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Abstract

The Shannon capacity of a graphG is defined as c(G) = supd≥1(α(Gd))
1
d ,

where α(G) is the independence number of G. The Shannon capacity of
the cycle C5 on 5 vertices was determined by Lovász in 1979, but the
Shannon capacity of a cycle Cp for general odd p remains one of the most
notorious open problems in information theory. By prescribing stabilizers
for the independent sets in Cd

p and using stochastic search methods, we
show that α(C5

7 ) ≥ 350, α(C4
11) ≥ 748, α(C4

13) ≥ 1534 and α(C3
15) ≥ 381.

This leads to improved lower bounds on the Shannon capacity of C7 and

C15: c(C7) ≥ 350
1
5 > 3.2271 and c(C15) ≥ 381

1
3 > 7.2495.

1 Introduction

The Shannon capacity of a graph is an important information-theoretic param-
eter and plays a central role in the study of the zero-error capacity of a noisy
communication channel represented by the graph [18]. A communication chan-
nel transmitting p different symbols can be represented by a graph G with vertex
set V and edge set E in the following way: V is the set of transmitted symbols,
and for v1, v2 ∈ V , (v1, v2) ∈ E if the symbols v1 and v2 are indistinguishable.
The Shannon capacity of G is defined as

c(G) = sup
d≥1

(α(Gd))
1
d ,

where α(G) is the independence number of G and the graph strong product is
assumed [24]. For a survey of some of the early results related to the Shannon
capacity of graphs, see [17].

Algebraic tools for the study of Shannon capacity were proposed by Haemers [12,
13] while the Shannon capacity of digraphs were investigated by Alon [1]. See
also [2, 3, 10, 26] for some related studies.
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Networking, Aalto University School of Electrical Engineering, P.O. Box 13000, 00076 Aalto,
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For a channel transmitting p symbols represented by the elements of Zp =
{0, 1, 2, . . . , p− 1} and where two distinct symbols s and t are indistinguishable
if s− t ≡ ±1 (mod p), the graph that represents the channel is Cp, the cycle on
p vertices. If p is even, then c(Cp) = p/2. It was shown by Lovász [19] in 1979
that c(C5) =

√
5, but finding the Shannon capacity of Cp for p ≥ 7 and odd is

still open [5].
It is well known that the independence number of Cdp , the dth power (under

strong product) of a cycle Cp, is same as the number of hypercubes of side 2
that can be packed in a discrete d-dimensional torus of width p, denoted by
G(d, p) [9]. See Figure 1 for a visualization of such a 2-dimensional packing
and a corresponding independent set in C2

5 . Representing independent sets as
a packing of cubes often gives a more comprehensible model (visually) to work
with. This is especially true when we talk about symmetries, though for the
cause of adhering to formalism, we stick to a rather algebraic notion to discuss
symmetries in the remaining sections.

Cube packings and their different variants also form the basis of several clas-
sical and well-studied problems in combinatorics [9, 16]. The function G(d, p)
has been studied thoroughly, and exact values and bounds have been published
in [4] and later studies. Several of these results have been obtained using exhaus-
tive and stochastic computational methods. For example, Baumert et al. [4]
used exhaustive search to show that G(3, 7) = 33, and Vesel and Žerovnik [25]
proved that G(4, 7) ≥ 108 with simulated annealing. The current authors used
another stochastic (local search) method, tabu search, to obtain lower bounds
for the capacity of triangular graphs [20]. (Triangular graphs are closely related
to cycle graphs; the capacity problem for triangular graphs can be studied via
a generalization of the cube packing problem.)

Many of the best known cube packings possess some kind of symmetry.
For example, the packing in Figure 1 has a symmetry generated by (a, b) →
(a + 2, b + 1) (addition modulo 5). This symmetry generates a group of order
5. Several additional examples can be found in the constructions of [4].

In the current work, stochastic computational methods will be combined
with the idea of prescribing symmetries of packings. By prescribing symmetries,
one is able to speed up the computer search. Obviously, such a search has a
possibility of success only if there are packings with the given symmetries. By
exploiting possible symmetries in as exhaustive manner as possible, we are able
to show that α(C5

7 ) ≥ 350, α(C4
11) ≥ 748, α(C4

13) ≥ 1534 and α(C3
15) ≥ 381.

