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In this article, we show the existence of large sets LS2[3](2, k, v) for in-
finitely many values of k and v. The exact condition is v ≥ 8 and 0 ≤ k ≤ v
such that for the remainders v̄ and k̄ of v and k modulo 6 we have 2 ≤ v̄ <
k̄ ≤ 5.

The proof is constructive and consists of two parts. First, we give a com-
puter construction for an LS2[3](2, 4, 8), which is a partition of the set of
all 4-dimensional subspaces of an 8-dimensional vector space over the binary
field into three disjoint 2-(8, 4, 217)2 subspace designs. Together with the
already known LS2[3](2, 3, 8), the application of a recursion method based
on a decomposition of the Graßmannian into joins yields a construction for
the claimed large sets.

1 Introduction

Let V be a vector space of dimension v over a finite field GF(q). For simplicity, a subspace
of V of dimension k will be called an k-subspace. A (simple) t-(v, k, λ)q subspace design
D = (V,B) consists of a set B of k-subspaces of V , called blocks, such that each t-subspace
of V lies in exactly λ blocks. This notion is a vector space analog of combinatorial t-
designs on finite sets. For that reason, subspace designs are also called q-analogs of
designs. Further names found in the literature include designs over finite fields, designs
in vector spaces and designs in the q-Johnson scheme.

While combinatorial t-designs and Steiner systems have been studied since the 1830s
and have a rich literature [12], the notion of subspace designs has been introduced by
Cameron [9, 10] and Delsarte [13] in the 1970s.

1

http://arxiv.org/abs/1603.06976v1


The set of all k-subspaces of V is always a design, called trivial design. In 1987,
Thomas [26] constructed the first non-trivial subspace design for t = 2. Since then,
more subspace designs have been constructed, see [6, 7, 8, 16, 18, 22, 24, 25].

A partition of the trivial design into N disjoint t-(v, k, λ)q designs is called large set
and denoted by LSq[N ](t, k, v). The value λ is omitted in the parameter notation of a
large set as λ =

[v−t
k−t

]

q
is already determined by the other parameters.

For ordinary combinatorial t-designs, large sets with t = 1 exist if and only if k divides
v [3]. In the q-analog case, this question is wide open, as it includes the question for
the existence of parallelisms in projective geometries: A large set of 1-(v, k, 1)q designs
(which are called spreads) is known as a (k − 1)-parallelism of the projective geometry
PG(v − 1, q). To our knowledge, the only known existence results are the following: If
v ≥ 2 is a power of 2, then all 1-parallelisms do exist [14, 4]. Furthermore, for q = 2 and
v even, all 1-parallelisms do exist [2, 27]. In [15], a 1-parallelism of PG(5, 3) is given.
The only known parallelism with k > 1 is a 2-parallelism of PG(5, 2) [23].

For t ≥ 2, only the following large sets of subspace designs are known: There are com-
putational constructions of an LS3[2](2, 3, 6) [5], an LS2[3](2, 3, 8) [8] and an LS5[2](2, 3, 6)
[7]. In [7], a recursive construction method was developed, which can be seen as a q-
analog of the theory in [1], surveyed in [17]. The application of this method to the
LS3[2](2, 3, 6) and LS5[2](2, 3, 6) gave an infinite series of large sets LSq(2, k, v) with
q ∈ {3, 5}, v ≥ 6, v ≡ 2 (mod 4), and 3 ≤ k ≤ v − 3, k ≡ 3 (mod 4).

In this paper, we give a computational construction of an LS2[3](2, 4, 8). The ap-
plication of the recursion machinery of [7] to this large set and the already known
LS2[3](2, 3, 8) yields a new infinite series of large sets of subspace designs:

Theorem 1. Let v and k be integers with v ≥ 8 and 0 ≤ k ≤ v such that

(i) v ≡ 2 mod 6 and k ≡ 3, 4, 5 mod 6 or

(ii) v ≡ 3 mod 6 and k ≡ 4, 5 mod 6 or

(iii) v ≡ 4 mod 6 and k ≡ 5 mod 6.

Then there exists an LS2[3](2, k, v).

Denoting the remainder of an integer n modulo 6 by n̄ ∈ {0, . . . , 5}, the conditions of
Theorem 1 (i), (ii) and (iii) can be stated as 2 ≤ v̄ < k̄ ≤ 5.

