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Codes with the Identifiable Parent Property for
Multimedia Fingerprinting

Minquan Cheng, Hung-Lin Fu, Jing Jiang, Yuan-Hsun Lo andgMifiao

Abstract—Let C be a g-ary code of length n and size M,
and C(i) = {c(@) | ¢ = (c(1),¢c(2),...,c(n))” € C} be the

set of ith coordinates of C. The descendant code of a sub-code

¢ C Cis defined to beC’(l) X C,(2) X e X C/(n). In this

paper, we introduce a multimedia analogue of codes with the

identifiable parent property (IPP), called multimedia IPP codes or

t-MIPPC (n, M, ¢), so that given the descendant code of any sub-

codeC’ of a multimedia ¢-IPP codeC, one can always identify, as
IPP codes do in the generic digital scenario, at least one cediord
in C'. We first derive a general upper bound on the sizeM of
a multimedia ¢-IPP code, and then investigate multimedi3-IPP
codes in more detail. We characterize a multimedi&-IPP code of
length 2 in terms of a bipartite graph and a generalized packing,
respectively. By means of these combinatorial characteraions,
we further derive a tight upper bound on the size of a multimeda
3-IPP code of length2, and construct several infinite families of
(asymptotically) optimal multimedia 3-IPP codes of length2.

Index Terms—IPP code, separable code, bipartite graph, gen-

eralized packing, generalized quadrangle.

I. INTRODUCTION

Letn > 2, M andq > 2 be positive integers, an@ an
alphabet with|@Q| = ¢. In this paper, we consider a code
of lengthn over Q, that is, a seC = {cy,c2,...,cp} C

Q™. Eachc; in such an(n, M, q) code is called a codeword.

Without loss of generality, we may assu@e= {0,1,...,q—
1}. Given an(n, M, q) code, its incidence matrix is thex M
matrix on @ in which the columns are th&/ codewords in
C. Often, we make no difference between @n ), q) code
and its incidence matrix.

For any codel C Q™, we define the set ofth coordinates
of C as

C(i)={c(i) e Q| c=(c(1),c(2),..
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Lem)T ecy

for any 1 < i < n. For any sub-cod€’ C C, we define the
descendant code @f as

desc(C) = {(x(1),x(2),...,x(n)T € Q" |

x(i) € C'(i),1 <i<n},
that is,
desc(C)=C (1) x C'(2) x --- x C (n).
Any codeword inC’ is a parent of all the words idesc(C").

Definition 1.1. LetC be an(n, M, q) code, and for anys C
C(1) xC(2) x ---x C(n), define the set of parent sets.®fas

PuS)={C CC||C'| <t 8 =desc(C)}.

We say that is a code with the identifiable parent property
(IPP) for multimedia fingerprinting, or a multimedia IPP oed
denotedi-MIPPC(n, M, q), if

| ¢ #0
C'eP:(S)
is satisfied for anys C C(1) xC(2) x - - - x C(n) with P;(S) #
0.

Intuitively, P;(S) consists of all the sub-codes®fwith size
at mostt that could have produced all the words $h and
an (n, M, q) codeC is at-MIPPC(n, M, q) if the following
condition is satisfied: even if there are distinct sub-cooes
C, each of size at modt, could produce the same s6tof
words, we can track down at least one pareniSoivhich is
contained in each parent set 8f In fact, any codeword in
Ne ep(s) € is @ parent ofs.

Multimedia IPP codes are a variation of IPP codes and a
generalization of separable codes, both were introduaettiéo
purpose of protecting copyrighted digital contents. Theéamo
of an IPP code was first introduced in a special casé in [11],
investigated in full generality in_[2]/[13],.14],.118],.121]and
surveyed in[[5]. The notion of a separable code was introdluce
in [[7] and investigated in detail ir [6][[9]. In Definitiondl,
if S is set to be a singleton sétl}, and the set of parent sets
be modified as

PuS)={C CC||C'| <t dedesc(C)},

then we obtain &-IPP code, while if we require th&®; (5)|
then

1 foranyS C C(1) x C(2) x --- x C(n) with P.(S) # 0,
we obtain at-separable code.

Binary ¢-separable codes are used in multimedia fingerprint-
ing to capture up tot malicious authorized users holding
the same multimedia content but with different codewords
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(i.e., fingerprints), who have jointly produced a pirate yopbriefly review some terminologies, describe a tracing algo-
of the copyrighted content from their authorized copie® (serithm based on binary multimedia IPP codes, and show a
for example, [[7]). However, in most cases, the number cbnstruction for binary multimedia IPP codes frograry
codewords in a binary-separable code is too small to benultimedia IPP codes. In Sectibnllll, we derive a generakupp
of practical use. Meanwhile, guaranteeing exact identiica bound onM (¢, n,q). Then in Sectiof IV, we characterie
of at least one member of the coalition of size at mbstMIPPC(2, M, q)s in terms of bipartite graphs and generalized
would bring enough pressure to bear on authorized usersptckings, respectively. The first graph theoretic chareete
give up their attempts at collusion. Using the tracing athon  tion gives a tight upper bound oM/ (3,2, ¢). The second
MIPPCTraceAlg(S) described in Sectiohlll, we know thatdesign theoretic characterization results in a conswoctif
by means of a binary multimedia IPP code, we can capturdaMIPPC(2, M, ¢)s, in which some are optimal and some are
setS C C(1)x---xC(n) in the multimedia scenario instead ofasymptotically optimal.
an elemend € S in the generic digital scenario, and although
binary multimediat-IPP codes can not identify all malicious
users as binary-separable codes do when the size of the
coalition is at most, they can identify, as IPP codes do in the In this section, we give a brief review on some basic termi-
generic digital scenarid [1][[11], at least one such malisi nologies. The interested reader is referred o [7], [15hhore
authorized user, thereby helping stop the proliferatiorthef detailed information. We also describe a tracing algorithm
fraudulent content in digital marketplace. based on binary multimedia IPP codes, and a construction
Therefore, we can say that in some sense, the significancé@fbinary multimedia IPP codes fromrary multimedia IPP
multimediaz-IPP codes relies on their maximum sizes. Fer ~codes.
2, we will show in LemmdTR that &MIPPC(n, M, q) is in In general, collusion-resistant fingerprinting requirée t
fact az-SC(n, M, q), so they have the same maximum size. Fa@lesign of fingerprints that can survive collusion attacks to
t > 2, the maximum size of &SC(n, M, q) is O(¢/™/(*~V1) trace and identify colluders, as well as robust embedding of
(see [[6]), while the maximum size of &aMIPPC(n, M,q) fingerprints into multimedia host signals. One of the widely
will be shown in Sectiori 1l to beO(¢(t+1)/(2Y)) except employed robust embedding techniques is spread-spectrum
for the case that is even andn is odd, where the value is additive embedding, which can survive collusion attacks to
O(g't+Dn+1)/(21)) This is a significant improvement on thetrace and identify colluders. In spread-spectrum embegdin
number of codewords, which makes the notion of multimediatermark signal, often represented by a linear combinatio
IPP codes useful. of noise-like orthonormal basis signals, is added to theg hos