These bounds further imply that c(C7) ≥ 350
1
5 > 3.2271 and c(C15) ≥ 381

1
3 >

7.2495.
The paper is organized as follows. In Section 2, the approach of prescrib-

ing symmetries is considered, and a stochastic local search method for finding
packings is discussed in Section 3. In Section 4, the results are summarizes and
tabulated. Specific packings are listed in the Appendix.
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Figure 1: Packing a torus with 2-dimensional cubes and the corresponding
independent set in C2
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2 Prescribing Symmetries of Independent Sets

The graph G = Cdp is conveniently discussed in the framework of codes. Let

V (G) = {0, 1, . . . , p − 1}d, the set of all codewords of length d over Zp. For
v ∈ V , we denote v = (v1, v2, . . . , vd). Now we define the set of edges as

E(G) = {{v, v′} : v, v′ ∈ V (G) and max
1≤i≤d

min{|vi − v′i|, p− |vi − v′i|} < 2}. (1)

This definition further shows the one-to-one correspondence between an inde-
pendent set in Cdp and a packing in the discrete d-dimensional torus of width p
by (hyper)cubes of side 2 (with their centers—or any other specific position of
the cubes—in the position given by the element of the independent set).

For small parameters, one may find the independence number of Cdp using
Cliquer [22] or some other available software. However, growing parameters
makes the use of such exact algorithms infeasible at some point. One way
of handling large instances of combinatorial search problems is to prescribe
symmetries [15, Chapter 9].

Symmetries of an independent set in a graph G are elements of the auto-
morphism group of G—denoted by Aut(G)—that stabilize the independent set.

Let N [v] denote the closed neighborhood of the vertex v. A graph G is called
thin if N [u] 6= N [v] whenever u 6= v. A prime graph G is one that cannot be
written as G = G1 � G2 (strong product of G1 and G2) for non-trivial graphs
G1 and G2.

Theorem 2.1 ([14], Theorem 7.18). For a graph G = G1�G2� · · ·�Gn where
G1, G2, . . . , Gn are connected, thin and prime graphs, the automorphism group
of G is isomorphic to the automorphism group of the disjoint union of graphs
G1, G2, . . . , Gn.

Theorem 2.2 (Frucht [11]). If G is a connected graph and nG denotes the
graph representing n disjoint copies of G, then Aut(nG) is the wreath product
Aut(G) o Sn.
Theorem 2.3. The automorphism group of Cdp (for p > 3) is isomorphic to
the wreath product Dp o Sd, where Dp is the dihedral group of order 2p and Sd
is the symmetric group of degree d.

Proof. We first show that Cp on vertices {0, 1, 2, . . . , p−1} and edge set {{u, v} :
u − v = ±1 mod p} is thin and prime for p > 3. Consider any two distinct
vertices x, y ∈ V (Cp). If {x, y} /∈ E(Cp), x /∈ N [y] and so N [x] 6= N [y]. Suppose
{x, y} ∈ E(Cp). This means that (w.l.o.g.) x − y = 1 mod p. Consider the
vertex z = x+1 mod p. Clearly, {x, z} ∈ E(Cp) and {y, z} /∈ E(Cp), leading to
N [x] 6= N [y]. So, Cp is thin. Now we observe that Cp is prime by the following
argument. By definition, if G = G1 � G2 is connected, both G1 and G2 are
connected. Since K2 � K2 = K4, the strong product of any two graphs with
at least one edge each has K4 as a subgraph. Since Cp does not have K4 as a
subgraph, Cp is prime. Now that Cp is connected, thin and prime, Theorem 2.1
applies to it. Since the automorphism group of Cp is the dihedral group Dp,
using Theorem 2.2, the result follows.
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The order of the group Aut(Cdp ) is |Aut(Cdp )| = |Dp o Sd| = (2p)dd!. In

the framework of codes, introduced earlier, elements of Aut(Cdp ) act by a per-
mutation of the coordinates followed by permutations of the coordinate values
(separately for each coordinate) that have the form

i→ ai+ b (mod p), a ∈ {−1, 1}, b ∈ Zp, (2)

Given two codes corresponding to independent sets or packings of cubes,
we say that these are equivalent if one of the codes can be obtained from the
other with a mapping in the action of Aut(Cdp ). Such mappings from a code
onto itself—which are formally stabilizers of the code (and the corresponding
independent set and the packing) under the action of Aut(Cdp )—are said to form
the automorphism group of the code.

