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Abstract

A combinatorial characterization of resolvable Steiner 2-(v,k,1)
designs embeddable as maximal arcs in a projective plane of order
(v —k)/(k — 1) is proved, and a generalization of a conjecture by
Andries Brouwer [9] is formulated.

1 Introduction

We assume familiarity with basic facts and notions from combinatorial design
theory [2], [4], [12], [27].
Let D = {X, B} be a Steiner 2-(v, k, 1) design with point set X, collection
of blocks B, and let v be a multiple of k: v = nk. Since every point of X is
contained in

r=(v—1)/(k=-1)=(nk—1)/(k 1)

blocks, it follows that k& — 1 divides n — 1. Thus, n — 1 = s(k — 1) for some
integer s > 1, and

v=nk=(sk—s+1)k.
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A parallel class (or spread) is a set of v/k = n pairwise disjoint blocks,
and a resolution of D is a partition of the collection of blocks B into r =
(v—1)/(k—1) = sk + 1 parallel classes. A design is resolvable if it admits a
resolution.

Any 2-((sk — s + 1)k, k,1) design with s = 1 is equivalent to an affine
plane of order k, and admits exactly one resolution. If s > 1, a resolvable
2-((sk — s+ 1)k, k, 1) design may admit more than one resolution.

A property of resolvable Steiner 2-designs having several resolutions, that
has attracted considerable attention, is orthogonality (see [4, page 31|, [12]
Section 11.7.7], [14], [21], and the references within): two resolutions Ry, Ra,

are called orthogonal if

‘Pl(l) mf)](z)‘ < 1’ for all 1 < Zaj < T

that is, every two parallel classes Pi(l), Pj(2), one from each resolution, share
at most one block.

The subject of this paper is a concept which is somewhat similar, but yet
different from orthogonality. We call two resolutions Ry, Ry (II) compatible
if they share one parallel class,

P _ p@
% i

and
PV nPPI<1

for i # 1 and j' # j.

More generally, a set of m resolutions Ry, ..., R,, is compatible if every
two of these resolutions are compatible.

Sets of mutually compatible resolutions arise naturally in resolvable Steiner
designs associated with maximal arcs in projective planes [2, Section 8.4],
[10].

In this paper, we prove an upper bound on the maximum number of
mutually compatible resolutions, and give a characterization of the case when
this maximum is achieved.



2 An upper bound on the number of mutu-
ally compatible resolutions

Suppose that P is a projective plane of order ¢ = sk. A mazimal {(sk — s+
1)k; k}-arc [16], [25, p. 558], is a set A of (sk — s + 1)k points of P such
that every line of P is ether disjoint from 4 or meets A in exactly k& points.
The set of lines of P which have no points in common with A determines a
maximal {(sk — k + 1)s; s)-arc A+ in the dual plane P+.

A maximal arc with k& = 2 is called a hyperoval (or oval). Maximal
arcs, and hyperovals in particular, have been studied in connection with the
construction of projective planes [2, Section 8.4], [10], [20], [26], and partial
geometries [25].

Maximal arcs with 1 < k < ¢ do not exist in any Desarguesian plane of
odd order ¢ [3], and are known to exist in every Desarguesian plane of even
order ¢ [13], for any k = 2/, k < ¢, as well as in some non-Desarguesian
planes of even order [15], [24].

If £ > 1, the non-empty intersections of a maximal {(sk — s + 1)k; k}-
arc A with the lines of a projective plane P of order ¢ = sk are the blocks
of a resolvable 2-((sk — s + 1)k, k,1) design D. Similarly, if s > 1, the
corresponding {(sk — k + 1)s; s}-arc AL in the dual plane is the point set
of a resolvable 2-((sk — k + 1)s,s,1) design D+. We will refer to D (resp.
D4) as a design embeddable in P (resp. P1) as a maximal arc. The points
of D* determine a set of (sk — k + 1)s mutually compatible resolutions of
D. Respectively, the points of D determine a set of (sk — s + 1)k mutually
compatible resolutions of D=.

Theorem 2.1 Let S = {Ry,...,R,} be a set of m mutually compatible
resolutions of a 2-((sk — s+ 1)k, k,1) design D = {X,B}. Then

m < (sk —k+1)s.

The equality
m=(sk—k+1)s

holds if and only if there exists a projective plane P of order sk such that D
is embeddable in P as a mazimal {(sk — s + 1)k; k}-arc.

Proof. It is straightforward to check that if P is a projective plane of
order sk in which D is embedded as a maximal {(sk — s + 1)k; k}-arc, then
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the points of the corresponding maximal {(sk — k + 1)s; s}-arc in the dual
plane P+ define a set of (sk — k + 1)s mutually compatible resolutions of D.

