
A Projection Decoding of a Binary
Extremal Self-Dual Code of Length 40

Jon-Lark Kim
Department of Mathematics

Sogang University
Seoul, 121-742, South Korea

jlkim@sogang.ac.kr

Nari Lee
Department of Mathematics

Sogang University
Seoul 121-742, South Korea
narirhee@hanmail.net

August 7, 2018

Abstract

As far as we know, there is no decoding algorithm of any binary self-dual [40, 20, 8]
code except for the syndrome decoding applied to the code directly. This syndrome
decoding for a binary self-dual [40, 20, 8] code is not efficient in the sense that it cannot
be done by hand due to a large syndrome table. The purpose of this paper is to give
two new efficient decoding algorithms for an extremal binary doubly-even self-dual
[40, 20, 8] code CDE

40,1 by hand with the help of a Hermitian self-dual [10, 5, 4] code E10

over GF (4). The main idea of this decoding is to project codewords of CDE
40,1 onto E10

so that it reduces the complexity of the decoding of CDE
40,1. The first algorithm is called

the representation decoding algorithm. It is based on the pattern of codewords of E10.
Using certain automorphisms of E10, we show that only eight types of codewords of
E10 can produce all the codewords of E10. The second algorithm is called the syndrome
decoding algorithm based on E10. It first solves the syndrome equation in E10 and
finds a corresponding binary codeword of CDE

40,1.

KeyWords: decoding algorithm, projection, self-dual codes, syndrome decoding method
MSC 2010 Codes: 94B05

1

ar
X

iv
:1

70
1.

04
18

0v
1

 [
cs

.I
T

]
 1

6
Ja

n
20

17

1 Introduction

Self-dual codes have been one of the most active research topics in algebraic coding theory
because they have wide connections with mathematical areas including groups, designs,
lattices, modular forms, and invariant theory (see [16], [17], [22]).

Pless [20] started the classification of binary self-dual codes of lengths up to 20. There are
many papers devoted for the classification of binary self-dual codes (see [7], [15]). Anguilar-
Melchor, et al. [1] classified all extremal binary self-dual codes of length 38. Shortly after, it
was shown [3] that there are exactly 16470 extremal doubly-even self-dual binary codes of
length 40. Then, it has been shown [4] that there are exactly 10200655 extremal singly-even
self-dual codes of length 40.

However, from a viewpoint of decoding, only a few self-dual codes have efficient decoding
algorithms. In particular, we are interested in decoding self-dual codes of reasonable length
by hand, i.e., decoding without using computers. For example, Pless [21] showed how to
decode the extended binary Golay [24, 12, 8] code by hand. The [6, 3, 4] hexacode over
GF (4) was used here to decode the extended Golay [24, 12, 8] code. Later, Gaborit-Kim-
Pless [12] suggested two handy decoding algorithms for three doubly-even self-dual [32, 16, 8]
codes such as the binary Reed-Muller [32, 16, 6] code and two other doubly-even self-dual
[32, 16, 8] codes denoted by C83 (or 2g16) and C84 (or 8f4) in the notation of [20]. As far
as we know, there is no efficient decoding algorithm by hand for binary self-dual [40, 20, 8]
codes. (The best known binary linear [40, 20] code has d = 9 and has no efficient decoding
yet.) For example, the usual syndrome decoding to decode CDE

40,1 requires 220 coset leaders.
Hence the comparison of the syndrome of a received vector and the look-up table of 220

coset leaders needs much space and time. It has been remarked as a research problem [16,
Research Problem 9.7.8] to find an efficient decoding algorithm that can be used on all self-
dual codes or on a large family of such codes. Thus decoding self-dual codes by hand will
be an efficient decoding algorithm.

In this paper, we describe two new efficient decoding algorithms for an extremal self-dual
[40, 20, 8] code CDE

40,1 by hand with the help of a Hermitian self-dual [10, 5, 4] code E10 over
GF (4). The algorithm is called the representation decoding algorithm. It is based on the
pattern of codewords of E10. Using the automorphisms of E10 we show that certain eight
types of codewords of E10 produce all the codewords of E10. The other algorithm is called
the syndrome decoding algorithm. It first solves the syndrome equation in E10 and finds a
corresponding binary codeword of CDE

40,1 . The main idea of this decoding is to generalize
the decoding of the binary Golay code of length 24 whose codewords are arranged as a
4 × 6 matrix and are projected onto the [6, 3, 4] Hexacode over GF (4) (see [21]). We give
a detailed explanation of these algorithms and show how these algorithms work by showing
explicit examples.

2 Preliminaries

A linear [n, k] code over Fq is a k-dimensional subspace of Fn
q . The dual of C is C⊥ = {x ∈

Fn
q | x · c = 0 for any c ∈ C}, where the dot product is either a usual inner product or a

Hermitian inner product. A linear code C is called self-dual if C = C⊥. If q = 2, then C

2

is called binary. If q = 4, let GF (4) = {0, 1, ω, ω}, where ω = ω2 = ω + 1. It is more
natural to consider the Hermitian inner product 〈, 〉 on GF (4)n: for x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) in GF (4)n, 〈x, y〉 =

∑n
i=1 xiyi, where a = a2.

Besides linear codes over GF (2) or GF (4), we introduce additive codes. For basic defi-
nitions about additive codes, we refer to [10], [14], [11]. An additive code C over GF (4) of
length n is an additive subgroup of GF (4)n. Since C is a vector space over GF (2), it has a
GF (2)-basis consisting of k (0 ≤ k ≤ 2n) vectors whose entries are in GF (4). We call C an
(n, 2k) code. A generator matrix of C is a k × n matrix with entries in GF (4) whose rows
are a GF (2)-basis of C. The weight wt(c) of c in C is the number of nonzero components
of c. The minimum weight d of C is the smallest weight of any nonzero codeword in C. If
C is an (n, 2k) additive code of minimum weight d, C is called an (n, 2k, d) code. In order
to define an inner product on additive codes we define the trace map, i.e., for x in GF (4),
Tr(x) = x+x2 ∈ GF (2). We now define a non-degenerate trace inner product of two vectors
x = (x1x2 · · ·xn) and y = (y1y2 · · · yn) in GF (4)n to be

x ? y =
n∑

i=1

Tr(xiyi) ∈ GF (2),

where yi denotes the conjugate of yi. Note that Tr(xiyi) = 1 if and only if xi and yi are
nonzero distinct elements in GF (4).

If C is an additive code, its dual, denoted by C⊥, is the additive code {x ∈ GF (4)n |
x ? c = 0 for all c ∈ C}. If C is an (n, 2k) code, then C⊥ is an (n, 22n−k) code. As usual, C
is called self-dual if C = C⊥. We note that if C is self-dual, C is an (n, 2n) code. In binary
codes there are two types of self-dual codes which are doubly-even and singly-even such that
weights of all the codewords ≡ 0 (mod 4) and weights of some codewords ≡ 2 (mod 4),
respectively. So are in additive codes over GF (4). A self-dual additive code C is called
Type II (or even) if all codewords have even weight, and Type I if some codeword has odd
weight. It is well known [6] that a linear self-dual code over GF (4) under the Hermitian
inner product (i.e., a Hermitian self-dual code over GF (4)) is a Type II self-dual additive
code over GF (4).

Höhn [14] presents two constructions that begin with a self-dual additive (n, 2n) code
and produce a self-dual binary code of length 4n. We describe these two (Constructions A
and B) and recall a third (C) from [11].