2 Preliminaries

The set of all k-subspaces of V is called the Graßmannian and is denoted by
[V
k

]

q
. Our

focus lies on the case q = 2, where the 1-subspaces 〈x〉GF(2) ∈
[V
1

]

2
are in one-to-one

correspondence with the nonzero vectors x ∈ V \ {0}. The number of all k-subspaces of
V is given by the Gaussian binomial coefficient

#

[

V

k

]

q

=

[

v

k

]

q

=

{

(qv−1)···(qv−k+1−1)
(qk−1)···(q−1)

if k ∈ {0, . . . , v};

0 else.
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The set L(V ) of all subspaces of V forms the subspace lattice of V .
By the fundamental theorem of projective geometry, for v 6= 2 the automorphism

group of L(V ) is given by the natural action of PΓL(V ) on L(V ). The automorphism
group Aut(D) of a subspace design D = (V,B) is defined as the stabilizer of B under this
group action. Furthermore, for any subgroup G ≤ PΓL(V ) we say that D is G-invariant
if DG = D or equivalently, G ≤ Aut(D). In the case that q is prime, the group PΓL(V )
reduces to PGL(V ), and for the case of our interest q = 2, it reduces further to GL(V ).
After a choice of a basis of V , its elements are represented by the invertible v×v matrices
A, and the action on L(V ) is given by the vector-matrix-multiplication v 7→ vA.

As t-design, the trivial design (V,
[

V
k

]

q
) has parameters t-(v, k, λmax)q, where

λmax =

[

v − t

k − t

]

q

.

Hence, an obvious necessary condition for the existence of an LSq[N ](t, k, v) is the equal-
ity λ · N = λmax. Moreover, since the blocks of a t-design also form an i-design for
i ∈ {0, . . . , t}, we have the necessary conditions

N |

[

v − i

k − i

]

q

for i ∈ {0, . . . , t}.

A parameter set LSq[N ](t, k, v) is called admissible if all the necessary conditions are
fulfilled. If moreover an LSq[N ](t, k, v) actually exists, the parameter set is called real-
izable. In the following, it proves useful to extend the parameters to the value t = −1
by unconditionally accepting all the large set parameters of the form LSq[N ](−1, k, v)
as admissible and realizable.

By [18, Cor. 19], the existence of some LSq[N ](t, k, v) with t ≥ 1 implies the existence
of derived large sets LSq[N ](t−1, k−1, v−1), residual large sets LSq[N ](t−1, k, v−1) and
the dual large set LSq[N ](t, v−k, v). Furthermore, the existence of LSq[N ](t, k−1, v−1)
and LSq[N ](t, k, v − 1) implies the existence of an LSq[N ](t, k, v) [18, Cor. 20].

The following theory is needed for the recursive construction of large sets. For more
details and proofs, see [7].

Two subsets B1 and B2 of
[V
k

]

q
are called t-equivalent if

#{B ∈ B1 | T ≤ B} = #{B ∈ B2 | T ≤ B}

for all t-subspaces T of V . In this situation, the pair (B1,B2) has also been called trade
or bitrade, see for example [20, 21] for some recent results. Furthermore, given integers
0 ≤ t ≤ k ≤ v, N ≥ 2 and a set B of k-subspaces of V , a partition {B1, . . . ,BN} of
B is called an (N, t)-partition, if the parts Bi are pairwise t-equivalent. The notion of
(N, t)-partitions can be seen as a generalization of large sets, as by [7, Lemma 4.8],
(V, {B1, . . . ,BN}) is an LSq[N ](t, k, v) if and only if {B1, . . . ,BN} is an (N, t)-partition
of

[V
k

]

q
.

