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Abstract

A relative t-design in the binary Hamming association schemes H(n, 2) is equiva-
lent to a weighted regular t-wise balanced design, i.e., certain combinatorial t-design
which allow different sizes of blocks and a weight function on blocks. In this paper,
we study relative t-designs in H(n, 2), putting emphasis on Fisher type inequalities
and the existence of tight relative t-designs. We mostly consider relative t-designs
on two shells. We prove that if the weight function is constant on each shell of a
relative t-design on two shells then the subset in each shell must be a combinatorial
(t−1)-design. This is a generalization of the result of Kageyama who proved this un-
der the stronger assumption that the weight function is constant on the whole block
set. Using this, we define tight relative t-designs for odd t, and a strong restriction
on the possible parameters of tight relative t-designs in H(n, 2). We obtained a new
family of such tight relative t-designs, which were unnoticed before. We will give
a list of feasible parameters of such relative 3-designs with n ≤ 100, and then we
discuss the existence and/or the non-existence of such tight relative 3-designs. We
also discuss feasible parameters of tight relative 4-designs on two shells in H(n, 2)
with n ≤ 50. In this study we come up with the connection on the topics of classical
design theory, such as symmetric 2-designs (in particular 2-(4u − 1, 2u − 1, u − 1)
Hadamard designs) and Driessen’s result on the non-existence of certain 3-designs.
We believe the Problem 1 and Problem 2 presented in Section 5.2 open a new way
to study relative t-designs in H(n, 2). We conclude our paper listing several open
problems.

Keywords: relative t-design, tight design, regular t-wise balanced design, Hamming asso-
ciation scheme, Hadamard design.
2010 Mathematics Subject Classification: 05B30, 05E30

1 Introduction

The concept of relative t-designs in association schemes was started by Delsarte in [12]
(1977). We refer to [5] for a survey of a history of the study of relative t-designs in asso-
ciation schemes. In this paper we study relative t-designs in binary Hamming association
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scheme H(n, 2). Our emphasis is on Fisher type inequalities and tight relative t-designs.
We mostly consider relative t-designs on two shells.

Two types of relative t-designs in any P-and Q-polynomial association schemes were
considered, see [4]. In the case of Hamming association schemes H(n, q), they coincide.
Firstly, we study the equivalence of these definitions, as well as the equivalence with the
concept of weighted regular t-wise balanced designs (cf. [20]). The second topic is on the
theory of relative t-designs on two shells. Our main theorem is Theorem 3.3, which says
that if the weight function is constant on each shell of a relative t-design on two shells then
the subset in each shell must be a combinatorial (t − 1)-design. This is a generalization
of Proposition 1 of Kageyama in [18]. Kageyama proved his Proposition 1 for t-wise and
(t− 1)-wise balanced design on two shells in H(n, 2), under the stronger assumption that
the weight function is constant on the whole set. Our theorem (Theorem 3.3) gives a
strong restriction on the possible parameters of tight relative t-designs in H(n, 2). We
studied tight relative 2-designs on two shells in Johnson association schemes J(v, k) in [26]
(see also [5]). The concept of tight relative 2e-designs were already discussed in [21], [3],
etc. Here we first discuss Fisher type lower bound, and define tight relative 3-designs on
two shells in H(n, 2). We discuss some examples, as well as their classification problems.
In Section 5, we will give a list of feasible parameters of such relative 3-designs with
n ≤ 100. Then we discuss the existence and/or the non-existence of such tight relative
3-designs. In Section 6, we discuss possible feasible parameters of tight relative 4-designs
in H(n, 2) with n ≤ 50. (Here note that our theorems in the previous sections play
a very important role. We discuss the existence (and mostly non-existence) results of
tight relative 4-designs on two shells in H(n, 2) with n ≤ 50. We conclude this paper by
mentioning further research problems, namely what are the problems we want to study
in this research direction.

2 Definitions and basic facts

Let X = (X, {Ri}0≤i≤n) be a symmetric association scheme defined on X . (Please refer to
[11], [6], [8] for information on association schemes.) Let F(X) be the vector space of all
the real valued functions defined on X . Let u0 ∈ X be fixed. Let Xj = {x ∈ X | (x, u0) ∈
Rj}. Some designs in symmetric association schemes are defined very similar to spherical
designs and Euclidean designs. When we consider spherical designs or Euclidean designs,
we use the vector space of polynomials. When we try to define designs in symmetric
association schemes by similar manner as spherical or Euclidean designs, we use the space
F(X) of real valued functions on X instead of the space of polynomials. We consider
F(X) in two different ways. One way is to study F(X) using the property of P-structure
of X. For z ∈ Xj we define a real valued function fz on X in the following way.

fz(x) =

{
1 if x ∈ Xi, i ≥ j and (x, z) ∈ Ri−j ,
0 otherwise.

We define
Homj(X) = 〈fz | z ∈ Xj〉.
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Let kj be the j-th valency of X. Then dim(Homj(X)) = kj , and we have the following
direct sum.

F(X) = Hom0(X) + Hom1(X) + · · ·+Homn(X).

Another way to study F(X) is using the column space of the primitive idempotents

E0, E1, . . . , En of X. For each ℓ, 0 ≤ ℓ ≤ n, and u ∈ X , let φ
(ℓ)
u be the u-th column vector

of |X|Eℓ. Each φ
(ℓ)
u is also regarded as a function defined on X . For each Eℓ we define

Lℓ(X) = 〈φ(ℓ)
u | u ∈ X〉, 0 ≤ ℓ ≤ n.

Let mℓ be the rank of Eℓ. Then dim(Lℓ(X)) = mℓ. If we consider the usual inner product
of R|X|, then we have an orthogonal decomposition of F(X).

F(X) = L0(X) ⊥ L1(X) ⊥ · · · ⊥ Ln(X).

Let X = (X, {Ri}0≤i≤n) be an association scheme defined on X . Let (Y, w) be a positive
weighted subset of X . Assume Y is on a union of p shells Xr1 ∪ · · · ∪ Xrp in X. Let
Yrν = Y ∩ Xrν and w(Yrν) =

∑
y∈Yrν

w(y) for 1 ≤ ν ≤ p. We have the following two

different ways of the definition for relative t-designs (cf. [4]).

Definition 2.1 (Relative t-design in Q-polynomial association scheme)
Let X be a Q-polynomial association scheme of class n. Then (Y, w) is a relative t-design
of the Q-structure of X with respect to u0, if the following property holds:

p∑

ν=1

w(Yrν)

|Xrν |

∑

x∈Xrν

f(x) =
∑

y∈Y

w(y)f(y) (2.1)

for any f ∈ Lj(X) with 1 ≤ j ≤ t.

Definition 2.2 (Relative t-design in P-polynomial association scheme)
Let X be a P-polynomial association scheme of class n. Then (Y, w) is a relative t-design
of the P-structure of X with respect to u0, if the following property holds:

p∑

ν=1

w(Yrν)

|Xrν |

∑

x∈Xrν

f(x) =
∑

y∈Y

w(y)f(y)

for any f ∈ Homj(X) with 1 ≤ j ≤ t.

As for the relative 2e-designs in Q-polynomial association schemes, the following Fisher
type lower bound is known.

Theorem 2.3 ([2]) Let (Y, w) be a relative 2e-design of a Q-polynomial association scheme
with respect to u0. Assume Y is on p shells S = Xr1 ∪Xr2 ∪ · · · ∪Xrp. Then

|Y | ≥ dim(Le(S) + Le−1(S) + · · ·+ Le−p+1(S)) (2.2)

holds, where Lj(S) denotes the restriction of Lj(X) to S.
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Definition 2.4 ([2]) If equality holds in (2.2), (Y, w) is called tight.

Theorem 2.3 is proved by using the following proposition.

Proposition 2.5 ([2]) For u1, u2 ∈ X, let φ
(ℓ1)
u1

and φ
(ℓ2)
u2

be the u1-th column vector of
Eℓ1 and u2-th column vector of Eℓ2 respectively. Then (Eℓ1φu1

)(Eℓ2φu2
) ∈

∑2ℓ
j=0Lj(X)

holds for any integers ℓ1, ℓ2, ℓ ∈ {0, 1, . . . , n} satisfying ℓ1 + ℓ2 ≤ 2ℓ .

Thus for a P-and Q-polynomial association scheme we have two types of decomposition
of F(X). In general for a P-polynomial association scheme Hom0(X) + · · · + Homℓ(X)
may not be closed under the product of functions. However in [4], they proved that the
following condition is satisfied for general Hamming association scheme H(n, q).

L0(X) + · · ·+ Lℓ(X) = Hom0(X) + · · ·+Homℓ(X) for ℓ = 0, . . . , n.

Proposition 2.5 implies the following lemma.

Lemma 2.6 Let (Y, w) be a positive weighted subset on p shells Xr1∪· · ·∪Xrp in H(n, 2).
Then (Y, w) is a relative t-design with respect to u0 if and only if the following condition
holds:

p∑

ν=1

w(Yrν)

|Xri|

∑

x∈Xrν

s∏

j=1

φ(1)
uj
(x) =

∑

y∈Y

w(y)
s∏

j=1

φ(1)
uj
(y) (2.3)

for any s with 1 ≤ s ≤ t and any u1, . . . , us ∈ X1.

Proof In [21], it is proved that {φ
(1)
u | u ∈ X1} spans the column space of E1. Since

H(n, 2) is a Q-polynomial association scheme, there exists a polynomial v∗i of degree i
and |X|Ei = v∗i (|X|E1) holds. Here product of the matrix (|X|E1)

j is defined by the
Hadamard product. Therefore if Y ⊂ Xr1 ∪Xr2 ∪ · · · ∪Xrp satisfies the condition (2.3),
then (Y, w) satisfies the defining equation (2.1) of relative t-designs.

The equality (2.3) plays an important role when we determine the feasible parameters
of tight relative t-design in H(n, 2).

3 Main results

Let V = {1, 2, . . . , n} and
(
V
r

)
be the set of all r-point subsets of V . Let X = F n

2 .
Without loss of generality we may assume u0 = (0, . . . , 0) ∈ X and Xr = {(x1, . . . , xn) ∈
X | ♯{i | xi = 1} = r}. For x = (x1, . . . , xn) ∈ X , we define a subset Bx of V by
Bx = {i ∈ V | xi = 1}. For a subset Y ⊂ X , we define BY = {By | y ∈ Y }. On the
other hand for a subset B ∈

(
V
r

)
, we define xB = (x1, . . . , xn) ∈ Xr by xi = 1 if i ∈ B and

xi = 0 if i 6∈ B.

Definition 3.1 Let V = {1, 2, . . . , n} and B be a set of subsets in V . Let w be a positive
weight function on B. Then (V,B, w) is a j-wise balanced design if

∑

B∈B,Bz⊂B

w(B) = λj

4



holds with a constant λj which determined by j and independent on the choice of z ∈ Xj.
(V,B, w) is called a regular t-wise balanced design, if it is j-wise balanced for j = 1, 2, . . . , t.

Theorem 3.2 ([13]) Let V = {1, 2, . . . , n}. Let Y ⊂ X and BY = {By | y ∈ Y }. Then
(Y, w) is a relative t-design of the P-structure of H(n, 2) on p shells with respect to u0, if
and only if (V,BY , w) is a regular t-wise balanced design with positive weight w.

In the following for a subset Y ⊂ X , if (V,BY , w) is a regular t-wise balanced design with
positive weight w, then we say Y has the structure of a regular t-wise balanced design.
If (V,BY ) is a combinatorial design, then we say Y has the structure of a combinatorial
design. First we prove the following theorem, which is a generalization of Kageyama’s
Theorem [18].

Theorem 3.3 (Generalization of Kageyama’s Theorem)
Let (V,B, w) be a t-wise and (t− 1)-wise balanced design. Assume B consists of blocks of
size r1 and r2. Let Br1 = {B ∈ B | |B| = r1} and Br2 = {B ∈ B | |B| = r2}. Assume that
the weight function w is a constant wrν on each block set Brν , ν = 1, 2. Then (V,Brν) is

a combinatorial (t− 1)-(n, rν , λ
(rν)
t−1 ) design for ν = 1, 2, with

λ
(r1)
t−1 =

(r2 − t+ 1)λt−1 − (n− t + 1)λt

(r2 − r1)wr1

,

λ
(r2)
t−1 =

(r1 − t+ 1)λt−1 − (n− t + 1)λt

(r1 − r2)wr2

.

