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Codes with the Identifiable Parent Property for
Multimedia Fingerprinting

Minquan Cheng, Hung-Lin Fu, Jing Jiang, Yuan-Hsun Lo and Ying Miao

Abstract—Let C be a q-ary code of length n and size M ,
and C(i) = {c(i) | c = (c(1), c(2), . . . , c(n))T ∈ C} be the
set of ith coordinates of C. The descendant code of a sub-code
C

′

⊆ C is defined to be C
′

(1) × C
′

(2) × · · · × C
′

(n). In this
paper, we introduce a multimedia analogue of codes with the
identifiable parent property (IPP), called multimedia IPP codes or
t-MIPPC(n,M, q), so that given the descendant code of any sub-
codeC

′

of a multimedia t-IPP codeC, one can always identify, as
IPP codes do in the generic digital scenario, at least one codeword
in C

′

. We first derive a general upper bound on the sizeM of
a multimedia t-IPP code, and then investigate multimedia3-IPP
codes in more detail. We characterize a multimedia3-IPP code of
length 2 in terms of a bipartite graph and a generalized packing,
respectively. By means of these combinatorial characterizations,
we further derive a tight upper bound on the size of a multimedia
3-IPP code of length2, and construct several infinite families of
(asymptotically) optimal multimedia 3-IPP codes of length2.

Index Terms—IPP code, separable code, bipartite graph, gen-
eralized packing, generalized quadrangle.

I. I NTRODUCTION

Let n ≥ 2, M and q ≥ 2 be positive integers, andQ an
alphabet with|Q| = q. In this paper, we consider a codeC
of length n over Q, that is, a setC = {c1, c2, . . . , cM} ⊆
Qn. Eachci in such an(n,M, q) code is called a codeword.
Without loss of generality, we may assumeQ = {0, 1, . . . , q−
1}. Given an(n,M, q) code, its incidence matrix is then×M
matrix onQ in which the columns are theM codewords in
C. Often, we make no difference between an(n,M, q) code
and its incidence matrix.

For any codeC ⊆ Qn, we define the set ofith coordinates
of C as

C(i) = {c(i) ∈ Q | c = (c(1), c(2), . . . , c(n))T ∈ C}
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for any 1 ≤ i ≤ n. For any sub-codeC
′

⊆ C, we define the
descendant code ofC

′

as

desc(C
′

) = {(x(1),x(2), . . . ,x(n))T ∈ Qn |

x(i) ∈ C
′

(i), 1 ≤ i ≤ n},

that is,

desc(C
′

) = C
′

(1)× C
′

(2)× · · · × C
′

(n).

Any codeword inC
′

is a parent of all the words indesc(C
′

).

Definition I.1. Let C be an(n,M, q) code, and for anyS ⊆
C(1)×C(2)× · · ·× C(n), define the set of parent sets ofS as

Pt(S) = {C
′

⊆ C | |C
′

| ≤ t, S = desc(C
′

)}.

We say thatC is a code with the identifiable parent property
(IPP) for multimedia fingerprinting, or a multimedia IPP code,
denotedt-MIPPC(n,M, q), if

⋂

C′∈Pt(S)

C
′

6= ∅

is satisfied for anyS ⊆ C(1)×C(2)×· · ·×C(n) with Pt(S) 6=
∅.

Intuitively,Pt(S) consists of all the sub-codes ofC with size
at mostt that could have produced all the words inS, and
an (n,M, q) codeC is a t-MIPPC(n,M, q) if the following
condition is satisfied: even if there are distinct sub-codesof
C, each of size at mostt, could produce the same setS of
words, we can track down at least one parent ofS which is
contained in each parent set ofS. In fact, any codeword in
⋂

C′∈Pt(S) C
′

is a parent ofS.
Multimedia IPP codes are a variation of IPP codes and a

generalization of separable codes, both were introduced for the
purpose of protecting copyrighted digital contents. The notion
of an IPP code was first introduced in a special case in [11],
investigated in full generality in [2], [3], [4], [18], [21], and
surveyed in [5]. The notion of a separable code was introduced
in [7] and investigated in detail in [6], [9]. In Definition I.1,
if S is set to be a singleton set{d}, and the set of parent sets
be modified as

Pt(S) = {C
′

⊆ C | |C
′

| ≤ t,d ∈ desc(C
′

)},

then we obtain at-IPP code, while if we require that|Pt(S)| =
1 for anyS ⊆ C(1)×C(2)× · · ·×C(n) with Pt(S) 6= ∅, then
we obtain at-separable code.

Binary t-separable codes are used in multimedia fingerprint-
ing to capture up tot malicious authorized users holding
the same multimedia content but with different codewords
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(i.e., fingerprints), who have jointly produced a pirate copy
of the copyrighted content from their authorized copies (see,
for example, [7]). However, in most cases, the number of
codewords in a binaryt-separable code is too small to be
of practical use. Meanwhile, guaranteeing exact identification
of at least one member of the coalition of size at mostt
would bring enough pressure to bear on authorized users to
give up their attempts at collusion. Using the tracing algorithm
MIPPCTraceAlg(S) described in Section II, we know that
by means of a binary multimedia IPP code, we can capture a
setS ⊆ C(1)×· · ·×C(n) in the multimedia scenario instead of
an elementd ∈ S in the generic digital scenario, and although
binary multimediat-IPP codes can not identify all malicious
users as binaryt-separable codes do when the size of the
coalition is at mostt, they can identify, as IPP codes do in the
generic digital scenario [1], [11], at least one such malicious
authorized user, thereby helping stop the proliferation ofthe
fraudulent content in digital marketplace.

Therefore, we can say that in some sense, the significance of
multimediat-IPP codes relies on their maximum sizes. Fort =
2, we will show in Lemma I.2 that at-MIPPC(n,M, q) is in
fact at-SC(n,M, q), so they have the same maximum size. For
t > 2, the maximum size of at-SC(n,M, q) is O(q⌈n/(t−1)⌉)
(see [6]), while the maximum size of at-MIPPC(n,M, q)
will be shown in Section III to beO(q(t+1)n/(2t)), except
for the case thatt is even andn is odd, where the value is
O(q((t+1)n+1)/(2t)). This is a significant improvement on the
number of codewords, which makes the notion of multimedia
IPP codes useful.

Lemma I.2. Let C be an (n,M, q) code. ThenC is a 2-
MIPPC(n,M, q) if and only if it is a2-SC(n,M, q).

Proof: It is clear that at-SC(n,M, q) is necessary a
t-MIPPC(n,M, q). We only need to consider its necessity.
Assume thatC is a 2-MIPPC(n,M, q) such thatC1, C2 ⊆ C,
|C1| ≤ 2, |C2| ≤ 2, C1 6= C2, anddesc(C1) = desc(C2). Then
C1

⋂

C2 6= ∅. Let a ∈ C1
⋂

C2. There are two cases to be
considered.

(1) C1 = {a}, C2 = {a,b}: Sincedesc(C1) = desc(C2), we
havea = b, which impliesC1 = C2.

(2) C1 = {a,b}, C2 = {a, c}: Let a = (a(1), . . . , a(n))T ,
b = (b(1), . . . ,b(n))T and c = (c(1), . . . , c(n))T .
Since desc(C1) = desc(C2), we have{a(i),b(i)} =
{a(i), c(i)} for any 1 ≤ i ≤ n. Now, if b(i) = a(i),
thenc(i) = b(i). On the other hand, ifb(i) 6= a(i), then
c(i) = b(i) since {a(i),b(i)} = {a(i), c(i)}. Hence,
c(i) = b(i) holds for any1 ≤ i ≤ n. This impliesb = c

and thusC1 = C2.