A set B of k-subspaces is called (N, t)-partitionable if there exists an (N, t)-partition
of B. Again, the notion is extended to t = −1 by unconditionally calling any set
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of k-subspaces of V (N,−1)-partitionable. We have the following structure proper-
ties: If B is (N, t)-partitionable, it is (N, s)-partitionable for all s ∈ {−1, . . . , t} [7,
Lemma 4.3]. The disjoint union of (N, t)-partitionable sets is again (N, t)-partitionable
[7, Lemma 4.7]. Therefore, we can construct an LSq[N ](t, k, v) by decomposing

[V
k

]

q
into

(N, t)-partitionable sets.
The known constructions of large sets of classical combinatorial designs and subspace

designs often rely on a decomposition into so-called joins. In [7], three kinds of joins
are provided. For our purpose, we only need one of them: For a chain of subspaces
K1 ≤ U1 ≤ U2 ≤ K2 ≤ V , the avoiding join of K1 and K2 with respect to the factor
space F = U2/U1 is given by

K1 ∗F̄ K2/U2 = {K ∈ L(V ) | U1 ∩K = K1, U2 +K = K2, U1 ∩K = U2 ∩K}.

By [7, Lemma 3.7], K1 ∗F̄ K2/U2 consists of q(dim(U1)−dim(K1))(dim(K2)−dim(U1)) subspaces
of V of dimension k1 + k2 − u1. The definition is extended to sets B(1) ⊆

[U1

k1

]

q
and

B(2) ⊆
[V/U2

k̄2

]

q
of subspaces by setting

B(1) ∗ B(2) =
⋃

B(1)∈B(1)

B(2)∈B(2)

B(1) ∗B(2).

The power of the join for the construction of (N, t)-partitionable sets is rooted in the
following lemma. In [7, Lemma 4.10] it is stated and proven for all three kinds of joins.

Lemma 2.1 (Basic Lemma for the avoiding join). Let U1 ≤ U2 ≤ V be a chain
of subspaces, k1 ∈ {0, . . . ,dim(U1)}, k̄2 ∈ {0, . . . ,dim(V/U2)} and N a positive integer.

If B(1) ⊆
[U1

k1

]

q
is (N, t1)-partitionable and B(2) ⊆

[V/U2

k̄2

]

q
is (N, t2)-partitionable with

integers t1, t2 ≥ −1, then the avoiding join B(1)∗U2/U1
B(2) is (N, t1+t2+1)-partitionable.

By [7, Theorem 3.19], for a maximal chain

{0} = U0 < U1 < . . . < Uv = V

of subspaces and s ∈ {0, . . . , v − k − 1}, a partition of
[V
k

]

q
into avoiding joins is given

by the disjoint union

[

V

k

]

q

=

k
⋃

i=0

[

Us+i

i

]

q

∗Us+i+1/Us+i

[

V/Us+i+1

k − i

]

q

.

For the construction of large sets, only the dimensions of the involved Graßmannians are
relevant. Reducing the notation to this information, we say that the above decomposition
has the decomposition type

[

v

k

]

=

k
⋃

i=0

[

s+ i

i

]

∗

[

v − s− i− 1

k − i

]

.

By the above discussion, the application of the Basic Lemma 2.1 to this decomposition
yields
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Proposition 2.2. Let 0 ≤ t ≤ k ≤ v, N ≥ 2 and s ∈ {0, . . . , v − k − 1} be integers.
If for each i ∈ {0, . . . , k} there are integers t1, t2 ≥ −1 with t1 + t2 + 1 ≥ t such that
LSq[N ](t1, i, s+i) and LSq[N ](t2, k−i, v−s−i−1) both are realizable, then LSq[N ](t, k, v)
is realizable.

We remark that the proof of the Basic Lemma in [7] is constructive, implying that the
statement of Proposition 2.2 is constructive, too.

3 The method of Kramer and Mesner

Fixing a subgroup G of PΓL(V ), the following idea can be used for the construction of G-
invariant t-(v, k, λ)q designs [19, 22, 6]: The action of G induces partitions

[V
t

]

q
=

⋃τ
i=1 Ti

and
[V
k

]

q
=

⋃κ
j=1Kj into orbits. Any G-invariant subspace design will have the form

(V,B) with B =
⋃

j∈J Kj and J ⊆ {1, . . . , κ}. In this way, an index set J ⊆ {1, . . . , κ}
gives a t-(v, k, λ)q design if and only if its characteristic vector χJ ∈ {0, 1}κ is a solution
of the system of linear integer equations

AG
t,kχJ = λ1,

where 1 is the all-one vector and AG
t,k = (aij) is the (κ× τ)-matrix with the entries

aij = #{K ∈ Kj | Ti ≤ K}.