Here λj =
∑

B∈B,Bz⊂B

w(B) for z ∈ Xj, for j = t− 1, t.

Then we prove the following theorem.

Theorem 3.4 Definition and notation are given as above. Let (Y, w) be a weighted subset
of Xr1 ∪Xr2. Let Yrν = Y ∩Xrν and assume w(y) = wrν for any y ∈ Yrν for ν = 1, 2. Let
Brν be the set of blocks corresponding to Yrν and Nrν = |Yrν | for ν = 1, 2. Then (Y, w) is

a relative t-design of H(n, 2) if and only if (V,Brν ) is a combinatorial (t− 1)-(n, rν, λ
(rν)
t−1 )

design for ν = 1, 2 and the following equality holds:

2∑

ν=1

wrνλ
(rν)
t (i1, . . . , it) =

2∑

ν=1

Nrνwrν

t−1∏

j=0

rν − j

n− j
(3.1)

for any distinct t points i1, . . . , it in V . In above λ
(rν)
t (i1, . . . , it) denotes the number of

blocks in Brν containing {i1, . . . , it}.

Theorem 3.5 Let (V,Br) be a combinatorial 2e-(n, r, λ2e) design and (V,Bn−r) be the
complementary design of (V,Br), with Bn−r = {V \B | B ∈ Br}. Let B = Br ∪ Bn−r and
Y = Yr ∪ Yn−r be the subset of X on two shells Xr ∪Xn−r corresponding to the block set
B. Then (Y, w) is a relative (2e + 1)-design with constant weight, namely, w(y) = w for
any y ∈ Y .
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In general, for an odd integer t, we do not have a natural lower bound for relative t-designs
on p shells. However, if p = 2 and weight is constant on each shell, then Theorem 3.3
implies that Yr1 and Yr2 have the structures of combinatorial 2e-designs. Therefore we
must have

|Y | = |Yr1|+ |Yr2| ≥ 2

(
n

e

)
. (3.2)

If a relative (2e+ 1)-design (Y, w) satisfies equality in (3.2), then we say (Y, w) is tight.
In the case of t = 3, Theorem 3.3 and 3.4 imply that (Y, w) is a relative 3-design on

two shells Xr1 ∪ Xr2 with constant weight on each shell if and only if the corresponding
designs (V,Br1) and (V,Br2) are combinatorial 2-designs. We have the following theorem.

Theorem 3.6 Let (Y, w) be a weighted subset of a union of two shells Xr1 ∪ Xr2 in
H(n, 2). Assume w ≡ 1, n = 4u − 1, r1 = 2u − 1 and r2 = 2u. Then (Y, w) is a
tight relative 3-design if and only if the corresponding design (V,Br1) is a symmetric 2-
(4u− 1, 2u− 1, u− 1) design and (V,Br2) is the complementary design of (V,Br1).

Proof. Let t = 3, wr1 = wr2 ≡ 1, n = 4u−1, r1 = 2u−1, r2 = 2u in (3.1), then we have

λ
(r1)
3 (i1, i2, i3) + λ

(r2)
3 (i1, i2, i3) = u− 1.

Let ∞ be a point not in V and V + = V ∪ {∞}. Let B+
r1

= {B ∪ {∞} | B ∈ B}. Then
(V,B+

r1 ∪Br2) is a 3-(4u, 2u, u− 1) Hadamard design with 8u− 2 blocks. It is well known
that the complement of any block of 3-(4u, 2u, u− 1) Hadamard design is again a block
(cf. [15], Lemma 4.1). This completes the proof.

We give the proof of our main results, Theorem 3.3, Theorem 3.4, Theorem 3.5 in the
following section.

For tight relative 2e-designs in Q-polynomial association scheme X, it is known that if
the stabilizer G0 of u0 acts transitively on each shell Xr, 1 ≤ r ≤ n, then weight function
w is constant on each Yr, 1 ≤ r ≤ p (see [3]). But for odd integer t = 2e + 1, we only
have natural lower bound for the case p = 2, assuming w is constant on each shell. The
following problems would be interesting.

(1) For relative (2e+ 1)-design of H(n, 2) on two shells, can we prove |Y | ≥ 2
(
n
e

)
holds

without assuming that the weight is constant on each shell ?

(2) Can we generalize Kageyama’s Theorem for the relative t-design on p shells with
p ≥ 3 ?

(3) Can we generalize Kageyama’s Theorem for H(n, q), q 6= 2 ?
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4 Proof of main results

Proof of Theorem 3.3
Let (V,B, w) be a t-wise balanced design. By assumption B ∈ B has either r1 points

or r2 points. We assume 2 ≤ r1 < r2 ≤ n− 2 to avoid the trivial cases. Let Brν be the set
of blocks of size rν for ν = 1, 2. Let A be the incidence matrix of B, i.e., A is a matrix
indexed by V × B whose entry is defined by

A(i, B) =

{
1 if i ∈ B,
0 otherwise.

Let Arν (ν = 1, 2) be a matrix indexed by V × B defined by

Arν(i, B) =

{
1 if B ∈ Brν and i ∈ B,
0 otherwise.

By definition we have
A = Ar1 + Ar2 .

In particular for B ∈ Brν (ν = 1, 2) we have

A(i, B) = Ar1(i, B) + Ar2(i, B) = Arν (i, B)

and
n∑

i=1

A(i, B) =

n∑

i=1

Arν(i, B) = rν .

Let i1, . . . , it−1 be distinct t− 1 points in V . Then we have

∑

B∈B

w(B)

{
r2 −

n∑

i=1

A(i, B)

}
A(i1, B) · · ·A(it−1, B)

=
∑

B∈Br1

w(B)

{
r2 −

n∑

i=1

A(i, B)

}
A(i1, B) · · ·A(it−1, B)

+
∑

B∈Br2

w(B)

{
r2 −

n∑

i=1

A(i, B)

}
A(i1, B) · · ·A(it−1, B)

= (r2 − r1)
∑

B∈Br1

w(B)Ar1(i1, B) · · ·Ar1(it−1, B)

= (r2 − r1)
∑

B∈Br1
{i1,...,it−1}⊂B

w(B)

= wr1(r2 − r1) |{B ∈ Br1 | {i1, . . . , it−1} ⊂ B}| . (4.1)
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On the other hand we have

∑

B∈B

w(B)

{
r2 −

n∑

i=1

A(i, B)

}
A(i1, B) · · ·A(it−1, B)

=
∑

B∈B

w(B)r2A(i1, B) · · ·A(it−1, B)−

n∑

i=1

∑

B∈B

w(B)A(i, B)A(i1, B) · · ·A(it−1, B)

= r2
∑

B∈B
{i1,...,it−1}⊂B

w(B)−
∑

i 6∈{i1,...,it−1}

∑

B∈B
{i,i1,...,it−1}⊂B

w(B)−
∑

i∈{i1,...,it−1}

∑

B∈B
{i1,...,it−1}⊂B

w(B)

= r2λt−1 − (n− t+ 1)λt − (t− 1)λt−1

= (r2 − t+ 1)λt−1 − (n− t+ 1)λt. (4.2)

Then (4.1) and (4.2) imply

|{B ∈ Br1 | {i1, . . . , it−1} ⊂ B}| =
(r2 − t+ 1)λt−1 − (n− t+ 1)λt

(r2 − r1)wr1

.

Hence Br1 is a combinatorial (t− 1)-(n, r1, λ
(r1)
t−1) design with λ

(r1)
t−1 = (r2+t−1)λt−1+(n−t+1)λt

(r2−r1)wr1

.

Similarly we can prove the statements for Br2 . This completes the proof.

To give the proof of Theorem 3.4 and Theorem 3.5, we need some preparation. Let
(V,B) be combinatorial (t− 1)-(n, r, λt−1) design. Let i1, . . . , is be distinct s points in V
and ℓ be an integer satisfying 0 ≤ ℓ ≤ s. We define

pB(ℓ; i1, . . . , is) = |{B ∈ B : |B ∩ {i1, . . . , is}| = ℓ}|.

When we consider relative t-design, we use the following expressions. Let Brν be the block
set corresponding to Yrν ⊂ Xrν (a shell in H(n, 2)) for ν = 1, 2. Let u1, . . . , us be distinct
s points on the shell X1 in H(n, 2). Let ij be the coordinate of uj which takes the value
1 for j = 1, . . . , s. Then we have the following equality

∣∣{y ∈ Yrν | ♯{ui | (y, ui) ∈ Rrν−1} = ℓ
}∣∣ = pBrν

(ℓ; i1, . . . , is)

for ν = 1, 2. In the following firstly we consider some properties of pB(ℓ; i1, . . . , is) for
(t − 1)-(n, r, λt−1) designs. It is well known that, for a combinatorial (t − 1)-(n, r, λt−1)
design B, the following equality holds:

pB(s; i1, . . . , is) = λs =

(
n−s
r−s

)
(
n
r

) |B|

for s = 0, . . . , t− 1. We also use the notation λB
t (i1, . . . , it) instead of pB(t; i1, . . . , it) for a

combinatorial (t− 1)-design B. Before beginning the arguments on the designs we firstly
introduce a combinatorial formula which we use to prove our theorem, although it may
be well known already.
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Lemma 4.1 For non-negative integers α, β and γ satisfying α ≤ β, the following equality
holds.

α∑

j=0

(−1)j
(
α

j

)(
β + γ − j

β

)
=

(
β − α + γ

γ

)
. (4.3)

Proof. We have the following formulas for polynomials of x.

(1− x)α =
α∑

j=0

(−1)j
(
α

j

)
xj ,

(1− x)−β−1 =
∞∑

i=0

(
β + i

i

)
xi.

Hence we have

(1− x)α−β−1 =
∞∑

i=0

α∑

j=0

(−1)j
(
α

j

)(
β + i

β

)
xi+j.

Let i+ j = γ. Then we have

(1− x)α−β−1 =
∞∑

γ=0

α∑

j=0

(−1)j
(
α

j

)(
β + γ − j

β

)
xγ . (4.4)

On the both hand since β − α ≥ 0, we have

(1− x)α−β−1 = (1− x)−(β−α)−1 =
∞∑

γ=0

(
β − α + γ

γ

)
xγ . (4.5)

(4.4) and (4.5) complete the proof.

Proposition 4.2 Definition and notation are given as above. Let (V,B) be a combinato-
rial (t− 1)-(n, r, λt−1) design and N = |B|.

(1) Let {i1, . . . , is} be an s-element subset of V . Then the following equation holds for
s and ℓ satisfying 1 ≤ s ≤ t− 1 and 0 ≤ ℓ ≤ s.

pB(ℓ; i1, . . . , is) =

(
n−s
r−ℓ

)
(
n
r

) N. (4.6)

(2) Let {i1, . . . , it} be a t-element subset of V . Then the following equality holds:

pB(ℓ; i1, . . . , it) =
N(
n
r

)
{(

n− t

r − ℓ

)
− (−1)t−ℓ

(
n− t

r − t

)}
+ (−1)t−ℓλB

t (i1, . . . , it) (4.7)

for any integer satisfying 0 ≤ ℓ ≤ t− 1.
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Proof. The formula (4.6) is well known (cf. [15]). The formula (4.7) also might be already
well known, however we will give the proof below. By inclusion-exclusion principle, we
have

pB(ℓ; i1, . . . , it) = λℓ −

(
t− ℓ

1

)
λℓ+1 +

(
t− ℓ

2

)
λℓ+2 + · · ·+ (−1)t−ℓ−1

(
t− ℓ

t− ℓ− 1

)
λt−1

+(−1)t−ℓλB
t (i1, . . . , it)

=

t−ℓ−1∑

j=0

(−1)j
(
t− ℓ

j

)
λℓ+j + (−1)t−ℓλB

t (i1, . . . , it). (4.8)

Since (V,B) is a combinatorial (t− 1)-(n, r, λt−1) design, the following equation is known.

