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Abstract

A combinatorial characterization of resolvable Steiner 2-(v, k, 1)
designs embeddable as maximal arcs in a projective plane of order
(v − k)/(k − 1) is proved, and a generalization of a conjecture by
Andries Brouwer [9] is formulated.

1 Introduction

We assume familiarity with basic facts and notions from combinatorial design
theory [2], [4], [12], [27].

Let D = {X,B} be a Steiner 2-(v, k, 1) design with point set X , collection
of blocks B, and let v be a multiple of k: v = nk. Since every point of X is
contained in

r = (v − 1)/(k − 1) = (nk − 1)/(k − 1)

blocks, it follows that k − 1 divides n− 1. Thus, n− 1 = s(k − 1) for some
integer s ≥ 1, and

v = nk = (sk − s+ 1)k.
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A parallel class (or spread) is a set of v/k = n pairwise disjoint blocks,
and a resolution of D is a partition of the collection of blocks B into r =
(v− 1)/(k− 1) = sk+ 1 parallel classes. A design is resolvable if it admits a
resolution.

Any 2-((sk − s + 1)k, k, 1) design with s = 1 is equivalent to an affine
plane of order k, and admits exactly one resolution. If s > 1, a resolvable
2-((sk − s+ 1)k, k, 1) design may admit more than one resolution.

A property of resolvable Steiner 2-designs having several resolutions, that
has attracted considerable attention, is orthogonality (see [4, page 31], [12,
Section II.7.7], [14], [21], and the references within): two resolutions R1, R2,

R1 = P
(1)
1 ∪ P

(1)
2 ∪ · · ·P (1)

r , R2 = P
(2)
1 ∪ P

(2)
2 ∪ · · ·P (2)

r (1)

are called orthogonal if

|P
(1)
i ∩ P

(2)
j | ≤ 1, for all 1 ≤ i, j ≤ r,

that is, every two parallel classes P
(1)
i , P

(2)
j , one from each resolution, share

at most one block.
The subject of this paper is a concept which is somewhat similar, but yet

different from orthogonality. We call two resolutions R1, R2 (1) compatible
if they share one parallel class,

P
(1)
i = P

(2)
j ,

and
|P

(1)
i′ ∩ P

(1)
j′ | ≤ 1

for i′ 6= i and j′ 6= j.
More generally, a set of m resolutions R1, . . . , Rm is compatible if every

two of these resolutions are compatible.
Sets of mutually compatible resolutions arise naturally in resolvable Steiner

designs associated with maximal arcs in projective planes [2, Section 8.4],
[10].

In this paper, we prove an upper bound on the maximum number of
mutually compatible resolutions, and give a characterization of the case when
this maximum is achieved.
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2 An upper bound on the number of mutu-

ally compatible resolutions

Suppose that P is a projective plane of order q = sk. A maximal {(sk− s+
1)k; k}-arc [16], [25, p. 558], is a set A of (sk − s + 1)k points of P such
that every line of P is ether disjoint from A or meets A in exactly k points.
The set of lines of P which have no points in common with A determines a
maximal {(sk − k + 1)s; s)-arc A⊥ in the dual plane P⊥.

A maximal arc with k = 2 is called a hyperoval (or oval). Maximal
arcs, and hyperovals in particular, have been studied in connection with the
construction of projective planes [2, Section 8.4], [10], [20], [26], and partial
geometries [25].

Maximal arcs with 1 < k < q do not exist in any Desarguesian plane of
odd order q [3], and are known to exist in every Desarguesian plane of even
order q [13], for any k = 2i, k < q, as well as in some non-Desarguesian
planes of even order [15], [24].

If k > 1, the non-empty intersections of a maximal {(sk − s + 1)k; k}-
arc A with the lines of a projective plane P of order q = sk are the blocks
of a resolvable 2-((sk − s + 1)k, k, 1) design D. Similarly, if s > 1, the
corresponding {(sk − k + 1)s; s}-arc A⊥ in the dual plane is the point set
of a resolvable 2-((sk − k + 1)s, s, 1) design D⊥. We will refer to D (resp.
D⊥) as a design embeddable in P (resp. P⊥) as a maximal arc. The points
of D⊥ determine a set of (sk − k + 1)s mutually compatible resolutions of
D. Respectively, the points of D determine a set of (sk − s + 1)k mutually
compatible resolutions of D⊥.

Theorem 2.1 Let S = {R1, . . . , Rm} be a set of m mutually compatible
resolutions of a 2-((sk − s+ 1)k, k, 1) design D = {X,B}. Then

m ≤ (sk − k + 1)s.

The equality
m = (sk − k + 1)s

holds if and only if there exists a projective plane P of order sk such that D
is embeddable in P as a maximal {(sk − s+ 1)k; k}-arc.

Proof. It is straightforward to check that if P is a projective plane of
order sk in which D is embedded as a maximal {(sk − s+ 1)k; k}-arc, then
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the points of the corresponding maximal {(sk − k + 1)s; s}-arc in the dual
plane P⊥ define a set of (sk− k+1)s mutually compatible resolutions of D.