The automorphism group of a code is a subgroup of Aut(Cdp ). When pre-

scribing possible automorphism groups, we therefore consider subgroups of Aut(Cdp )
up to conjugacy. Moreover, we reduce the number of groups to consider by ex-
plicitly restricting the computations to cyclic groups. (In this manner we are
still able to cover a large part of the groups, since most large groups that are
omitted will have a cyclic subgroup amongst the groups considered.)

Having prescribed an automorphism group of a code, the action of the group
partitions all possible codewords into orbits. In the framework of independent
sets, we now get instances of the maximum weight independent set problem.
The vertex set consist of all admissible orbits: the pairs of codewords in the set
must fulfill the distance criterion in (1). The weight of a vertex is the number
of codewords in the orbit. Finally, edges are inserted whenever no pairs of
codewords, one from each of the orbits, violate the distance criterion in (1).

With prescribed automorphism groups, we can extend the range of param-
eters for which the running time of Cliquer (which can also handle weighted
graphs) or similar software is feasibly short. Moreover, by also changing the
computational approach from being exact to becoming stochastic, we can ex-
tend the range of parameters even further. Such an approach will be discussed
next.

3 Stochastic Search for Weighted Independent
Sets

The graphs obtained in the previous section are weighted. In general, let G
be an arbitrary graph with vertex set V (G) and edge set E(G), where each
vertex has a positive integer weight. This is obviously a generalization of the
case of maximum independent sets, which we get by letting all weights be 1.
Note that since an independent graph corresponds to a clique in the complement
graph, any discussion of independent sets apply to cliques and vice versa. The
maximum (weight) independent set problem is surveyed in [7], in the framework
of cliques.
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The decision problem of finding an independent set of weight at least k in a
graph G is NP-complete, so no polynomial-time general algorithms are expected
to be discovered. Due to the hardness (and the importance) of the problem, a
lot of effort has been put on developing stochastic algorithms. For unweighted
graphs and with stochastic algorithms, the main approach has been to process
an independent set by adding and removing vertices. Unfortunately, such a
straightforward approach is not as effective when the vertices have different
weights.

Montemanni and Smith [21] discovered a technique for modifying indepen-
dent sets (in terms of cliques) by removing not one but many vertices at a time.
After removing a set of vertices, an exact algorithm (like Cliquer) can be used to
find a set of vertices to add that have the largest possible weight. In some sense,
this approach lies in between basic stochastic search and exact algorithms.

The main decision to be made in the approach by Montemanni and Smith
is the set of vertices to remove from an independent set. In [21] vertices are
removed in a random manner. When one thinks about this problem in the
context of cube packings, removal means removing (hyper)cubes. When cubes
are removed, there will be holes in the packing. But with such holes that are not
connected, we will have a situation equivalent to that of sequentially removing
a smaller number of cubes in different parts of the packing.

The second author [23] realized that with instances of the maximum weight
independent set problem that come from packing problems, one may remove
one vertex v and all vertices that are within a certain heuristic distance from v.
The heuristic distance, which does not have to be a metric, is defined separately
for each pair of vertices of a graph, and some experimenting is typically needed
to find a proper definition. The approach in [23] has been used to find new
q-analog packings [8].

We here use the algorithm developed in [23] and define the distance between
vertices of the weighted graphs as the minimum of

d(v, v′) =

d∑
i=1

min{|vi − v′i|, p− |vi − v′i|}.

over all pairs of codewords, with one codeword from each orbit.

4 Results

By applying the approaches discussed in this paper and using more than 2 CPU-
years in the stochastic search, we have obtained independent sets that attain
the following bounds for G(d, p): G(5, 7) ≥ 350, G(4, 11) ≥ 748, G(4, 13) ≥ 1534
and G(3, 15) ≥ 381. These also leads to improved lower bounds on the Shannon

capacity of C7 and C15: c(C7) ≥ 350
1
5 > 3.2271 and c(C15) ≥ 381

1
3 > 7.2495.