So for any distinctC1, C2 ⊆ C such that|C1| ≤ 2, |C2| ≤ 2, it
always holds thatdesc(C1) 6= desc(C2). This means thatC is
a 2-SC(n,M, q).

In subsequent sections, we investigate the maximum size of
a t-MIPPC(n,M, q) and also the constructions of (asymptot-
ically) optimal t-MIPPC(n,M, q)s. LetM(t, n, q) denote the
maximum size of at-MIPPC(n,M, q). A t-MIPPC(n,M, q)
is said to be optimal ifM = M(t, n, q), and asymptoti-
cally optimal if limq→∞

M
M(t,n,q) = 1. In Section II, we

briefly review some terminologies, describe a tracing algo-
rithm based on binary multimedia IPP codes, and show a
construction for binary multimedia IPP codes fromq-ary
multimedia IPP codes. In Section III, we derive a general upper
bound onM(t, n, q). Then in Section IV, we characterize3-
MIPPC(2,M, q)s in terms of bipartite graphs and generalized
packings, respectively. The first graph theoretic characteriza-
tion gives a tight upper bound onM(3, 2, q). The second
design theoretic characterization results in a construction of
3-MIPPC(2,M, q)s, in which some are optimal and some are
asymptotically optimal.

II. PRELIMINARIES

In this section, we give a brief review on some basic termi-
nologies. The interested reader is referred to [7], [15] formore
detailed information. We also describe a tracing algorithm
based on binary multimedia IPP codes, and a construction
for binary multimedia IPP codes fromq-ary multimedia IPP
codes.

In general, collusion-resistant fingerprinting requires the
design of fingerprints that can survive collusion attacks to
trace and identify colluders, as well as robust embedding of
fingerprints into multimedia host signals. One of the widely
employed robust embedding techniques is spread-spectrum
additive embedding, which can survive collusion attacks to
trace and identify colluders. In spread-spectrum embedding, a
watermark signal, often represented by a linear combination
of noise-like orthonormal basis signals, is added to the host
signal. Letx be the host multimedia signal,{ui | 1 ≤ i ≤ n}
be an orthonormal basis of noise-like signals, and{wj =
(wj(1),wj(2), . . . ,wj(n)) =

∑n
i=1 bijui | 1 ≤ j ≤ M},

bij ∈ {0, 1}, be a family of scaled watermarks to achieve
the imperceptibility as well as to control the energy of the
embedded watermark. Each authorized userUj , 1 ≤ j ≤ M ,
who has purchased the rights to accessx, is then assigned
with a watermarked version of the contentyj = x+wj . The
fingerprintwj assigned toUj can be represented uniquely by a
vector (called codeword)bj = (b1j , b2j, . . . , bnj)

T ∈ {0, 1}n

because of the linear independence of the basis{ui | 1 ≤ i ≤
n}. Since distinct codes correspond to distinct fingerprinting
strategies, we would like to strategically design a code to
accurately identify the contributing fingerprints involved in
collusion attacks.

When t authorized users, sayUj1 , Uj2 , . . . , Ujt , who have
the same host content but distinct fingerprints come together,
we assume that they have no way of manipulating the indi-
vidual orthonormal signals, that is, the underlying codeword
needs to be taken and proceeded as a single entity, but
they can carry on a linear collusion attack to generate a
pirate copy from theirt fingerprinted contents, so that the
venture traced by the pirate copy can be attenuated. For
fingerprinting through additive embedding, this is done by
linearly combining thet fingerprinted contents

∑t
l=1 λjlyjl ,

where the weights{λjl | 1 ≤ l ≤ t} satisfy the condition
∑t

l=1 λjl = 1 to maintain the average intensity of the original
multimedia signal. In such a collusion attack, the energy of
each of the watermarkswjl is reduced by a factor ofλ2

jl
,
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therefore, the trace ofUjl ’s fingerprint becomes weaker and
thusUjl is less likely to be caught by the detector. In fact, since
normally no colluder is willing to take more of a risk than any
other colluder, the fingerprinted signals are typically averaged
with an equal weight for each user. Averaging attack choosing
λjl = 1/t, 1 ≤ l ≤ t, is the most fair choice for each colluder
to avoid detection, as claimed in [15], [20]. This attack also
makes the pirate copy have better perceptional quality.

Based on the averaging attack model, the observed content
y after collusion is

y =
1

t

t
∑

l=1

yjl =
1

t

t
∑

l=1

wjl + x =
t

∑

l=1

n
∑

i=1

bijl
t
ui + x.

Due to the orthogonality of the orthonormal basis{ui | 1 ≤
i ≤ n}, in colluder detection phase, we only need to compute
the correlation vectorT = (T(1),T(2), . . . ,T(n)), where
T(i) = 〈y − x,ui〉, 1 ≤ i ≤ n, and 〈y − x,ui〉 is the inner
product ofy − x andui.

For any set of colluders holding codewordsC0 ⊆ C and any
index 1 ≤ i ≤ n, their detection statisticsT(i) possesses the
whole information onC0(i); namely, we haveT(i) = 1 if and
only if C0(i) = {1}, T(i) = 0 if and only if C0(i) = {0}, and
0 < T(i) < 1 if and only if C0(i) = {0, 1}.

Now we describe a tracing algorithm based on a binary
multimedia IPP code. The following theorem shows that
binary multimediat-IPP codes can be used to identify at least
one colluder in the averaging attack.

Theorem II.1. Under the assumption that the number of
colluders in the averaging attack is at mostt, any t-
MIPPC(n,M, 2) can be used to identify at least one colluder
with computational complexityO(nM t) by applying Algo-
rithm 1 described below.

Proof: Let C be thet-MIPPC(n,M, 2), andS ⊆ C(1)×
· · · × C(n) be the captured descendant code derived from the
detection statisticsT. Then by applying the following tracing
algorithm, Algorithm 1, we can identify at least one colluder.

Algorithm 1: MIPPCTraceAlg(S)

GivenS;
Find Pt(S) = {C

′

⊆ C | |C
′

| ≤ t, S = desc(C
′

)};
ComputeC0 =

⋂

C′∈Pt(S)

C
′

;

if |C0| ≤ t then
output C0 as the set of colluders;

else
output “the set of colluders has size at leastt+ 1”;

The computational complexity is obvious. We need only to
show that any useru assigned with a codewordc ∈ C0 is
a colluder. SinceS is the captured descendant code derived
from the detection statisticsT, it is clear thatPt(S) 6= ∅.
Therefore,

C0 =
⋂

C′∈Pt(S)

C
′

6= ∅

by the definition of a multimediat-IPP code. Assume thatu is
not a colluder. Then for anyC

′

∈ Pt(S), we haveC
′

\ {c} ∈
Pt(S), which impliesc /∈ C0, a contradiction.

The following theorem is a simple composition construction
for binary multimediat-IPP codes fromq-ary multimediat-
IPP codes.

Lemma II.2. If there exists at-MIPPC(n,M, q), then there
exists at-MIPPC(nq,M, 2).