λℓ+j =
N(
n
r

)
(
n− (ℓ+ j)

n− r

)
for ℓ+ j ≤ t− 1. (4.9)

Then (4.8) and (4.9) imply

pB(ℓ; i1, . . . , it) =
N(
n
r

)
t−ℓ−1∑

j=0

(−1)j
(
t− ℓ

j

)(
n− ℓ− j

n− r

)
+ (−1)t−ℓλB

t (i1, . . . , it)

=
N(
n
r

)
t−ℓ∑

j=0

(−1)j
(
t− ℓ

j

)(
n− ℓ− j

n− r

)
− (−1)t−ℓ N(

n
r

)
(
n− t

n− r

)
+ (−1)t−ℓλB

t (i1, . . . , it)

=
N(
n
r

)
t−ℓ∑

j=0

(−1)j
(
t− ℓ

j

)(
(n− r) + (r − ℓ)− j

n− r

)

−(−1)t−ℓ N(
n
r

)
(
n− t

n− r

)
+ (−1)t−ℓλB

t (i1, . . . , it). (4.10)

Then apply formula (4.3) with α = t− ℓ, β = n− r and γ = r− ℓ, to equation (4.10) we
have

pB(ℓ; i1, . . . , it) =
N(
n
r

)
{(

n− t

r − ℓ

)
− (−1)t−ℓ

(
n− t

n− r

)}
+ (−1)t−ℓλB

t (i1, . . . , it).

This completes the proof of Proposition 4.2 (2).

Let (V,B) be a combinatorial (t − 1)-(n, r, λt−1) design. Let Bc = {V \B | B ∈ B}.
Then it is known that (V,Bc) is a (t− 1)-(n, n− r, λc

t−1).

Corollary 4.3 Notations and definitions are given as above. The following equality holds

λBc

t (i1, . . . , it)− (−1)tλB
t (i1, . . . , it) =

N(
n
r

)
{(

n− t

r

)
− (−1)t

(
n− t

n− r

)}
. (4.11)
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Proof. Proposition 4.2 (2) and λBc

t (i1, . . . , it) = pB(0; i1, . . . , it) implies (4.11).

Now we are ready to discuss relative t-design (Y, w) in H(n, 2) on two shells Xr1 ∪Xr2

and give the proof of Theorem 3.4 we stated in Section 3. Let Yrν = Y ∩Xrν for ν = 1, 2.
As we have seen in Section 3, Yr1 and Yr2 have the structure of combinatorial (t − 1)-

(n, rν , λ
(rν)
t−1 ) design, i.e., (V,Brν ) is a combinatorial (t−1)-(n, rν, λ

(rν)
t−1 ) design for ν = 1, 2.

Where Brν = {By | y ∈ Yrν}, By = {i | 1 ≤ i ≤ n, yi = 1}.

Proof of Theorem 3.4
Let u1, . . . , us be distinct s points in X1. Let us consider the defining equation of

relative t-designs.

2∑

ν=1

Nrνwrν(
n
rν

)
∑

x∈Xrν

s∏

j=1

φ(1)
uj
(x) =

2∑

ν=1

∑

y∈Yrν

wrν

s∏

j=1

φ(1)
uj
(y). (4.12)

Let (Qj(ℓ))0≤ℓ,j≤n be the second eigenmatrix of H(n, 2). It is well known that Q1(ℓ) =
n− 2ℓ holds for 0 ≤ ℓ ≤ n. Since (x, uj) ∈ Rrν−1 ∪ Rrν+1 holds for any x ∈ Xrν , we have
the following equality on the cardinality of the set for each ℓ satisfying 0 ≤ ℓ ≤ s.

♯

{
x ∈ Xrν

∣∣∣∣
|{j | (x, uj) ∈ Rrν−1}| = ℓ, and
|{j | (x, uj) ∈ Rri+1}| = s− ℓ

}
=

(
s

ℓ

)(
n− s

rν − ℓ

)
.

Therefore the left hand side of (4.12) equals

2∑

ν=1

Nrνwrν(
n
rν

)
s∑

ℓ=0

(
s

ℓ

)(
n− s

rν − ℓ

)
Q1(rν − 1)ℓQ1(rν + 1)s−ℓ. (4.13)

Next we consider the right hand side of (4.12). Let ij be the coordinate of ui whose entry
is 1 for 1 ≤ i ≤ t. Let Brν be the block set corresponding to Yrν . By (4.2) and (4.6), if
s < t, then the right hand side of (4.12) equals to the following formula.

2∑

i=1

wrν

s∑

ℓ=0

(
s

ℓ

)
pBrν

(ℓ; i1, . . . , is)Q1(rν − 1)ℓQ1(rν + 1)s−ℓ

=
2∑

i=1

wrν

s∑

ℓ=0

(
s

ℓ

)(
n−s
rν−ℓ

)
(
n
rν

) Q1(rν − 1)ℓQ1(rν + 1)s−ℓ.

Thus the equality (4.12) holds for any s = 1, . . . , t− 1. Next, let s = t. Then Proposition
4.2 (2) implies that the right hand side of (4.12) equals to the following formula

2∑

ν=1

wrν

t∑

ℓ=0

(
t

ℓ

)(
Nrν(
n
rν

)
{(

n− t

rν − ℓ

)
− (−1)t−ℓ

(
n− t

rν − t

)}
+ (−1)t−ℓλ

(rν)
t (i1, . . . , it)

)
×

Q1(rν − 1)ℓQ1(rν + 1)t−ℓ. (4.14)
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Here we use the notation λ
(rν)
t (i1, . . . , it) instead of λ

Brν

t (i1, . . . , it) (= pBrν
(t; i1, . . . , it))

for simplicity. Then (4.13) and (4.14) imply that for s = t, (4.12) is equivalent to the
following equation.

2∑

ν=1

Nrνwrν(
n
rν

)
t∑

ℓ=0

(
t

ℓ

)(
n− t

rν − ℓ

)
Q1(rν − 1)ℓQ1(rν + 1)t−ℓ

=
2∑

ν=1

wrν

t∑

ℓ=0

(
t

ℓ

)(
Nrν(
n
rν

)
{(

n− t

rν − ℓ

)
− (−1)t−ℓ

(
n− t

rν − t

)}
+ (−1)t−ℓλ

(rν)
t (i1, . . . , it)

)
×

Q1(rν − 1)ℓQ1(rν + 1)t−ℓ

=
2∑

ν=1

Nrνwrν(
n
rν

)
t∑

ℓ=0

(
t

ℓ

)(
n− t

rν − ℓ

)
Q1(rν − 1)ℓQ1(rν + 1)t−ℓ

−
2∑

ν=1

Nrνwrν(
n
rν

)
(
n− t

rν − t

) t∑

ℓ=0

(−1)t−ℓ

(
t

ℓ

)
Q1(rν − 1)ℓQ1(rν + 1)t−ℓ

+
2∑

ν=1

wrνpBrν
(t; i1, . . . , it)

t∑

ℓ=0

(−1)t−ℓ

(
t

ℓ

)
Q1(rν − 1)ℓQ1(rν + 1)t−ℓ

=
2∑

ν=1

Nrνwrν(
n
rν

)
t∑

ℓ=0

(
t

ℓ

)(
n− t

rν − ℓ

)
Q1(rν − 1)ℓQ1(rν + 1)t−ℓ

−
2∑

ν=1

Nrνwrν(
n
rν

)
(
n− t

rν − t

)(
Q1(rν − 1)−Q1(rν + 1)

)t

+
2∑

ν=1

wrνλ
(rν)
t (i1, . . . , it)

(
Q1(rν − 1)−Q1(rν + 1)

)t
. (4.15)

Since Q1(rν − 1)−Q1(rν + 1) = 4, (4.15) implies

2∑

ν=1

wrνλ
(rν)
t (i1, . . . , it) =

2∑

ν=1

Nrνwrν(
n
rν

)
(
n− t

rν − t

)
=

2∑

ν=1

Nrνwrν

t−1∏

j=0

rν − j

n− j
. (4.16)

Thus we proved that equation (4.12) with s = t is equivalent to (3.1). This completes the
proof.

Proof of Theorem 3.5
Let r1 = r and r2 = n−r. Since (V,Br1) and (V,Br2) are combinatorial 2e-(n, rν, λ

(rν)
2e )

designs which are complementary designs of each other Nr1 = Nr2 holds and Theorem 3.4
implies that it is enough that we prove the equation (3.1) holds for t = 2e + 1. In the
proof of Theorem 3.4 it is shown that (3.1) is equivalent to (4.16). On the other hand
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Corollary 4.3 implies

λ
(r1)
2e+1(i1, . . . , i2e+1) + λ

(r2)
2e+1(i1, . . . , i2e+1)

=
N(
n
r

)
((

n− 2e− 1

r

)
− (−1)2e+1

(
n− 2e− 1

n− r

))

=
N(
n
r

)
((

n− 2e− 1

r

)
+

(
n− 2e− 1

n− r

))
. (4.17)

If t = 2e + 1, r1 = r and r2 = n − r, then (4.16) is equivalent to (4.17). Moreover, this
implies wr1 = wr2.

The following proposition is very useful.

Proposition 4.4 Let (Y, w) be a tight relative 3-design on two shells Xr1∪Xr2 in H(n, 2).
Assume r1 + r2 = n, r1 < r2 and wr1 = wr2. Then

λ
(r1)
3 (i1, i2, i3) ≥ 1

for any 3-point subset {i1, i2, i3} ⊂ V \B, with any B ∈ Br2.

Proof. By assumption wr1 = wr2, r1+ r2 = n and by Theorem 3.2 and Theorem 3.3 the
combinatorial designs (V,Br1) and (V,Br2) corresponding to Yr1 and Yr2 are symmetric

2-(n, r1, λ
(r1)
2 ) and 2-(n, r2, λ

(r2)
2 ) designs respectively. Therefore |Br1 | = |Br2 | = n and

(3.1) imply

λ
(r1)
3 (i1, i2, i3) + λ

(r2)
3 (i1, i2, i3)

=
1

(n− 1)(n− 2)

(
r1(r1 − 1)(r1 − 2) + r2(r2 − 1)(r2 − 2)

)

=
n2 − 3nr2 + 3r22 − n

n− 1

for any 3-point subset {i1, i2, i3} ⊂ V . Let B = {a1, . . . , ar2} ∈ Br2 . Let V \B =

{ar2+1, . . . , an}. Assume that λ
(r1)
3 (ar2+1, ar2+2, ar2+3) = 0 for {ar2+1, ar2+2, ar2+3} ⊂ V \B.

Then

λ
(r2)
3 (ar2+1, ar2+2, ar2+3) =

n2 − 3nr2 + 3r22 − n

n− 1

holds. Let

α3 =
n2 − 3nr2 + 3r22 − n

n(n− 1)
. (4.18)

Count the number of blocks in Br2 according to the manner given below. Note that the
following formula for symmetric design are well known

λ
(r2)
2 =

r2(r2 − 1)

n− 1
, λ

(r2)
1 = r2. (4.19)
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Then we have the following equations.

∣∣{B ∈ Br2

∣∣ |B ∩ {ar2+1, ar2+2, ar2+3}| = 3
}∣∣ = α3, (4.20)

∣∣{B ∈ Br2

∣∣|{B ∩ {ar2+1, ar2+2, ar2+3}| = 2
}∣∣ = λ

(r2)
2 − α3, (4.21)

∣∣{B ∈ Br2

∣∣|{B ∩ {ar2+1, ar2+2, ar2+3}| = 1
}∣∣ = r2 − λ

(r2)
2 . (4.22)

By (4.18)–(4.22), we have

n = |Br2 | ≥ α3 + 3(λ
(r2)
2 − α3) + 3(r2 − λ

(r2)
2 )

= 3r2 − 2
(n2 − 3nr2 + 3r22 − n)

n− 1

=
−2n2 + 2n+ 9nr2 − 3r2 − 6r22

n− 1
. (4.23)

(4.23) implies
3(n− r2)(n− 2r2 − 1)

n− 1
≥ 0.

Hence we must have 2r2 ≤ n − 1. On the other hand by the assumption, we have
n− r2 = r1 < r2, this is a contradiction. This completes the proof of Proposition 4.4.