. signal. Letx be the host multimedia signaln; | 1 <i < n}
Lemma 1.2. Let C be an (n, M,q) code. ThenC is a 2-  pe an orthonormal basis of noise-like signals, aivd, =

MIPPC(n, M, q) if and only if it is a2-SQn, M, q). (Wj(l),Wj(Q), o ,Wj(n.)) _ Z?:l biju; 1< < M},.
Proof: It is clear that af-SC(n, M, q) is necessary a bii € {0,1}, be a family of scaled watermarks to achieve
¢-MIPPC(n, M, q). We only need to consider its necessityne® imperceptibility as well as to control the energy of the
Assume thaC is a 2-MIPPC(n, M, q) such thatC,,Cs C C, embedded watermark. Each authorized usgrl < j < M,
IC1] < 2, |C2| <2, Cy # Ca, anddesc(Cy) = desc(Cz). Then Who has purchased the rights to accesss then assigned

CiC2 # 0. Leta € C;(Co. There are two cases to pewith a watermarked version of the contgnt= x +w;. The
considered. fingerprintw; assigned td@/; can be represented uniquely by a

B B . B vector (called codewordd; = (by;, baj, ..., bn;)T € {0,1}"
(1) ﬁl - {"i}"bCQ i {;,_b}.l_&nccegeéc(cl) = desc(C2), W& pecause of the linear independence of the bfsis 1 < i <
avea = b, which Impliest;, = Ca. n}. Since distinct codes correspond to distinct fingerprmtin
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— — . — T
2) f)l _ {i’ ?}’ C2 ; {a’;}' Lgt a__ (a(i),...7a(n))T, strategies, we would like to strategically design a code to
- (b(1),....,b(n))" and ¢ = (c( )"_“’C(n)) " accurately identify the contributing fingerprints invodvén
Since desc(C;) = desc(C2), we have{a(i),b(i)} = ;
N (i) f L <4< mn Now. if bi) — ali collusion attacks.
{a(i),c(i)} for any1 < i < n. Now, if b(i) = a(i), Whent authorized users, say;,,Uj,,...,U;,, who have

thenc(i) = b(i). On the other hand, (i) # a(i), then

c(i) = b(i) since {a(i),b(i)} — {a(i),c(i)}. Hence, the same host content but distinct fingerprints come togethe

. ) ) SN we assume that they have no way of manipulating the indi-
;('1% :u?s(é) EOICdS foranyl <i <n. Thisimpliesb =c 24 o1 orthonormal signals, that is, the underlying codeivo
L= needs to be taken and proceeded as a single entity, but
So for any distincCy,Co C C such thatiCi| <2, [C2| <2, it they can carry on a linear collusion attack to generate a
always holds thatlesc(C1) # desc(C2). This means thaf is pirate copy from theirt fingerprinted contents, so that the
a2-SC(n, M, q). B venture traced by the pirate copy can be attenuated. For
In subsequent sections, we investigate the maximum sizefipgerprinting through additive embedding, this is done by
at-MIPPC(n, M, q) and also the constructions of (asymptotlinearly combining thet fingerprinted contentifz1 i Yiis
ically) optimal t-MIPPC(n, M, q)s. Let M (t,n, q) denote the where the weightg);, | 1 < [ < t} satisfy the condition
maximum size of &-MIPPC(n, M, q). A t-MIPPC(n, M,q) S, \;, = 1 to maintain the average intensity of the original
is said to be optimal ifM = M(t,n,q), and asymptoti- multimedia signal. In such a collusion attack, the energy of

cally optimal if limg—ec yr7gy = 1. In Section[ll, we each of the watermarksr;, is reduced by a factor oA?,



therefore, the trace df;,’s fingerprint becomes weaker andby the definition of a multimedi&|PP code. Assume thatis
thusU;, is less likely to be caught by the detector. In fact, sinagot a colluder. Then for ang € P,(S), we haveC' \ {c} €
normally no colluder is willing to take more of a risk than anyP,(.5), which impliesc ¢ Cy, a contradiction. ]
other colluder, the fingerprinted signals are typicallyraged  The following theorem is a simple composition construction
with an equal weight for each user. Averaging attack chapsifor binary multimediat-IPP codes fromg-ary multimediaz-
Aj, =1/t,1 <1 <t,is the most fair choice for each colludedPP codes.
to avoid dete_ction, as claimed in_[15], I_20]_. This att"?leoaISLemma I1.2. If there exists &-MIPPC(n, M, ), then there
makes the pirate copy have better perceptional quality. exists at-MIPPC(ng, M, 2)

Based on the averaging attack model, the observed contént e

y after collusion is Proof: Let ¢ = {ci,co,...,cy} be the t-
L L Ly MIPPC(n, M,q) defined on @ = {0,1,...,q — 1},
y=-Sy,=-Y w;, +x= Y, - x. and & = {ej,eq,...,e,}, Wheree; is the i-th column
t; " t; g ;; t identity vector, i.e., all its coordinates aré except

Due to the orthogonality of the orthonormal basis; | 1 < the i-th one beingl. Let f : Q -— & be the

t < n}, in colluder detection phase, we only need to compuPé'eche mapping such thatf() T: eir1. For any
the correlation vectoT = (T(1),T(2),...,T(n)), where codeworde = (c(1),¢(2),....¢(n))" € C’. we define
T() = (y —x,u;), 1 <i<n,and(y — x,u;) is the inner f(c) ~ (f(e()), f(e(2)),.... fle(n)). ObVIOqSW’ f(c)
product ofy — x andu,. is a binary column vector of lengthq. We define a new

For any set of colluders holding codewoi@sC C and any (ng, M,2) code 7 = {f(c1), f(cz),.... flem)}. We are
index 1 < i < n, their detection statistic¥'(i) possesses the 9°IN9 to show thafF is in fact a multimedia-IPP code.
whole information orCy(i); namely, we hava'(i) = 1 if and Consider anys' € F(1) x --- x F(ng) with P,(S) =
only if Co(i) = {1}, T(i) = 0 if and only if Co(i) = {0}, and {Fi1,...,Fr} # 0. EachF; corresponds to a subcodfe_g C
0 < T(i) < 1 if and only if Co(i) = {0, 1}. such that|C;| < t, where F; = {f(c) | c e_Ci}. Since

Now we describe a tracing algorithm based on a binagfsc(fl) = desc(F3) = .-+ = desc(F,), we immediately
multimedia IPP code. The following theorem shows thatavedesc(C) = desc(Ca) = --- = desc(C,). SinceC is at-
binary multimedia-IPP codes can be used to identify at leadlPPCn, M, q), we.haveﬂi:l Ci 7& (Z)._Letc € (i i, then
one colluder in the averaging attack. c €C; foranyl < i <, which implies f(c) € ; for any

1 <i <, andthusf(c) € N;,_, ;. Therefore(\,_, F; # 0.