If C is a self-dual additive (n, 2n) code over GF (4), let Ĉ be the binary linear [4n, n] code
obtained from C by mapping each GF (4) component to a 4-tuple in GF (2)4 as follows :
0 → 0000, 1 → 0011, ω → 0101, and ω → 0110. Let d4 be the [4, 1, 4] binary linear code
{0000, 1111}. Let (dn4)0 be the [4n, n− 1, 8] binary linear code consisting of all codewords of
weights divisible by 8 from the [4n, n, 4] code dn4 , where dn4 denotes a direct sum of n copies
of d4. Let eB be the [4n, 1] code generated by{

1000 1000 · · · 1000 1000 if n ≡ 0 (mod 4)
1000 1000 · · · 1000 0111 if n ≡ 2 (mod 4)

and eC the binary [4n, 1, n] code generated by 1000 1000 · · · 1000.

Construction A: Define ρA(C) = Ĉ + dn4 .

3

Construction B: Assume that n is even. Define ρB(C) = Ĉ + (dn4)0 + eB.

Construction C: Assume that n ≡ 2 (mod 4). Define ρC(C) = Ĉ + (dn4)0 + eC .

We give a brief remark on the classification of additive self-dual (10, 210, 4) codes. Gaborit
et al. [11] showed that there are at least 51 Type I self-dual additive (10, 210, 4) codes and
at least 5 Type II self-dual additive (10, 210, 4) codes. Later, Bachoc-Gaborit [2] showed
that there are exactly 19 Type II additive (10, 210, 4) codes. Finally, Danielsen-Parker [8]
classified that there are exactly 101 Type I self-dual (10, 210, 4) codes.

Theorem 1. Suppose C is a Type II self-dual additive (10, 210, 4) code. Then ρC(C) is
a singly-even self-dual [40, 20, 8] binary code. Similarly, ρB(C) is a doubly-even self-dual
[40, 20, 8] binary code.

Proof. Note that ρC(C) = Ĉ + (dn4)0 + eC and that ρB(C) = Ĉ + (dn4)0 + eB since n = 10 ≡ 2
(mod 4). It follows from Theorem 5.1 in [11] that ρC(C) (ρB(C) respectively) is a singly-even
self-dual (doubly-even self-dual, respectively) binary [40, 20] code by construction. Thus it
remains to show the minimum distance of ρC(C) (ρB(C) respectively) is equal to 8.

For the first statement, the minimum distance of ρC(C) is less than or equal to 8 by

construction. Let a ∈ Ĉ, b ∈ (d104)0, and eC = c = 1000 1000 · · · 1000. It suffices to show
that any linear combination of these vectors has weight at least 8.

To do this, for i = 1, . . . , 10, let di = {4i− 3, 4i− 2, 4i− 1, 4i} be a subset of coordinates
{1, 2, 3, 4, · · · , 37, 38, 39, 40}. Clearly wt(a), wt(b), and wt(c) are greater than or equal to
8. Since wt(a + b) ≥ wt(a) ≥ 8, wt(a + b) ≥ 8. The weight of v ∈ ρC(C) restricted to di is
denoted by wt(v|di). Since wt((a + c)|di) = 1 or 3 for i = 1, · · · , 10, we have wt(a + c) ≥ 8.
Since wt((b+ c)|di) = 1 or 3 for i = 1, · · · , 10, we have wt(b+ c) ≥ 8. Finally, observe that
wt((a+b)|di) = 0, 2, or 4, hence that wt((a+b+c)|di) = wt((a+b)+c)|di) = 1 or 3. This
implies that wt(a + b + c) ≥ 8. Therefore the minimum distance of ρC(C) is 8, as desired.

For the second statement, let eB = c′ = 1000 1000 · · · 0111, a ∈ Ĉ, and b ∈ (dn4)0. By
construction the minimum distance of ρB(C) is less than or equal to 8. It suffices to show
that any linear combination of these vectors has weight at least 8.

Let di be defined as above. Clearly wt(a), wt(b), and wt(c′) are greater than or equal
to 8. Since wt(a + b) ≥ wt(a) ≥ 8, wt(a + b) ≥ 8. The weight of v ∈ ρB(C) restricted
to di is denoted by wt(v|di). Since wt((a + c′)|di) = 1 or 3 for i = 1, · · · , 10, we have
wt(a+c′) ≥ 8. Since wt((b+c′)|di) = 1 or 3 for i = 1, · · · 10, we have wt(b+c′) ≥ 8. Finally,
wt((a + b)|di) = 0, 2, or 4, hence that wt((a + b + c′)|di) = wt((a + b) + c′)|di) = 1 or 3.
This implies that wt(a + b + c′) ≥ 8. Therefore the minimum distance of ρB(C) is 8, as
desired.

Now, one natural question is whether it is possible to decode some (or all) of these
singly-even or doubly-even self-dual [40, 20, 8] binary codes.

4

3 Construction of a doubly-even (or singly-even) [40, 20, 8]

code

In this section, we describe how to construct a singly-even or doubly-even self-dual [40, 20, 8]
binary code which can be decoded easily.

As mentioned above, there are exactly 19 Type II self-dual additive (10, 210, 4) codes.
Hence by applying Theorem 1, we can get 19 singly-even self-dual [40, 20, 8] binary codes
and 19 doubly-even self-dual [40, 20, 8] binary codes, all of which are inequivalent by Magma.
Not all such binary codes can be decoded efficiently. Since Hermitian self-dual codes over
GF (4) are Type II self-dual additive codes, we use the classification of Hermitian self-dual
linear [10, 5, 4] codes. In fact, there are exactly two non-equivalent Hermitian self-dual linear
[10, 5, 4] codes, denoted by E10 and B10 in the notation of [19]. Their weight enumerator is
W10(y) = 1 + 30y4 + 300y6 + 585y8 + 108y10 by [19]. We rewrite each generator matrix as a
GF (2)-basis, where the first five rows form a basis for a Hermitian self-dual linear code over
GF (4).

G(E10) =



1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 ω ω
ω ω ω ω 0 0 0 0 0 0
0 0 ω ω ω ω 0 0 0 0
0 0 0 0 ω ω ω ω 0 0
0 0 0 0 0 0 ω ω ω ω
ω 0 ω 0 ω 0 ω 0 ω 1


, G(B10) =



1 1 1 1 0 0 0 0 0 0
0 1 ω ω 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 1 ω ω 1
0 1 ω ω 0 0 1 ω ω 0
ω ω ω ω 0 0 0 0 0 0
0 ω ω 1 ω 0 0 0 0 0
0 0 0 0 0 ω ω ω ω 0
0 0 0 0 0 0 ω ω 1 ω
0 ω 1 ω 0 0 ω 1 ω 0



Applying Theorem 1, we obtain the following theorem.

Theorem 2. 1. Each of generator matrices for ρC(E10) and ρC(B10) generates a singly-
even self-dual [40, 20, 8] code.

2. Each of generator matrices for ρB(E10) and ρB(B10) generates a doubly-even self-dual
[40, 20, 8] code.

Let CDE
40,1 = ρB(E10), CDE

40,2 = ρB(B10), and CSE40,1 = ρC(E10), CSE40,2 = ρC(B10). Then we

describe some properties of CDE
40,i and CSE40,i for i = 1, 2. The following computation has been

done by Magma.
The weight distribution of CDE

40,1 is A0 = 1, A8 = 285 = A32, A12 = 21280 = A28, A16 =

239970 = A24, A20 = 525504. The order of the automorphism group of CDE
40,1 is 218×32×5×7.

Its covering radius is 8. The generator matrix G(CDE
40,1) of CDE

40,1 is given below.

The weight distribution of CSE40,1 is A0 = 1, A8 = 285 = A32, A10 = 1024 = A30, A12 =
11040 = A28, A14 = 46080 = A26, A16 = 117090 = A24, A18 = 215040 = A22, A20 = 267456.
We recall that any singly-even self-dual [40, 20, 8] code has the following weight enumerator
[7, 13].

W (y) = 1 + (125 + 16β)y8 + (1664− 64β)y10 + · · · ,

where β = 0, 1, 2, · · · , 8, 10. It is useful to know the weight enumerator of CSE40,2 in terms of

β. Hence CSE40,1 has W (y) with β = 10. The order of the automorphism group of CSE40,1 is

218 × 32 × 5. Its covering radius is 7. The generator matrix of CSE40,1 is obtained by replacing

the last row of G(CDE
40,1) by the vector eC from Construction C.

