugation and gj ∈ S, we have xy−1 = ygjy
−1 ∈ S. Hence x is adjacent to 1 and y in Γ. Since

1, y ∈ C and C is a total perfect code, it follows that y = 1. In particular, x = gj ∈ Ki ∩Kj .

Thus i = j and moreover the only possible common element of Ki and Cgi is gi. On the other

hand, since 1 ∈ C, we do have gi ∈ Ki ∩ Cgi. Therefore, Ki ∩ Cgi = {gi} and (9) is proved.

Now suppose 1 ≤ i ≤ s+1 and j = s+1, and consider |Ki∩Cgs+1| = |Ki∩C| (as gs+1 = 1).

As Ks+1 = {1} and 1 ∈ C, we have |Ks+1∩Cgs+1| = 1. Since Γ(1) = S and 1 ∈ C is adjacent to

12



exactly one vertex in C, we have |S ∩C| = 1. This together with S = ∪si=1Ki implies that there

exists a unique i∗ with 1 ≤ i∗ ≤ s such that |Ki∗ ∩ C| = 1 and |Ki ∩ C| = 0 for 1 ≤ i ≤ s with

i 6= i∗. Combining this with (9), we obtain that the first s+ 1 rows of (|Ki∩Cgj |)1≤i≤m,1≤j≤s+1

form the following submatrix: [
Is eTi∗
0 1

]
,

where Is is the s×s identity matrix and ei∗ = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i∗th coordinate.

In particular, the rank of (|Ki ∩ Cgj |)1≤i≤m,1≤j≤s+1 is equal to s+ 1 as claimed.

By (6), f ∈ Ker(ϕπ) ⇔ f =
∑

χ∈Q aχχ, for some aχ ∈ C ⇔ f =
∑

χ∈Q aχ(
∑m

i=1 χ(Ki)δKi)

⇔ f =
∑m

i=1(
∑

χ∈Q aχχ(Ki))δKi . Note that aχ does not rely on i.

Since each Cgj is a total perfect code in Γ, by Theorem 5.3 and the computation above, for

1 ≤ i ≤ m and 1 ≤ j ≤ s+ 1, there exist aχ,j ∈ C and χ ∈ Q such that

|Ki ∩ Cgj | =
|Ki|
d

+

∑
χ∈Q

aχ,jχ(Ki)

 |Ki|.

In other words,

(|Ki ∩Cgj |)1≤i≤m,1≤j≤s+1 =
1

d

 |K1| · · · |K1|
...

...
|Km| · · · |Km|

+ (|Ki|χ(Ki))1≤i≤m,χ∈Q · (aχ,j)χ∈Q,1≤j≤s+1.

Since as shown above the matrix on the left-hand side has rank s+ 1 and the first term on the

right-hand side has rank one, the rank of the product (|Ki|χ(Ki)) · (aχ,j) is at least s. Thus the

rank of (|Ki|χ(Ki))1≤i≤m,χ∈Q is at least s. Consequently, |Q| ≥ s as required in (b). 2

Example 5.9. The characters of a cyclic group Cn = 〈a〉 of order n are χk, 0 ≤ k ≤ n − 1,

defined by χk(a
j) = ωkj , where ω = e2πi/n. By Corollary 5.6, a circulant Cay(Cn, S) (where

S−1 = S ⊆ Cn \ {1}) admits a total perfect code only if there are at least |S| integers k between

0 and n− 1 such that
∑

j:aj∈S ω
kj = 0. 2

5.3 Another necessary condition

Let Γ = Cay(G,S) be the Cayley graph in Theorem 5.5 and H a subgroup of G. Denote by

π(H) = {x1H, . . . , xmH}

the partition of G into left cosets of H in G, where m = |G : H| and x1, . . . , xm are a set of

representatives of such cosets. Since these cosets are the H-orbits under the action of H on G

by right multiplication, and H can be viewed as a subgroup of Aut(Γ), it follows that π(H) is

an equitable partition of Γ. The ‘standard’ basis of CGπ(H) is {δx1H , . . . , δxmH}. Let λHG : G→
Sym(CGπ(H)) be the representation of G with degree |G : H| defined by λHG (g)(δxiH) = δgxiH
for g ∈ G and 1 ≤ i ≤ m. The following result is analogous to [9, Theorem 7].

Theorem 5.10. Let G be a group and S a union of conjugacy classes of G with 1 6∈ S and

S−1 = S. Suppose H is a subgroup of G such that
∑

K
|K|χ(K)

dχ
6= 0 for every irreducible character

χ of G occurring in the decomposition of λHG (into a direct sum of irreducible characters), where

K runs over all conjugacy classes contained in S. Then every total perfect code in Cay(G,S)

intersects every left coset of H in G at exactly |H|/|S| elements. In particular, if |S| does not

divide |H|, then Cay(G,S) has no total perfect code.
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Proof As in §5.2, let S = ∪si=1Ki and let ϕ : CG → CG be the linear mapping defined in (2)

for V = G and Γ = Cay(G,S). Similar to Lemma 5.7, a straightforward computation yields [9]

ϕπ(H) =
∑
g∈S

λHG (g).

(That is, the matrix of ϕπ(H) is given by Aπ(H) =
∑

g∈S λ
H
G (g) when λHG (g) is interpreted as the

permutation matrix of the permutation δxiH 7→ δgxiH , i = 1, . . . ,m of the basis {δx1H , . . . , δxmH}
of CGπ(H).) Based on this and similar to (8), one can verify that

ϕπ(H) =
⊕
W

(
s∑
i=1

|Ki|
dχW

χW (Ki)

)
IdW , (10)

where the direct sum runs over all irreducible representations (ρW ,W ) in the decomposition

of λHG (into a direct sum of irreducible representations). Thus det(Aπ(H)) 6= 0 if and only if∑s
i=1

|Ki|
dχW

χW (Ki) 6= 0 for every W in (10). In this case, by (4)-(5) applied to π(H), for any

total perfect code C in Γ we have |xiH ∩ C| = |H|/|S|, which occurs only when |S| is a divisor

of |H|. 2
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