Theorem I1.1. Under the assumption that the number ofhis completes the proof. [
colluders in the averaging attack is at mogf any t- The above theorem stimulates us to investigatey mul-
MIPPC(n, M, 2) can be used to identify at least one colludefimedia t-IPP codes. In the remaining parts of this paper,
with computational complexity)(nM*) by applying Algo- we will focus on the properties on the constructionsafry
rithm [ described below. multimediat-IPP codes.

Proof: Let C be thet-MIPPC(n, M, 2), and.S C C(1) x I1l. A GENERAL UPPERBOUND ON THE CODE SIZE
.-+ x C(n) be the captured descendant code derived from the,. _ . . . .
. - . . . Bipartite graphs are extensively used in modern coding
detection statistic&'. Then by applying the following tracing h f le 118 9 hi :
algorithm, Algorithn[1, we can identify at least one colludet \eory, See, Tor example, [8]._[19]. In this section, we use
' ' bipartite graphs to derive an upper bound on the size of a
t-MIPPC(n, M, q).
Let G(X,Y) = G(u,v) be a bipartite graph on vertices
in the classX andw vertices in the clas¥”. Without loss of

Algorithm 1: MIPPCTraceAlg(S)

Given S; / / / generality, we may assume that> v. Let ¢(G) denote the
FindP:(S)={C CC||C| <t S =desc(C)}; number of edges of?, that is, the size ofi. The girth of G
ComputeCy = ) ¢ is the length of a shortest cycle i@. It is well known that
C'eP:(S) any bipartite graph is free of odd cycles.

if [Co| < ¢ then Lemma IIl.1. ([13], [14]) If a bipartite graphG(u, v) con-
| output Cy as the set of colluders; tains no cycle of length less than or equal2ip whereu > v,
else then
L output “the set of colluders has size at ledst 17; . (uv)% +e(u+v), lisodd

el vIuT 4 c(lu+v), Iiseven

The computational complexity is obvious. We need only t@herec is a constant depending only dn
show that any user, assigned with a codeword € Cy is o ) )
a colluder. SinceS is the captured descendant code derived AN application of LemmaTILl is the following theorem.

from the detection statistic¥, it is clear thatP(S) # 0. Theorem IIl.2. M(t,n,q) < q% (¢ + 2¢) if n is even, and
n+t
2t

Therefore, 3 L ( - J)) s is even
! 2 clg? 2)), ]

Co= ﬂ ¢ #0 M(t,n,q) < qﬁ q@ f i]; .
C'eP(S) q2(q2 +c(q? +¢2)), tisodd



if n is odd, wherec is a constant depending only an

Proof: Let C be at-MIPPC(n, M, q) defined on@. We
prove this theorem in two cases.

If n is even, we construct a bipartite gragh(q?,q?)
as follows. LetX = Y = Q=. An edge connecta ¢
X andb € Y if and only if (a,b)” € C. Obviously,
M = e(G). Suppose that there exists 2,-cycle in G,
where2 < to < t. Let (a1, by,a2,bo,...,a;,bs,) be the
2tp-cycle, wherea;, 1 < i < tg, are distinct vertices in
X, andb;, 1 < ¢ < tg, are distinct vertices int”. Then
(ai,bi)T eCfor1<i< to, and(al,th)T, (ai,bi_l)T eC
for 2 < i < ty. Let Gy = {(a;,b))T | 1 < i < to},
Cy = {(al,bto)T}U{(ai,bi,l)T | 2 <1 < to}. Then
desc(Cy) = desc(Cz), but C;(C2 = 0, a contradiction to
the fact thaC is at-MIPPC(n, M, ¢). SoG contains no cycle

of length less than or equal . The conclusion then comes

from LemmaIIL1.

If n is odd, we construct a bipartite gramq%ﬂ,q%)
with X = Q%,Y = Q%. Similarly, we can show thatr
contains no cycle of length less than or equabktpand the
conclusion follows by LemmpTI]1. [ |

IV. MULTIMEDIA 3-IPP CoDES

In order to derive a tight bound on the size of a multimedia
3-IPP code, we present a combinatorial characterization of

multimedia3-IPP codes.

For any(n, M, q) codeC on@ = {0,1,...,q—1}, Chenget
al. [6] defined the following column vector se$] for i € Q
and1l <j<n:

Al ={(c1),...,e(f = 1),e(G+1),....c(n)" |

(c(1),....c(n)T € C,e(j) = i}.

We first prove the following lemma oR-separable codes.

Lemma IV.1. Let C be a(2,M,q) code. ThenC is a 2-
SQ2,M,q) if and only if AL N.AL,| < 1 holds inC for
any distinct elementg;, as € Q.

Now, if a1 = ag, thena1 = a2 = a3z = a4. SinceCl }é Co,
we haveb; # by. By the fact thatC;(2) = C3(2), we have
{b1,ba} = {bs,bs}, and therefore&®; = Co, a contradiction.
On the other hand, ifi; # as, thenas # ay4. Clearly,b; # bo,
otherwise we can use a similar argument to concludeGhat
Cs>. Now, we have{al, ag} = {a3, a4} and{bl, bg} = {bg, b4}
as set equalities. Without loss of generality, we may assume
a1 = a3z andas = ay4. In this case, ifb; = b3, thenby = by,
and thusC; = C», a contradiction. Thereforé; = b, and
bo = bz, which implies thatAl AL = {b1,b.}, again a
contradiction. This completes the proof. [ ]

Now we turn our attention to multimediIPP codes.