Proof: Let C = {c1, c2, . . . , cM} be the t-
MIPPC(n,M, q) defined on Q = {0, 1, . . . , q − 1},
and E = {e1, e2, . . . , eq}, where ei is the i-th column
identity vector, i.e., all its coordinates are0 except
the i-th one being 1. Let f : Q −→ E be the
bijective mapping such thatf(i) = ei+1. For any
codeword c = (c(1), c(2), . . . , c(n))T ∈ C, we define
f(c) = (f(c(1)), f(c(2)), . . . , f(c(n))). Obviously, f(c)
is a binary column vector of lengthnq. We define a new
(nq,M, 2) code F = {f(c1), f(c2), . . . , f(cM )}. We are
going to show thatF is in fact a multimediat-IPP code.

Consider anyS ⊆ F(1) × · · · × F(nq) with Pt(S) =
{F1, . . . ,Fr} 6= ∅. EachFi corresponds to a subcodeCi ⊆ C
such that|Ci| ≤ t, whereFi = {f(c) | c ∈ Ci}. Since
desc(F1) = desc(F2) = · · · = desc(Fr), we immediately
havedesc(C1) = desc(C2) = · · · = desc(Cr). SinceC is a t-
MIPPC(n,M, q), we have

⋂r
i=1 Ci 6= ∅. Let c ∈

⋂r
i=1 Ci, then

c ∈ Ci for any 1 ≤ i ≤ r, which impliesf(c) ∈ Fi for any
1 ≤ i ≤ r, and thusf(c) ∈

⋂r
i=1 Fi. Therefore,

⋂r
i=1 Fi 6= ∅.

This completes the proof.
The above theorem stimulates us to investigateq-ary mul-

timedia t-IPP codes. In the remaining parts of this paper,
we will focus on the properties on the constructions ofq-ary
multimediat-IPP codes.

III. A G ENERAL UPPERBOUND ON THE CODE SIZE

Bipartite graphs are extensively used in modern coding
theory, see, for example, [8], [19]. In this section, we use
bipartite graphs to derive an upper bound on the size of a
t-MIPPC(n,M, q).

Let G(X,Y ) = G(u, v) be a bipartite graph onu vertices
in the classX andv vertices in the classY . Without loss of
generality, we may assume thatu ≥ v. Let e(G) denote the
number of edges ofG, that is, the size ofG. The girth ofG
is the length of a shortest cycle inG. It is well known that
any bipartite graph is free of odd cycles.

Lemma III.1. ([13], [14]) If a bipartite graphG(u, v) con-
tains no cycle of length less than or equal to2l, whereu ≥ v,
then

e(G) ≤

{

(uv)
l+1

2l + c(u + v), l is odd,

v
1
2u

l+2

2l + c(u+ v), l is even,

wherec is a constant depending only onl.

An application of Lemma III.1 is the following theorem.

Theorem III.2. M(t, n, q) ≤ q
n

2 (q
n

2t + 2c) if n is even, and

M(t, n, q) ≤

{

q
n

2 (q
n+1

2t + c(q
1
2 + q−

1
2 )), t is even,

q
n

2 (q
n

2t + c(q
1
2 + q−

1
2 )), t is odd
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if n is odd, wherec is a constant depending only ont.

Proof: Let C be a t-MIPPC(n,M, q) defined onQ. We
prove this theorem in two cases.

If n is even, we construct a bipartite graphG(q
n

2 , q
n

2 )
as follows. LetX = Y = Q

n

2 . An edge connectsa ∈
X and b ∈ Y if and only if (a,b)T ∈ C. Obviously,
M = e(G). Suppose that there exists a2t0-cycle in G,
where 2 ≤ t0 ≤ t. Let (a1,b1, a2,b2, . . . , at0 ,bt0) be the
2t0-cycle, whereai, 1 ≤ i ≤ t0, are distinct vertices in
X , and bi, 1 ≤ i ≤ t0, are distinct vertices inY . Then
(ai,bi)

T ∈ C for 1 ≤ i ≤ t0, and(a1,bt0)
T , (ai,bi−1)

T ∈ C
for 2 ≤ i ≤ t0. Let C1 = {(ai,bi)

T | 1 ≤ i ≤ t0},
C2 = {(a1,bt0)

T }
⋃

{(ai,bi−1)
T | 2 ≤ i ≤ t0}. Then

desc(C1) = desc(C2), but C1
⋂

C2 = ∅, a contradiction to
the fact thatC is a t-MIPPC(n,M, q). SoG contains no cycle
of length less than or equal to2t. The conclusion then comes
from Lemma III.1.

If n is odd, we construct a bipartite graphG(q
n+1

2 , q
n−1

2 )

with X = Q
n+1

2 , Y = Q
n−1

2 . Similarly, we can show thatG
contains no cycle of length less than or equal to2t, and the
conclusion follows by Lemma III.1.

IV. MULTIMEDIA 3-IPP CODES

In order to derive a tight bound on the size of a multimedia
3-IPP code, we present a combinatorial characterization of
multimedia3-IPP codes.

For any(n,M, q) codeC onQ = {0, 1, . . . , q−1}, Chenget
al. [6] defined the following column vector setsAj

i for i ∈ Q
and1 ≤ j ≤ n:

Aj
i = {(c(1), . . . , c(j − 1), c(j + 1), . . . , c(n))T |

(c(1), . . . , c(n))T ∈ C, c(j) = i}.

We first prove the following lemma on2-separable codes.

Lemma IV.1. Let C be a (2,M, q) code. ThenC is a 2-
SC(2,M, q) if and only if |A1

a1

⋂

A1
a2
| ≤ 1 holds in C for

any distinct elementsa1, a2 ∈ Q.

Proof: The necessity is in fact a special case of Theorem
3.9 in [6]. Let C be a2-SC(2,M, q). Assume that there exist
distinct elementsa1, a2 ∈ Q satisfying |A1

a1

⋂

A1
a2
| ≥ 2.

Supposeb1, b2 ∈ A1
a1

⋂

A1
a2

, b1 6= b2. Then (a1, b1)
T ,

(a1, b2)
T , (a2, b1)

T , (a2, b2)
T ∈ C. Let C1 = {(a1, b1)T ,

(a2, b2)
T } and C2 = {(a1, b2)T , (a2, b1)

T }. Then C1 6= C2
anddesc(C1) = desc(C2), a contradiction to the definition of
a 2-SC(2,M, q).

Now we consider its sufficiency. Suppose that|A1
a1

⋂

A1
a2
|

≤ 1 holds in C for any distinct elementsa1, a2 ∈ Q, but C
is not a2-SC(2,M, q). This implies that there existC1, C2 ⊆
C, C1 6= C2, |C1| ≤ 2 and |C2| ≤ 2, such thatdesc(C1) =
desc(C2).

Let C1 = {c1, c2}, C2 = {c3, c4}, C1 6= C2, and ci =
(ai, bi)

T for 1 ≤ i ≤ 4. We remark here that we allowc1 = c2
or c3 = c4. Sincedesc(C1) = desc(C2), thenC1(1) = C2(1)
andC1(2) = C2(2). This implies thata1 = a2 (or a3 = a4) if
and only if a1 = a2 = a3 = a4, andb1 = b2 (or b3 = b4) if
and only if b1 = b2 = b3 = b4.