5

Similarly, the weight distribution of CDE
40,2 is the same as that of CDE

40,1. The order of the

automorphism group of CDE
40,2 is 216× 33× 52. Its covering radius is 7. The generator matrix

G(CDE
40,2) of CDE

40,2 is given below.

The weight distribution of CSE40,2 is the same as that of CSE40,1. The order of the automor-

phism group of CSE40,2 is 216 × 33 × 52. Its covering radius is 7. The generator matrix of CSE40,i
is obtained by replacing the last row of G(CDE

40,i) by the vector eC in Construction C.

G(CDE
40,1) =



0011001100110011000000000000000000000000
0000000000110011001100110000000000000000
0000000000000000001100110011001100000000
0000000000000000000000000011001100110011
0011000000110000001100000011000001010110
0101010101010101000000000000000000000000
0000000001010101010101010000000000000000
0000000000000000010101010101010100000000
0000000000000000000000000101010101010101
0101000001010000010100000101000001100011
1111111100000000000000000000000000000000
1111000011110000000000000000000000000000
1111000000001111000000000000000000000000
1111000000000000111100000000000000000000
1111000000000000000011110000000000000000
1111000000000000000000001111000000000000
1111000000000000000000000000111100000000
1111000000000000000000000000000011110000
1111000000000000000000000000000000001111
1000100010001000100010001000100010000111



, G(CDE
40,2) =



0011001100110011000000000000000000000000
0000001101010110001100000000000000000000
0000000000000000000000110011001100110000
0000000000000000000000000011010101100011
0000001101100101000000000011011001010000
0101010101010101000000000000000000000000
0000010101100011010100000000000000000000
0000000000000000000001010101010101010000
0000000000000000000000000101011000110101
0000010100110110000000000101001101100000
1111111100000000000000000000000000000000
1111000011110000000000000000000000000000
1111000000001111000000000000000000000000
1111000000000000111100000000000000000000
1111000000000000000011110000000000000000
1111000000000000000000001111000000000000
1111000000000000000000000000111100000000
1111000000000000000000000000000011110000
1111000000000000000000000000000000001111
1000100010001000100010001000100010000111



In what follows, we describe how the four codes CDE
40,i and CSE40,i for i = 1, 2 are obtained

in terms of column and row parities.
To do this, we recall basic terms from [12] and [18].
Let v be a binary vector of length 40. We identify it with a 4× 10 array with zeros and

ones in it. Let


v1
v2
v3
v4

 be any column of the array of v (where vi = 0 or 1 for i = 1, . . . , 4).

Label the four rows of the array with the elements of GF (4) : 0, 1, ω, ω. If we take the
inner product of a column of our array with the row labels, we get 0 ·v1 +1 ·v2 +ω ·v3 +ω ·v4
which is an element of GF (4). This defines a linear map called Proj from the set of binary
vectors of length 4m to the set of quaternary vectors of length m.

For instance, let v= (1,1,1,0, 1,0,0,0, 1,1,0,0, 0,1,0,1, 1,0,0,1, 1,1,0,0, 0,0,1,0, 0,1,0,0,
1,1,1,1, 0,1,1,0) be the binary vector of length 40. Then

v =

1 2 3 4 5 6 7 8 9 10
0 1 1 1 0 1 1 0 0 1 0
1 1 0 1 1 0 1 0 1 1 1
ω 1 0 0 0 0 0 1 0 1 1
ω 0 0 0 1 1 0 0 0 1 0

ω 0 1 ω ω 1 ω 1 0 ω

is projected to the quaternary vector w = (ω, 0, 1, ω, ω, 1, ω, 1, 0, ω) of length 10. Hence
we have Proj(v) = w.

Let the parity of a column be either even or odd if an even or an odd number of ones
exist in the column. Define the parity of the top row in a similar fashion. Thus columns
1,2,7, and 8 of the above array have odd parity, and the rest have even parity. The top row
has even parity.

6

Let S be a set of binary vectors of length 4m and C4 a quaternary additive code of length
m. Then S is said to have projection O onto C4 if the following conditions are satisfied:

(i) For any vector v ∈ S, Proj(v) ∈ C4. Conversely, for any vector w ∈ C4, all vectors v
such that Proj(v) = w are in S.

(ii) The columns of the array of any vector of S are either all even or all odd.

(iii) The parity of the top row of the array of any vector of S is the same as the column
parity of the array.

Using the same notation as above, S is said to have projection E onto C4 if the conditions
(i) and (ii), as well as the following third condition (iii′), are satisfied:

(iii′) The parity of the top row of the array of any vector of S is always even.

Now we have a result similar to [12, Lemma 2].
In an analogous way, we obtain the following theorem.

Theorem 3. Let C1 = E10 and C2 = B10. Let i = 1, 2. Then CDE
40,i has projection O onto Ci.

Proof. Let i = 1, 2. Let I be a set of binary vectors of length 40 having projection O onto Ci.
Since we denoted CDE

40,1 = ρB(E10), CDE
40,2 = ρB(B10) before, we want to show that ρB(Ci) = I.

Note that Proj(v) in condition (i) of projection O is linear, i.e., if Proj(vi) = ci for
i = 1, 2, then Proj(v1 + v2) = c1 + c2. Thus any set satisfying condition (i) is linear. It is
easy to see that sum of any two vectors of even(odd, respectively) parities for columns and
top row also has even(even, respectively) parities for columns and top row. Sum of a vector
of even parity and a vector of odd parity has odd parities for columns and top row. Thus any
set satisfying the condition (ii) and (iii) of projection O is also linear. Since I is assummed
to have projection O onto Ci, I satisfies conditions (i), (ii), and (iii) by the definition of
projection O onto C4. Thus I is a binary linear code. We note that Ci as a linear code
over GF (4) has an information set which consists of some five linearly independent columns
over GF (4) of G(Ci). (One such information set is the set of columns 1, 2, 4, 5, and 7 of
G(C1) (resp. 1, 5, 6, 7, and 10 of G(C2)) where G(Ci) is introduced previously.) So the other
columns of G(Ci) are linear combinations of the columns in the information set. Using this,
we will compute the size of I.

As before, we identify a binary vector of length 40 with a 4 × 10 array. First suppose
that all columns of our 4 × 10 arrays in I are even and first row is even. Recall that I
has projection O onto Ci. Then each column in the information set can be even eight times
out of 16 choices. There are 2 choices to have even parity for each column outside the
information set, except the last one which is automatically determined because of top row
parity. Hence there are 85 × 24 × 1 = 219 vectors when all columns and top row are even.
For the same reason we obtain 85 × 24 × 1 = 219 vectors when all columns and top row are
odd. Therefore there are 2× 219 = 220 vectors, which implies that I is a [40, 20] linear code.
By Theorem 1 ρB(Ci) gives a doubly-even self-dual [40, 20, 8] code. Since ρB(Ci) is a binary
linear code of dimension 20 satisfying properties (i), (ii), and (iii) of projection O and I is
the largest linear code of dimension 20 satisfying (i), (ii), and (iii) of projection O, we have
that ρB(Ci) = I as desired.

7

Remark 1. Let C1 = E10 and C2 = B10. Let i = 1, 2. Then CSE40,i has projection E onto Ci.

The proof of the remark is analogous to Theorem 3. Considering only even top parity
instead even and odd top row parities, we get the same result.

Since our self-dual codes have minimum distance d = 8, it can correct up to three errors.
In what follows, we show that these can be done very quickly.

4 Decoding a doubly-even (or singly-even) [40, 20, 8] code

Because of the simple structure of the generator matrix of E10, we focus on the decoding
of the doubly-even self-dual binary code CDE

40,1. The singly-even self-dual binary code CSE40,1
is decoded similarly. We will represent all the codewords in E10 by only 8 vectors together
with certain automorphisms of E10.