5 Tight relative (2e + 1)-designs

Let (Y, w) be a tight relative (2e+1)-design on Xr1∪Xr2 . We assume weight w is constant
on each Yrν and let wrν = w(y) for y ∈ Yrν , ν = 1, 2. Then Yrν = Y ∩Xrν is a tight 2e-
design for ν = 1, 2. Namely, Nrν = |Yrν | =

(
n
e

)
. If r1 = 1 or r2 = n−1, then we must have

trivial case Yr1 = Xr1 or Yr2 = Xr2 . Hence in the following we assume 2 ≤ r1 < r2 ≤ n−2.

5.1 Tight relative 3-designs

Method to get feasible parameters
The formula given in Theorem 4.2 for t = 3 give the following formulas. In the following
we use the notation λ

(rν)
3 (i1, i2, i3) instead of pBrν

(3; i1, i2, i3) for simplicity.

pBrν
(0; i1) = λ

(rν)
0 = n− rν , pBrν

(1; i1) = λ
(rν)
1 =

n
(
n−1
rν−1

)
(
n
rν

) = rν ,

pBrν
(0; i1, i2) = n− rν −

rν(n− rν)

n− 1
, pBrν

(1; i1, i2) =
rν(n− rν)

n− 1
,

pBrν
(2; i1, i2) = λ

(rν)
2 =

(rν − 1)rν
n− 1

. (5.1)

For any distinct 3 points i1, i2, i3 ∈ V , the following equality holds.

2∑

ν=1

wrνλ
(rν)
3 (i1, i2, i3) =

2∑

ν=1

wrν

rν(rν − 1)(rν − 2)

(n− 1)(n− 2)
. (5.2)
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The equations (5.1) and (5.2) give the equivalent condition for (V,Br1) and (V,Br2) to give
a tight relative 3-design Y = Yr1∪Yr2 . Since (V,Br1) and (V,Br2) cannot be combinatorial
3-designs, there exist {a1, a2, a3} and {b1, b2, b3} in V satisfying

λ
(r1)
2 ≥ λ

(r1)
3 (a1, a2, a3) > λ

(r1)
3 (b1, b2, b3) ≥ 0.

Then (5.2) implies

wr1(λ
(r1)
3 (a1, a2, a3)− λ

(r1)
3 (b1, b2, b3)) = wr2(λ

(r2)
3 (b1, b2, b3)− λ

(r2)
3 (a1, a2, a3)).

Therefore we must have

λ
(r2)
2 ≥ λ

(r2)
3 (b1, b2, b3) > λ

(r2)
3 (a1, a2, a3) ≥ 0.

Hence

wr2 =
λ
(r1)
3 (a1, a2, a3)− λ

(r1)
3 (b1, b2, b3)

λ
(r2)
3 (b1, b2, b3)− λ

(r2)
3 (a1, a2, a3)

wr1.

Let

α =
λ
(r1)
3 (a1, a2, a3)− λ

(r1)
3 (b1, b2, b3)

λ
(r2)
3 (b1, b2, b3)− λ

(r2)
3 (a1, a2, a3)

.

Then by definition α > 0, wr2 = αwr1 and

1 ≤ λ
(r1)
3 (a1, a2, a3)− λ

(r1)
3 (b1, b2, b3) ≤ λ

(r1)
2 ,

1 ≤ λ
(r2)
3 (b1, b2, b3)− λ

(r2)
3 (a1, a2, a3) ≤ λ

(r2)
2 .

The equation (5.2) implies that the following holds for any distinct i1, i2, i3 in V .

λ
(r2)
3 (i1, i2, i3) =

r1(r1 − 1)(r1 − 2)

α(n− 1)(n− 2)
+

r2(r2 − 1)(r2 − 2)

(n− 1)(n− 2)
−

1

α
λ
(r1)
3 (i1, i2, i3).

We explained how to list feasible parameters n, r1, r2, Nr1, Nr2 and
wr2

wr1

for the case t = 3.

For the case t ≥ 4 we use the same method. As we have seen in Theorem 3.3, the
existence of relative t-design on two shells Xr1 ∪ Xr2 is equivalent to the existence of

combinatorial (t− 1)-(n, r1, λ
(r1)
t−1) and (t− 1)-(n, r2, λ

(r2)
t−1) design with λ

(r1)
t (i1, . . . , it) and

λ
(r2)
t (i1, . . . , it) satisfying the equality (3.1). In the following sections we often use the

terminology, λt-sequence of a (t− 1)-(v, k, λt−1) design (V,B). The definition is given as
follows.

Definition 5.1 Let (V,B) be a (t − 1)-(v, k, λt−1) design. Let ℓ1, ℓ2, . . . , ℓj be integers
satisfying 0 ≤ ℓ1 < ℓ2 < · · · < ℓj ≤ λt−1 and

∣∣{{i1, . . . , it} ⊂ V
∣∣ λB

t (i1, i2, . . . , it) = ℓs
}∣∣ = aℓs > 0

for s = 1, . . . , j. We call the sequence (aℓ1 ∗ ℓ1, . . . , aℓj ∗ ℓj) the λt-sequence of (t − 1)-
(v, k, λt−1) design. We call j the length of the λt-sequence.
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In the following we give the list of all the feasible parameters satisfying the integral
conditions in (5.1) and (5.2) up to n = 100. We divide the list into four cases according
to the following conditions on r1, r2 and wr1, wr2.

Case 1: r1 + r2 = n and wr1 = wr2.
Case 2: r1 + r2 = n and wr1 6= wr2.
Case 3: r1 + r2 6= n and wr1 = wr2.
Case 4: r1 + r2 6= n and wr1 6= wr2.

Case 1: r1 + r2 = n and wr1 = wr2.

n r1 λ
(r1)
2

7∗ 3 1 1

11∗ 5 2 1

13 4 1 1

15∗ 7 3 5

16 6 2 3

19∗ 9 4 6

21 5 1 1

22 7 2 ×

23∗ 11 5 1106

25 9 3 78

27∗ 13 6 208310

29 8 2 ×

31 6 1 1

31 10 3 151

31∗ 15 7 10374196953

34 12 4 ×

35∗ 17 8 ≥ 108131

36 15 6 ≥ 25634

37 9 2 4

39∗ 19 9 ≥ 5.87 · 1014

40 13 4 ≥ 1108800

41 16 6 ≥ 115307

43 7 1 ×

43 15 5 ×

43∗ 21 10 ≥ 82

45 12 3 ≥ 3752

n r1 λ
(r1)
2

46 10 2 ×

47∗ 23 11 ≥ 55

49 16 5 ≥ 12146

51∗ 25 12 ≥ 1

52 18 6 ×

53 13 3 ×

55∗ 27 13 ≥ 1

56 11 2 ≥ 5

57 8 1 1

58 19 6 ×

59∗ 29 14 ≥ 1

61 16 4 ≥ 6

61 21 7 ×

61 25 10 ≥ 24

63∗ 31 15 ≥ 1017

64 28 12 ≥ 8784

66 26 10 ≥ 588

67 12 2 ×

67 22 7 ×

67∗ 33 16 ≥ 1

69 17 4 ≥ 4

70 24 8 ≥ 28

71 15 3 ≥ 72

71 21 6 ≥ 2

71∗ 35 17 ≥ 9

73 9 1 1

n r1 λ
(r1)
2

75∗ 37 18 ≥ 1

76 25 8 ×

77 20 5 ×

78 22 6 ≥ 3

79 13 2 ≥ 2

79 27 9 ≥ 1463

79∗ 39 19 ≥ 2091

81 16 3 ?

83∗ 41 20 ≥ 1

85 21 5 ≥ 213964

85 28 9 ?

85 36 15 ?

86 35 14 ×

87∗ 43 21 ≥ 1

88 30 10 ×

89 33 12 ×

91 10 1 4

91 36 14 ×

91∗ 45 22 ≥ 1

92 14 2 ×

93 24 6 ×

94 31 10 ×

95∗ 47 23 ≥ 1

96 20 4 ≥ 2

97 33 11 ?

99∗ 49 24 ≥ 1

100 45 20 ≥ 1

Table 1

Remark

(1) In the table given above, if a symmetric design of corresponding parameters (n, r1, λ
(r1)
2 )

exists then a tight relative 3-design on two shells Xr1 ∪Xr2 , with r2 = n− r1, exists.

(2) n∗ denotes the case which is 2-(4u−1, 2u−1, u−1) Hadamard design with n = 4u−1.
In this case corresponding design (V,Br2) is the complementary design of (V,Br1),
i.e., Br2 = {V \B | B ∈ Br1}.
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(3) The last column for each n denotes the number of non-isomorphic symmetric designs.
“ × ” indicates the non-existence, “ ? ” indicates that existence or non-existence is
unknown.

(4) ”♯” denotes the number of non-isomorphic designs. The information is basically
from the Appendix-Tables A, B and C in [7] and Table 1.35 in [10].

Case 2: r1 + r2 = n and wr1 6= wr2 .

In the table below, we give the possible values of the pair (λ
(r1)
3 (i1, i2, i3), λ

(r2)
3 (i1, i2, i3))

for 3-point subset {i1, i2, i3} ⊂ V and “×” indicates the non-existence of tight relative
3-design with the corresponding parameters.

n r1 λ
(r1)
2

wr2

wr1

(λ
(r1)
3 , λ

(r2)
3 )

37 9 2 2
7 (0, 17), (2, 10) ×
1
6 (0, 18), (1, 12), (2, 6) ×
2
17 (0, 19), (2, 2) ×
1
11 (0, 20), (1, 9) ×

56 11 2 1
4 (0, 30), (1, 26), (2, 22)
1
7 (0, 31), (1, 24), (2, 17)
1
10 (0, 32), (1, 22), (2, 12)
1
13 (0, 33), (1, 20), (2, 7)
1
16 (0, 34), (1, 18), (2, 2)
1
19 (0, 35), (1, 16)
1
22 (0, 36), (1, 14)
1
10 (0, 32), (1, 22), (2, 12)

66 26 10 1
13 (3, 24), (4, 11)
1
9 (3, 21), (4, 12), (5, 3)
1
5 (i, 33− 5i), i = 2, . . . , 6
5
13 (0, 24), (5, 11)
5
9 (0, 21), (5, 12), (10, 3)

5 (0, 15), (5, 14), (10, 13)
3
19 (3, 19), (6, 0)
3
11 (3, 17), (6, 6)
3
7 (3i, 23− 7i), i = 0, 1, 2, 3
7
19 (2, 19), (9, 0)
7
15 (2, 18), (9, 3)
7
11 (2, 17), (9, 6)
7
3 (2, 15), (9, 12)

n r1 λ
(r1)
2

wr2

wr1

(λ
(r1)
3 , λ

(r2)
3 )

70 24 8 3
20 (1, 30), (4, 10)
2
19 (2, 25), (4, 6)
1
18 (2, 30), (3, 12)
5
22 (2, 22), (7, 0)

71 15 3 2
25 (1, 29), (3, 4)
1
24 (1, 24), (2, 0)

21 6 3
26 (1, 30), (4, 4)
5
28 (1, 28), (6, 0)

78 22 6 2
21 (2, 24), (4, 3)
4
23 (2, 26), (6, 3)
1
20 (1, 40), (2, 20), (3, 0))
6
25 (0, 35), (6, 10)
5
24 (0, 36), (5, 12)
3
22 (0, 40), (3, 18)

79 13 2 2
9 (0, 47), (2, 38)
1
8 (0, 48), (1, 40), (2, 32)
2
23 (0, 49), (2, 26)
1
15 (0, 50), (1, 35), (2, 20)
2
37 (0, 51), (2, 14)
1
22 (0, 52), (1, 30), (2, 8)
2
51 (0, 53), (2, 2)
1
29 (0, 54), (1, 25)

96 20 4 4
51 (0, 57), (4, 6)
3
50 (0, 60), (3, 10)

Table 2

Proposition 5.2 There is no tight relative 3-design on two shells with n = 37, r1 =
9, r2 = 28 and wr1 6= wr2.

Proof. It is known that there exist exactly four 2-(37, 9, 2) symmetric designs. For
all the four 2-(37, 9, 2) designs we proved by computation that the λ3-sequences equal
to (4662 ∗ 0, 3108 ∗ 1). Hence λ3-sequences of four 2-(37, 28, 21) symmetric designs equal
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to (3108 ∗ 15, 4662 ∗ 16). This implies that λ
(r2)
3 (i1, i2, i3) = 15 or 16 for any 3 points

i1, i2, i3 ∈ V . Hence it is impossible to have tight relative 3-design with this parameter.