Lemma IV.2. LetC be a3-MIPPC(n, M, ¢q) code defined on

Q=1{0,1,...,¢—1}. Then
() AL NALI <1 always holds for any distinct elements
a, a2 € Q;

(I) There do not exist distinct elements, a2, a3 € Q@ and
distinct vectorsby, by, bz € Q™! such thatb,,by €

Al b2,b3€./41 b1,b3€./4(113.

ay’? az?
Proof:

(I) If there exist distinct elements,, as € @ satisfying that
AL NAL| > 2, sayb; # by € AL NAL, then
(al, bl)T, (al, bg)T, (ag, bl)T, (ag, bg)T € C. Let Cl =
{(al, bl)T, (CLQ, bQ)T} andCQ = {(al, bQ)T, (CLQ, bl)T}.
Thendesc(Cy) = desc(Ca), butC; (N C2 = 0, a contradic-
tion to the definition of &3-MIPPC(n, M, q).

(1) If there exist distinct elements;, as, a3 € @ and distinct
vectorsby, by, by € Q™! such thatby, by € AL,
bQ,bg S Allzg' bl,bg S .A(lls, then (al,bl)T, (al,bg) s
(ag,bQ)T, (CLQ,bg)T, (ag,bl)T, (ag,bg)T e C. Let Cl
= {(a1,b1)7, (az,b2)", (a3,b3)"}, C2 = {(a1,b2)7,
(ag,bg)T, (a3,b1)T}. Then desc(Cl) = deSC(Cg), but
C1(NC2 = 0, a contradiction to the definition of a-
MIPPC(n, M, q).

[ ]
It is of interest to see that the converse of LenimallV.2 is

true whenn = 2.

Proof: The necessity is in fact a special case of Theorem
3.9in [6]. LetC be a2-SC(2, M, q). Assume that there existLemma IV.3. Let C be a (2,1, q) code defined orQ =

distinct elementsuy,a; € Q satisfying |AL, N AL| > 2.
Supposeby, by € A: NAL, b1 # by. Then (a1,b)”,
(a1,b2)T, (a2,01)T, (az,b2)T € C. Let C1 = {(a1,b1)7,
(CLQ,bQ)T} and CQ g {(al,bg)T, (ag,bl)T}. ThenCl 7§ CQ

anddesc(Cy) = desc(Cz), a contradiction to the definition of

a2-SC(2, M, q).

Now we consider its sufficiency. Suppose thdf, AL,
< 1 holds inC for any distinct elements;,a; € @, butC
is not a2-SC(2, M, q). This implies that there exist;,Ca C
C, C1 # Ca, |C1| < 2 and|Cs| < 2, such thatdesc(Cy)
desc(Ca).

Let C; = {Cl,Cg}, Co = {C3,C4}, Cq 75 Co, and C;
(a;,b;)T for 1 <i < 4. We remark here that we allow) = c
or c3 = c4. Sincedesc(Cy) = desc(Cz), thenCy(1) = Ca(1)
andC;(2) = C2(2). This implies thatu; = as (Or az = ay) if
and only ifa; = as = ag = a4, andb; = by (Or by = by) if
and onIy Ifbl = by = b3 = by.

{0,1,...,q— 1}. If C satisfies the following two conditions:
() AL NALI <1 always holds for any distinct elements
ai,az € Q;

(I) There do not exist distinct elements, a2, a3 € QQ and
distinct elementsy, by, b3 € Q, such thatby, by € A},
bg,b3€Al bl,b3€./4l113.

asg’

ThenC is a 3-MIPPC(2, M, q).

Proof: SupposeC satisfies conditions (I) and (ll). We
prove this lemma in three steps.
(1) At first, we prove that if there exist,Co C C, C1 # Co,
IC1] < 3, |C2| < 3, satisfyingdesc(C1) = desc(Cz), then(,
andC, should be of one of the following three types:

C1 Co C3
Typel: a1 as aq ,
by ba  bo



whereC; = {ci1,c2}, C2 = {c1,c2, €3}, a1 # az, by # by;

Ci C2 C3 Cu
> :

Type Il: ay as asz ap
by b1 by b3
= {ca,c3,¢4}, an;, # ap,, 1 <

whereCy = {c1,c2,¢3}, C2 = {c2,c3,¢ca}, a1 # as, by, #
bk2,1§k1<k2§3.
(1.1) If |C4] < 2, |C2| < 2, thenC is not a2-SC(2, M, q).

Wherecl = {Cl,CQ,Cg}, CQ
k1 < ko <3, bl#b3;

Ci C2 C3 C4

Type 1 : a; a1 a3 as
by by b3 by

However, according to condition (I) and Lemma VA s a
2-SC(2, M, q), a contradiction. So this case is impossible.

(12) If |Cl| =1, |CQ| =3, Iet01 = {Cl}, Cy = {02703704},
Whereci = (ai,bi)T, 1 <4 <4, Thena1 = Q2 = a3 = Q4
andb; = by = by = by according todesc(Cy) = desc(Ca),

(1.4.B.a) Supposk, = bs. Sinceas € {a4, as, ag}, we may
assumeay = as. Thenby = by, otherwise,by = by, which
implies b1, b2 € A% ()AL,, a contradiction to condition (I).

as?
CI C C3 |[C4 C5 Cp
ap a1 a3z | as
by by b1 | b
Now we considers; andcg. If a5 = as or ag = ag, Similarly,
we can show thab; = b; or bg = by, respectively, which
implies c5; = ¢4 Or cg = c4, respectively, a contradiction.
Soas = ag = ay. Thenbs # bg, otherwise,c; = cg, @

contradiction. Sincebs,bs € {b1,b2}, we may assume that
bs = by, bg = bo.

Ci Cy C3|Cq4 C; Cg
ay a3 as|as a3 ap
bl b2 bl bl bl b2
Then(C; = Cs, a contradiction. So this case is impossible.

(1.4.B.b) Supposé; # b;, 1 < i < j < 3. Since{b, b,
b3} = {b4, bs,be}, we may assume thaf = by, bs = ba, bg =

which impliesc; = ¢2 = ¢3 = ¢4, a contradiction. So this ps.

case is not possible either.
(1.3) Consider the casi| = 2, |C2| = 3. Let |C1] =
{Cl,CQ}, |CQ| = {Cg,C4,C5}, WhereCi = (ai,bi)T, 1< <5,
(13A) If a; = ao, then a3 = a4 = a5 =

a,. Since

Ci C2 C3|Cq4 C5; Cg

ay ai; as
by bz bz | by b2 b3

{b1,by} = {bs,bs,bs}, there must be two identical elements It is impossible that(as,as) = (a1,a:1). Otherwise,ag =

in {b3,bs,b5}. We may assumés = by. Thencs = cy4, @
contradiction. So this case is impossible.

as, which impliesC; = C,, a contradiction.

It is not possible either thdtug, as) = (a3, a3). Otherwise,
1

(1.3.B) If a1 # as, since desc(C;) = desc(Cz), then b1,bo € A}ll N A,,. a contradiction to condition (1).

as,aq,as € {ai,as} andbs, by, bs € {b1,b2}. Without loss of

generality, we may assume that = a4 = a; andas = as.