We call positions (1, 2), (3, 4), (5, 6), (7, 8), and (9, 10) blocks of E10. In [19] the order g

of the monomial group of E10 is 3 · 2 10
2
−1(10/2)! = 5760 with generators (12)(34), (13)(24),

(13579)(2468 10). It implies that this representation E10 is invariant under all permutations
of these five blocks and under all even numbers of interchanges within the blocks. So we
can partition all 45 − 1 = 1023 vectors of E10, except the zero vector, into the eight vectors
in Table 1 up to those invariant operations. The following shows how we applied those
invariant operations to vectors in E10.

(i) The number of the first type codewords is 10 × 3 considering 5!
2!3!

= 10 block per-
mutations and scalar multiplication of {1, ω, ω}. It is meaningless to consider the
interchanges within blocks since the components in a block are identitcal.

(ii) The number of the second type codewords is 80 × 3. Consideirng only block per-
mutations there are 5!

4!
= 5 cases. Considering interchanges within 2 blocks there

are 5!
2!2!

= 30 cases for the type (01 01 10 10 ωω) and 5!
3!

= 20 cases for the type
(01 10 10 10 ωω). Considering interchanges within 4 blocks there are 5!

4!
= 5 cases for

the type (01 01 01 01 ωω) and 5!
3!

= 20 cases for the type (01 01 01 10 ωω). Considering
the scalar multiplication and the total number of these cases, we get our result.

(iii) The number of the third type codewords is 5!
2!

= 60. For this type we only need
to consider block permutations since a codeword with scalar multiplication matches
to one of the codewords with block permutations. It is meaningless to consider the
interchanges within blocks since the components in a block are identitcal.

(iv) The number of the fourth type codewords is 5×3 considering 5!
4!

= 5 block permutations
and scalar multiplications. It is meaningless to consider the interchanges within blocks
since the components in a block are identitcal.

(v) The number of the fifth type codewords is 30× 3 considering 5!
2!2!

= 30 block permuta-
tions and scalar multiplications. It is meaningless to consider the interchanges within
blocks since the components in a block are identitcal.

8

(vi) The number of the sixth type codewords is 160 × 3. Considering only block permu-
tations there are 5!

2!2!
= 30 cases. Considering interchanges within 2 blocks there

are 5!
3!2!

= 10 cases for the type (ωω ωω 10 10 ωω), 5!
2!

= 60 cases for the type
(ωω ωω 01 10 ωω), 5!

2!2!
= 30 cases for the type (ωω ωω 01 01 ωω), and 5!

3!
= 20

cases for the type (ωω ωω 01 10 ωω). Considering interchanges within 4 blocks there
are 5!

3!2!
= 10 cases for the type (ωω ωω 01 01 ωω). Considering the scalar multiplication

and the total number of these cases, we get our result.

(vii) The number of the seventh type codewords is 16 × 3. Considering only block per-
mutations there are 5!

2!3!
= 10 cases. Considering interchanges within 2 blocks there

are 5!
5!

= 1 case for the type (ωω ωω ωω ωω ωω) and 5!
4!

= 5 cases for the type
(ωω ωω ωω ωω ωω). Considering the scalar multiplication and the total number of
these cases, we get our result.

(viii) The number of the eighth type codewords is 20×3 considering 5!
3!

= 20 block permuta-
tions and scalar multiplications. It is meaningless to consider the interchanges within
blocks since the components in a block are identical.

As an example, if there is a codeword (0ω ω1 ω1 ω0 ω1), it is easy to find its type since
its weight is 8 and there are 3 distinct nonzero components. It tells us that this is the sixth
type of Table 1. Using this table we can easily check and correct at most three errors and
there are many other examples for this in Sec. 4.3.

Table 1: All the types of codewords for E10

No. Type of codewords for E10 Number of this type Weight
(i) 1 1 1 1 0 0 0 0 0 0 10× 3 4
(ii) 1 0 1 0 1 0 1 0 ω ω 80× 3 6
(iii) ω ω ω ω 1 1 0 0 0 0 60 6
(iv) 1 1 1 1 1 1 1 1 0 0 5× 3 8
(v) 1 1 1 1 ω ω ω ω 0 0 30× 3 8
(vi) ω ω ω ω 1 0 1 0 ω ω 160× 3 8
(vii) ω ω ω ω ω ω ω ω ω ω 16× 3 10
(viii) 1 1 1 1 1 1 ω ω ω ω 20× 3 10

In what follows, we introduce a lemma in order to describe how many errors and erasures
in E10 over GF (4) can be corrected. By an erasure, we mean that we know an error position
but we do not know a correct value.

Lemma 1. ([16, p. 45]) Let C be an [n, k, d] code over GF (q). If a codeword c is sent and
y is received where υ errors and ε erasures have occurred, then c is the unique codeword in
C closest to y provided 2υ + ε < d.

In Sec. 3 we showed how we arranged the binary vectors of length 40 in columns to do
the projection onto GF (4)10. Table 2 shows all the possible cases of errors up to “three”
that we can have for binary vectors of length 40. There is no other case that we can decode
to a unique codeword in CDE

40,1 than the cases listed in Table 2. The notation [x; ȳ] we used in

9

Table 2: All the possible cases of errors that can occur up to three in a vector of CDE
40,1

The number of errors
that can occur in v ∈ CDE

40,1

Parity of
columns

The number of errors
in each parity (x; ȳ)

0 [10; 0̄] (0;0̄)
1 [9; 1̄] (0; 1̄)
2 [10; 0̄] (2;0̄)

[8; 2̄] (0; 1̄, 1̄)
3 [9; 1̄] (0; 3̄)

[9; 1̄] (2; 1̄)
[7; 3̄] (0;1̄, 1̄, 1̄)

the second column of Table 2 denotes that x columns have the same parity and y columns
the other and may assume that x ≥ y. In many cases we can detect errors by checking
the column parities since our [40, 20, 8] code can correct up to three errors. In some cases,
however, column parities do not give enough information about errors since an even number
of errors in a column do not change the parity. We considered this kind of errors and their
combinations as well.

For a binary vector with [x; ȳ] column parity, the notation (x1, . . . , xs; ȳ1, . . . , ȳt) (0 ≤
s ≤ x, 0 ≤ t ≤ ȳ) denotes x1, . . . , xs errors in s columns, and y1, . . . , yt errors in t columns.
For (0;0̄), it means that there is no error in any of the columns. For (0;1̄), it means that
there is no error in any of nine columns of one parity but an error in the column of the other
parity. This error is easy to find since one error changes the column parity. For (2;0̄), it
means that two errors lie in one of the ten columns. It is easy to see that these errors do
not change the column parity. For (0;1̄, 1̄), it means that there is no error in any of eight
columns of one parity but an error each in two columns of the other parity. For (2;1̄), it
means that there are two errors in one of the nine columns of one parity and an error in
the column with the other parity. For (0;1̄, 1̄, 1̄), it means that there are no error in any of
seven columns of one parity but an error each in three columns of the other parity.

Table 3 shows all the possible cases of errors that can occur for the parity of columns in
Table 2. In the second column of Table 3, we listed all the column parities in Table 2. The
third column of Table 3 shows all the possible errors that can occur in each case. However
some situations cannot occur such as 4 errors in one column and 1, 2, or 3 in another (i.e.,
(4; 1̄), (4, 2; 0̄), (4; 3̄), repectively). We can directly check from G(CDE

40,1) that we can always
have weight 8 codewords whose i-th and (i+ 1)-st columns consist of all ones for 1 ≤ i < 10.
Thus adding these codewords to those errors would correspond to (0; 3̄), (2; 0̄), (0; 1̄) case,
respectively, giving a coset leader of weight 3, 2, 1, repectively. The fourth column shows
correct columns. For example, the case II(iii) (8) out of 9 implies that 8 columns out of
nine columns with one parity are correct, even though which 8 columns are correct are not
decided.