Proposition 5.3 The tight relative 3-designs on two shells with n = 66, r1 = 26, r2 = 40
and wr1 6= wr2 corresponding to the 14 known symmetric designs in the home page of Ted
Spence (see [23]) do not exist.

Proof. So far, the number of the known non-isomorphic 2-(66, 26, 10) designs is 14.
They give 14 different types of λ3-sequence.

(110 ∗ 0, 825 ∗ 1, 3850 ∗ 2, 9900 ∗ 3, 23100 ∗ 4, 6875 ∗ 5, 1100 ∗ 6),
(110 ∗ 0, 475 ∗ 1, 3950 ∗ 2, 11200 ∗ 3, 21950 ∗ 4, 6725 ∗ 5, 1300 ∗ 6, 50 ∗ 8),
(60 ∗ 0, 425 ∗ 1, 3650 ∗ 2, 12775 ∗ 3, 20125 ∗ 4, 7525 ∗ 5, 1025 ∗ 6, 150 ∗ 7, 25 ∗ 9),
(60 ∗ 0, 450 ∗ 1, 3675 ∗ 2, 12775 ∗ 3, 19775 ∗ 4, 7950 ∗ 5, 950 ∗ 6, 100 ∗ 7, 25 ∗ 9),
(60 ∗ 0, 575 ∗ 1, 3875 ∗ 2, 11850 ∗ 3, 20175 ∗ 4, 8475 ∗ 5, 625 ∗ 6, 100 ∗ 7, 25 ∗ 8),
(85 ∗ 0, 400 ∗ 1, 3650 ∗ 2, 12650 ∗ 3, 20400 ∗ 4, 7300 ∗ 5, 1125 ∗ 6, 125 ∗ 7, 25 ∗ 9),
(85 ∗ 0, 425 ∗ 1, 3600 ∗ 2, 12775 ∗ 3, 20050 ∗ 4, 7725 ∗ 5, 925 ∗ 6, 150 ∗ 7, 25 ∗ 9),
(85 ∗ 0, 600 ∗ 1, 3725 ∗ 2, 11900 ∗ 3, 20300 ∗ 4, 8400 ∗ 5, 625 ∗ 6, 100 ∗ 7, 25 ∗ 8),
(110 ∗ 0, 325 ∗ 1, 3700 ∗ 2, 12450 ∗ 3, 21000 ∗ 4, 6775 ∗ 5, 1250 ∗ 6, 50 ∗ 7, 100 ∗ 8),
(110 ∗ 0, 525 ∗ 1, 3625 ∗ 2, 11675 ∗ 3, 21825 ∗ 4, 6725 ∗ 5, 1125 ∗ 6, 75 ∗ 7, 75 ∗ 8),
(110 ∗ 0, 575 ∗ 1, 3775 ∗ 2, 11175 ∗ 3, 22050 ∗ 4, 6825 ∗ 5, 1175 ∗ 6, 25 ∗ 7, 50 ∗ 8),
(110 ∗ 0, 600 ∗ 1, 3750 ∗ 2, 11050 ∗ 3, 22300 ∗ 4, 6700 ∗ 5, 1150 ∗ 6, 50 ∗ 7, 50 ∗ 8),
(135 ∗ 0, 475 ∗ 1, 3775 ∗ 2, 11425 ∗ 3, 21925 ∗ 4, 6675 ∗ 5, 1275 ∗ 6, 25 ∗ 7, 50 ∗ 8),
(135 ∗ 0, 675 ∗ 1, 3700 ∗ 2, 10650 ∗ 3, 22750 ∗ 4, 6625 ∗ 5, 1150 ∗ 6, 50 ∗ 7, 25 ∗ 8).

However, the list (λ
(r1)
3 , λ

(r2)
3 ) for n = 66 is given in Table 2. Hence it is impossible to

have tight relative 3-designs for n = 66 with non-constant weight if (V,Br1) is the one of
the fourteen 2-(66, 26, 10) designs.

Case 3: r1 + r2 6= n and wr1 = wr2 .
The following is the table of the feasible parameters for n ≤ 100.

n r1 λ
(r1)
2 r2 λ

(r2)
2 (λ

(r1)
3 , λ

(r2)
3 )

31 6 1 16 8 (i, 4− i), i = 0, 1 ×
31 15 7 25 20 (i, 19− i), i = 0, . . . , 7 ×

85 21 5 49 28 (i, 17− i), i = 0, . . . , 5
85 36 15 64 48 (i, 42− i), i = 0, . . . , 15

Table 3

Proposition 5.4 There is no tight relative 3-design with n = 31, r1 + r2 6= 31 and
wr1 = wr2.

Proof. (1) Non-existence for n = 31, r1 = 6, r2 = 16.

(5.2) implies λ
(r1)
3 +λ

(r2)
3 = 4. The λ3-sequence of the 2-(31, 6, 1) design is (3875∗0, 620∗1).

Then we must have λ
Br2

3 (i1, i2, i3) = 4 or 3 for any 3-point subset {i1, i2, i3} ⊂ V . The

complementary design (V,Bc
r2) is a 2-(31, 15, 7) design and (4.11) implies λ

Bc
r2

3 (i1, i2, i3) +

λ
Br2

3 (i1, i2, i3) = 7. Hence λ
Bc
r2

3 (i1, i2, i3) = 3 or 4. Hence the λ3-sequence of (V,Bc
r2
) must
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be of the form (a3 ∗ 3, a4 ∗ 4). On the other hand there are 10374196953 non-isomorphic
2-(31, 15, 7) designs, and Brendan McKay got all the λ3-sequences with length at most 4
as listed below. We can easily see that there is no λ3-sequence satisfying this condition.
Therefore there is no tight relative 3-design with this parameter.

No.

1 (4340 ∗ 3, 155 ∗ 7)
2 (930 ∗ 2, 2015 ∗ 3, 1550 ∗ 4)
3 (64 ∗ 0, 3892 ∗ 3, 448 ∗ 4, 91 ∗ 7)
4 (112 ∗ 0, 3556 ∗ 3, 784 ∗ 4, 43 ∗ 7)
5 (48 ∗ 1, 4196 ∗ 3, 144 ∗ 5, 107 ∗ 7)
6 (64 ∗ 1, 4148 ∗ 3, 192 ∗ 5, 91 ∗ 7)
7 (72 ∗ 1, 4124 ∗ 3, 216 ∗ 5, 83 ∗ 7)
8 (80 ∗ 1, 4100 ∗ 3, 240 ∗ 5, 75 ∗ 7)
9 (84 ∗ 1, 4088 ∗ 3, 252 ∗ 5, 71 ∗ 7)
10 (88 ∗ 1, 4076 ∗ 3, 264 ∗ 5, 67 ∗ 7)
11 (92 ∗ 1, 4064 ∗ 3, 276 ∗ 5, 63 ∗ 7)
12 (96 ∗ 1, 4052 ∗ 3, 288 ∗ 5, 59 ∗ 7)
13 (100 ∗ 1, 4040 ∗ 3, 300 ∗ 5, 55 ∗ 7)
14 (104 ∗ 1, 4028 ∗ 3, 312 ∗ 5, 51 ∗ 7)

No.

15 (108 ∗ 1, 4016 ∗ 3, 324 ∗ 5, 47 ∗ 7)
16 (112 ∗ 1, 4004 ∗ 3, 336 ∗ 5, 43 ∗ 7)
17 (116 ∗ 1, 3992 ∗ 3, 348 ∗ 5, 39 ∗ 7)
18 (120 ∗ 1, 3980 ∗ 3, 360 ∗ 5, 35 ∗ 7)
19 (124 ∗ 1, 3968 ∗ 3, 372 ∗ 5, 31 ∗ 7)
20 (128 ∗ 1, 3956 ∗ 3, 384 ∗ 5, 27 ∗ 7)
21 (132 ∗ 1, 3944 ∗ 3, 396 ∗ 5, 23 ∗ 7)
22 (136 ∗ 1, 3932 ∗ 3, 408 ∗ 5, 19 ∗ 7)
23 (140 ∗ 1, 3920 ∗ 3, 420 ∗ 5, 15 ∗ 7)
24 (144 ∗ 1, 3908 ∗ 3, 432 ∗ 5, 11 ∗ 7)
25 (148 ∗ 1, 3896 ∗ 3, 444 ∗ 5, 7 ∗ 7)
26 (840 ∗ 2, 2285 ∗ 3, 1280 ∗ 4, 90 ∗ 5)
27 (855 ∗ 2, 2240 ∗ 3, 1325 ∗ 4, 75 ∗ 5)

(5.3)

(2) Non-existence for n = 31, r1 = 15, r2 = 25.
By (5.2), for r1 = 15 and r2 = 25, we have

λ
(r1)
3 (i1, i2, i3) + λ

(r2)
3 (i1, i2, i3) = 19.

Since r2 = 25, (V,Bc
r2
) is a symmetric 2-(31, 6, 1) design. Hence (4.11) implies

λ
Br2

3 (i1, i2, i3) = 16− λ
Bc
r2

3 (i1, i2, i3) = 15, or 16.

Therefore for r1 = 15, we have

λ
Br1

3 (i1, i2, i3) = 3 or 4.

Therefore (5.3) implies the non-existence of tight relative 3-design of this parameter.

Case 4: r1 + r2 6= n and wr1 6= wr2.

n r1 λ
(r1)
2 r2 λ

(r2)
2

wr2

wr1

(λ
(r1)
3 , λ

(r2)
3 )

31 6 1 21 14 1
6 (0, 10), (1, 4) ×

10 3 16 8 1
5 (0, 8), (1, 3) ×

10 3 25 20 1
5 (i, 20− 5i), i = 0, 1, 2, 3 ×

15 7 21 14 1
6 (3, 10), (4, 4) ×

16 8 21 14 4
5 (0, 14), (4, 9), (8, 4) ×

21 14 25 20 5
4 (4, 20), (9, 16), (14, 12) ×

21 14 25 20 4
9 (10, 14), (14, 5) ×
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n r1 λ
(r1)
2 r2 λ

(r2)
2

wr2

wr1

(λ
(r1)
3 , λ

(r2)
3 )

61 16 4 36 21 1
2 (i, 14− 2i), i = 1, 2, 3, 4

25 10 45 33 2 (2i, 26− i), i = 0, . . . , 5
7
33 (2, 33), (9, 0)

36 21 45 33 15
22 (6, 33), (21, 11)
11
24 (8, 33), (19, 9)
5
27 (11, 30), (16, 3)

71 15 3 36 18 1
2 (i, 10− 2i), i = 0, 1, 2, 3

15 3 50 35 1
10 (0, 30), (1, 20), (2, 10)

21 6 35 17 3
4 (1, 9), (4, 5)
1
9 (1, 14), (2, 5)

21 6 36 18 2
5 (0, 13), (2, 8), (4, 3)

5 (1, 9), (6, 8)
1
14 (1, 18), (2, 4)

21 6 56 44 5
12 (1, 36), (6, 24)
3
44 (1, 44), (4, 0)
4
5 (2, 34), (6, 29)
1
7 (i, 46− 7i), i = 1, . . . , 6

35 17 50 35 11
9 (0, 31), (11, 22)
17
16 (0, 32), (17, 16)
5
2 (4, 26), (9, 24), (14, 22)
6
7 (5, 28), (11, 21), (17, 14)
8
17 (5, 31), (13, 14)
9
22 (5, 32), (14, 10)
7
12 (6, 28), (13, 16)
1
28 (8, 28), (9, 0)
1
5 (i, 65− 5i), i = 6, . . . , 12

35 17 56 44 2 (2i− 1, 39− i), i = 1, . . . , 9
17
20 (0, 44), (17, 24)
9
16 (5, 40), (14, 24)
12
29 (5, 42), (17, 13)
7
15 (6, 39), (13, 24)
3
13 (8, 35), (11, 22), (14, 9)
1
12 (8, 36), (9, 24), (10, 12)
5
14 (9, 32), (14, 18)

71 35 17 56 44 1
35 (8, 39), (9, 4)
4
25 (9, 29), (13, 4)