Now, if a1 = a2, thena1 = a2 = a3 = a4. SinceC1 6= C2,
we haveb1 6= b2. By the fact thatC1(2) = C2(2), we have
{b1, b2} = {b3, b4}, and thereforeC1 = C2, a contradiction.
On the other hand, ifa1 6= a2, thena3 6= a4. Clearly,b1 6= b2,
otherwise we can use a similar argument to conclude thatC1 =
C2. Now, we have{a1, a2} = {a3, a4} and{b1, b2} = {b3, b4}
as set equalities. Without loss of generality, we may assume
a1 = a3 anda2 = a4. In this case, ifb1 = b3, thenb2 = b4,
and thusC1 = C2, a contradiction. Therefore,b1 = b4 and
b2 = b3, which implies thatA1

a1

⋂

A1
a2

= {b1, b2}, again a
contradiction. This completes the proof.

Now we turn our attention to multimedia3-IPP codes.

Lemma IV.2. Let C be a3-MIPPC(n,M, q) code defined on
Q = {0, 1, . . . , q − 1}. Then

(I) |A1
a1

⋂

A1
a2
| ≤ 1 always holds for any distinct elements

a1, a2 ∈ Q;
(II) There do not exist distinct elementsa1, a2, a3 ∈ Q and

distinct vectorsb1,b2,b3 ∈ Qn−1 such thatb1,b2 ∈
A1

a1
, b2,b3 ∈ A1

a2
, b1,b3 ∈ A1

a3
.

Proof:

(I) If there exist distinct elementsa1, a2 ∈ Q satisfying that
|A1

a1

⋂

A1
a2
| ≥ 2, say b1 6= b2 ∈ A1

a1

⋂

A1
a2

, then
(a1,b1)

T , (a1,b2)
T , (a2,b1)

T , (a2,b2)
T ∈ C. Let C1 =

{(a1,b1)
T , (a2,b2)

T } andC2 = {(a1,b2)
T , (a2,b1)

T }.
Thendesc(C1) = desc(C2), but C1

⋂

C2 = ∅, a contradic-
tion to the definition of a3-MIPPC(n,M, q).

(II) If there exist distinct elementsa1, a2, a3 ∈ Q and distinct
vectorsb1,b2,b3 ∈ Qn−1 such thatb1,b2 ∈ A1

a1
,

b2,b3 ∈ A1
a2

, b1,b3 ∈ A1
a3

, then(a1,b1)
T , (a1,b2)

T ,
(a2,b2)

T , (a2,b3)
T , (a3,b1)

T , (a3,b3)
T ∈ C. Let C1

= {(a1,b1)
T , (a2,b2)

T , (a3,b3)
T }, C2 = {(a1,b2)

T ,
(a2,b3)

T , (a3,b1)
T }. Then desc(C1) = desc(C2), but

C1
⋂

C2 = ∅, a contradiction to the definition of a3-
MIPPC(n,M, q).

It is of interest to see that the converse of Lemma IV.2 is
true whenn = 2.

Lemma IV.3. Let C be a (2,M, q) code defined onQ =
{0, 1, . . . , q − 1}. If C satisfies the following two conditions:

(I) |A1
a1

⋂

A1
a2
| ≤ 1 always holds for any distinct elements

a1, a2 ∈ Q;
(II) There do not exist distinct elementsa1, a2, a3 ∈ Q and

distinct elementsb1, b2, b3 ∈ Q, such thatb1, b2 ∈ A1
a1

,
b2, b3 ∈ A1

a2
, b1, b3 ∈ A1

a3
.

ThenC is a 3-MIPPC(2,M, q).

Proof: SupposeC satisfies conditions (I) and (II). We
prove this lemma in three steps.

(1) At first, we prove that if there existC1, C2 ⊆ C, C1 6= C2,
|C1| ≤ 3, |C2| ≤ 3, satisfyingdesc(C1) = desc(C2), thenC1
andC2 should be of one of the following three types:

Type I :
c1 c2 c3

(

a1 a2 a1
b1 b2 b2

)

,
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whereC1 = {c1, c2}, C2 = {c1, c2, c3}, a1 6= a2, b1 6= b2;

Type II :
c1 c2 c3 c4

(

a1 a2 a3 a1
b1 b1 b3 b3

)

,

whereC1 = {c1, c2, c3}, C2 = {c2, c3, c4}, ak1
6= ak2

, 1 ≤
k1 < k2 ≤ 3, b1 6= b3;

Type III :
c1 c2 c3 c4

(

a1 a1 a3 a3
b1 b2 b3 b1

)

,

whereC1 = {c1, c2, c3}, C2 = {c2, c3, c4}, a1 6= a3, bk1
6=

bk2
, 1 ≤ k1 < k2 ≤ 3.

(1.1) If |C1| ≤ 2, |C2| ≤ 2, thenC is not a2-SC(2,M, q).
However, according to condition (I) and Lemma IV.1,C is a
2-SC(2,M, q), a contradiction. So this case is impossible.

(1.2) If |C1| = 1, |C2| = 3, let C1 = {c1}, C2 = {c2, c3, c4},
whereci = (ai, bi)

T , 1 ≤ i ≤ 4. Thena1 = a2 = a3 = a4
and b1 = b2 = b3 = b4 according todesc(C1) = desc(C2),
which impliesc1 = c2 = c3 = c4, a contradiction. So this
case is not possible either.

(1.3) Consider the case|C1| = 2, |C2| = 3. Let |C1| =
{c1, c2}, |C2| = {c3, c4, c5}, whereci = (ai, bi)

T , 1 ≤ i ≤ 5.
(1.3.A) If a1 = a2, then a3 = a4 = a5 = a1. Since

{b1, b2} = {b3, b4, b5}, there must be two identical elements
in {b3, b4, b5}. We may assumeb3 = b4. Then c3 = c4, a
contradiction. So this case is impossible.

(1.3.B) If a1 6= a2, since desc(C1) = desc(C2), then
a3, a4, a5 ∈ {a1, a2} andb3, b4, b5 ∈ {b1, b2}. Without loss of
generality, we may assume thata3 = a4 = a1 anda5 = a2.
Then b3 6= b4, otherwise,c3 = c4, a contradiction. Since
b3, b4 ∈ {b1, b2}, then b1 6= b2 and we may assume that
b3 = b1 andb4 = b2.

c1 c2
∣

∣ c3 c4 c5
(

a1 a2 a1 a1 a2
b1 b2 b1 b2

)

If b5 = b1, thenb1, b2 ∈ A1
a1

⋂

A1
a2

, that is,|A1
a1

⋂

A1
a2
| ≥

2, a contradiction to condition (I). So this case is impossible.
If b5 = b2, then

c1 c2
∣

∣ c3 c4 c5
(

a1 a2 a1 a1 a2
b1 b2 b1 b2 b2

)

,

that is,

c1(c3) c2(c5) c4
(

a1 a2 a1
b1 b2 b2

)

.

So C1 andC2 are of typeI .
(1.4) Consider the case|C1| = 3, |C2| = 3. Let C1 =

{c1, c2, c3}, C2 = {c4, c5, c6}, whereci = (ai, bi)
T , 1 ≤

i ≤ 6.
(1.4.A) If a1 = a2 = a3 or b1 = b2 = b3, thenC1 = C2, a

contradiction. So this case is impossible.
(1.4.B) Consider the casea1 = a2 and a3 6= a1. Then

b1 6= b2, otherwise,c1 = c2, a contradiction.