Then by # b4, otherwise,c3 = ¢4, a contradiction. Since
bs,by € {b1,b2}, thenb; # b, and we may assume that

b3 =b; andb4 = bs.

Ci C2 | C3 C4 Cj
ap a2
by b2

If b5 = by, thenby, by € AL N AL, thatis,|A} AL >

ap aip a2

b1 b2

If (a4,a5) = (al,ag), then

Ci C2 C3 |Cs C;5 Cg

ay a; a3z | ay as .
bs

b1 b2 b3 | b1 b

We should haveis = a3. Otherwise,ag = a1, thenbs, bs €
AL NAL,, a contradiction to condition (I). So

¢z cics) cs(cs) cs
aq aj as as

by by by by

2, a contradiction to condition (I). So this case is impossibland therefore¢; andC, are of typelll .

If bs = bo, then

Ci C2 | C3 C4 Cj

ay az | ayp aip ag
b1 ba | b1 b2 b

> :

that is,
C1 (Cg) Co (C5) C4
al ag al
by b b

So(C; and(C, are of typel.

(1.4) Consider the casi;| = 3, |C2] = 3. Let C
{Cl,CQ,C3}, Cy = {C4,C5,C6}, Whereci = (ai,bi)T,
1 < 6.

(14A) If a1 = as = ag Or by = by = bg, thenCl =0C,, a
contradiction. So this case is impossible.

(1.4.B) Consider the case; = ay and as # a1. Then
b1 # by, Otherwise,c; = co, a contradiction.

1 p—
1<

Similarly, if (a4,as) = (as,a1), we can show thaf; and
C, are of typelll .

(1.4.C) Consider the case; # a;, 1 < i < j <
Since{ay, as, a3} = {aq,as,as}, we may assume that,
ai,as = ag, a6 = as.

(1.4.C.a) Supposk, = by andbs # by.

€1 €C2 €3 |Cs C5 Cg

ap a2 a3 |a a2 as
by by bs

It is impossible thatb,, bs) = (b1, b1). Otherwisepg = bs,
which impliesC; = C,, a contradiction.

It is not possible either thab,, b5) = (b3, b3). Otherwise,
by, b3 € AL A}, a contradiction to condition (1).

Supposgby, bs) = (b1, b3).

€1 €C2 €3 |Cs C5 Cg

(a1 ay az|ar as a3)

3.

by b1 b3 | b1 b3



Thenbs = bs. Otherwise,bs = by, thenby, bs € AL NAL,
a contradiction to condition (I). So
and thusC; and(C, are of typell .

Similarly, if (b4, bs) = (bs,b1), we can derive thaf; and

C, are of typell .
(1.4.C.b) Supposé; # b, 1 <i< j <3.
C4 C5 Cg

< ap a2 03>

It is impossible that(by, bs,bs) = (b1, b2, b3). Otherwise,
C1 = C», a contradiction.

It is impossible that(bs, b5, bs) = (b1, bs, b2). Otherwise,
ba, b3 € Ai, () AL,, a contradiction to condition (I).

It is impossible that(bs, b5, bs) = (b2, b1,bs3). Otherwise,
by, by € AL AL, a contradiction to condition (1).

It is impossible that(by, bs,bs) = (b2, b3, b1). Otherwise,
bi,by € AL, ba,b3 € AL, b1,bs € AL,, a contradiction to
condition (Il).

It is impossible that(bs, b5, bs) = (bs, b1,b2). Otherwise,
bi,bs € AL, bi,by € AL, ba,b3 € AL, a contradiction to
condition (Il).

Finally, it is not possible either thaiby,bs,bs)
(bs, bz,b1). Otherwise,by,bs € AL (AL,, a contradiction
to condition (1).

(2) Now we prove thatPs(S)| < 2foranyS C C(1)xC(2).
Assume that there exiss C C(1) x C(2) such thaiPs(S)| >
3. Let C1,C2,C5 € P3(S) be three distinct sub-codes 6f
According to (1) desc(C;) = desc(C;) impliesC; andC; are of
one of the three types described in (1), where i < j < 3.

(2.1) If there exists an index 1 < ¢ < 3, such thatC;| = 2,
without loss of generality, we may assurgg| = 2. Then(,
andC, are of typel, C; andCs are of typel. We may assume
that61 = {Cl,CQ}, Cy = {Cl,CQ,Cg}, andC?, = {01702704},
wherec; = (a;,b;)", 1 < i < 4. According to type Ics, cq €
{(al, bg)T, (ag, bl)T}. Clearly C3 75 Cy4, otherwiseCQ =Cs, a
contradiction. Therefore);, b, € A}h ﬂA}lz, which implies

c2 ci(cs) c3(cs) cs
a; a1 a3 a
b1 b1 b3 b3

Ci1
a1

by

C2
az

ba

C3
as

b3

If C1NCs = {c1,c3}, we may assumes; = c¢1,cs = Cs.
Then we should have; = (az,b3)T, and

c2 ci(cs) c3(cg) cr ey
as aj as a ai s
by by by by bs

which impliesby, b3 € AL AL, ie., [AL NALl > 2, a
contradiction to condition (I). So this case is impossible.

If Cq ﬂC3 = {C2,C3}, we may assumes = cz,Cg = C3.
Thenc; = (a1,b3)T c4, Which impliesCy, = C3, a
contradiction. So this case is not possible either.

(2.2.B) Suppos&; andC, are of typelll , C; andCs are
of type lll . Similar to (2.2.A), we can prove this case is
impossible.

(2.2.C) Suppos€; and(C, are of typell, C; andCs are of
type . LetC, = {C17C2,C3}, Co = {C2,C37C4}.

Ci C2 C3 C4
ay; a2 a3 ai
by by b3 b3

Sinceay, # ak,, 1 < k1 < ko < 3, it is impossible that’;
andCs are of typelll . So this case is not possible either.

Therefore, as we claimed earli¢Rs(S)| < 2 for any S C
C(1) x C(2).

(3) Finally, the conclusion comes from (1), (2), and the fact
thatC; (C2 # 0 wheneverC; and(C, are of typel, Il , or Il .

[ |

Combining Lemma VR with LemmBA M3, we derive the

main result of this section.