To prove the converse, we consider the simple incidence structure I having
as ”points” the blocks ofD, that is, having B as a point set, and having blocks
of size

v/k = n = sk − s+ 1

being the parallel classes of D which appear in resolutions of S. Let ri denote
the number of blocks of I containing the ith point of I.

A point of D is contained in

r = sk + 1

blocks, and the total number b of blocks of D is equal to

b =
vr

k
= (sk − s+ 1)(sk + 1).

Any block of D is disjoint from exactly

b− 1− k(r − 1) = s(sk − k + 1)(k − 1)

other blocks of D. It follows that every block of D is contained in at most

b− 1− k(r − 1)
v
k
− 1

= sk − k + 1

parallel classes of D which appear in resolutions from S, that is,

ri ≤ sk − k + 1.

Let bI denote the number of blocks of I. Counting in two ways the incident
pairs of a block and a point of I gives

bI(
v

k
) =

b
∑

i=1

ri ≤ b(sk − k + 1) = (sk − s+ 1)(sk + 1)(sk − k + 1),

hence
bI ≤ (sk + 1)(sk − k + 1), (2)

and the equality bI = (sk + 1)(sk − k + 1) holds if and only if

r1 = r2 = · · · = rb = sk − k + 1.

4



Now we define an incidence structure D⊥ on a set X⊥ of m points labeled
by the m compatible resolutions R1, . . . , Rm from S = {R1, . . . , Rm}. The
”blocks” of D⊥ are labeled by the parallel classes of D which appear in
resolutions from S, that is, by the blocks of I. By definition, a point D⊥

labeled by Ri is incident with r blocks of D⊥ which are labeled by the r
blocks of I being the parallel classes of D appearing in the resolution Ri.
Since every two resolutions Ri, Rj (i 6= j) of S share exactly one parallel
class, every two distinct points of D⊥ appear together in exactly one block
of D⊥.

Let kj (1 ≤ j ≤ bI) denote the size of the jth block of D⊥. We have

bI
∑

j=1

kj = mr,

bI
∑

j=1

kj(kj − 1) = m(m− 1),

whence
bI
∑

j=1

k2
j = m(m− 1 + r),

(

bI
∑

j=1

kj)
2 = m2r2 ≤ bI

bI
∑

j=1

k2
j = bIm(m− 1 + r),

and
mr2 ≤ bI(m− 1 + r).

Applying the inequality (2), we have

mr2 ≤ (sk + 1)(sk − k + 1)(m− 1 + r). (3)

After the substitution r = sk + 1, inequality (3) simplifies to

m ≤ (sk − k + 1)s. (4)

Now assume that equality holds in (4), that is,

m = (sk − k + 1)s,

5



which is possible only if bI meets the equality in (2), that is,

bI = (sk + 1)(sk − k + 1) = r(sk − k + 1) = rn.

Then
bI
∑

j=1

(kj − s)2 =

bI
∑

j=1

k2
j − 2s

bI
∑

j=1

kj + s2bI = 0,

thus, all blocks of D⊥ are of size s, and D⊥ is a 2-((sk− k+1)s, s, 1) design.
Suppose that m = (sk−k+1)s. We define an incidence structure P with

points labeled by the v = (sk − s + 1)k points of D and the

b⊥ = bI = (sk + 1)(sk − k + 1)

blocks of D⊥. Thus, P has

v̄ = v + b⊥ = (sk − s+ 1)k + (sk + 1)(sk − k + 1) = (sk)2 + sk + 1

points.
The blocks of P are of two types. The blocks of the first type are

b = (s(k − 1) + 1)(sk + 1)

blocks, each being a union of a block B of D with the block of the dual
structure of I, associated with the point of I labeled by B. Each such block
is of size

k + (sk − k + 1) = sk + 1 = r.

The blocks of the second type are also of size r = sk + 1 and are labeled by
the m = (sk−k+1)s points of D⊥, and coincide with the blocks of the dual
structure of D⊥. Thus, P has

b̄ = b+m = (sk)2 + sk + 1

blocks.
Since every two points of D⊥ appear in exactly one block of D⊥, every

two blocks of P of the second type intersect in exactly one point. Since the
r blocks of D⊥ through a point of D⊥ correspond to a parallel class of blocks
of I, every block of P of the first type meets every block of the second type
in exactly one point.
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To determine how pairs of blocks of the first type intersect, we consider
the block graph Γ of D, that is, the vertices of Γ are labeled by the blocks
of D, where two vertices are adjacent if and only if the corresponding blocks
are not disjoint. The graph Γ is strongly regular with parameters

(b, a, λ, µ),

where b = (s(k − 1) + 1)(sk + 1) is the number of vertices,

a = k(r − 1) = sk2

is the degree of each vertex, and

λ = (r − 2) + (k − 1)2 = k(k + s− 2), µ = k2.

The complementary graph Γ̄ is strongly regular of degree

ā = b− 1− a = s2k2 + 2sk − s2k − k2s− s.

The bI = (sk+1)(sk−k+1) blocks of I, being parallel classes ofD belonging
to resolutions of S, are cocliques in Γ of size

v

k
= n = sk − s+ 1.