(1.4.B.a) Supposeb1 = b3. Sincea3 ∈ {a4, a5, a6}, we may
assumea4 = a3. Then b4 = b1, otherwise,b4 = b2, which
implies b1, b2 ∈ A1

a1

⋂

A1
a3

, a contradiction to condition (I).

c1 c2 c3
∣

∣ c4 c5 c6
(

a1 a1 a3 a3
b1 b2 b1 b1

)

Now we considerc5 andc6. If a5 = a3 or a6 = a3, similarly,
we can show thatb5 = b1 or b6 = b1, respectively, which
implies c5 = c4 or c6 = c4, respectively, a contradiction.
So a5 = a6 = a1. Then b5 6= b6, otherwise,c5 = c6, a
contradiction. Sinceb5, b6 ∈ {b1, b2}, we may assume that
b5 = b1, b6 = b2.

c1 c2 c3
∣

∣ c4 c5 c6
(

a1 a1 a3 a3 a1 a1
b1 b2 b1 b1 b1 b2

)

ThenC1 = C2, a contradiction. So this case is impossible.
(1.4.B.b) Supposebi 6= bj , 1 ≤ i < j ≤ 3. Since{b1, b2,

b3} = {b4, b5, b6}, we may assume thatb4 = b1, b5 = b2, b6 =
b3.

c1 c2 c3
∣

∣ c4 c5 c6
(

a1 a1 a3
b1 b2 b3 b1 b2 b3

)

It is impossible that(a4, a5) = (a1, a1). Otherwise,a6 =
a3, which impliesC1 = C2, a contradiction.

It is not possible either that(a4, a5) = (a3, a3). Otherwise,
b1, b2 ∈ A1

a1

⋂

A1
a3

, a contradiction to condition (I).
If (a4, a5) = (a1, a3), then

c1 c2 c3
∣

∣ c4 c5 c6
(

a1 a1 a3 a1 a3
b1 b2 b3 b1 b2 b3

)

.

We should havea6 = a3. Otherwise,a6 = a1, thenb2, b3 ∈
A1

a1

⋂

A1
a3

, a contradiction to condition (I). So

c2 c1(c4) c3(c6) c5
(

a1 a1 a3 a3
b2 b1 b3 b2

)

,

and therefore,C1 andC2 are of typeIII .
Similarly, if (a4, a5) = (a3, a1), we can show thatC1 and

C2 are of typeIII .
(1.4.C) Consider the caseai 6= aj , 1 ≤ i < j ≤ 3.

Since{a1, a2, a3} = {a4, a5, a6}, we may assume thata4 =
a1, a5 = a2, a6 = a3.

(1.4.C.a) Supposeb1 = b2 andb3 6= b1.

c1 c2 c3
∣

∣ c4 c5 c6
(

a1 a2 a3 a1 a2 a3
b1 b1 b3

)

It is impossible that(b4, b5) = (b1, b1). Otherwise,b6 = b3,
which impliesC1 = C2, a contradiction.

It is not possible either that(b4, b5) = (b3, b3). Otherwise,
b1, b3 ∈ A1

a1

⋂

A1
a2

, a contradiction to condition (I).
Suppose(b4, b5) = (b1, b3).

c1 c2 c3
∣

∣ c4 c5 c6
(

a1 a2 a3 a1 a2 a3
b1 b1 b3 b1 b3

)
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Then b6 = b3. Otherwise,b6 = b1, thenb1, b3 ∈ A1
a2

⋂

A1
a3

,
a contradiction to condition (I). So

c2 c1(c4) c3(c6) c5
(

a2 a1 a3 a2
b1 b1 b3 b3

)

and thusC1 andC2 are of typeII .
SimilarIy, if (b4, b5) = (b3, b1), we can derive thatC1 and

C2 are of typeII .
(1.4.C.b) Supposebi 6= bj , 1 ≤ i < j ≤ 3.

c1 c2 c3
∣

∣ c4 c5 c6
(

a1 a2 a3 a1 a2 a3
b1 b2 b3

)

It is impossible that(b4, b5, b6) = (b1, b2, b3). Otherwise,
C1 = C2, a contradiction.

It is impossible that(b4, b5, b6) = (b1, b3, b2). Otherwise,
b2, b3 ∈ A1

a2

⋂

A1
a3

, a contradiction to condition (I).
It is impossible that(b4, b5, b6) = (b2, b1, b3). Otherwise,

b1, b2 ∈ A1
a1

⋂

A1
a2

, a contradiction to condition (I).
It is impossible that(b4, b5, b6) = (b2, b3, b1). Otherwise,

b1, b2 ∈ A1
a1

, b2, b3 ∈ A1
a2

, b1, b3 ∈ A1
a3

, a contradiction to
condition (II).

It is impossible that(b4, b5, b6) = (b3, b1, b2). Otherwise,
b1, b3 ∈ A1

a1
, b1, b2 ∈ A1

a2
, b2, b3 ∈ A1

a3
, a contradiction to

condition (II).
Finally, it is not possible either that(b4, b5, b6) =

(b3, b2, b1). Otherwise,b1, b3 ∈ A1
a1

⋂

A1
a3

, a contradiction
to condition (I).

(2) Now we prove that|P3(S)| ≤ 2 for anyS ⊆ C(1)×C(2).
Assume that there existsS ⊆ C(1)×C(2) such that|P3(S)| ≥
3. Let C1, C2, C3 ∈ P3(S) be three distinct sub-codes ofC.
According to (1),desc(Ci) = desc(Cj) impliesCi andCj are of
one of the three types described in (1), where1 ≤ i < j ≤ 3.

(2.1) If there exists an indexi, 1 ≤ i ≤ 3, such that|Ci| = 2,
without loss of generality, we may assume|C1| = 2. ThenC1
andC2 are of typeI , C1 andC3 are of typeI . We may assume
that C1 = {c1, c2}, C2 = {c1, c2, c3}, andC3 = {c1, c2, c4},
whereci = (ai, bi)

T , 1 ≤ i ≤ 4. According to type I,c3, c4 ∈
{(a1, b2)T , (a2, b1)T }. Clearly c3 6= c4, otherwiseC2 = C3, a
contradiction. Therefore,b1, b2 ∈ A1

a1

⋂

A1
a2

, which implies
|A1

a1

⋂

A1
a2
| ≥ 2, a contradiction to condition (I). So this case

is impossible.
(2.2) Consider the case|Ci| = 3 for all 1 ≤ i ≤ 3.
(2.2.A) SupposeC1 andC2 are of typeII , C1 andC3 are of

type II . Let C1 = {c1, c2, c3}, C2 = {c2, c3, c4}, andC3 =
{c5, c6, c7}, whereci = (ai, bi)

T , 1 ≤ i ≤ 7. According to
type II , ak1

6= ak2
, 1 ≤ k1 < k2 ≤ 3, b1 6= b3.

c1 c2 c3 c4 c5 c6 c7
(

a1 a2 a3 a1
b1 b1 b3 b3

)

Since C1 and C3 are of type II , we have |C1
⋂

C3| = 2.
Furthermore, because we requireb1 6= b3, we knowC1

⋂

C3 6=
{c1, c2}.

If C1
⋂

C3 = {c1, c3}, we may assumec5 = c1, c6 = c3.
Then we should havec7 = (a2, b3)

T , and

c2 c1(c5) c3(c6) c7 c4
(

a2 a1 a3 a2 a1
b1 b1 b3 b3 b3

)

,

which impliesb1, b3 ∈ A1
a1

⋂

A1
a2

, i.e., |A1
a1

⋂

A1
a2
| ≥ 2, a

contradiction to condition (I). So this case is impossible.
If C1

⋂

C3 = {c2, c3}, we may assumec5 = c2, c6 = c3.
Then c7 = (a1, b3)

T = c4, which implies C2 = C3, a
contradiction. So this case is not possible either.