Now we move to the fifth column of Table 3. It represents the possible cases of υ errors
and ε erasures that can occur in codewords for E10 using Lemma 1. When a column parity
of a codeword for CDE

40,1 is changed by (an) error(s), then the corresponding component in
the codeword for E10 is regarded as an erasure. For the case such that a column parity is

10

Table 3: All the possible cases of errors that can occur for the parity of columns in Table 2

Case
Prity of
columns

The number of errors
in v ∈ CDE

40,1

Correct
columns

(υ, ε) in c ∈ E10 2υ + ε < 4?

I [10; 0̄] (i) (0;0̄) errors 10 (0,0) Yes
(ii) (2;0̄) (9) out of 10 (1,0) Yes
(iii) (4;0̄) (9) out of 10 (1,0) Yes
(iv) (2,2;0̄) (8) out of 10 (2,0) No
(v) (2,2,2;0̄) (7) out of 10 (3,0) No

II [9; 1̄] (i) (0; 1̄) 9 (0,1) Yes
(ii) (0; 3̄) 9 (0,1) Yes
(iii) (2; 1̄) (8) out of 9 (1,1) Yes
(iv)(2, 2; 1̄) (7) out of 9 (2,1) No
(v) (2, 2, 2; 1̄) (6) out of 9 (3,1) No

III [8; 2̄] (i) (0; 1̄, 1̄) 8 (0,2) Yes
(ii) (0; 1̄, 3̄) 8 (0,2) Yes
(iii) (2; 1̄, 1̄) (7) out of 8 (1,2) No
(iv) (2; 1̄, 3̄) (7) out of 8 (1,2) No
(v) (2, 2; 1̄, 1̄) (6) out of 8 (2,2) No

IV [7; 3̄] (i) (0;1̄, 1̄, 1̄) 7 (0,3) Yes
(ii) (0; 1̄, 1̄, 3̄) 7 (0,3) Yes
(iii) (2; 1̄, 1̄, 1̄) (6) out of 7 (1,3) No
(iv) (2; 1̄, 3̄, 3̄) (6) out of 7 (1,3) No
(v) (2; 1̄, 1̄, 3̄) (6) out of 7 (1,3) No
(vi) (2, 2; 1̄, 1̄, 1̄) (5) out of 7 (2,3) No

not changed by errors the corresponding component in the codeword for E10 is regarded as
an error.

We can get the fifth column of Table 3 from the third column of Table 3 just by checking
the number of numbers without bar and with bar. If the number of errors in v ∈ CDE

40,1 is
(0;1̄, 1̄, 1̄), then the corresponding (υ, ε) in c ∈ E10 is (0, 3) since zero is without bar and
three ones are with bar. If the number of errors in v ∈ CDE

40,1 is (2; 1̄), then the corresponding
(υ, ε) in c ∈ E10 is (1, 1). The sixth column of Table 3 shows that if at most three errors
occurred in CDE

40,1 then we can obtain a unique vector in E10 since all the cases of such errors
satisfy the inequality in Lemma 1.

Table 2 shows all the cases that are decodable to a unique codeword in CDE
40,1. Table

3 shows all the kind of errors that can occur for the cases of column parities in Table 2.
Any other cases not on the list of Table 3 definitely have more than three errors, which is
regardless in our case since our CDE

40,1 code can correct up to three errors. We will introduce
two kinds of algorithms as follows, one is representation decoding algorithm and the other
syndrome docoding algorithm. When consider for the cases not in Table 3, we declare it
has more than three errors and not decodable on Step 1 in both algorithms. Thus both
algorithms halt for these cases. For the cases in Table 3, when we exit from the loop either
we have decoded v as a codeword of CDE

40,1 or declared that v has more than three errors.

11

Executing the if statement at the end of two algorithms returns the proper value and this
satisfies the output condition. Thus both algorithms halt for the cases in Table 3.

4.1 Representation decoding algorithm

In this section we describe the representation decoding algorithm. A main idea of this
algorithm is that given a received vector v ∈ GF (2)40 written as a 4× 10 binary matrix, we
project it to a quaternary vector of length 10 and decode this quaternary vector using E10

with the help of Table 1 and then obtain a codeword of CDE
40,1 with the help of Table 3.

Input: A received vector v ∈ GF (2)40 written as a 4× 10 binary matrix.
Output: Either produce a correct codeword of CDE

40,1 or say that more than three errors
occurred.
Representation decoding algorithm:

Step 1 Compute the parities of the columns of v and determine which case of Table 3 we
are in. If no case is found, we say that “more than three errors occurred” and exit.
Otherwise, go to Step 2-I-(i).

Step 2-I-(i) If the parity of v is the case I, then consider it as a case I-(i). Else, go to Step 2-II-(i).

Compute the projection of v onto GF (4)10, call it y. If there is any type in Table
1 matching y after the action of the automorphism groups and scalar multiplication,
then we compute the parity of the top row and columns of v. If such y′ is not found,
then we consider it as a case I-(ii) and go to Step2-I-(ii).

If the parities of columns are all same and top row parity is same as the column parity,
we say that “no errors have occurred” and v is a “codeword of CDE

40,1” and exit. Else
(i.e., case I-(iii)), we say that “more than three errors occurred” and exit.

Step 2-I-(ii) We use Table 1 to find the closest vector y′ to y by changing only one element of y
after the action of the automorphism groups and scalar multiplication.

If y′ is found, then use y′ to correct v by changing two elements of v in the column
where the errors occurred according to the condition that all the columns and top row
have the same parity.

Else (i.e., case I-(iv), (v)), we say that “more than three errors occurred” and exit.

After this, we say v is decoded as a “codeword of CDE
40,1” and exit.

Step 2-II-(i) If the parity of v is the case II, then consider it as a case II-(i). Else, go to Step
2-III-(i).

Compute the projection of v onto GF (4)10, call it y. Since we know the error column
position, it is easy to find the closest vector y′ to y in Table 1 by changing only one
element of y after the action of the automorphism groups and scalar multiplication.
If such y′ is not found (i.e., case II-(iii), (iv), (v)), go to Step II-(iii).

We use y′ to correct v by changing one element in the column where the error occurred
according to the condition that all the columns and top row have the same parity. Then
we say v is decoded as a “codeword of CDE

40,1” and exit. Else, go to Step 2-II-(ii).

12

Step 2-II-(ii) Now we use y′ to correct v by changing three elements in the column where the errors
occurred according to the condition that all the columns and top row have the same
parity. Then we say v is decoded as a “codeword of CDE

40,1” and exit.

Step 2-II-(iii) We use Table 1 to find the closest vector y′ to y by changing two elements of y after
the action of the automorphism groups and scalar multiplication.

If y′ is found, then we use y′ to correct v by changing two elements in two columns
where the errors occurred according to the condition that all the columns and top row
have the same parity. Else (case II-(iv), (v)), we say that “more than three errors
occurred” and exit.

After this, we say v is decoded as a “codeword of CDE
40,1” and exit.

Step 2-III-(i) If the parity of v is the case III, then consider it as a case III-(i). Else, go to Step
2-IV-(i).

Compute the projection of v onto GF (4)10, call it y. Since we know the error column
positions, it is easy to find the closest vector y′ to y in Table 1 by changing two
elements of y after the action of the automorphism groups and scalar multiplication.
If such y′ is not found (i.e., case III-(iii), (iv), (v)), we say that “more than three errors
occurred” and exit.

We use y′ to correct v by changing two elements in two columns where the errors
occurred according to the condition that all the columns and top row have the same
parity. Then we say v is decoded as a “codeword of CDE

40,1” and exit. Else, we are in
(case III-(ii)), so we say that “more than three errors occurred” and exit.