Here, Ti ∈ Ti denotes a set of orbit representatives. The matrix AG
t,k is called G-incidence

matrix.
For the construction of large sets, we iterate this method as in [8]: After finding a

solution χJ , we remove all the columns from AG
t,k having an index j ∈ J . Now the

solutions of the reduced system give precisely the G-invariant subspace designs which
are disjoint to D. If we succeed in repeating the process until all G-orbits Kj are covered,
we have constructed a large set consisting of t-(v, k, λ)q designs. The same approach has
been used by Chee et al [11] to construct large sets of designs over sets.

4 An LS2[3](2, 4, 8)

A LS2[3](2, 4, 8) consists of three mutually disjoint 2-(8, 4, 217)2 designs. It is worth
noting that up to now, even the existence of a single design with these parameters was
open.

We succeeded in the construction of an LS2[3](2, 4, 8) by the Kramer-Mesner method
described above. For that purpose, we take the 8-dimensional GF(2) vector space V =
GF(28) and prescribe the group G = 〈σ5, φ2〉 of order 204, where σ : x 7→ xα with
a primitive element α of GF(28) is a Singer cycle and φ : x 7→ x2 is the Frobenius
automorphism. After the choice of a suitable basis of V , the generators can be written
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as

σ5 =

























0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1
1 0 1 1 0 0 1 1

























and φ2 =

























1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 1 1 1 0 0 0
1 0 1 1 0 0 1 1
0 0 1 1 0 0 1 0
0 0 1 0 1 1 0 1
1 1 1 1 0 0 0 1
0 0 0 1 1 0 0 0

























.

In Tables 1, 2, and 3 we list the orbit representatives for the three mutually dis-
joint designs D1, D2, and D3 we found, using the same encoding as in [8]. For each
representative, the four row vectors









w0 w1 . . . w7

x0 x1 . . . x7
y0 y1 . . . y7
z0 z1 . . . z7









spanning a 3-subspace of V , are encoded as a quadruple of positive integers

[W,X, Y,Z] =

[ 7
∑

i=0

wi2
i,

7
∑

i=0

xi2
i,

7
∑

i=0

yi2
i,

7
∑

i=0

zi2
i

]

.

5 An infinite series of large sets

Now we are ready to proof our main result.

Proof of Theorem 1. We proceed by induction on v. For v = 8, an LS2[3](2, 4, 8) was
constructed above. In [8], an LS2[3](2, 3, 8) was constructed, and its dual large set
is an LS2[3](2, 5, 8). The repeated application of [18, Cor. 20] yields the existence of
LS2[3](2, 4, 9), LS2[3](2, 5, 9) and LS2[3](2, 5, 10).

It remains to consider v ≥ 14. By duality, we may assume k ≤ v
2 . By v − k − 1 ≥

v
2 − 1 ≥ 6 and the realizability statements of Table 4, the existence of an LS2[3](2, k, v)
follows from the application of Proposition 2.2 with s = 5.

It remains to show the correctness of Table 4. For all i ≡ 3, 4, 5 mod 6, there exists
an LS2[3](2, i, 5 + i) by the induction hypothesis. By taking a derived large set, we see
that for i ≡ 2 mod 6, there exists an LS2[3](1, i, 5 + i) and for i ≡ 1 mod 6, there exists
an LS2[3](0, i, 5 + i). Similarly, for i ≡ 0 mod 6, we have an LS2[3](2, k − i, v − 6 − i)
by the induction hypothesis. By derived large sets, for i ≡ 5 mod 6 there exists an
LS2[3](1, k− i, v− 6− i), and for i ≡ 4 mod 6 there exists an LS2[3](0, k − i, v− 6− i).
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Table 1: 2-(8, 4, 217; 2) design B1