(2.2.B) SupposeC1 and C2 are of typeIII , C1 and C3 are
of type III . Similar to (2.2.A), we can prove this case is
impossible.

(2.2.C) SupposeC1 andC2 are of typeII , C1 andC3 are of
type III . Let C1 = {c1, c2, c3}, C2 = {c2, c3, c4}.

c1 c2 c3 c4
(

a1 a2 a3 a1
b1 b1 b3 b3

)

Sinceak1
6= ak2

, 1 ≤ k1 < k2 ≤ 3, it is impossible thatC1
andC3 are of typeIII . So this case is not possible either.

Therefore, as we claimed earlier,|P3(S)| ≤ 2 for anyS ⊆
C(1)× C(2).

(3) Finally, the conclusion comes from (1), (2), and the fact
thatC1

⋂

C2 6= ∅ wheneverC1 andC2 are of typeI , II , or III .

Combining Lemma IV.2 with Lemma IV.3, we derive the
main result of this section.

Theorem IV.4. Let C be a (2,M, q) code defined onQ =
{0, 1, . . . , q − 1}. ThenC is a 3-MIPPC(2,M, q) if and only
if it satisfies the following two conditions:

(I) |A1
a1

⋂

A1
a2
| ≤ 1 always holds for any distinct elements

a1, a2 ∈ Q;
(II) There do not exist distinct elementsa1, a2, a3 ∈ Q and

distinct elementsb1, b2, b3 ∈ Q such thatb1, b2 ∈ A1
a1

,
b2, b3 ∈ A1

a2
, b1, b3 ∈ A1

a3
.

V. OPTIMAL 3-MIPPC(2,M, q)S

In Section III, we have derived a general upper bound on the
size of at-MIPPC(n,M, q). Now, we are going to consider
its optimality.

Lemma V.1. There exists a3-MIPPC(2,M, q) if and only if
there exists a bipartite graphG(q, q) of girth at least8 with
e(G) = M .

Proof: Suppose that there exists a3-MIPPC(2,M, q),
C, defined onQ. We construct a bipartite graphG(q, q) as
follows. Let X = Q × {1} and Y = Q × {2}. An edge
is incident to (a, 1) ∈ X and (b, 2) ∈ Y if and only if
(a, b)T ∈ C. Then e(G) = M . We are going to show that
G has girth at least8.

AssumeG(q, q) contains a4-cycle, say((a1, 1), (b1, 2),
(a2, 1), (b2, 2)), where(ai, 1), 1 ≤ i ≤ 2, are distinct elements
of X , and (bi, 2), 1 ≤ i ≤ 2, are distinct elements ofY .
Then (a1, b1)

T , (a2, b1)
T , (a2, b2)

T , (a1, b2)
T ∈ C, and thus
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b1, b2 ∈ A1
a1

⋂

A1
a2

, a contradiction to Theorem IV.4. So this
case is impossible.

AssumeG(q, q) contains a6-cycle, say((a1, 1), (b1, 2),
(a2, 1), (b2, 2), (a3, 1), (b3, 2)), where (ai, 1), 1 ≤ i ≤ 3,
are distinct elements ofX , and(bi, 2), 1 ≤ i ≤ 3, are distinct
elements ofY . Then(a1, b1)T , (a2, b1)T , (a2, b2)T , (a3, b2)T ,
(a3, b3)

T , (a1, b3)T ∈ C, and thusb1, b3 ∈ A1
a1

, b1, b1 ∈ A1
a2

,
b2, b3 ∈ A1

a3
, a contradiction to Theorem IV.4. So this case is

not possible either.
Therefore, the bipartite graphG(q, q) constructed above has

girth at least8, with e(G) = M .
Conversely, for any bipartite graphG(q, q) = G(X,Y )

with girth at least8, we construct a(2,M, q) code C. Let
Q = X and f : Y −→ X be a bijective mapping. A vector
(x, f(y))T ∈ C if and only if {x, y} is an edge of G, where
x ∈ X andy ∈ Y . Obviously,C is a(2,M, q) code defined on
Q andM = e(G). Suppose thatC is not a3-MIPPC(2,M, q).
Then by Theorem IV.4, at least one of the following cases
should happen.

(1) There exist distinct elementsx1, x2 ∈ Q such that|A1
x1

⋂

A1
x2
| ≥ 2. In this case, we may assumef(y1) 6= f(y2) ∈

A1
x1

⋂

A1
x2

. Then y1 6= y2, and (x1, f(y1))
T , (x1, f(y2))

T ,
(x2, f(y1))

T , (x2, f(y2))
T ∈ C. Hence{x1, y1}, {x1, y2},

{x2, y1}, {x2, y2} are edges ofG forming a 4-cycle, a
contradiction. So this case is impossible.

(2) There exist distinct elementsx1, x2, x3 ∈ Q and distinct
elementsf(y1), f(y2), f(y3) ∈ Q such thatf(y1), f(y2) ∈
A1

x1
, f(y2), f(y3) ∈ A1

x2
, f(y1), f(y3) ∈ A1

x3
. In this case,

yi, 1 ≤ i ≤ 3, are all distinct, and(x1, f(y1))
T , (x1, f(y2))

T ,
(x2, f(y2))

T , (x2, f(y3))
T , (x3, f(y3))

T , (x3, f(y1))
T ∈ C.

Hence{x1, y1}, {x1, y2}, {x2, y2}, {x2, y3}, {x3, y3}, {x3,
y1} are edges ofG forming a6-cycle, a contradiction. So this
case is not possible either.

Therefore, the(2,M, q) codeC constructed above is a3-
MIPPC(2,M, q) with M = e(G).

This completes the proof.
Garcı́a-Vázquezet al. [10] stated that any maximum bipar-

tite graphG(q, q) with sizeM(3, 2, q) must have girth8, for
q ≥ 6 or q = 4. Therefore, we have the following corollary.

Corollary V.2. Let q ≥ 6 or q = 4. There exists a3-
MIPPC(2,M, q) if and only if there exists a bipartite graph
G(q, q) of girth 8 with e(G) = M .

Lemma V.3. ([16]) If G(u, v) contains no cycle of length4
and 6, then its sizee satisfies the following inequality

e3 − (u+ v)e2 + 2uve− u2v2 ≤ 0.

Then the size of a3-MIPPC(2,M, q) can be derived from
Lemmas V.1 and V.3.

Corollary V.4. For any 3-MIPPC(2,M, q), M3 − 2qM2 +
2q2M − q4 ≤ 0.

Multimedia IPP codes are also closely related with gener-
alized packings defined below.

Definition V.5. Let K be a subset of non-negative integers,
and letv, b be two positive integers. A generalized(v, b,K, 1)
packing is a set system(X,B) whereX is a set ofv elements
andB is a set ofb subsets ofX called blocks satisfying

(1) |B| ∈ K for anyB ∈ B;
(2) Every pair of distinct elements ofX occurs in at most

one block ofB.

A generalized packing(X,B) is called△-free if for any
three distinct elementsP1, P2, P3 ∈ X , if there are two blocks
containingP1, P2 and P1, P3 respectively, then there is no
block containingP2, P3.

Theorem V.6. There exists a3-MIPPC(2,M, q) defined on
Q if and only if there exists a△-free generalized(q, q,K, 1)
packing(Q, {A1

0, . . . ,A
1
q−1}) with K = {|A1

0|, . . . , |A
1
q−1|},

andM = |A1
0|+ · · ·+ |A1

q−1|.