Theorem IV.4. Let C be a(2,M,q) code defined o) =

{0,1,...,g— 1}. ThenC is a 3-MIPPC(2, M, q) if and only

if it satisfies the following two conditions:

() AL NAL| <1 always holds for any distinct elements
ai,az € Q;

(I) There do not exist distinct elements, a2, a3 € Q@ and
distinct elements,, b;, b3 € Q such thatby, by € Al ,
bg,b3€Al bl,b3€./4l113.

asz’

V. OPTIMAL 3-MIPPC(2, M, q)s

In Sectiorl1ll, we have derived a general upper bound on the
size of at-MIPPC(n, M, q). Now, we are going to consider

|AL N AL | > 2, a contradiction to condition (1). So this casdts optimality.

is impossible.

(2.2) Consider the cas€;| =3 forall 1 <i < 3.

(2.2.A) Suppos€; andC, are of typell , C; andCs are of
type Il. LetC; = {C17C2,C3}, Cy = {CQ,C3,C4}, andC3 =
{cs,c6,c7}, Wheree; = (a;,b;)7, 1 < i < 7. According to
typeII y Ay 75 Ay, 1<k <k <3,b1 75 bs.

Ci €C2 C3 €4 C5 Cg C7
ay a2 agz ai
by b1 b3z b3

Since C; and Cs are of typell, we have|C;(Cs| = 2.
Furthermore, because we requiie# b, we knowC; (Cs #

{C17C2}.

Lemma V.1. There exists &-MIPPC(2, M, q) if and only if
there exists a bipartite grapt’(q, ¢) of girth at least8 with
e(G) = M.

Proof: Suppose that there exists 3aMIPPC(2, M, q),
C, defined on@. We construct a bipartite grapfi(q,¢) as
follows. Let X = Q x {1} andY = @ x {2}. An edge
is incident to (a,1) € X and (b,2) € Y if and only if
(a,b)T € C. Thene(G) = M. We are going to show that
G has girth at leasg.

AssumeG(q,q) contains a4-cycle, say((a1,1), (b1,2),
(a2, 1), (ba,2)), where(a;, 1), 1 <14 < 2, are distinct elements
of X, and (b;,2), 1 < ¢ < 2, are distinct elements of.
Then (al,bl)T,(ag,bl)T, (ag,bg)T, (al,bg)T € C, and thus



b1, by € AL N AL, a contradiction to Theorel 1V.4. So this(1) |B| € K for any B € B;

case is impossible. (2) Every pair of distinct elements of occurs in at most
Assume G(q,q) contains a6-cycle, say((a1,1), (b1,2), one block of3.

(ag,l), (bg,?), (a3,1), (b3,2)), Where(ai,l), 1 <4 <3,

are distinct elements of, aTnd(bl-, 2)'T1 sts 3,Tare d'S“?Ct three distinct elementB|, P, P; € X, if there are two blocks

elements oft”. Then(aq,b1)*, (az,b1)*, (az2,b2)*, (as, b2)*, o . X

(as,bs)T, (a1,b3)7 € C, and thushr, by € AL |, by. by € Al containing Py, P, and P, P; respectively, then there is no

1, L 1
b, b3 € AL_, a contradiction to Theorem 1V.4. So this case iEIOCk containingPs, Ps.

A generalized packindX, B) is called A-free if for any

not possible either. Theorem V.6. There exists 8-MIPPC(2, M, ¢) defined on
Therefore, the bipartite graphi(¢, ¢) constructed above has() if and only if there exists @\-free generalizedq, ¢, K, 1)
girth at least, with e(G) = M. packing (Q. {Ah, ..., A} _,}) with K = {|A}],....| A} ]},

Conversely, for any bipartite grapti(q,q) = G(X,Y) andM = [A}|+ -+ |AL .

with girth at least8, we construct a2, M,q) codeC. Let , !
Q=Xandf:Y X be a bijective mapping. A vector Proof: Suppose’ is a 3-MIPPC(2, M, ¢) defined on@),
and Al = {b € Q| (i,b)T € C} for anyi € Q. Then by

(z, f(y))T € C if and only if {z,y} is an edge of G, where 1 1 .
z € X andy € Y. Obviously,C is a(2, M, q) code defined on Theorer_rm, we knlow thd@a{AO’ N 7Aq*.1}) Is al-free
generalized(q, ¢, {|Ap|, - - -, | A,-1]},1) packing, andM =

Q andM = e¢(G). Suppose that is not a3-MIPPC(2, M, q). 1 i
Then by Theoreni_IVl4, at least one of the following casdlo] + -+ [Ag_y]. i _
should happen. Conve.rsely, for any\-free generalizedy, ¢, K, 1) packing

(1) There exist distinct elements, z2 € Q such than;1 (@, B) with B.: {Bo,...,B;-1} and ]\41/ = |Bol| +o
ﬂAgla2| > 2. In this case, we may assunféy;) # f(y2) € |qu—1|: We d:,gflne a set O.f vectofs! = {Bo,l. . .7B.q71}, with
AL AL, Thenys # 1o, and (o1, f(y1)7, (a1, f(92))", B = {007 [b € B}y it By 7 DandB, =01t B =0,
(22, (1 )T, (x2, f(y2)T € C. Hence {z1,y1}, {w1,y2}, Olg_ 1 <qg—1. By Theorenm, it is readllly checked that
{z2,y1}, {z2,y2} are edges ofG forming a 4-cycle, a B is a3-MIPPC(2, M, q) defined on@ and.A; = B; for any
contradiction. So this case is impossible. te Q

(2) There exist distinct elements, zo, 23 € Q and distinct 11 completes the proof. u

elementsf(y1), f(y2), f(y3) € Q@ such thatf(y1), f(y2) € Corollary V.7. There exists an optima3-MIPPC(2, M, q)
Asys F(2), flys) € AL,. f(y1), fys) € A,,. In this case, i and only if there exists a\-free generalizedq, ¢, K, 1)
yi, 1 < i < 3, are all distinct, anda1, f(y1))", (z1, f(y2))",  packing with maximum\/ = |AS] + -+ + |As_4|, where
(@2, F(y2))T, (w2, f())", (w3, f(ya))T (23, f(yr))T € Co j¢ = {|AY),..., | AL, |},

Hence{z1,y1}, {z1,y2}, {22, v2}, {22, u3}, {z3,93}, {3, .

y1} are edges of: forming a6-cycle, a contradiction. So this NOW we show that some optimatMIPPG(2, M, ¢)s can

case is not possible either. be constructed by means of generalized quadrangles.
Therefore, the(2, M, q) codeC constructed above is &  pefinition V.8. A finite generalized quadrangle (GQ) is an

MIPPC(2, M, q) with M = ¢(G). incidence structureS = (X, B, I) with point-setX and line-
This completes the proof. B setB satisfying the following conditions:

Garcia-Vazqueet al. [10] stated that any maximum bipar-
tite graphG(q, ¢) with size M (3,2, ¢) must have girtt8, for
q > 6 or ¢ = 4. Therefore, we have the following corollary. o)

(1) Each point is incident with + ¢ lines ¢ > 1) and two
distinct points are incident with at most one line;
Each line is incident withl + s points (s > 1) and two

Corollary V.2. Let ¢ > 6 or ¢ = 4. There exists &3- distinct lines are incident with at most one point;
MIPPC(2, M, q) if and only if there exists a bipartite graph (3) If = is a point andL is a line not incident withz,
G(q, q) of girth 8 with ¢(G) = M. then there is a unique paify, N) € X x B for which

Lemma V.3. ([16]) If G(u,v) contains no cycle of length fCINIyIL'

and 6, then its sizee satisfies the following inequality The integerss andt are the parameters of the GQ atihas

) 5 o order (s, t); if s =1, S has orders.

e? — (u+v)e? + 2uve — u?v? < 0.