[1, 34, 40, 192]
[1, 34, 84, 128]
[1, 34, 104, 16]
[1, 66, 244, 40]
[1, 98, 172, 16]
[1, 106, 60, 128]
[1, 106, 76, 16]
[1, 106, 236, 240]
[1, 114, 116, 72]
[1, 130, 88, 32]
[1, 134, 72, 176]
[1, 134, 104, 80]
[1, 162, 4, 248]
[1, 170, 44, 112]
[1, 170, 76, 208]
[1, 194, 20, 88]
[1, 210, 68, 88]
[1, 210, 148, 200]
[1, 214, 136, 160]
[1, 226, 104, 144]
[1, 226, 148, 56]
[1, 228, 168, 240]
[1, 242, 84, 136]
[2, 4, 8, 112]
[2, 4, 88, 128]
[2, 4, 168, 112]
[2, 8, 16, 224]
[2, 36, 104, 80]
[3, 44, 176, 192]
[5, 106, 16, 128]
[9, 18, 20, 160]
[9, 66, 44, 176]
[9, 74, 212, 96]
[9, 82, 204, 32]
[9, 170, 140, 64]
[10, 68, 80, 96]
[13, 10, 144, 64]
[13, 70, 208, 160]
[13, 202, 16, 160]
[17, 18, 20, 136]
[17, 18, 164, 40]
[17, 24, 64, 128]
[17, 34, 4, 104]
[17, 50, 20, 152]
[17, 66, 4, 200]
[17, 82, 200, 160]
[17, 130, 148, 24]
[17, 130, 228, 56]
[17, 146, 20, 136]
[17, 146, 132, 152]
[17, 218, 20, 96]
[17, 242, 228, 104]
[18, 116, 104, 128]
[19, 36, 104, 128]
[21, 146, 136, 160]
[21, 150, 24, 96]
[25, 68, 32, 128]
[33, 18, 100, 184]

[33, 34, 132, 112]
[33, 34, 168, 192]
[33, 34, 196, 184]
[33, 66, 28, 128]
[33, 98, 36, 48]
[33, 98, 36, 176]
[33, 130, 36, 40]
[33, 136, 16, 64]
[33, 148, 168, 192]
[33, 170, 108, 48]
[33, 178, 52, 232]
[33, 210, 100, 200]
[34, 164, 72, 208]
[35, 132, 144, 192]
[37, 38, 40, 80]
[37, 86, 72, 128]
[41, 10, 36, 144]
[41, 34, 28, 64]
[41, 74, 108, 144]
[41, 98, 28, 128]
[41, 234, 12, 208]
[49, 2, 132, 200]
[49, 6, 40, 64]
[49, 18, 4, 104]
[49, 34, 4, 184]
[49, 34, 100, 40]
[49, 82, 4, 248]
[49, 114, 36, 152]
[49, 114, 116, 216]
[49, 130, 36, 72]
[49, 130, 116, 200]
[53, 146, 24, 192]
[57, 98, 108, 128]
[57, 186, 28, 64]
[65, 4, 16, 128]
[65, 10, 108, 112]
[65, 34, 104, 112]
[65, 82, 132, 168]
[65, 82, 212, 216]
[65, 82, 228, 104]
[65, 130, 8, 32]
[65, 130, 24, 160]
[65, 130, 180, 56]
[65, 130, 212, 72]
[65, 146, 212, 248]
[65, 162, 100, 16]
[65, 170, 108, 176]
[65, 194, 36, 216]
[65, 194, 52, 8]
[65, 194, 196, 168]
[65, 202, 92, 160]
[66, 68, 8, 128]
[66, 68, 72, 224]
[66, 140, 16, 160]
[67, 4, 8, 208]
[67, 4, 56, 128]
[67, 36, 136, 208]
[67, 68, 136, 224]

[67, 136, 16, 32]
[67, 196, 40, 48]
[69, 74, 16, 224]
[69, 142, 80, 96]
[69, 210, 136, 96]
[73, 66, 204, 144]
[73, 74, 84, 32]
[73, 76, 208, 224]
[73, 162, 44, 176]
[73, 202, 196, 96]
[73, 226, 76, 176]
[81, 34, 108, 128]
[81, 90, 28, 96]
[81, 98, 244, 136]
[81, 130, 164, 88]
[81, 146, 200, 224]
[81, 210, 180, 120]
[82, 116, 8, 128]
[85, 194, 216, 224]
[85, 198, 8, 224]
[89, 42, 124, 128]
[89, 74, 12, 32]
[97, 2, 100, 80]
[97, 34, 4, 248]
[97, 34, 12, 208]
[97, 34, 20, 248]
[97, 36, 232, 176]
[97, 42, 196, 144]
[97, 50, 68, 168]
[97, 50, 228, 168]
[97, 66, 44, 80]
[97, 66, 52, 24]
[97, 100, 200, 240]
[97, 106, 204, 240]
[97, 130, 132, 136]
[97, 130, 168, 80]
[97, 194, 84, 104]
[97, 194, 148, 136]
[97, 194, 200, 144]
[97, 226, 132, 144]
[97, 228, 136, 16]
[98, 164, 72, 208]
[98, 228, 8, 112]
[101, 134, 232, 16]
[105, 12, 48, 128]
[105, 74, 196, 176]
[105, 162, 196, 240]
[113, 18, 196, 232]
[113, 34, 116, 232]
[113, 66, 212, 120]
[113, 82, 180, 72]
[113, 114, 116, 232]
[113, 130, 4, 136]
[113, 130, 180, 248]
[113, 194, 84, 248]
[113, 226, 212, 232]
[113, 242, 244, 200]
[115, 36, 72, 128]