Proof: SupposeC is a 3-MIPPC(2,M, q) defined onQ,
and A1

i = {b ∈ Q | (i, b)T ∈ C} for any i ∈ Q. Then by
Theorem IV.4, we know that(Q, {A1

0, . . . ,A
1
q−1}) is a△-free

generalized(q, q, {|A1
0|, . . ., |A1

q−1|}, 1) packing, andM =
|A1

0|+ · · ·+ |A1
q−1|.

Conversely, for any△-free generalized(q, q,K, 1) packing
(Q,B) with B = {B0, . . . , Bq−1} and M = |B0| + · · · +
|Bq−1|, we define a set of vectorsB1 = {B1

0 , . . . , B
1
q−1}, with

B1
i = {(i, b)T | b ∈ Bi} if Bi 6= ∅ andB1

i = ∅ if Bi = ∅,
0 ≤ i ≤ q − 1. By Theorem IV.4, it is readily checked that
B1 is a3-MIPPC(2,M, q) defined onQ andA1

i = Bi for any
i ∈ Q.

This completes the proof.

Corollary V.7. There exists an optimal3-MIPPC(2,M, q)
if and only if there exists a△-free generalized(q, q,K, 1)
packing with maximumM = |A1

0| + · · · + |A1
q−1|, where

K = {|A1
0|, . . . , |A

1
q−1|},

Now we show that some optimal3-MIPPC(2,M, q)s can
be constructed by means of generalized quadrangles.

Definition V.8. A finite generalized quadrangle (GQ) is an
incidence structureS = (X,B, I) with point-setX and line-
setB satisfying the following conditions:

(1) Each point is incident with1 + t lines (t ≥ 1) and two
distinct points are incident with at most one line;

(2) Each line is incident with1 + s points (s ≥ 1) and two
distinct lines are incident with at most one point;

(3) If x is a point andL is a line not incident withx,
then there is a unique pair(y,N) ∈ X × B for which
xINIyIL.

The integerss and t are the parameters of the GQ andS has
order (s, t); if s = t, S has orders.

From the definition, any generalized quadrangle has no tri-
angles. It is known (see [17]) that in a generalized quadrangle,
|X | = (1+ s)(1+ st), |B| = (1+ t)(1+ st), ands+ t divides
st(1 + s)(1 + t).

Lemma V.9. If there exits a GQ(s, t), then there exists a△-
free generalized(v, b, 1+s, 1) packing, wherev = (1+s)(1+
st), b = (1 + t)(1 + st).

Proof: SupposeS = (X,B, I) is a GQ(s, t). By regarding
the lines ofS as blocks and the points ofS as elements,
we easily obtain a△-free generalized(v, b, 1 + s, 1) packing
(X,B).
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Lemma V.10. ([17]) Let k be a prime power ands ≤ t be
two positive integers. Then there exist GQ(s, t)s for (s, t) ∈
{(k − 1, k + 1), (k, k), (k, k2), (k2, k3)}.

If there exists a GQ(s, t) with s ≤ t, then Lemma V.9
gives a△-free generalized(v, b, 1 + s, 1) packing withv =
(1 + s)(1 + st) ≤ (1 + t)(1 + st) = b. Deletingb− v blocks,
we obtain a△-free generalized(v, v, 1 + s, 1) packing.

Corollary V.11. For any prime powerk, there exist 3-
MIPPC(2,M, q)s for (M, q) ∈ {(k4, k3), ((k2 + 1)(k +
1)2, (k2+1)(k+1)), ((k3+1)(k+1)2, (k3+1)(k+1)), ((k5+
1)(k2 + 1)2, (k5 + 1)(k2 + 1))}.

Proof: Apply Theorem V.6 with Lemmas V.9, V.10.

Lemma V.12. Let a, d be two positive integers withd2 −
2d + 2 − a = 0. Then for any3-MIPPC(2,M, ad), we have
M ≤ ad2.

Proof: For any3-MIPPC(2,M, q), by Corollary V.4, we
know that M3 − 2qM2 + 2q2M − q4 ≤ 0. Let f(M) =
M3 − 2qM2 + 2q2M − q4, then the derivative off(M) is

df

dM
(M) = 3M2 − 4qM + 2q2 = 3(M −

2q

3
)2 +

2q2

3
> 0.

Therefore,f is a strictly increasing function onM . Let q = ad,
wherea andd are positive integers such thatd2−2d+2−a =
0. Then

f(ad2) = (ad2)3 − 2(ad)(ad2)2 + 2(ad)2(ad2)− (ad)4

= a3d6 − 2a3d5 + 2a3d4 − a4d4

= a3d4(d2 − 2d+ 2− a)

= 0.

For anyM
′

> ad2, we havef(M
′

) > 0. Soad2 is the greatest
integer which satisfies the inequalityM3 − 2qM2 + 2q2M −
q4 ≤ 0. This completes the proof.

Theorem V.13. There exists an optimal3-MIPPC(2, (k2 +
1)(k + 1)2, (k2 + 1)(k + 1)) for any prime powerk.

Proof: A 3-MIPPC(2, (k2 +1)(k+1)2, (k2 +1)(k+1))
exists from Lemma V.11. Leta = k2 + 1, d = k + 1, then
d2 − 2d+ 2− a = 0. Apply Lemma V.12.

VI. A SYMPTOTICALLY OPTIMAL 3-MIPPC(2,M, q)S

Corollaries V.2 and V.7 inspire us to construct optimal3-
MIPPC(2,M, q)s via bipartite graphs with girth8 or maxi-
mum△-free generalized(q, q,K, 1) packings. Unfortunately,
except for the result in Theorem V.13, we do not know other
infinite families of optimal3-MIPPC(2,M, q)s. However, we
can construct several infinite families of asymptotically opti-
mal 3-MIPPC(2,M, q)s by truncating points and lines from
generalized quadrangles.

Theorem VI.1. There exists a3-MIPPC(2, k4+2k3 +2k2 +
2k−2sk, k3+k2+k+1−s) for every prime powerk, where
1 ≤ s ≤ k2 + k + 1.

Proof: If we can construct a△-free generalized(k3 +
k2+k+1−s, k3+k2+k+1−s, {k, k+1}, 1) packing with
k3 + k2 + k − sk blocks of sizek+ 1 andsk − s+ 1 blocks

of size k, then the conclusion would follow from Theorem
V.6. According to Lemma V.10, there exists a GQ(k, k), say
S = (X,B, I), for every prime powerk. Choose an arbitrary
point x0,0 ∈ X . Let L0,j = {x0,0, x1,j , . . . , xk,j}, 0 ≤ j ≤ k,
be thek+1 distinct lines incident withx0,0, andLi,1, . . . , Li,k,
1 ≤ i ≤ k, be the otherk distinct lines incident withxi,0 ∈ X .
Let s1 = ⌊ s−1

k ⌋ ands2 = s−1−ks1. Then the desired△-free
generalized packing can be constructed by eliminatings points
x0,0, x1,0, . . ., xk,0, x1,1, . . ., xk,1, . . ., x1,s1−1, . . ., xk,s1−1,
x1,s1 , . . ., xs2,s1 and s lines L0,0, L0,1, . . . , L0,k, L1,1, . . .,
L1,k, . . ., Ls1−1,1, . . ., Ls1−1,k, Ls1,1, . . ., Ls1,s2 , where the
size of each line after elimination isk+1 or k because of the
△-freeness of the GQ.