There previous best known lower bounds for c(C7) and c(C15) were 108
1
4 >

3.2237 [25] and 380
1
3 > 7.2431 [4] respectively. The best known lower bounds

for c(Cp) for other small cycles of odd length are: c(C9) ≥ 81
1
3 > 4.3267 [4],
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c(C11) ≥ 148
1
3 > 5.2895 [4] and c(C13) ≥ 247

1
3 > 6.2743 [6]. The Lovász’s

ϑ-function

ϑ(p) =
p cos πp

1 + cos πp

gives upper bounds for the Shannon capacity of the odd cycle Cp [19]. Using
this function, c(C7) < 3.3177, c(C9) < 4.3601, c(C11) < 5.3864, c(C13) < 6.4042
and c(C15) < 7.4172.

The currently best known upper and lower bounds for G(d, p) are listed in
Table 1 together with keys. Only one key is provided in cases where the value
can be obtained using more than one method.

Table 1: Bounds on G(d, p)

p\d 1 2 3 4 5
5 a2a a5a c10f c25d c50–55j

7 a3a a10a f33f h108–115d k350–401j

9 a4a a18a e81d c324–361j c1458–1575j

11 a5a a27a e148d k748–814d c3996–4477d

13 a6a a39a g247i k1534–1605d c9633–10432d

15 a7a a52a k381–390d b2720–2925d c19812–21937d

Key to Table 1.
Bounds:
a G(1, p) = bp2c, G(2, p) = bp

2−p
4 c [4, Theorem 2]

b G(d, p) ≥ 1 +G(d, p− 2) p
d−2d

(p−2)d [4, Corollary 2]
c G(d, p) ≥ G(d1, p)G(d− d1, p) [4, Corollary 3]
d G(d, p) ≤ bp2G(d− 1, p)c [4, Lemma 2]
e Baumert et al. [4, Theorem 3]
f Baumert et al. [4, Theorem 4]
g Baumert et al. [4, Theorem 6]
h Vesel and Žerovnik [25]
i Bohman, Holzman, and Natarajan [6]

j G(d, p) ≤
[
p cos πp
1+cos πp

]d
[19]

k This paper, see Appendix

Appendix

We here list codes giving the four new lower bounds. The permutation of coordinates
is the identity permutation in all generators of the groups, and a = 1 for all value
permutations in (2). We therefore present the groups by simply listing the values of b
for the d value permutations of a generator.
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G(5, 7) ≥ 350:

Generator: (0, 1, 1, 5, 1)
Group order: 7
Orbit representatives: (0, 5, 6, 6, 0), (0, 0, 6, 6, 0), (3, 3, 0, 6, 0), (0, 5, 2, 1, 0), (2, 5,
6, 5, 0), (1, 3, 0, 0, 0), (2, 3, 2, 0, 0), (2, 1, 0, 4, 0), (2, 5, 2, 1, 0), (0, 2, 1, 2, 0), (4, 2,
6, 3, 0), (4, 0, 0, 3, 0), (5, 1, 2, 3, 0), (3, 6, 1, 5, 0), (4, 5, 0, 2, 0), (3, 4, 5, 2, 0), (1, 6,
1, 6, 0), (2, 3, 6, 4, 0), (5, 5, 1, 4, 0), (5, 3, 1, 3, 0), (6, 4, 0, 1, 0), (0, 0, 2, 2, 0), (6, 0,
1, 0, 0), (5, 1, 5, 0, 0), (5, 6, 6, 0, 0), (5, 3, 5, 1, 0), (0, 3, 6, 5, 0), (2, 0, 2, 1, 0), (4, 0,
3, 5, 0), (4, 4, 2, 6, 0), (4, 2, 3, 6, 0), (1, 5, 5, 3, 0), (6, 2, 4, 5, 0), (4, 4, 4, 6, 0), (6, 2,
0, 0, 0), (1, 0, 5, 4, 0), (4, 6, 4, 0, 0), (3, 1, 4, 1, 0), (3, 6, 5, 2, 0), (6, 0, 5, 4, 0), (2, 3,
3, 2, 0), (1, 1, 4, 2, 0), (1, 5, 3, 3, 0), (1, 2, 4, 4, 0), (1, 1, 1, 6, 0), (3, 1, 1, 6, 0), (0, 3,
3, 2, 0), (6, 4, 3, 4, 0), (6, 6, 3, 4, 0), (6, 5, 5, 4, 0)

G(4, 11) ≥ 748:

Generator: (1, 5, 8, 9)
Group order: 11
Orbit representatives: (9, 10, 0, 0), (7, 10, 9, 0), (5, 4, 0, 0), (5, 4, 2, 0), (2, 3, 0, 0),
(7, 4, 2, 0), (7, 8, 1, 0), (1, 10, 2, 0), (2, 7, 4, 0), (0, 7, 5, 0), (6, 9, 7, 0), (6, 6, 1, 0),
(8, 6, 1, 0), (8, 8, 10, 0), (4, 2, 1, 0), (5, 2, 3, 0), (6, 4, 4, 0), (5, 2, 5, 0), (3, 7, 6, 0),
(2, 9, 6, 0), (4, 9, 6, 0), (1, 9, 4, 0), (1, 7, 7, 0), (5, 7, 8, 0), (6, 6, 10, 0), (3, 2, 3, 0),
(8, 4, 4, 0), (3, 7, 8, 0), (10, 10, 2, 0), (0, 5, 5, 0), (9, 6, 5, 0), (4, 9, 8, 0), (4, 7, 10, 0),
(0, 10, 0, 0), (7, 2, 4, 0), (7, 2, 6, 0), (7, 0, 7, 0), (6, 8, 10, 0), (0, 3, 10, 0), (8, 6, 3, 0),
(10, 6, 3, 0), (3, 5, 0, 0), (1, 1, 1, 0), (0, 5, 7, 0), (2, 5, 7, 0), (2, 3, 9, 0), (1, 5, 9, 0),
(3, 5, 9, 0), (3, 0, 1, 0), (4, 0, 3, 0), (2, 0, 4, 0), (3, 9, 4, 0), (4, 0, 5, 0), (6, 0, 5, 0), (9,
8, 1, 0), (10, 1, 8, 0), (8, 1, 9, 0), (1, 1, 10, 0), (10, 1, 10, 0), (0, 8, 2, 0), (9, 8, 3, 0),
(9, 1, 6, 0), (10, 3, 6, 0), (8, 4, 6, 0), (5, 0, 7, 0), (1, 3, 7, 0), (10, 3, 8, 0), (9, 10, 9, 0)

G(4, 13) ≥ 1534:

Generator: (0, 1, 0, 2)
Group order: 13
Orbit representatives: (9, 6, 7, 0), (9, 8, 9, 0), (7, 1, 8, 0), (0, 7, 6, 0), (8, 10, 8, 0),
(7, 11, 0, 0), (4, 11, 11, 0), (5, 4, 2, 0), (8, 12, 9, 0), (3, 7, 10, 0), (5, 7, 10, 0), (5, 0,
1, 0), (2, 0, 12, 0), (1, 7, 8, 0), (1, 7, 10, 0), (0, 7, 4, 0), (12, 0, 9, 0), (5, 2, 2, 0), (11,
2, 7, 0), (11, 0, 5, 0), (10, 4, 5, 0), (1, 5, 5, 0), (3, 8, 2, 0), (4, 0, 12, 0), (11, 0, 7, 0),
(5, 12, 5, 0), (3, 5, 7, 0), (5, 12, 7, 0), (7, 12, 7, 0), (8, 12, 11, 0), (2, 12, 3, 0), (2, 3,
4, 0), (4, 10, 4, 0), (7, 2, 1, 0), (0, 9, 5, 0), (0, 9, 7, 0), (1, 5, 7, 0), (10, 4, 7, 0), (1, 1,
2, 0), (6, 10, 4, 0), (6, 10, 6, 0), (12, 11, 5, 0), (12, 11, 7, 0), (11, 2, 9, 0), (11, 4, 9, 0),
(6, 3, 8, 0), (6, 5, 9, 0), (7, 1, 10, 0), (7, 3, 10, 0), (5, 9, 10, 0), (9, 10, 10, 0), (6, 5, 11,
0), (10, 1, 3, 0), (4, 5, 9, 0), (0, 11, 9, 0), (2, 11, 11, 0), (7, 4, 2, 0), (4, 6, 3, 0), (6, 6,
3, 0), (9, 12, 3, 0), (0, 0, 0, 0), (8, 1, 12, 0), (6, 7, 12, 0), (6, 9, 12, 0), (9, 10, 12, 0),
(8, 8, 3, 0), (6, 8, 4, 0), (8, 10, 4, 0), (11, 2, 5, 0), (7, 6, 5, 0), (9, 6, 5, 0), (9, 8, 5, 0),
(7, 8, 6, 0), (8, 10, 6, 0), (9, 8, 7, 0), (12, 1, 2, 0), (1, 3, 2, 0), (0, 12, 2, 0), (3, 9, 11,
0), (2, 3, 7, 0), (4, 3, 8, 0), (2, 9, 9, 0), (2, 11, 9, 0), (7, 0, 1, 0), (9, 1, 1, 0), (9, 12, 1,
0), (4, 8, 4, 0), (5, 1, 8, 0), (11, 0, 0, 0), (11, 11, 0, 0), (9, 10, 1, 0), (11, 12, 2, 0), (10,
3, 3, 0), (12, 10, 3, 0), (0, 2, 0, 0), (11, 2, 0, 0), (0, 9, 9, 0), (12, 2, 11, 0), (11, 4, 11,
0), (1, 9, 11, 0), (0, 11, 11, 0), (2, 2, 0, 0), (4, 2, 0, 0), (2, 4, 0, 0), (4, 4, 0, 0), (0, 11,
0, 0), (3, 6, 1, 0), (3, 10, 2, 0), (2, 1, 4, 0), (3, 12, 5, 0), (2, 1, 6, 0), (5, 1, 6, 0), (4, 3,
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6, 0), (3, 7, 8, 0), (10, 6, 9, 0), (12, 0, 11, 0), (10, 6, 11, 0), (10, 8, 11, 0)