To prove the converse, we consider the simple incidence structure Z having
as "points” the blocks of D, that is, having B as a point set, and having blocks
of size

vk=n=sk—s+1

being the parallel classes of D which appear in resolutions of S. Let r; denote
the number of blocks of Z containing the ith point of Z.

A point of D is contained in

r=sk-+1

blocks, and the total number b of blocks of D is equal to

b:%:(sk—sﬂ)(skﬂ).

Any block of D is disjoint from exactly
b—1—k(r—1)=s(sk—k+1)(k—1)
other blocks of D. It follows that every block of D is contained in at most

b—1—k(r—1)

- =sk—k+1
v

parallel classes of D which appear in resolutions from S, that is,

T S sk —k + 1.
Let b; denote the number of blocks of Z. Counting in two ways the incident
pairs of a block and a point of Z gives

b,(%) =3 " n < b(sk — k+1) = (sk — s+ 1)(sk + 1)(sk — k+ 1),

i=1

hence
br < (sk+1)(sk — k+1), (2)

and the equality b; = (sk + 1)(sk — k + 1) holds if and only if

rp=ro=---=1,=sk—k+ 1.
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Now we define an incidence structure D+ on a set X+ of m points labeled
by the m compatible resolutions Ry,..., R, from S = {Ry,..., R,}. The
"blocks” of D+ are labeled by the parallel classes of D which appear in
resolutions from S, that is, by the blocks of Z. By definition, a point D+
labeled by R; is incident with r blocks of D+ which are labeled by the r
blocks of Z being the parallel classes of D appearing in the resolution R;.
Since every two resolutions R;, R; (i # j) of S share exactly one parallel
class, every two distinct points of D+ appear together in exactly one block
of D+.
Let k; (1 < j < b;) denote the size of the jth block of D+. We have

br
Z k; = mr,
j=1
br
ij(kj - 1) = m(m - 1)>
j=1
whence
br
Zkf =m(m—1+r),
j=1
b] bI
(Z k)2 =m?r? < by Zk‘? =bm(m—14r),
i=1 j=1
and

mr? < br(m—1+7).

Applying the inequality (2]), we have
mr? < (sk+1)(sk —k+1)(m—1+7). (3)
After the substitution r» = sk + 1, inequality (3)) simplifies to
m < (sk —k+1)s. (4)
Now assume that equality holds in (@), that is,

m = (sk—k+1)s,



which is possible only if b; meets the equality in (2)), that is,
by =(sk+1)(sk—k+1)=r(sk—k+1)=rn.

Then
by by by

> (kj—s)?=> "k —25> kj+ 5 =0,

J=1 J=1 Jj=1

thus, all blocks of D+ are of size s, and D+ is a 2-((sk — k +1)s, s, 1) design.
Suppose that m = (sk—k+1)s. We define an incidence structure P with
points labeled by the v = (sk — s+ 1)k points of D and the

bt =br = (sk+1)(sk —k+1)
blocks of D+. Thus, P has
v=v+b"=(sk—s+1)k+ (sk+1)(sk—k+1)=(sk)*+ sk +1

points.
The blocks of P are of two types. The blocks of the first type are

b= (s(k—1)+1)(sk+1)

blocks, each being a union of a block B of D with the block of the dual
structure of Z, associated with the point of Z labeled by B. Each such block

is of size
kE+(sk—k+1)=sk+1=r.

The blocks of the second type are also of size r = sk 4+ 1 and are labeled by
the m = (sk —k +1)s points of D+, and coincide with the blocks of the dual
structure of D+. Thus, P has

b=b+m= (sk)*+ sk +1

blocks.

Since every two points of D+ appear in exactly one block of Dt every
two blocks of P of the second type intersect in exactly one point. Since the
r blocks of D+ through a point of D+ correspond to a parallel class of blocks
of Z, every block of P of the first type meets every block of the second type
in exactly one point.



To determine how pairs of blocks of the first type intersect, we consider
the block graph I' of D, that is, the vertices of I' are labeled by the blocks
of D, where two vertices are adjacent if and only if the corresponding blocks
are not disjoint. The graph I' is strongly regular with parameters

(b,a, A, p),
where b = (s(k — 1) + 1)(sk + 1) is the number of vertices,
a=k(r—1)=sk?
is the degree of each vertex, and
A= -2+ k-12=kk+s5—-2), up=F~K.
The complementary graph I is strongly regular of degree
a=b—1—a=sk*+2sk — s’k — ks — s.

The by = (sk+1)(sk—k-+1) blocks of Z, being parallel classes of D belonging
to resolutions of S, are cocliques in I' of size

%:n:sk—s—l—l.