[129, 10, 4, 16]
[129, 34, 68, 40]
[129, 66, 180, 216]
[129, 82, 116, 88]
[129, 98, 36, 168]
[129, 98, 40, 16]
[129, 98, 44, 208]
[129, 100, 168, 80]
[129, 114, 52, 152]
[129, 114, 52, 200]
[129, 114, 100, 8]
[129, 114, 116, 232]
[129, 130, 8, 64]
[129, 130, 52, 184]
[129, 162, 132, 88]
[129, 194, 84, 184]
[129, 194, 204, 208]
[129, 210, 164, 56]
[129, 210, 216, 32]
[129, 226, 40, 144]
[129, 226, 228, 40]
[129, 242, 244, 168]
[130, 4, 40, 192]
[130, 12, 16, 32]
[130, 20, 8, 96]
[130, 164, 200, 80]
[131, 4, 136, 240]
[131, 132, 72, 32]
[133, 34, 72, 240]
[133, 166, 40, 176]
[133, 166, 200, 208]
[133, 202, 16, 96]
[137, 2, 20, 224]
[137, 76, 16, 160]
[137, 82, 68, 160]
[137, 90, 204, 32]
[137, 106, 44, 176]
[137, 130, 196, 96]
[137, 138, 108, 208]
[137, 154, 76, 160]
[137, 158, 32, 192]
[137, 170, 100, 80]
[137, 172, 176, 192]
[137, 194, 236, 176]
[138, 132, 176, 64]
[138, 156, 160, 192]
[141, 14, 48, 64]
[145, 2, 20, 184]
[145, 2, 92, 32]
[145, 34, 60, 64]
[145, 66, 132, 152]
[145, 82, 164, 136]
[145, 98, 36, 88]
[145, 114, 132, 72]
[145, 114, 164, 152]
[145, 130, 52, 232]
[145, 138, 20, 64]
[145, 146, 92, 32]

[145, 154, 196, 160]
[145, 178, 68, 248]
[145, 226, 164, 232]
[147, 68, 72, 32]
[147, 132, 88, 224]
[149, 86, 152, 224]
[149, 214, 200, 32]
[153, 82, 68, 96]
[153, 130, 4, 224]
[153, 146, 132, 160]
[161, 26, 52, 64]
[161, 34, 84, 168]
[161, 34, 108, 240]
[161, 34, 196, 112]
[161, 42, 68, 240]
[161, 66, 68, 80]
[161, 74, 36, 16]
[161, 74, 76, 208]
[161, 82, 4, 120]
[161, 98, 228, 16]
[161, 114, 228, 168]
[161, 138, 228, 16]
[161, 146, 164, 136]
[161, 162, 20, 200]
[161, 170, 176, 192]
[161, 178, 44, 192]
[161, 226, 196, 40]
[161, 234, 172, 112]
[161, 242, 52, 104]
[162, 40, 48, 64]
[163, 132, 200, 16]
[163, 228, 168, 176]
[163, 228, 232, 48]
[165, 146, 152, 192]
[169, 10, 12, 112]
[169, 34, 100, 144]
[169, 98, 164, 240]
[169, 130, 236, 176]
[169, 170, 44, 176]
[173, 138, 176, 64]
[177, 2, 84, 248]
[177, 34, 244, 248]
[177, 42, 164, 64]
[177, 66, 52, 120]
[177, 66, 84, 136]
[177, 114, 116, 72]
[177, 150, 56, 192]
[177, 162, 20, 8]
[177, 194, 148, 184]
[177, 210, 100, 248]
[177, 210, 116, 72]
[177, 226, 52, 40]
[177, 226, 84, 120]
[185, 178, 44, 64]
[193, 2, 8, 160]
[193, 10, 228, 48]
[193, 34, 204, 208]
[193, 68, 232, 112]