G(3, 15) ≥ 381:

Generator: (5, 0, 10)

Group order: 3

Orbit representatives: (1, 10, 4), (1, 11, 0), (10, 10, 0), (1, 2, 2), (13, 3, 2), (9, 11, 2),

(2, 8, 4), (7, 11, 2), (1, 0, 2), (3, 11, 0), (5, 11, 1), (1, 10, 2), (3, 10, 4), (0, 12, 2), (12,

10, 1), (14, 10, 1), (10, 9, 2), (9, 7, 3), (8, 9, 1), (10, 9, 4), (7, 11, 4), (9, 11, 4), (7, 7,

1), (7, 7, 3), (8, 5, 3), (11, 12, 1), (13, 12, 1), (14, 0, 0), (6, 9, 1), (3, 11, 2), (6, 9, 3),

(4, 8, 4), (6, 5, 0), (2, 4, 3), (1, 0, 0), (12, 1, 1), (1, 6, 1), (5, 7, 2), (2, 8, 2), (4, 9, 2),

(1, 6, 3), (3, 6, 4), (4, 4, 2), (6, 5, 2), (12, 14, 1), (11, 12, 3), (13, 12, 3), (12, 5, 4), (4,

5, 0), (5, 7, 0), (2, 9, 0), (4, 9, 0), (3, 6, 2), (11, 7, 4), (11, 7, 2), (12, 6, 0), (11, 8, 0),

(14, 6, 1), (0, 8, 1), (8, 9, 3), (9, 3, 3), (11, 3, 3), (4, 4, 4), (6, 4, 4), (3, 7, 0), (13, 8,

0), (13, 8, 2), (14, 6, 3), (0, 8, 3), (12, 10, 3), (14, 10, 3), (3, 2, 3), (5, 3, 0), (7, 3, 0),

(10, 1, 1), (5, 2, 4), (10, 14, 3), (8, 13, 4), (1, 2, 0), (14, 2, 0), (13, 4, 0), (0, 4, 1), (2,

4, 1), (0, 4, 3), (5, 0, 1), (14, 14, 2), (12, 14, 3), (0, 12, 4), (6, 13, 2), (5, 0, 3), (5, 11,

3), (6, 13, 4), (9, 3, 1), (11, 3, 1), (8, 5, 1), (9, 7, 1), (10, 5, 2), (12, 5, 2), (10, 5, 4),

(5, 6, 4), (9, 12, 0), (10, 14, 1), (8, 13, 2), (3, 0, 3), (4, 13, 3), (0, 13, 0), (2, 13, 0), (4,

13, 1), (5, 2, 2), (7, 2, 2), (9, 1, 3), (7, 0, 4), (7, 2, 4), (3, 0, 1), (3, 2, 1), (14, 1, 2),

(12, 1, 3), (1, 1, 4), (14, 1, 4), (13, 3, 4), (8, 1, 0), (8, 14, 0), (7, 0, 2), (2, 13, 2), (2,

12, 4), (1, 14, 4), (14, 14, 4)
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