Step 2-IV-(i) If the parity of v is the case IV, then consider it as a case IV-(i). Compute the
projection of v onto GF (4)10, call it y. Since we know the error column positions,
it is easy to find the closest vector y′ to y in Table 1 by changing three elements of
y after the action of the automorphism groups and scalar multiplication. If such y′

is not found (i.e., case IV-(iii), (iv), (v), (vi)), we say that “more than three errors
occurred” and exit.

We use y′ to correct v by changing three elements in three columns where the errors
occurred according to the condition that all the columns and top row have the same
parity. Then we say v is decoded as a “codeword of CDE

40,1” and exit. Else, we are in
(case IV-(ii)), so we say that “more than three errors occurred” and exit.

The following columns yield the elements in GF (4).

0 ∈ GF (4)⇒


0
0
0
0




1
1
1
1




1
0
0
0




0
1
1
1

 , 1 ∈ GF (4)⇒


1
1
0
0




0
0
1
1




0
1
0
0




1
0
1
1

 ,

ω ∈ GF (4)⇒


1
0
1
0




0
1
0
1




0
0
1
0




1
1
0
1

 , ω̄ ∈ GF (4)⇒


1
0
0
1




0
1
1
0




0
0
0
1




1
1
1
0

 .

13

As we can see above, we have four choices for each element in GF (4) and two choices for even
parity and two for odd. Thus after the correct projection y′ is found, we change elements in
columns of v to satisfy Proj(v) = y′. Considering the column and top row parity, we are
left with only one choice out of four. After changing elements according to the steps in the
representation decoding algorithm, we can say v is decoded to a unique vector in CDE

40,1.

4.2 Syndrome decoding algorithm

In this section, we give a syndrome decoding algorithm based on E10. A main idea of this
algorithm is that given a received vector v ∈ GF (2)40 written as a 4× 10 binary matrix, we
project it to a quaternary vector of length 10 and decode this quaternary vector using the
syndrome decoding of E10 and then obtain a codeword of CDE

40,1 with the help of Table 3.
Let H be a parity check matrix of E10 consisting of the first five rows of G(E10) in Section

3. We use the first five rows of H = G(E10) since we are considering it as a parity check
matrix of a linear self-dual code over GF (4).

Input: A vector v ∈ GF (2)40 as a 4× 10 binary matrix.
Output: Either produce a correct codeword of CDE

40,1 or say that more than three errors
occurred.
Syndrome decoding algorithm algorithm:

Step 1 Compute the parities of the columns of v and determine which case of Table 3 we
are in. If no case is found, we say that “more than three errors occurred” and exit.
Otherwise, go to Step 2-I-(i).

Step 2-I-(i) If the parity of v is the case I, then consider it as a case I-(i). Else, go to Step 2-II-(i).

Compute the projection of v onto GF (4)10, call it y. If the syndrome of y is zero,
then we compute the parity of the top row and columns of v. Else, go to Step2-I-(ii).
When we get the syndrome of y, we use H as a parity check matrix of E10.

If the parities of columns are all same and top row parity is the same as the column
parity, we say that “no errors have occurred” and exit. Else (i.e., case I-(iii)), we say
that “more than three errors occurred” and exit.

Step 2-I-(ii) If the syndrome is a scalar multiple k of an i-th column of the parity check matrix H,
then the i-th coordinate of the error vector e is k and elsewhere zeros. Else (i.e., case
I- (iv), (v)), we say that “more than three errors occurred” and exit.

By adding e to y, we get the correct projection y′. Now we use y′ to correct v
by changing two elements in the column where the errors occurred according to the
condition that all the columns and top row have the same parity. Then we say v is
decoded as a “codeword of CDE

40,1”, then exit.

Step 2-II-(i) If the parity of v is the case II, then consider it as a case II-(i). Else, go to Step
2-III-(i).

Compute the projection of v onto GF (4)10, call it y. If the syndrome is a scalar
multiple k of an i-th column of H, then the i-th coordinate of the error vector e is k
and elsewhere zeros. Else, go to Step 2-II-(iii).

14

By adding e to y, we get the correct projection y′. We use y′ to correct v by changing
one element in the column where the error occurred according to the condition that
all the columns and top row have the same parity. Now we say v is decoded as a
“codeword of CDE

40,1”, then exit. Else, go to Step 2-II-(ii).

Step 2-II-(ii) We use y′ to correct v by changing three elements in the column where the errors
occurred according to the condition that all the columns and top row have the same
parity. Now we say v is decoded as a “codeword of CDE

40,1”, then exit.

Step 2-II-(iii) If the syndrome is written as a linear combination of two columns in H, then we can
get an error vector and obtain a correct projection y′. Else (i.e, case II-(iv), (v)), we
say that “more than three errors occurred” and exit.

Since we know the correct projection y′ now, we use y′ to correct v by changing three
elements in three columns where the errors occurred according to the condition that
all the columns and top row have the same parity. Now we say v is decoded as a
“codeword of CDE

40,1”, then exit.

Step 2-III-(i) If the parity of v is the case III, consider it as a case III-(i). Else, go to Step 2-IV-(i).

Compute the projection of v onto GF (4)10, call it y. If the syndrome is written as a
linear combination of two columns in H, then we can get an error vector and obtain a
correct projection y′. Else (i.e., case III-(iii), (iv), (v)), we say that “more than three
errors occurred” and exit.

We use y′ to correct v by changing two elements in two columns where the errors
occurred according to the condition that all the columns and top row have the same
parity. Now we say v is decoded as a “codeword of CDE

40,1”, then exit. Else (i.e, case
III-(ii)), we say that “more than three errors occurred” and exit.

Step 2-IV-(i) If the parity of v is the case IV, then consider it as a case IV-(i). Compute the
projection of v onto GF (4)10, call it y. If the syndrome is written as a combination of
three columns in H, then we can get an error vector and obtain a correct projection y′.
Else (i.e., case IV-(iii), (iv), (v), (vi)), we say that “more than three errors occurred”
and exit.

We use y′ to correct v by changing three elements in three columns where the errors
occurred according to the condition that all the columns and top row have the same
parity. Now we say v is decoded as a “codeword of CDE

40,1”, then exit. Else (i.e., case
IV-(ii)), we say that “more than three errors occurred” and exit.

To see this algorithm more clearly we give several examples.

4.3 Examples

The steps in these examples are the ones in Section 4.2.

Example 1 (Case I). All the columns have the same parity.

15

v =

1 2 3 4 5 6 7 8 9 10
0 0 1 1 0 1 1 1 1 1 0
1 1 0 0 1 0 0 0 0 1 0
ω 0 0 1 1 1 0 0 1 0 1
ω 0 0 1 1 1 0 0 1 1 0
y 1 0 1 0 1 0 0 1 ω ω

(a) Representation Decoding

Step 1 Compute the parities of the columns of v and determine which case of Table 3 we are
in. Since all the columns have one parity, this is the case I. Thus we move to the Step
2-I-(i).

Step 2-I-(i) Compute the projection of v onto GF (4)10, call it y. Note that there is no type match-
ing y in Table 1 after the action of the automorphism groups and scalar multiplication
since y has four zeros in four blocks each and the same non-zero elements of GF (4) in
a block. Thus we move to Step 2-I-(ii).

Step 2-I-(ii) We use Table 1 to find the closest vector y′ to y by changing only one element of y
after the action of the automorphism groups and scalar multiplication. We can find
a unique E10 codeword closest to y of weight 6 by correcting only one element, i.e.
(1, 0, 1, 0, 1, 0, 0, 1,ω, ω) (see Type 2 in Table 1).

Now we use y′ to correct v by changing two elements of v in the column where the
errors occurred according to the condition that all the columns and top row have the
same parity.

Finally v is decoded as a “codeword of CDE
40,1”. We uniquely decode v as follows:

v =

1 2 3 4 5 6 7 8 9 10
0 0 1 1 0 1 1 1 1 1 0
1 1 0 0 1 0 0 0 0 1 0
ω 0 0 1 1 1 0 0 1 1 1
ω 0 0 1 1 1 0 0 1 0 0
y′ 1 0 1 0 1 0 0 1 ω ω

.