Th he si f 8-MIPP u be derived f From the definition, any generalized quadrangle has no tri-

) ensuze;%- G2, M, ) can be derived from ;105 |t is known (se€ [L7]) that in a generalized quadeang
emmas L.l anfdyio. IX| = (1+5)(1+st),|B| = (1+1t)(1+st), ands +t divides

Corollary V.4. For any 3-MIPPC(2, M, q), M?® — 2qM? + st(1+s)(1+1).

2¢°M — ¢* < 0. . .
Lemma V.9. If there exits a G@s, t), then there exists &\-
Multimedia IPP codes are also closely related with gendree generalizedv, b, 1+ s, 1) packing, wherey = (1+s)(1+
alized packings defined below. st),b=(1+1)(1+ st).

Definition V.5. Let K be a subset of non-negative integers,  Proof: SupposeS = (X, B, 1) is a GQs, t). By regarding
and letv, b be two positive integers. A generalizedb, K,1) the lines of S as blocks and the points & as elements,
packing is a set syste(lX, B) where X is a set ofv elements we easily obtain a\-free generalizedv, b, 1 + s, 1) packing
and B is a set ofb subsets ofX called blocks satisfying (X, B). [ ]



Lemma V.10. ([17]) Let & be a prime power and < ¢ be
two positive integers. Then there exist GQ)s for (s,t) €
{(k - 17 k+ 1)7 (ka k)v (ka kz)a (kza kg)}

If there exists a G(,t) with s < ¢, then Lemmd_ VP
gives a/A-free generalizedv, b, 1 + s,1) packing withv =
(I1+s)(1+st) < (14+t)(1+ st) =b. Deletingb — v blocks,
we obtain aA\-free generalizedv,v,1 + s,1) packing.

Corollary V.11. For any prime powerk, there exist3-
MIPPC(2, M, q)s for (M,q) € {(k* k3),((k* + 1)(k +
D2, (B4 1) (k+1)), (k2 +1)(k+1)2, (k2 + 1) (k+1)), (K°+
1)(k* 4+ 1)2, (k° + 1)(k* + 1))}

Proof: Apply Theoreni V.6 with Lemmas M$, V10.m
Lemma V.12. Let a,d be two positive integers witld? —

2d + 2 — a = 0. Then for any3-MIPPC(2, M, ad), we have
M < ad?.

Proof: For any3-MIPPC(2, M, q), by Corollary[V.4, we

know that M3 — 2gM? + 2¢°M — ¢* < 0. Let f(M) =
M3 —2gM? + 2¢>M — ¢*, then the derivative of (M) is

df 249 2q2
i 3) + 3 > 0.

Therefore,f is a strictly increasing function ol . Letq = ad,
wherea andd are positive integers such thét—2d+2—a =
0. Then

f(ad?®) = (ad*)?® — 2(ad)(ad®)? + 2(ad)?*(ad?) — (ad)*
=a*d’ — 2a*d® + 2a%d* — a*d*
=a’d"(d* —2d+2 —a)
=0.

(M) = 3M? — 4qM + 2¢* = 3(

ForanyM > ad?, we havef(M') > 0. Soad? is the greatest
integer which satisfies the inequality® — 2qM? + 2¢%>M —
q* < 0. This completes the proof. ]

Theorem V.13. There exists an optima$-MIPPC(2, (k? +
1)(k+ 1), (k* + 1)(k + 1)) for any prime powerk.

Proof: A 3-MIPPC(2, (k* +1)(k +1)%, (k* + 1)(k + 1))
exists from Lemma V1. Let = k2 + 1,d = k + 1, then
d? —2d +2 —a = 0. Apply Lemma\V/12. [

VI. ASYMPTOTICALLY OPTIMAL 3-MIPPC(2, M, ¢)S

Corollaries[V.2 and"VI7 inspire us to construct optin3al
MIPPC(2, M, q)s via bipartite graphs with girtt8 or maxi-
mum A-free generalizedg, ¢, K, 1) packings. Unfortunately,

except for the result in Theorelm VI13, we do not know other

infinite families of optimal3-MIPPC(2, M, ¢)s. However, we
can construct several infinite families of asymptoticalptio

mal 3-MIPPC(2, M, ¢)s by truncating points and lines from

generalized quadrangles.

Theorem VI.1. There exists &-MIPPC(2, k* + 2k3 + 2k* +
2k — 2sk, k3 + k> +k+1—s) for every prime powek, where
1<s<k®+k+1.

Proof: If we can construct a\-free generalizedk® +
K24 k+1—s k> +k*>+k+1—s,{k, k+1},1) packing with
k3 + k2 + k — sk blocks of sizek + 1 and sk — s + 1 blocks

of size k, then the conclusion would follow from Theorem
V8. According to Lemma V.10, there exists a GQk), say
S = (X, B, I), for every prime powek. Choose an arbitrary
point To,0 € X. Let Lo,j = {1‘070,.%'17j, Ce 7.%';@,]'}, 0<5< k,
be thek+1 distinct lines incident withxg o, andL; 1, . . ., L; 1,

1 <4 < k, be the othek distinct lines incident withz; o € X.
Lets; = [Sglj andsy; = s—1—ks;. Then the desired\-free
generalized packing can be constructed by eliminatipgints
L0,00 L1,0y +++1 Lk,0s L1,1y +++y Lhly -3 L1571y «++y Lk os1—1,
L1511 -+ Lsg,s1 and s lines L0,0, L071, Ceey Lo,k, L171, R
Lig,...oLlsi—11, - Lsy—1,5, Lsy 1, - -, Lsy 5., Where the
size of each line after elimination is+ 1 or k because of the
A-freeness of the GQ. [ |

Theorem VI.2. There exists 8&-MIPPC(2, k* — sk, k® — s)
for every prime powek, where0 < s < 2k — 1.