By the property of S, every two blocks of Z can share at most one point,
hence the corresponding (sk — k + 1)—cocquues of I', can share at most one
vertex. Viewed as (sk — k + 1)-cliques of I, the blocks of Z cover

sk—k+1\  (sk+1)(sk —k+1)(sk — s+ 1)(sk — s)
() ;

edges of I', which is equal to the total number of edges of I'. It follows
that every two blocks of P of the first type share exactly one point. Thus,
P is a projective plane of order sk in which D is embedded as a maximal
{(sk — s+ 1)k; k}-arc.

This completes the proof.

Remark 2.2 It is an interesting open question whether the results from
this section can be generalized to designs having m mutually compatible
resolutions, with m slightly smaller than (sk — k + 1)s, in the spirit of the
results by A. Beutelspacher and K. Metsch on partial projective planes [§],

.



3 On a conjecture by Andries Brouwer

It is conceivable that a resolvable 2-((sk — s + 1)k, k, 1) design admitting a
set of mutually compatible resolutions that achieves the bound of Theorem
2.1l possesses a high degree of symmetry. One measure of symmetry is the p-
rank of the incidence matrix over a finite field of characteristic p that divides
r — 1 = sk, which is the order of the related projective plane.

The special case s = 2, k = 271 ¢+ > 2 corresponds to projective planes
of order 2¢. A 2-(2%~1 — 2t=1 2171 1) design arising from a maximal (2%~ —
2012071 _arc A is called an oval design [2] 8.4], in reference to the fact that
the corresponding maximal (2! +2; 2)-arc At in the dual plane is a hyperoval.
The 2-rank of oval designs in PG(2!,2) has been studied extensively. In 1989
Mackenzie [22] (see also [2, Theorem 8.4.1], [I8]) proved that the 2-rank
of any oval design in PG(2',2) is bounded from above by 3" — 2!, Tt was
conjectured by Assmus that this upper bound is always achievable. This
conjecture was proved consequently by Carpenter [I1], by using a result by
Blokhuis and Moorhouse [§].

In the smallest case, t = 2, a maximal (6; 2)-arc (s = k = 2) in the plane of
order 4 and its dual plane is a hyperoval, yielding the unique trivial 2-(6,2,1)
design. The next case, t = 3, corresponds to the projective plane of order 8,
which contains only one class (up to projective equivalence) of hyperovals, or
(10; 2)-arcs, and consequently, one (up to isomorphism) maximal (28;4)-arc,
yielding a 2-(28,4, 1) oval design.

Designs with the latter parameters, 2-(28,4, 1), have been the subject of
several papers ([1], [5], [9], [I7], [19], [23]). According to the Handbook of
Combinatorial Designs [12, page 37|, there are at least 4,747 known noniso-
morphic designs with these parameters, and all designs possessing nontrivial
automorphisms have been classified (Kréadinac [19]). The more recent publi-
cation by Al-Azemi, Anton Betten, and Dieter Betten [I] gives a much bigger
number of nonisomorphic 2-(28, 4, 1) designs, namely, 68,806 such designs, all
having a blocking set, and among those, 68,484 designs have a trivial auto-
morphism group.

In [9], Andries Brouwer investigated the embeddability of 2-(28,4,1) de-
signs as unitals in projective planes of order 9. The 2-ranks of the 138 designs
examined by Brouwer in [9] ranged between 19 and 27, with the exception
of 2-rank 20. The minimum 2-rank, 19, was achieved by a design being the
smallest member of the family of Ree unitals, and one of the two 2-(28,4,1)
designs having 2-transitive automorphism groups (the second being the clas-



sical Hermitian unital, having 2-rank 21). It was shown in [17] that there are
no 2-(28,4, 1) designs of 2-rank 20, and there are exactly four nonisomorphic
designs of 2-rank 21, one being the classical Hermitian unital.

It turns out that the 2-(28, 4, 1) Ree unital is isomorphic to the oval design
in the plane of order 8, PG(23,2).

Brouwer [9] made the conjecture that 19 is the minimum 2-rank of any
2-(28,4,1) design, and this minimum is achieved by the Ree unital only. This
conjecture was proved to be true by McGuire, Tonchev and Ward [23].

Taking into account Carpenter’s result about the 2-rank of oval designs
in PG(2',2) [I1], it is tempting to believe that the following generalization
of Brouwer’s conjecture is true.

Conjecture 3.1 . If D is a 2-(2%~1 — 2071 2171 1) design (t > 2), with an
incidence matriz A, then

ranky(A) > 3" — 21,

and the equality
ranky(A) = 3" — 2!

holds if and only if D is embeddable as a mazimal (221 — 2171, 2N _arc in
PG(2',2).

The conjecture is trivially true for ¢ = 2, and its validity for t = 3 follows
from the results of [23].
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