Then we exit.

(b) Syndrome Decoding

Step 1 Same as the Step 1 in representation decoding.

Step 2-I-(i) Compute the projection of v onto GF (4)10, call it y. Since the syndrome of y is not
zero as below, we move to the Step2-I-(ii).

HyT =

 0
0
0
1
ω

 .

16

Step 2-I-(ii) Since the syndrome is the ninth column ofH (seeG(E10) in Sec. 3), we can get our error
vector e = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) giving a codeword y′ = y+e = (1, 0, 1, 0, 1, 0, 0, 1,ω, ω).

Now we can use y′ to correct v by changing two elements of v in the column where
the errors occurred according to the condition that all the columns and top row have
the same parity.

Finally v is decoded as a “codeword of CDE
40,1”. Then we exit.

Example 2 (Case II). Nine columns have one parity, and one left has the other parity.

v =

1 2 3 4 5 6 7 8 9 10
0 1 0 1 1 1 0 1 1 1 0
1 0 1 1 0 0 0 0 0 1 0
ω 1 1 1 1 1 1 1 0 0 0
ω 1 1 0 1 0 0 1 0 1 1
y 1 0 ω 1 ω ω 1 0 ω ω

(a) Representation Decoding

Step 1 Compute the parities of the columns of v and determine which case of Table 3 we are
in. Since nine columns have one parity and one left has the other parity, this is the
case II. Thus we move to the Step 2-II-(i).

Step 2-II-(i) If the parity of v is the case II, then consider it as a case II-(i). Compute the projection
of v onto GF (4)10, call it y. We cannot find the closest y′ to y in Table 1 by changing
only one element of y = (1, 0, ω, 1,−, ω, 1, 0, ω, ω) after the action of the automorphism
groups and scalar multiplication since it does not match to any of E10 codewords of
weight 8 with three distinct nonzero elements . It implies that one column among nine
odd columns of y is not correct. Thus we move to the Step 2-II-(iii).

Step 2-II-(iii) We use Table 1 to find the closest vector y′ to y by changing two elements of y after
the action of the automorphism groups and scalar multiplication and find the unknown
error position. In this case, it is the fourth position. Now we change it to ω (Type 6
of Table 1). Now we use y′ to correct v by changing three elements in two columns
where the errors occurred according to the condition that all the columns and top row
have the same parity. Thus v is uniquely decoded as a “codeword of CDE

40,1”.

v =

1 2 3 4 5 6 7 8 9 10
0 1 0 1 1 1 0 1 1 1 0
1 0 1 1 1 1 0 0 0 1 0
ω 1 1 1 0 1 1 1 0 0 0
ω 1 1 0 1 0 0 1 0 1 1
y′ 1 0 ω ω ω ω 1 0 ω ω

Then we exit.

(b) Syndrome Decoding

Step 1 Same as the Step 1 in representation decoding.

17

Step 2-II-(i) If the parity of v is the case II, then consider it as a case II-(i). Compute the projection
of v onto GF (4)10, call it y. Since the fifth column of v is the only one with odd parity,
we check whether the syndrome HyT is the scalar multiple of fifth column of H or
not. In this case, the syndrome is not a scalar multiple of column of H as below. We
let e = [e1, e2, . . . , e10] denote the error vector and ei a conjugate of ei.

HyT =

ωω1
0
1

 6= e5

 0
1
1
0
1

 .
So we move to the Step 2-II-(iii).

Step 2-II-(iii) We consider the syndrome as a linear combination of the fifth column and one of the
remaining nine columns. We let Si = [si1 , si2 , si3 , si4 , si5]

T denote the i-th column of
H.

HyT =

ωω1
0
1

 = e5

 0
1
1
0
1

+ eiSi = HeT .

Since the first entry of the syndrome is ω and the first entry of the fifth column of H
is 0, the first entry of Si must be non-zero. So i should be one of 1,2,3, or 4. From the
fact that non-zero first entries are all 1, we get ei as follows:

ω = 0 · ē5 + 1 · ēi,
ω = ēi,

⇒ ei = ω̄.

Now we check the third entries on both sides. Since the third entries of S1, S2, S3,
and S4 are all zeros, we get

1 = 1 · ē5 + 0 · ω,
⇒ ē5 = 1.

Next we check the second entries.

ω̄ = 1 · 1 + si2 · ω,
⇒ si2 = 1.

For the last we check the fifth entries.

1 = 1 · 1 + si5 · ω,
⇒ si5 = 0.

18

Thus Si = [si1 , 1, si3 , si4 , 0]T and this tells us i = 4, i.e., S4 = (1, 1, 0, 0, 0)T .

Thus we have the codeword

y′ = y + e

= (1, 0, ω, 1, ω, ω, 1, 0, ω, ω) + (0, 0, 0, ω, 1, 0, 0, 0, 0, 0)

= (1, 0, ω,ω,ω, ω, 1, 0, ω, ω).

Next we use y′ to correct v by changing three elements in two columns where the
errors occurred according to the condition that all the columns and top row have the
same parity. Then we exit.

Example 3 (Case III). Eight columns have one parity and remaining two columns have the
other parity.

v =

1 2 3 4 5 6 7 8 9 10
0 1 1 1 0 0 1 1 1 1 0
1 1 1 1 0 1 0 0 0 0 1
ω 0 0 1 0 0 1 1 1 0 1
ω 1 1 0 1 1 0 1 1 0 1
y ω ω ω ω ω ω 1 1 0 0

(a) Representation Decoding

Step 1 Compute the parities of the columns of v and determine which case of Table 3 we are
in. Since eight columns have one parity and remaining two columns have the other
parity, this is the case III. Thus we move to the Step 2-III-(i).

Step 2-III-(i) If the parity of v is the case III, then consider it as a case III-(i). Compute the
projection of v onto GF (4)10, call it y. Since we know the error column positions,
it is easy to find the closest vector y′ to y in Table 1 by changing two elements of
y = (ω, ω, ω, ω,−,−, 1, 1, 0, 0) after the action of the automorphism groups and scalar
multiplication.

Since there are three distinct nonzero elements in y and each block has identical ele-
ments, we cannot find a matching type for weight 8 in Table 1. Now we try with weight
6 (Type 3 of Table 1). Finally we find y′ = (ω, ω, ω, ω,0,0, 1, 1, 0, 0) which is the closet
vector to y after the action of the automorphism groups and scalar multiplication.

We use y′ to correct v by changing two elements in two columns where the errors
occurred according to the condition that all the columns and top row have the same
parity as follows :

v =

1 2 3 4 5 6 7 8 9 10
0 1 1 1 0 0 1 1 1 1 0
1 1 1 1 0 1 0 0 0 0 1
ω 0 0 1 0 1 0 1 1 0 1
ω 1 1 0 1 1 0 1 1 0 1
y′ ω ω ω ω 0 0 1 1 0 0

.

Now v is decoded as a “codeword of CDE
40,1”. We exit.

(b) Syndrome Decoding

19

Step 1 Same as the Step 1 in representation decoding.

Step 2-III-(i) If the parity of v is the case III (8, 2̄), then consider it as a case III-(i). Compute the
projection of v onto GF (4)10, call it y. Since we know the fifth and sixth columns
of v are the only ones with even parity, we know these two columns have an error
each. Next we check whether the syndrome is a linear combination of the fifth and
sixth columns of H or not. A simple calculation tells us that the syndrome is indeed
a linear combination of these two columns of H. Thus we get e5 = ω and e6 = ω.

HyT =

 0
0
0
0
ω

 = e5

 0
1
1
0
1

+ e6

 0
1
1
0
0

 = HeT .