36 18 50 35 1
18 (9, 22), (10, 4)
17
7 (0, 28), (17, 21)
4
3 (4i, 31− 3i), i = 0, . . . , 4

9 (3, 25), (12, 24)
15
17 (3, 31), (18, 14)
7
11 (4, 32), (11, 21), (18, 10)
11
14 (6, 28), (17, 14)
3
8 (3i, 48− 8i), i = 2, 3, 4, 5
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n r1 λ
(r1)
2 r2 λ

(r2)
2

wr2

wr1

(λ
(r1)
3 , λ

(r2)
3 )

71 36 18 50 35 10
19 (8, 26), (18, 7)
5
21 (8, 28), (13, 7)
2
13 (8, 30), (10, 17), (12, 4)

36 18 56 44 3
10 (3i, 64− 10i), i = 2, . . . , 6
5
9 (8, 36), (13, 27), (18, 18)
17
3 (0, 36), (17, 33)
15
4 (3, 36), (18, 32)
9
7 (3, 39), (12, 32)
7
8 (4, 40), (11, 32), (18, 24)
11
6 (6, 36), (17, 30)
11
29 (6, 42), (17, 13)
4
21 (8, 39), (12, 18)
5
32 (8, 40), (13, 8)
1
11 (i, 132− 11i), i = 8, 9, 10, 11

50 35 56 44 16
3 (0, 39), (16, 36), (32, 33)
35
8 (0, 40), (35, 32)
28
11 (0, 44), (28, 33)

13 (4, 36), (17, 35), (30, 34)
19
5 (7, 39), (26, 34)
22
7 (10, 39), (32, 32)
3
2 (3i+ 1, 50− 2i), i = 3, . . . , 11
5
11 (5i, 88− 11i), i = 4, 5, 6, 7
11
15 (21, 39), (32, 24)
7
20 (21, 44), (28, 24), (35, 4)
9
29 (22, 42), (31, 13)
8
13 (24, 35), (32, 22)
2
9 (2i, 144− 9i), i = 12, 13, 14, 15
1
16 (24, 40), (25, 24), (26, 8)
3
25 (25, 29), (28, 4)

79 27 9 39 19 3
5 (0, 14), (3, 9), (6, 4)

27 9 66 55 1
22 (3, 44), (4, 22)

27 9 66 55 4
11 (1, 51), (5, 40), (9, 29)

39 19 52 34 4
13 (7, 29), (11, 16), (15, 3)
19
4 (0, 24), (19, 20)
9
10 (2, 30), (11, 20)
3
29 (8, 33), (11, 4)

39 19 66 55 19
11 (0, 51), (19, 40)
6
19 (8, 28), (14, 9)
1
16 (10, 20), (11, 4)

40 20 52 34 5
3 (5i, 28− 3i), i = 0, . . . , 4
6
19 (8, 28), (14, 9)
1
16 (10, 20), (11, 4)

40 20 66 55 13
33 (7, 53), (20, 20)
9
11 (8, 48), (17, 37)
2
11 (2i, 100− 11i), i = 5, . . . , 9
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n r1 λ
(r1)
2 r2 λ

(r2)
2

wr2

wr1

(λ
(r1)
3 , λ

(r2)
3 )

79 52 34 66 55 3
11 (3i+ 1, 123− 11i), i = 7, . . . , 11
24
11 (4, 54), (28, 43)
17
11 (17, 49), (34, 38)
10
11 (20, 48), (30, 37)
2
33 (22, 47), (24, 14)

85 21 5 57 38 3
17 (1, 26), (4, 9)

28 9 49 28 2
15 (2, 22), (4, 7), (6, 12)

28 9 36 15 5
4 (3, 6), (8, 2)

28 9 64 48 2
15 (4, 27), (6, 12)
9
26 (0, 44), (9, 18)

36 15 57 38 15
2 (0, 26), (15, 24)
7
12 (1, 34), (8, 22), (15, 10)
3
17 (6, 26), (9, 9)

49 28 57 38 23
8 (2, 30), (25, 22)
4
5 (4i, 45− 5i), i = 2, . . . , 7

57 38 64 48 22 (0, 37), (22, 36)
5
4 (4i, 45− 5i), i = 2, . . . , 7
8
23 (22, 45), (30, 22)
11
42 (22, 48), (33, 6)
3
19 (25, 37), (28, 18)
1
34 (25, 42), (26, 8)

91 10 1 46 23 1
7 (0, 12), (1, 5)

10 1 55 33 1
15 (0, 21), (1, 6)

36 14 45 22 2
5 (2, 19), (4, 14), (6, 9), (8, 4)

36 14 81 72 1
6 (i, 96− 6i), i = 4, . . . , 14

45 22 55 33 22
9 (0, 24), (22, 15)
12
13 (2, 29), (14, 16)
7
15 (10, 21), (17, 6)
2
17 (10, 25), (12, 8)

45 22 81 72 16
15 (2, 72), (18, 57)
11
27 (11, 63), (22, 36)

7 (3, 65), (10, 64), (17, 63)
9
14 (8, 68), (17, 54)
13
40 (8, 72), (21, 32)
2
13 (2i, 133− 13i), i = 12, . . . , 15

46 23 55 33 5
2 (13, 19), (18, 17), (23, 15)

46 23 55 33 23
27 (0, 33), (23, 6)
3
19 (11, 22), (14, 3)
5
2 (5i+ 3, 23− 2i), i = 0, . . . , 4

46 23 81 72 1
38 (12, 40), (13, 2)
8
37 (12, 61), (20, 24)
5
12 (5i+ 3, 84− 12i), i = 1, 2, 3, 4
3
25 (11, 67), (14, 42), (17, 17)
12
11 (8, 67), (20, 56)
11
62 (11, 66), (22, 4)
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n r1 λ
(r1)
2 r2 λ

(r2)
2

wr2

wr1

(λ
(r1)
3 , λ

(r2)
3 )

91 55 33 81 72 8
41 (21, 57), (29, 16)
10
29 (21, 60), (31, 31)
12
17 (21, 62), (33, 45)
11
23 (22, 59), (33, 36)
9
35 (24, 47), (33, 12)
27
16 (6, 72), (33, 56)
14
5 (11, 67), (25, 62)
13
11 (16, 67), (29, 56)

Table 4

Proposition 5.5 There is no tight relative 3-design with the parameters n = 31, r1+r2 6=
n, wr1 6= wr2 in the list given above.

Proof. There are 151 non-isomorphic 2-(31, 10, 3) designs and the λ3-sequence is one of
the following cases.

(1240 ∗ 0, 2790 ∗ 1, 465 ∗ 2),
(1239 ∗ 0, 2793 ∗ 1, 462 ∗ 2, 1 ∗ 3),
(1238 ∗ 0, 2796 ∗ 1, 459 ∗ 2, 2 ∗ 3),
(1237 ∗ 0, 2799 ∗ 1, 456 ∗ 2, 3 ∗ 3),
(1236 ∗ 0, 2802 ∗ 1, 453 ∗ 2, 4 ∗ 3),
(1235 ∗ 0, 2805 ∗ 1, 450 ∗ 2, 5 ∗ 3),
(1234 ∗ 0, 2808 ∗ 1, 447 ∗ 2, 6 ∗ 3),
(1233 ∗ 0, 2811 ∗ 1, 444 ∗ 2, 7 ∗ 3),
(1232 ∗ 0, 2814 ∗ 1, 441 ∗ 2, 8 ∗ 3),
(1231 ∗ 0, 2817 ∗ 1, 438 ∗ 2, 9 ∗ 3),
(1225 ∗ 0, 2835 ∗ 1, 420 ∗ 2, 15 ∗ 3).

The non-existence of such tight relative 3-designs on two shells is obtained (cf. Section
5.2).

Proposition 5.6 The tight relative 3-designs on two shells with n = 61, r1 = 25, r2 = 45
and wr1 6= wr2 from the 31 known symmetric designs in the home page of Ted Spence do
not exist.

Proof. In the home page of Ted Spence, there are 31 non-isomorphic 2-(61, 25, 10)
designs. And we can calculate the following λ3-sequences for these 2-(61, 25, 10) designs.

(105 ∗ 0, 125 ∗ 1, 2400 ∗ 2, 7650 ∗ 3, 17625 ∗ 4, 6735 ∗ 5, 1200 ∗ 6, 150 ∗ 7),
(105 ∗ 0, 125 ∗ 1, 2325 ∗ 2, 7950 ∗ 3, 17175 ∗ 4, 7035 ∗ 5, 1125 ∗ 6, 150 ∗ 7),
(105 ∗ 0, 125 ∗ 1, 2375 ∗ 2, 7725 ∗ 3, 17550 ∗ 4, 6760 ∗ 5, 1200 ∗ 6, 150 ∗ 7),
(105 ∗ 0, 125 ∗ 1, 2300 ∗ 2, 8025 ∗ 3, 17100 ∗ 4, 7060 ∗ 5, 1125 ∗ 6, 150 ∗ 7),
(130 ∗ 0, 200 ∗ 1, 2300 ∗ 2, 7450 ∗ 3, 17800 ∗ 4, 6760 ∗ 5, 1300 ∗ 6, 50 ∗ 7),
(130 ∗ 0, 200 ∗ 1, 2275 ∗ 2, 7525 ∗ 3, 17725 ∗ 4, 6785 ∗ 5, 1300 ∗ 6, 50 ∗ 7),
(130 ∗ 0, 200 ∗ 1, 2225 ∗ 2, 7750 ∗ 3, 17350 ∗ 4, 7060 ∗ 5, 1225 ∗ 6, 50 ∗ 7),
(130 ∗ 0, 200 ∗ 1, 2200 ∗ 2, 7825 ∗ 3, 17275 ∗ 4, 7085 ∗ 5, 1225 ∗ 6, 50 ∗ 7),
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(180 ∗ 0, 230 ∗ 1, 2800 ∗ 2, 5715 ∗ 3, 18880 ∗ 4, 7405 ∗ 5, 705 ∗ 6, 50 ∗ 7, 25 ∗ 8),
(180 ∗ 0, 225 ∗ 1, 2720 ∗ 2, 5875 ∗ 3, 18930 ∗ 4, 7170 ∗ 5, 815 ∗ 6, 50 ∗ 7, 25 ∗ 8),
(185 ∗ 0, 200 ∗ 1, 2640 ∗ 2, 6360 ∗ 3, 18150 ∗ 4, 7680 ∗ 5, 700 ∗ 6, 60 ∗ 7, 15 ∗ 8),
(185 ∗ 0, 250 ∗ 1, 2595 ∗ 2, 6250 ∗ 3, 18250 ∗ 4, 7740 ∗ 5, 645 ∗ 6, 60 ∗ 7, 15 ∗ 8),
(195 ∗ 0, 225 ∗ 1, 2700 ∗ 2, 5905 ∗ 3, 18800 ∗ 4, 7280 ∗ 5, 845 ∗ 6, 30 ∗ 7, 10 ∗ 8),
(195 ∗ 0, 250 ∗ 1, 2645 ∗ 2, 5905 ∗ 3, 18880 ∗ 4, 7215 ∗ 5, 860 ∗ 6, 30 ∗ 7, 10 ∗ 8),
(195 ∗ 0, 265 ∗ 1, 2720 ∗ 2, 5695 ∗ 3, 18910 ∗ 4, 7410 ∗ 5, 755 ∗ 6, 30 ∗ 7, 10 ∗ 8),
(195 ∗ 0, 230 ∗ 1, 2675 ∗ 2, 5955 ∗ 3, 18750 ∗ 4, 7305 ∗ 5, 840 ∗ 6, 30 ∗ 7, 10 ∗ 8),
(195 ∗ 0, 200 ∗ 1, 2730 ∗ 2, 6005 ∗ 3, 18570 ∗ 4, 7445 ∗ 5, 805 ∗ 6, 30 ∗ 7, 10 ∗ 8),
(195 ∗ 0, 230 ∗ 1, 2585 ∗ 2, 6135 ∗ 3, 18750 ∗ 4, 7125 ∗ 5, 930 ∗ 6, 30 ∗ 7, 10 ∗ 8),
(195 ∗ 0, 205 ∗ 1, 2770 ∗ 2, 5855 ∗ 3, 18730 ∗ 4, 7390 ∗ 5, 805 ∗ 6, 30 ∗ 7, 10 ∗ 8),
(200 ∗ 0, 270 ∗ 1, 2745 ∗ 2, 5625 ∗ 3, 18845 ∗ 4, 7595 ∗ 5, 670 ∗ 6, 30 ∗ 7, 10 ∗ 8),
(200 ∗ 0, 275 ∗ 1, 2590 ∗ 2, 5895 ∗ 3, 18915 ∗ 4, 7240 ∗ 5, 835 ∗ 6, 30 ∗ 7, 10 ∗ 8).