By the property of S, every two blocks of I can share at most one point,
hence the corresponding (sk − k + 1)-cocliques of Γ, can share at most one
vertex. Viewed as (sk − k + 1)-cliques of Γ̄, the blocks of I cover

bI

(

sk − k + 1

2

)

=
(sk + 1)(sk − k + 1)(sk − s+ 1)(sk − s)

2

edges of Γ̄, which is equal to the total number of edges of Γ̄. It follows
that every two blocks of P of the first type share exactly one point. Thus,
P is a projective plane of order sk in which D is embedded as a maximal
{(sk − s+ 1)k; k}-arc.

This completes the proof.

Remark 2.2 It is an interesting open question whether the results from
this section can be generalized to designs having m mutually compatible
resolutions, with m slightly smaller than (sk − k + 1)s, in the spirit of the
results by A. Beutelspacher and K. Metsch on partial projective planes [8],
[7].
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3 On a conjecture by Andries Brouwer

It is conceivable that a resolvable 2-((sk − s + 1)k, k, 1) design admitting a
set of mutually compatible resolutions that achieves the bound of Theorem
2.1 possesses a high degree of symmetry. One measure of symmetry is the p-
rank of the incidence matrix over a finite field of characteristic p that divides
r − 1 = sk, which is the order of the related projective plane.

The special case s = 2, k = 2t−1, t ≥ 2 corresponds to projective planes
of order 2t. A 2-(22t−1 − 2t−1, 2t−1, 1) design arising from a maximal (22t−1 −
2t−1; 2t−1)-arc A is called an oval design [2, 8.4], in reference to the fact that
the corresponding maximal (2t+2; 2)-arcA⊥ in the dual plane is a hyperoval.
The 2-rank of oval designs in PG(2t, 2) has been studied extensively. In 1989
Mackenzie [22] (see also [2, Theorem 8.4.1], [18]) proved that the 2-rank
of any oval design in PG(2t, 2) is bounded from above by 3t − 2t. It was
conjectured by Assmus that this upper bound is always achievable. This
conjecture was proved consequently by Carpenter [11], by using a result by
Blokhuis and Moorhouse [8].

In the smallest case, t = 2, a maximal (6; 2)-arc (s = k = 2) in the plane of
order 4 and its dual plane is a hyperoval, yielding the unique trivial 2-(6, 2, 1)
design. The next case, t = 3, corresponds to the projective plane of order 8,
which contains only one class (up to projective equivalence) of hyperovals, or
(10; 2)-arcs, and consequently, one (up to isomorphism) maximal (28; 4)-arc,
yielding a 2-(28, 4, 1) oval design.

Designs with the latter parameters, 2-(28, 4, 1), have been the subject of
several papers ([1], [5], [9], [17], [19], [23]). According to the Handbook of
Combinatorial Designs [12, page 37], there are at least 4,747 known noniso-
morphic designs with these parameters, and all designs possessing nontrivial
automorphisms have been classified (Krćadinac [19]). The more recent publi-
cation by Al-Azemi, Anton Betten, and Dieter Betten [1] gives a much bigger
number of nonisomorphic 2-(28, 4, 1) designs, namely, 68,806 such designs, all
having a blocking set, and among those, 68,484 designs have a trivial auto-
morphism group.

In [9], Andries Brouwer investigated the embeddability of 2-(28, 4, 1) de-
signs as unitals in projective planes of order 9. The 2-ranks of the 138 designs
examined by Brouwer in [9] ranged between 19 and 27, with the exception
of 2-rank 20. The minimum 2-rank, 19, was achieved by a design being the
smallest member of the family of Ree unitals, and one of the two 2-(28, 4, 1)
designs having 2-transitive automorphism groups (the second being the clas-
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sical Hermitian unital, having 2-rank 21). It was shown in [17] that there are
no 2-(28, 4, 1) designs of 2-rank 20, and there are exactly four nonisomorphic
designs of 2-rank 21, one being the classical Hermitian unital.

It turns out that the 2-(28, 4, 1) Ree unital is isomorphic to the oval design
in the plane of order 8, PG(23, 2).

Brouwer [9] made the conjecture that 19 is the minimum 2-rank of any
2-(28, 4, 1) design, and this minimum is achieved by the Ree unital only. This
conjecture was proved to be true by McGuire, Tonchev and Ward [23].

Taking into account Carpenter’s result about the 2-rank of oval designs
in PG(2t, 2) [11], it is tempting to believe that the following generalization
of Brouwer’s conjecture is true.

Conjecture 3.1 . If D is a 2-(22t−1 − 2t−1, 2t−1, 1) design (t ≥ 2), with an
incidence matrix A, then

rank2(A) ≥ 3t − 2t,

and the equality
rank2(A) = 3t − 2t

holds if and only if D is embeddable as a maximal (22t−1 − 2t−1; 2t−1)-arc in
PG(2t, 2).

The conjecture is trivially true for t = 2, and its validity for t = 3 follows
from the results of [23].

4 Acknowledgments

The author wish to thank the anonymous referees for carefully reading the
manuscript and suggesting several improvements, including the open ques-
tion formulated in Remark 2.2.
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