So we can get a correct projection

y′ = y + e

= (ω, ω, ω, ω, ω, ω, 1, 1, 0, 0) + (0, 0, 0, 0, ω, ω, 0, 0, 0, 0)

= (ω, ω, ω, ω,0,0, 1, 1, 0, 0).

We use y′ to correct v by changing two elements in two columns where the errors
occurred according to the condition that all the columns and top row have the same
parity. Then we say v is uniquely decoded as a “codeword of CDE

40,1” and exit.

Example 4 (Case IV). Seven columns have one parity and remaining three columns have
the other parity.

v =

1 2 3 4 5 6 7 8 9 10
0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1
ω 1 1 1 0 0 1 0 1 0 1
ω 0 0 0 1 0 1 1 0 1 0
y ω ω ω ω 1 0 ω ω ω ω

(a) Representation Decoding

Step 1 Compute the parities of the columns of v and determine which case of Table 3 we are
in. Since seven columns have one parity and remaining three columns have the other
parity, this is the case IV. Thus we move to the Step 2-IV-(i).

Step 2-IV-(i) If the parity of v is the case IV, then consider it as a case IV-(i). Compute the
projection of v onto GF (4)10, call it y. Since we know the error column positions,
it is easy to find the closest vector y′ to y in Table 1 by changing three elements
of y = (ω,−, ω, ω,−,−, ω, ω, ω, ω) after the action of the automorphism groups and
scalar multiplication.

We see from Table 1 that y′ = (ω, ω, ω, ω, ω, ω, ω, ω, ω, ω) (Type 7 of Table 1). Hence
we use y′ to correct v by changing three elements in three columns where the errors

20

occurred according to the condition that all the columns and top row have the same
parity as follows:

v =

1 2 3 4 5 6 7 8 9 10
0 1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1
ω 1 1 1 0 0 1 0 1 0 1
ω 0 0 0 1 1 0 1 0 1 0
y′ ω ω ω ω ω ω ω ω ω ω

.

Now v is decoded as a “codeword of CDE
40,1” and we exit.

(b) Syndrome Decoding

Step 1 Same as the Step 1 in representation decoding.

Step 2-IV-(i) If the parity of v is the case IV (7, 3̄), then consider it as a case IV-(i). Compute the
projection of v onto GF (4)10, call it y. Since we know the second, fifth, and sixth
columns of v are the only ones with even parities, we know these three columns have
an error each. Next we check whether the syndrome is a linear combination of the
second, fifth, and sixth columns of H or not. A simple calculation tells us that the
syndrome is indeed a linear combination of these three columns of H.

HyT =

 0
0
0
0
ω

 = e2

 1
0
0
0
0

+ e5

 0
1
1
0
1

+ e6

 0
1
1
0
0

 = HeT .

We do some calculations from the first entry of the syndrome as follows:

0 = e2 · 1 + e5 · 0 + e6 · 0,
⇒ e2 = 0.

Now we know e2 = 0. Calculating on the fifth entry of the syndrome, we get

ω = e5 · 1 + e6 · 0,
⇒ e5 = ω.

Now we know e5 = ω. Calculating on the third entry of the syndrome, we get

0 = ω · 1 + e6 · 1,
⇒ e6 = ω.

Now we know e6 = ω as well.

Thus we know the error vector from e2 = 0, e5 = ω, and e6 = ω and get a correct
projection y′ as follows:

y′ = y + e

= (ω, ω, ω, ω, 1, 0, ω, ω, ω, ω) + (0, 0, 0, 0, ω, ω, 0, 0, 0, 0)

= (ω,ω, ω, ω,ω,ω, ω, ω, ω, ω).

21

Now we use y′ to correct v by changing three elements in three columns where the
errors occurred according to the condition that all the columns and top row have the
same parity. Finally v is decoded as a “codeword of CDE

40,1” and we exit.

References

[1] Aguilar-Melchor C., Gaborit P., Kim J.-L., Sok L., Solé P.: Classification of extremal
and s-extremal binary self-dual codes of length 38. IEEE Trans. Inform. Theory 58, (4)
2253–2262 (2012).

[2] Bachoc C., Gaborit P.: On extremal additive GF(4)-codes of lengths 10 to 18. J. Théorie
Nombres Bordeaux 12, 225–72 (2000).

[3] Betsumiya K., Harada M., Munemasa A.: A complete classification of doubly even
self-dual codes of length 40, Electronic journal of combinatorics 19, 3 #P18 (2012).

[4] Bouyuklieva S., Bouyukliev I., Harada M.: Some extremal self-dual codes and unimod-
ular lattices in dimension 40. Finite Fields and Their Applications 21, 67–83 (2013).

[5] Buyuklieva S., Yorgov V.: Singly-even self-dual codes of length 40. Designs, Codes and
Cryptography 9 131–141 (1996).

[6] Calderbank, A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction
via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369–1387 (1998).

[7] Conway J.H., Sloane N.J.A.: A new upper bound on the minimal distance of self-dual
code. IEEE Trans. Inform. Theory 36, 1319-1333 (1990).

[8] Danielsen L.E., Parker M.G.: On the classification of all self-dual additive codes over
GF(4) of length up to 12. J. of Combin. Theory, Ser. A 113, (7) 1351–1367 (2006).

[9] Esmaeili M., Gulliver T.A., Khandani A.K.: On the Pless-construction and ML de-
coding of the quadratic residue code. IEEE Trans. Inform. Theory 49 (6) 1527–1535
(2003).

[10] Gaborit P., Huffman W. C., Kim J.-L., Pless V: On the classification of extremal addi-
tive codes over GF (4), Proceedings of the 37th Allerton Conference on Communication,
Control, and Computing, UIUC 535–544 (1999).

[11] Gaborit P., Huffman W. C., Kim J.-L., Pless V: On additive GF (4) codes. Proceedings
of the DIMACS Workshop on Codes and Association Schemes, ed. A. Barg and S.
Litsyn, DIMACS Series in Discrete Math. and Theoretical Computer Science, American
Mathematical Society, 56 135–149 (2001).

[12] Gaborit P., Kim J.-L., Pless V.: Decoding binary R(2, 5) by hand. Discrete Math. 264,
55–73 (2003).

22

[13] Harada M., Munemasa A.: Some restrictions on weight enumerators of singly even
self-dual codes. IEEE Trans. Inform. Theory 52 1266–1269 (2006).

[14] Höhn G.: Self-dual codes over the Kleinian four group. Mathematische Annalen 327,
227-255 (2003).

[15] Huffman W.C.: On the classification and enumeration of self-dual codes. Finite Fields
and Their Applications, 11 451–490 (2005).

[16] Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes, Cambridge Univer-
sity Press, 2003.

[17] Joyner D., Kim J.-L.: Selected Unsolved Problems in Coding Theory, Birkhäuser,
Boston (2011).

[18] Kim, J.-L., Keith E. M., Vera P.: Projections of binary linear codes onto larger fields,
SIAM Journal on Discrete Mathematics 16.4 591-603(2003).

[19] MacWilliams F.J., Odlyzko A.M., Sloane N.J.A.: Self-Dual Codes over GF (4). J. Com-
bin. Theory, Ser. A 25 288–318 (1978).

[20] Pless V.: A classification of self-orthogonal codes over GF(2). Discrete Math. 3, 209-246
(1972).

[21] Pless V.: Decoding the Golay codes. IEEE Trans. Inform. Theory 32, 561-567 (1986).

[22] Rains E. M., Sloane N.J.A.: Self-dual codes in Handbook of Coding Theory, ed. V. S.
Pless and W. C. Huffman. Amsterdam: Elsevier, 177–294 (1998).

23

	1 Introduction
	2 Preliminaries
	3 Construction of a doubly-even (or singly-even) [40,20,8] code
	4 Decoding a doubly-even (or singly-even) [40,20,8] code
	4.1 Representation decoding algorithm
	4.2 Syndrome decoding algorithm
	4.3 Examples