So, we can see the non-existence of such tight relative 3-designs on two shells, if (V,Br1)
is one of the 31 known 2-(61, 25, 10) designs listed in the home page of Ted Spence.

Theorem 5.7 ([7]) Let (V,B) be a symmetric 2-(v, k, λ) design. Then (k − λ)v−1 is a
square.

Theorem 5.7 implies the non-existence of 2-(n, r1, λ
(r1)
2 ) design with n even in Table 1.

Theorem 5.8 ([7]) Let v be odd and assume the existence of a symmetric 2-(v, k, λ)
design. Then the diophantine equation

x2 = (k − λ)y2 + (−1)(v−1)/2λz2

has a non-trivial solution in integers.

Theorem 5.8 implies the non-existence of 2-(n, r1, λ
(r1)
2 ) design with n odd in Table 1.

5.2 Further results

The discussion in the present paper led to the following Problems and Conjectures.

Problem 1. If there is any tight relative 3-design (Y, w) on two shells Xr1∪Xr2 in H(n, 2)
with constant weight and r1 + r2 = n, then is it true that the corresponding symmetric
2-(n, r1, λ

(r1)
2 ) design (V,Br1) and 2-(n, r2, λ

(r2)
2 ) design (V,Br2) are complementary designs

with each other?

Conjecture 1. Problem 1 is affirmative.

Remark. We note that the same problem is also formulated for tight relative t = 2e+ 1
designs in H(n, 2), with (V,B) as tight combinatorial 2e-designs.

We can also re-phrase this problem as follows. (This treat the case when r1+ r2 = n.)

Problem 2. Are there two symmetric 2-(n, k, λ) designs such that (V,B1) and (V,B2)
are different as designs (although they may be or may not be isomorphic as designs) such
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that their (unordered) λ3-sequences coincide?

Conjecture 2. No such two symmetric designs exist satisfying the condition of Problem
2.

Remark. No such two symmetric designs are known. We note that the same problem is
also formulated for tight relative (2e+ 1)-designs Y = Yr1 ∪ Yr2 on two shells of H(n, 2),
corresponding to tight combinatorial 2e-designs (V,Br1) and (V,Br2). Namely, there are
no two tight combinatorial 2e-designs with the same λ2e+1-sequence. (So far, no such two
symmetric designs are known, and we may conjecture that such examples may not exist.)

Here we record some developments on these two problems(and on two conjectures).
Note that if Conjecture 1 holds then Conjecture 2 also holds.

(1) First we proved Conjecture 1 for n ≤ 16 by adhoc arguments.

Then we proposed these two conjectures in our seminar. Then our undergraduate
students Zongchen Chen and Da Zhao responded, providing the following results.
Their results will be published as an independent paper [9].

(i) Conjecture 2 is true for a symmetric 2-(n, k, λ) design if λ = 1, or 2.

(ii) Conjecture 2 is true for a symmetric 2-(n, k, λ) design if λ = 3, provided
k ≥ 17.

(iii) Conjecture 1 is true for 2-(19, 9, 4) and 2-(23, 11, 5) designs.

To prove (iii) for 2-(19, 9, 4) designs, we needed the information on the incidence
metrics of all the four 2-(19, 9, 4) designs in the home page of Ted Spence. As
for 2-(23, 11, 5) designs, we used all the 1106 incidence matrices provided with the
curtesy of Ted Spence; note that only 197 of those with non-trivial automorphism
group are listed in his home page. Then by calculating the λ3-sequences (and the
automorphism group of the 3-subset multiplicity graph defined in the following) of
all those symmetric designs and proved that Conjecture 1 is true for n = 19 and
23. (Later, Chen and Zhao also succeeded in proving Conjecture 1 for n = 27, by
obtaining the incidence matrices of all the 208310 of 2-(27, 13, 6) designs from the
list of Hadamard matrices of order 28.) Here we summarize the main result (tech-
niques) of Chen and Zhao [9] below.

Let (V,B) be a 2-(n, k, λ) design and λ3(i1, i2, i3) = |{B ∈ B | {i1, i2, i3} ⊂ B}|. Let
Γ be the Johnson graph J(n, 3). The vertex set of Γ is the set of all the 3-point subset
of V denoted by

(
V
3

)
. We assign weight λ3(i1, i2, i3) for each vertex {i1, i2, i3} ∈

(
V
3

)
.

We call (Γ, λ3) the 3-subset multiplicity graph of the symmetric design (V,B). Let
Aut(Γ, λ3) be the subgroup of the automorphism group of Γ preserving the weight
λ3.

(a) If two distinct 2-(n, k, λ) designs (V,B1) and (V,B2) are isomorphic, then their
3-subset multiplicity graphs are isomorphic. (So if the corresponding 3-subset
multiplicity graphs are not isomorphic then the two designs are not isomorphic.)
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(b) Let (V,B) be a 2-(n, k, λ) design with n ≥ 7. Let Aut(V,B) be the automor-
phism group of (V,B). Then Aut(Γ, λ3) ≥ Aut(V,B) holds. Moreover the
following (i) and (ii) hold.

(i) If Aut(Γ, λ3) > Aut(V,B), then there exists another 2-(n, k, λ) design

(V, B̃) isomorphic to (V,B) having the same 3-subset multiplicity graph.

(ii) If Aut(Γ, λ3) = Aut(V,B), then there are no other design with the same3-
subset multiplicity graph.

(If 2-(n, k, λ) design (V,B) is given explicitly and if n is small, then one can
determine all the 3-subset multiplicity graphs and their automorphism groups
by computer.)

(2) Then we obtained the following general result (without needing incidence matrices
of each design). Conjecture 2 is true for any 2-(4u − 1, 2u − 1, u − 1) Hadamard
design. (See Theorem 3.6 for more detail.)

(3) We proved Conjecture 2 is true for 2-(31, 10, 3) and 2-(31, 15, 7). As for 2-(31, 10, 3)
designs we calculated λ3-sequences using all the 151 incidence matrices of 2-(31, 10, 3)
designs from Spence [24] (provided with the courtesy of Ted Spence; note that only
44 of those with non-trivial automorphism group are listed in his home page [23]).
As for 2-(31, 15, 7) designs we used λ3-sequence with the length at most 4 of all the
10,374,196,953 symmetric 2-(31, 15, 7) designs (coming from Hadamard matrices of
order 32 [19]) calculated by Brendan McKay. (See the proof of Proposition 5.4 for
the detail.)

(4) If we could get incidence matrices of all the 78 of 2-(25, 9, 3) designs (those 40 of them
with non-trivial automorphism group are listed in the home page of Ted Spence),
by calculating their λ3-sequences, we expect we can show Conjecture 1 is true for
n = 25. In the meantime, Chen and Zhao obtained the incidence matrices of all the
2-(25,9,3) designs from Denniston [14], and then succeeded in proving Conjecture 1
for n = 25.

(5) Combining all the results mentioned above, we can conclude that Conjecture 1 is
true for all n ≤ 35.

5.3 Tight relative 5-designs

Theorem 5.9 Let (Y, w) be a tight relative 5-design of H(n, 2). Assume w is constant
wrν on each Yrν for ν = 1, 2. Then n = 23 and (V,Br1) and (V,Br2) are combinatorial
tight 4-(23, 7, 1) design and 4-(23, 16, 52) design respectively. Moreover wr1 = wr2 holds
and (V,Br1) is the complementary design of (V,Br2).

Proof. By Theorem 3.3, (V,Br1) and (V,Br2) are combinatorial tight 4-designs. It is
well known that there are two combinatorial tight 4-designs, 4-(23, 7, 1) design and 4-
(23, 16, 52) design. Hence r1 = 7, r2 = 16 and |Yr1| = |Yr2| = 253 hold. Then (3.1)
implies

wr1λ
(r1)
5 (i1, i2, i3, i4, i5) + wr2λ

(r2)
5 (i1, i2, i3, i4, i5) =

3

19
wr1 +

624

19
wr2. (5.4)
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Theorem 3.5 implies if (V,Br1) and (V,Br2) are complementary designs with each other,
then the corresponding points set Yr1 ⊂ Xr1 and Yr2 ⊂ Xr2 in H(n, 2) gives a tight relative
5-design(Y, w), with constant weight w(≡ 1) where Y = Yr1 ∪ Yr2. Then in this case (5.4)
implies

λ
(r1)
5 (i1, i2, i3, i4, i5) + λ

(r2)
5 (i1, i2, i3, i4, i5) =

3

19
+

624

19
= 33.

Since λ
(r1)
4 = 1, we have λ

(r1)
5 (i1, i2, i3, i4, i5) = 0 or 1. Therefore we have λ

(r2)
5 (i1, i2, i3, i4, i5) =

33 or 32. Even if they are not complementary to each other, since there exist 5-point sets
{a1, . . . , a5} and {b1, . . . , b5} in V satisfying λ

(r1)
5 (a1, . . . , a5) = 1 and λ

(r1)
5 (b1, . . . , b5) = 0,

(5.4) implies

λ
(r2)
5 (b1, b2, b3, b4, b5)− λ

(r2)
5 (a1, a2, a3, a4, a5) =

wr1

wr2

.

Therefore we must have wr2 = wr1 . Next assume there exists another 4-(23, 7, 1) design
(V,B′

r1) and B′
r1 ∪Br2 corresponds to the tight relative 5-design with constant weight. Let

i1, i2, i3, i4, i5 be any 5 points with λ
(r1)
5 (i1, i2, i3, i4, i5) = 1. Then there exists a unique

block B ∈ Br1 and B′ ∈ B′
r1
containing {i1, i2, i3, i4, i5}. Then {i1, i2, i3, i4} ⊂ B′, B. Let

z′ ∈ B′\{i1, i2, i3, i4}. Then{i1, i2, i3, i4, z
′} ⊂ B′. Therefore λ

(r1)
5 (i1, i2, i3, i4, z

′) = 1. This
implies there exists a unique block in Br1 containing {i1, i2, i3, i4, z

′}. Since B is the unique
block containing {i1, i2, i3, i4}, B must also contain z′. Hence we must have B′ ⊂ B. Since
|B′| = |B| = r1, we must have B′ = B. Thus B′

r1
and Br1 coincide.

Remark For tight relative (2e+ 1)-designs on two shells in H(n, 2) with e ≥ 3, in view
of the non-existence results of (combinatorial) tight 2e-designs in [17], [22], [1], [16], [25],
we can see that there are no tight relative (2e + 1)-designs on two shells in H(n, 2), if
3 ≤ e ≤ 9. And moreover, there are only finitely many tight relative (2e + 1)-designs on
two shells for any fixed e ≥ 10.

6 Tight relative 4-designs

In this section, we consider tight relative 4-design on two shells. For any distinct four
points i1, . . . , i4 ∈ V , formulas (4.6) and (4.7) given in Proposition 4.2 for t = 4 give the
following results.

pBYrν
(ℓ; i1, . . . , is) =

(
n−s
rν−ℓ

)
(
n
rν

) Nrν for s = 1 . . . , 3 and 0 ≤ ℓ ≤ s,

pBYrν
(ℓ; i1, . . . , i4) =

Nrν(
n
rν

)
{(

n− 4

rν − ℓ

)
− (−1)ℓ

(
n− 4

rν − 4

)}
+ (−1)ℓλ

(rν)
4 (i1, . . . , i4).

for 0 ≤ ℓ ≤ 3.
For t = 4, the equation (3.1) is equivalent to the following condition:

2∑

ν=1

wrνλ
(rν)
4 (i1, . . . , i4) =

2∑

ν=1

Nrνwrν

4∏

j=0

rν − j

n− j
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for any distinct four points i1, . . . , i4 ∈ V . Also by definition of tight relative 4-design, we
must have |Y | = dim(L2(Xr1∪Xr2))+dim(L1(Xr1∪Xr2)) = rank(E2)+rank(E1) =

n(n+1)
2

.
We search for the parameters n, r1, r2, Nr1 , Nr2 which satisfy all the integral conditions.