Proof: Similar to Theoreni_VLIl, we want to construct
a N-free generalizedk® — s,k — s,{k},1) packing. Ac-
cording to Lemmd V10, there exists a GQ- 1,k + 1),
sayS = (X, B, 1), for any prime power. Then|X| = k3
and [B] = k3 + 2k% Letzy € X and Xg = {z €
X \{zo} | xzo andx are incident with a ling. Then|X,| =
k2 +k — 2. Let X = {xo,fL‘l, .. .,,Ts_l} - {,To} U X, and
Bs ={L € B | L is incident with a point:
€ X,}. By a simple counting argument, we know that
IBs] = (k+2)+ (s—1)(k+1) = s+ sk + 1. Then
we can obtain aA-free generalizedv,b, k,1) packing by
eliminating thes points in X, and thes + sk + 1 lines in
Bs from the GQk — 1,k + 1), S, wherev = k* — s and
b=k3— s+ (2k? — sk —1). Since0 < s < 2k — 1, we have
b > v. Therefore the desiredl-free generalized packing exists
by further eliminatingh — v blocks of theA-free generalized
(v,b, k, 1) packing. [ |

Theorem VI.3. There exists 8-MIPPC(2, k* + 2k3 + 2k? —
sk—s+[$5 ], k*+2k? — s) for every prime powet;, where
1<s<k*+k+1.

Proof: According to Lemma_V10 and the point-line
duality of GQs (see, for example|_[17]), there exists a
GQ(k + 1,k — 1) for any prime powelk. Suppose thaf is a
GQ(k + 1,k —1). Then|X| = k3 + 2k? and |B| = k3. Pick
an arbitrary point: € X . Suppose.; = {z, 21, ..., Tik+1 )

1 < i < k, arek distinct lines containing:, and eachp; is

the point-set ofL;. Let s; = LZ%}J, sg=85—1—s51(k+1),
and

{z},
{:C}U(Ej P),if s£Aland s=1 (mod k+ 1),

51
{z} U(U P)U{zsi41,15 -+ %5, 41,5, }, otherwise.
i=1

For a givens, we can eliminate the point-s@, and derive
a A-free generalize@v, b, {k+1—s2,k+1,k+2},1) packing
with (s — 1)(k — 1) + k — s1 — h(s2) blocks of sizek + 1,
k3 —k— (s —1)(k —1) blocks of sizek + 2, andh(sz2) block
of sizek +1 — s, Wwherev = k3 4+2k%2 — s, b= k% — s, and

0, if s9=0
h(sg) = { 152 ’

if s=1,

Py =

1, otherwise.

)



Thenv — b = 2k? — s 4+ s; > 0. So, the desired generalized then

packing can be constructed by adding b blocks containing
exactly one point belonging t& \ Ps;. Now we compute the

value M.

M=[(s—=1)(k—1)4+k—s1 —h(s2)](k+1)
+[k* —k—(s—1)(k—1)](k+2)
+h(s2)(k+1—s9) +2k* — s+ 51

=k* + 2k + 2k% — sk — s1k — 1 — h(s2)s2.

If S9 7§ 0, thenh(SQ)SQ = S9, if so =0, thenh(82)82 =0=

s2. SO
M=Fk*~4+2k34+2k> — sk —s1k—1— s

=k 4+ 2k3 + 2k — sk —s1k—1—(s—1—s1(k+1))

=kt 4+ 2k3 422 —sk—s— s
=k 4+ 23 + 2k — sk — s — LZI% .
This completes the proof.

Theorem VI.4. The 3-MIPPC(2, M, q)s constructed in The-

oremsVI.1] VI.2] and[VI.3 are asymptotically optimal.

Proof: Here, we only prove that th&-MIPPC(2, M, q)s
constructed in Theorem V1.2 are asymptotically optimaleTh
other two cases can be proved in a similar way. Note that
Theoren{VI2,qg = k3 — s, M = k* — sk, wherek is a prime

power and) < s < 2k — 1.

Just as in the proof of Lemnia V]12, we consider the strict
increasing functionf (M) = M3 — 2¢M? + 2¢*° M — ¢*, and
also the cubic equatiofi(AM/) = 0. Leta = 1,b = —2q,c =
2¢%,d = —¢*. Then the discriminant of the above-mentioned
cubic equation i) = 18abcd —4b3d+b?c? —4ac® —27a%d? =
q%(40g—16—27¢%) < 0, which implies that this cubic equation

M

lim &%
Kt 1
lim — = lim — = *2¢ _ — — — 1
q—r 00 MO k—o0 MO lim % 1
k—o0
This completes the proof. [ ]

VII. CONCLUDING REMARKS

In this paper, we introduced multimedia IPP codes, which
can be used to identify at least one malicious authorized use
in a multimedia fingerprinting system. We characterized an
optimal 3-MIPP code of length2 in terms of a maximum
bipartite graph with girtt8 and aA-free generalized packing
with maximum number of points in all blocks, respectively. B
using bipartite graphs, we derived several upper bounde®n t
size of a multimedia IPP code. By usiny-free generalized
packings, we constructed several infinite families of (ggym
totically) optimal 3-MIPP codes of lengtt2 via generalized
guadrangles, which can be used to construct “good” binary
3-MIPP codes with long length by a simple composition
construction, in the sense that all these codes have quite a
few codewords.

_ It would be interesting if we could find more optimal
Multimediat-IPP codes. However, we do not find it easy to
construct optimal multimediaIPP codes with long length,
E/ven forn = 4.
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has one real rood/, and two complex conjugate roots (seegraph with high girth, and generalized quadrangles.

for example,[[12], and also [16]), where

Mo = — b L f/% [2b3 — 9abe + 27a%d + \/—27a? D]

3a  3a

1 1
~ 3 §/§[263 — 9abc + 27a?d — \/ —27a2D)]

= % - g i/%[zo — 27q 4 \/27(27¢2 — 40q + 16)]

- % ‘\*/%[20 — 27q — \/27(27¢ — 40q + 16)].

Noting thatf(0) = —¢* < 0, we haveM, > 0. By Corollary
N4, M(3,2,q) < My, and then0 < M < % <1

My
Therefore it is sufficient to prove thalim 2~ = 1 holds.
qg—o0 0
Sinceq = k3 — s, we have

i Mo _ o Mo
qirgo k}4 o ki)rgo k4

L 2q qg 3/1 2

= lim =% — lim 2[20 27q + /27(27¢2 — 40q + 16)]

— lim -L i/%[zo — 27q — \/27(27¢2 — 40q + 16)]
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