Theorem VI.2. There exists a3-MIPPC(2, k4 − sk, k3 − s)
for every prime powerk, where0 ≤ s ≤ 2k − 1.

Proof: Similar to Theorem VI.1, we want to construct
a △-free generalized(k3 − s, k3 − s, {k}, 1) packing. Ac-
cording to Lemma V.10, there exists a GQ(k − 1, k + 1),
say S = (X,B, I), for any prime powerk. Then |X | = k3

and |B| = k3 + 2k2. Let x0 ∈ X and X0 = {x ∈
X \ {x0} | x0 andx are incident with a line}. Then|X0| =
k2 + k − 2. Let Xs = {x0, x1, . . . , xs−1} ⊆ {x0} ∪ X0 and
Bs = {L ∈ B | L is incident with a pointx
∈ Xs}. By a simple counting argument, we know that
|Bs| = (k + 2) + (s − 1)(k + 1) = s + sk + 1. Then
we can obtain a△-free generalized(v, b, k, 1) packing by
eliminating thes points in Xs and thes + sk + 1 lines in
Bs from the GQ(k − 1, k + 1), S, wherev = k3 − s and
b = k3 − s+ (2k2 − sk − 1). Since0 ≤ s ≤ 2k− 1, we have
b ≥ v. Therefore the desired△-free generalized packing exists
by further eliminatingb− v blocks of the△-free generalized
(v, b, k, 1) packing.

Theorem VI.3. There exists a3-MIPPC(2, k4+2k3 +2k2 −
sk−s+ ⌊ s−1

k+1⌋, k
3+2k2−s) for every prime powerk, where

1 ≤ s ≤ k2 + k + 1.

Proof: According to Lemma V.10 and the point-line
duality of GQs (see, for example, [17]), there exists a
GQ(k+1, k− 1) for any prime powerk. Suppose thatS is a
GQ(k + 1, k − 1). Then |X | = k3 + 2k2 and |B| = k3. Pick
an arbitrary pointx ∈ X . SupposeLi = {x, xi,1, . . . , xi,k+1},
1 ≤ i ≤ k, arek distinct lines containingx, and eachPi is
the point-set ofLi. Let s1 = ⌊ s−1

k+1⌋, s2 = s− 1− s1(k + 1),
and

Ps =























{x}, if s = 1,

{x}
⋃

(
s1
⋃

i=1

Pi), if s 6= 1 and s ≡ 1 (mod k + 1),

{x}
⋃

(
s1
⋃

i=1

Pi)
⋃

{xs1+1,1, · · · , xs1+1,s2}, otherwise.

For a givens, we can eliminate the point-setPs and derive
a△-free generalized(v, b, {k+1−s2, k+1, k+2}, 1) packing
with (s − 1)(k − 1) + k − s1 − h(s2) blocks of sizek + 1,
k3 − k− (s− 1)(k− 1) blocks of sizek+2, andh(s2) block
of sizek+1− s2, wherev = k3 +2k2 − s, b = k3 − s1, and

h(s2) =

{

0, if s2 = 0,

1, otherwise.
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Thenv − b = 2k2 − s + s1 > 0. So, the desired generalized
packing can be constructed by addingv− b blocks containing
exactly one point belonging toX \ Ps. Now we compute the
valueM .

M = [(s− 1)(k − 1) + k − s1 − h(s2)](k + 1)

+[k3 − k − (s− 1)(k − 1)](k + 2)

+h(s2)(k + 1− s2) + 2k2 − s+ s1

= k4 + 2k3 + 2k2 − sk − s1k − 1− h(s2)s2.

If s2 6= 0, thenh(s2)s2 = s2; if s2 = 0, thenh(s2)s2 = 0 =
s2. So
M = k4 + 2k3 + 2k2 − sk − s1k − 1− s2

= k4 + 2k3 + 2k2 − sk − s1k − 1− (s− 1− s1(k + 1))
= k4 + 2k3 + 2k2 − sk − s− s1
= k4 + 2k3 + 2k2 − sk − s− ⌊ s−1

k+1⌋.
This completes the proof.

Theorem VI.4. The 3-MIPPC(2,M, q)s constructed in The-
oremsVI.1, VI.2 and VI.3 are asymptotically optimal.

Proof: Here, we only prove that the3-MIPPC(2,M, q)s
constructed in Theorem VI.2 are asymptotically optimal. The
other two cases can be proved in a similar way. Note that in
Theorem VI.2,q = k3 − s, M = k4 − sk, wherek is a prime
power and0 ≤ s ≤ 2k − 1.

Just as in the proof of Lemma V.12, we consider the strictly
increasing functionf(M) = M3 − 2qM2 + 2q2M − q4, and
also the cubic equationf(M) = 0. Let a = 1, b = −2q, c =
2q2, d = −q4. Then the discriminant of the above-mentioned
cubic equation isD = 18abcd−4b3d+b2c2−4ac3−27a2d2 =
q6(40q−16−27q2) < 0, which implies that this cubic equation
has one real rootM0 and two complex conjugate roots (see,
for example, [12], and also [16]), where

M0 = −
b

3a
−

1

3a
3

√

1

2
[2b3 − 9abc+ 27a2d+

√

−27a2D]

−
1

3a
3

√

1

2
[2b3 − 9abc+ 27a2d−

√

−27a2D]

=
2q

3
−

q

3
3

√

1

2
[20 − 27q +

√

27(27q2 − 40q + 16)]

−
q

3
3

√

1

2
[20− 27q −

√

27(27q2 − 40q + 16)].

Noting thatf(0) = −q4 < 0, we haveM0 > 0. By Corollary
V.4, M(3, 2, q) ≤ M0, and then0 < M

M0
≤ M

M(3,2,q) ≤ 1.

Therefore it is sufficient to prove thatlim
q→∞

M
M0

= 1 holds.

Sinceq = k3 − s, we have

lim
q→∞

M0

k4
= lim

k→∞

M0

k4

= lim
k→∞

2q

3k4
− lim

k→∞

q

3k4

3

√

1

2
[20 − 27q +

√

27(27q2 − 40q + 16)]

− lim
k→∞

q

3k4

3

√

1

2
[20− 27q −

√

27(27q2 − 40q + 16)]

= 0− 0− (−1)

= 1,

then

lim
q→∞

M

M0
= lim

k→∞

M

M0
=

lim
k→∞

M
k4

lim
k→∞

M0

k4

=
1

1
= 1.

This completes the proof.

VII. C ONCLUDING REMARKS

In this paper, we introduced multimedia IPP codes, which
can be used to identify at least one malicious authorized user
in a multimedia fingerprinting system. We characterized an
optimal 3-MIPP code of length2 in terms of a maximum
bipartite graph with girth8 and a∆-free generalized packing
with maximum number of points in all blocks, respectively. By
using bipartite graphs, we derived several upper bounds on the
size of a multimedia IPP code. By using∆-free generalized
packings, we constructed several infinite families of (asymp-
totically) optimal 3-MIPP codes of length2 via generalized
quadrangles, which can be used to construct “good” binary
3-MIPP codes with long length by a simple composition
construction, in the sense that all these codes have quite a
few codewords.

It would be interesting if we could find more optimal
multimediat-IPP codes. However, we do not find it easy to
construct optimal multimediat-IPP codes with long lengthn,
even forn = 4.
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