Then for each feasible parameter, we investigate whether such combinatorial 3-(n, rν, λ
(rν)
3 )

exists or not. The following is the list of feasible parameters of tight relative 4-designs for
n ≤ 50.

n r1 r2 Nr1 Nr2 λ
(r1)
3 λ

(r2)
3

11 5 6 33 33 2 4 3-(11, 5, 2) ×

16 6 7 56 80 2 5 3-(16, 6, 2)[a] ×
16 6 9 56 80 2 12 3-(16, 6, 2) ×
16 7 10 80 56 5 12 3-(16, 10, 12) ×, [a]
16 9 10 80 56 12 12 3-(16, 10, 12) ×, [a]

22 6 7 77 176 1 4 ◦
22 6 15 77 176 1 52 ◦

22 7 8 88 165 2 6 3-(22, 7, 2)[b] ×
22 7 14 88 165 2 39 3-(22, 7, 2) ×

22 7 10 176 77 4 6 3-(22, 10, 6)[c] ×
22 7 12 176 77 4 11 3-(22, 12, 11) ×, [c]
22 7 16 176 77 4 28 ◦
22 8 15 165 88 6 26 3-(22, 15, 26) ×, [b]
22 10 15 77 176 6 52 3-(22, 10, 6) ×
22 12 15 77 176 11 52 3-(22, 12, 11) ×, [c]
22 14 15 165 88 39 26 3-(22, 15, 26) ×, [b]
22 15 16 176 77 52 28 ◦

37 9 10 185 518 2 8 3-(37, 9, 2)[d] ×
37 9 27 185 518 2 195 3-(37, 9, 2) ×
37 9 16 370 333 4 24
37 9 21 370 333 4 57
37 10 28 518 185 8 783 3-(37, 28, 78) ×, [d]
37 16 28 333 370 24 156
37 21 28 333 370 57 156
37 27 28 518 185 195 78 3-(37, 28, 78) ×, [d]

41 15 16 328 533 14 28
41 15 25 328 533 14 115
41 16 26 533 328 28 80
41 25 26 533 328 115 80

46 10 11 253 828 2 9 3-(46, 10, 2)[f ] ×
46 10 35 253 828 2 357 3-(46, 10, 2) ×
46 11 36 828 253 9 119 3-(46, 36, 119) ×, [f ]
46 35 36 828 253 357 119 3-(46, 36, 119) ×, [f ]

Remark

(1) The last column denotes the existence and non-existence of 3-(n, rν, λ
(rν)
3 ) design.

(2) In the last column, the notation “[a]” denotes that the corresponding 3-(n, k, λ)
design is the complementary design of 3-(v, k, λ)[a] design.
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Driessen [15] gave the following condition for the existence of some special 3-(n, k, 2)
designs.

Theorem 6.1 ([15]) A 3-(
(
u
2

)
+u+1, u+1, 2) design can only exist in one of the following

cases:

(1) u ≡ 2 mod 48 and for every odd prime p and α with pα ‖ u one has α is even or
p ≡ 1, 3, 9, 11 mod 16.

(2) u ≡ 14 mod 48 and for every odd prime p and α with pα ‖ u one has α is even or
p ≡ 1, 7, 9, 15 mod 16.

Note that the complementary design of a t-(n, k, λ) design is t-(n, n − k, µ) design with
µ = λ

(
n−t
k

)
/
(
n−t
k−t

)
. We consider the complementary design of 3-(

(
u+1
2

)
+1, u+1, 2) design,

i.e., 3-design with the following parameters.

((u+ 1

2

)
+ 1,

(
u

2

)
,
1

4
(u2 − u− 4)(u− 2)

)
.

Theorem 6.1 implies the non-existence of some 3-(n, k, λ) designs in the following table.

(V,B) (V,Bc) N
3-(11, 5, 2) 3-(11, 6, 4) 33
3-(16, 6, 2) 3-(16, 10, 12) 56
3-(22, 7, 2) 3-(22, 15, 26) 88
3-(37, 9, 2) 3-(37, 28, 78) 185
3-(46, 10, 2) 3-(46, 36, 119) 253

Using (3.1), we obtain the following lemma.

Lemma 6.2 Let (V,Br) be a (t− 1)-(n, r, λ) design and (V,Br+1) a (t− 1)-(n, r + 1, λ′)
design with λ′ = λ n−r

r−t+2
. Let ∞ be a point not in V and define V + := V ∪ {∞} and

B+
r := {B ∪ {∞} | B ∈ Br}. If (V,Br ∪ Br+1) is a relative t-design with constant weight,

then (V +,B+
r ∪ Br+1) is a t-(n+ 1, r + 1, λ) design.

Theorem 6.3 There exist exactly four tight relative 4-designs with constant weight when
n = 22 and (r1, r2) = (6, 7), (6, 15), (7, 16), (15, 16).

Proof. It is proved that

2∑

ν=1

wrνλ
(rν)
t (i1, . . . , it) =

2∑

ν=1

Nrνwrν

t−1∏

j=0

rν − j

n− j
.

Putting wr1 = wr2 and t = 4, for any four distinct points i1, i2, i3, i4 ∈ V , we obtain that

λ
(r1)
4 (i1, . . . , i4) + λ

(r2)
4 (i1, . . . , i4) = 1, 33, 20, 52, (6.1)

corresponding to the four cases. It is known that there is a unique 5-(24, 8, 1) design which
is called the Witt design, so does its derived design 4-(23, 7, 1) design (V +,B). Then we
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obtain 3-(22, 6, 1) design (V,Br1) and 3-(22, 7, 4) design (V,Br2) as the derived design and
residual design of (V +,B), as well as their complement designs, i.e., 3-(22, 16, 28) design
(V,Bc

r1
) and 3-(22, 15, 52) design (V,Bc

r2
).

Using the incidence matrix of Witt design, we can obtain the incidence matrix of (V,Br1)
and (V,Br2). It is not difficult to check (6.1) is satisfied. Hence we find four tight relative
4-designs, i.e., Yr1 ∪ Yr2 , Y

c
r1
∪ Y c

r2
, Yr1 ∪ Y c

r2
and Y c

r1
∪ Yr2. Here Yrν and Y c

rν correspond to
the block sets Brν and Bc

rν (ν = 1, 2), respectively.
We shall prove the uniqueness of each tight relative 4-design. (Note 4-(23, 7, 1) design
and 3-(22, 6, 1) design uniquely exist [7].) Let (V,B6) and (V,B7) be derived design and
residual design of the unique 4-(23, 7, 1) design (V +,B).
case 1: r1 = 6, r2 = 7.
Assume Y = Y6 ∪ Y7 is a tight relative 4-design and (V,B6) corresponds to Y6. It is
to prove that (V,B7) corresponds to Yr2 . Suppose (V,B′

7) is a different 3-(22, 7, 4) de-
sign cooresponding to Y ′

7 such that Y = Y6 ∪ Y ′
7 . We should remark that (V,B′

7) may
be isomorphic to (V,B7). Using Lemma 6.2, we have two different 4-(23, 7, 1) designs
(V +,B) := (V +,B+

6 ∪ B7) and (V +,B′) := (V +,B+
6 ∪ B′

7).
(i). If (V,B′

7) and (V,B7) are non-isomorphic, then (V +,B) and (V +,B′) are non-isomorphic.
This contradicts the uniqueness of 4-(23, 7, 1) design.
(ii). If (V,B′

7) is isomorphic to (V,B7) (but different), then ∃ a permutation σ ∈ S22 such
that σ(B7) = B′

7, where S22 is the symmetric group on the vertex set V . This implies
that (V +,B) and (V +,B′) are not isomorphic. Otherwise there are at least two distinct
points p1, p2 ∈ V which are not fixed by σ, such that p1, p2 appear in the same (= 21)
blocks in B6. It is impossible because λ2 = 5 for any 3-(22, 6, 1) design. This again gives
a contradiction!
case 2: r1 = 6, r2 = 15.
Assume Y = Y6 ∪ Y15 is a tight relative 4-design and and (V,B6) corresponds to Y6. We
have verified that Y6 ∪ Y c

7 is a tight relative 4-design. It is enough to prove that (V,Bc
7)

corresponds to Y15. Suppose (V,B′
15) is a different 3-(22, 15, 52) design corresponding to

Y15. With the similar argument in case 1, we obtain two non-isomorphic 4-(23, 7, 1) de-
signs (V +,B+

6 ∪ Bc
7) and (V +,B+

6 ∪ B′
15). This again gives a contradiction.

The other two cases can also be proved using the uniqueness of 4-(23, 15, 52) design.

Finally, we exclude the tight relative 4-designs with non-constant weight. It is not difficult
to check that the types of λ4-sequence are (6160 ∗ 0, 1155 ∗ 1), (6160 ∗ 1, 1155 ∗ 0), (6160 ∗
33, 1155 ∗ 32), (6160 ∗ 19, 1155 ∗ 20) corresponding to r = 6, 7, 15, 16. Then the list below
implies the non-existence of tight relative 4-designs with non-constant weight for n = 22.

30



n r1 r2 λr1

3 λr2

3
wr2

wr1

(λ
(r1)
4 , λ

(r2)
4 )

22 6 15 1 52 1
20 (0, 36), (1, 16)

22 7 16 4 28 4
23 (0, 24), (4, 1)
2
21 (0, 28), (2, 7)

22 15 16 52 28 39 (0, 20), (39, 19)
24
5 (0, 26), (24, 21), (48, 16)
26
7 (0, 28), (26, 21), (52, 14)
21
2 (3, 22), (24, 20), (45, 18)
27
8 (3, 28), (30, 20)
23
4 (5, 24), (28, 20), (51, 16)
31
12 (10, 28), (41, 16)
22
3 (12, 22), (34, 19)
33
14 (12, 28), (45, 14)
29
10 (13, 26), (42, 16)

20 (16, 20), (36, 19)
32
13 (16, 26), (48, 13)
25
6 (21, 22), (46, 16)
28
9 (24, 22), (52, 13)
5
24 (31, 28), (36, 4)
4
23 (32, 24), (36, 1)
2
21 (32, 28), (34, 7)

This completes the proof.

7 Concluding Remarks

Here we collect some open problems we want to study in the research direction described
in the present paper.

Firstly, let us recall the three problems (1), (2), (3) mentioned at the end of Section
3. We would like to add the following problems.

(i) So far, we do not know any example of tight relative 3-designs on two shells in
H(n, 2) with non-constant weight function, more precisely constant on each shell. The
first several open cases are n = 56, then n = 66 (Case 2) and n = 61 (Case 4). We bet that
there may exist such tight relative 3-designs on two shells in H(n, 2) with non-constant
weight, but so far we have difficulty in finding one.

(ii) So far, we do not know any counterexample to Conjecture 1 and Conjecture 2. The
first open cases seem to be n = 36 and then n = 40. Although we formulated Conjecture
1 and Conjecture 2, we think these are important as working hypothesis, and we would
not be surprised even if a counterexample could be found. It would be theoretically very
interesting whether these conjectures hold or not.

(iii) Conjecture 2 obviously does not hold, if the condition that the two 2-(v, k, λ)
designs are symmetric is dropped. For example, if you take any two non-isomorphic 3-
designs, then regarding these designs as 2-designs, they are not isomorphic as 2-designs,
but obviously have the same λ3-sequence. So, it would be interesting to try to find two
non-isomorphic 2-designs close to symmetric designs with different λ3-sequences. It would
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be interesting for which family of symmetric designs, or non-symmetric designs, whether
the property mentioned in Conjecture 2 holds or not.

(iv) It would be interesting how much the methods used in the present paper could
be generalized for the study of tight relative t-designs on other Q-polynomial association
schemes. In particular, it would be interesting to know how much theorems similar to
our Theorem 3.3 (as well as Kageyama’s theorem) hold for other association schemes.
First test cases would be non-binary Hamming association schemes H(n, q) and Johnson
association schemes J(v, k).

(v) We would like to repeat our belief that the classification problem of tight relative t-
designs is interesting problem as the classification problem of tight t-designs is interesting.
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