[193, 98, 4, 40]
[193, 178, 4, 8]
[193, 178, 20, 168]
[193, 194, 20, 232]
[193, 196, 136, 240]
[193, 226, 72, 48]
[193, 226, 84, 40]
[193, 226, 108, 176]
[194, 36, 232, 112]
[194, 68, 136, 112]
[197, 102, 168, 144]
[197, 130, 80, 96]
[197, 150, 8, 32]
[197, 194, 200, 208]
[197, 206, 144, 160]
[197, 214, 152, 224]
[198, 8, 16, 160]
[201, 82, 28, 32]
[201, 162, 100, 176]
[209, 26, 212, 96]
[209, 50, 164, 216]
[209, 66, 84, 216]
[209, 114, 116, 216]
[209, 130, 84, 8]
[209, 146, 52, 248]
[209, 148, 8, 96]
[209, 154, 68, 224]
[209, 178, 36, 152]
[209, 178, 68, 136]
[209, 212, 8, 96]
[209, 242, 164, 24]
[217, 26, 68, 224]
[217, 194, 68, 96]
[217, 210, 204, 160]
[225, 10, 12, 48]
[225, 38, 136, 112]
[225, 98, 164, 48]
[225, 170, 132, 144]
[225, 170, 204, 112]
[225, 210, 100, 40]
[225, 230, 136, 144]
[226, 36, 232, 144]
[227, 36, 136, 80]
[227, 132, 168, 144]
[229, 6, 72, 144]
[233, 130, 4, 16]
[233, 226, 12, 144]
[233, 226, 68, 80]
[241, 2, 180, 40]
[241, 50, 84, 136]
[241, 50, 244, 216]
[241, 66, 132, 136]
[241, 82, 148, 136]
[241, 114, 164, 104]
[241, 162, 4, 248]
[241, 242, 180, 56]
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Table 2: 2-(8, 4, 217; 2) design B2

[1, 2, 80, 32]
[1, 2, 140, 160]
[1, 4, 232, 240]
[1, 6, 104, 48]
[1, 6, 136, 144]
[1, 10, 204, 112]
[1, 42, 112, 128]
[1, 42, 164, 240]
[1, 66, 100, 176]
[1, 66, 244, 8]
[1, 82, 148, 200]
[1, 90, 12, 128]
[1, 98, 40, 128]
[1, 132, 40, 48]
[1, 134, 104, 240]
[1, 146, 20, 224]
[1, 146, 196, 168]
[1, 162, 100, 48]
[1, 170, 172, 240]
[1, 182, 56, 64]
[1, 194, 40, 176]
[1, 194, 76, 240]
[1, 196, 136, 176]
[1, 202, 196, 224]
[1, 210, 132, 24]
[1, 210, 196, 24]
[1, 226, 164, 232]
[1, 230, 232, 80]
[2, 4, 184, 64]
[2, 84, 88, 160]
[3, 68, 8, 224]
[3, 68, 232, 144]
[3, 132, 168, 176]
[3, 136, 32, 64]
[3, 204, 144, 160]
[5, 22, 72, 160]
[5, 48, 64, 128]
[5, 72, 208, 224]
[9, 10, 76, 32]
[9, 18, 4, 32]
[9, 42, 4, 16]
[9, 66, 220, 96]
[9, 90, 28, 32]
[9, 90, 36, 128]
[9, 130, 36, 16]
[9, 130, 148, 64]
[9, 206, 80, 32]
[9, 218, 12, 96]
[10, 156, 32, 64]
[11, 68, 80, 160]
[13, 42, 144, 64]
[13, 142, 16, 64]
[17, 2, 84, 24]
[17, 2, 132, 72]
[17, 34, 4, 168]
[17, 34, 84, 56]
[17, 66, 132, 160]
[17, 98, 52, 200]
[17, 130, 156, 224]
[17, 134, 184, 192]

[17, 226, 164, 104]
[17, 242, 68, 248]
[18, 4, 24, 96]
[18, 148, 72, 96]
[19, 84, 136, 224]
[21, 134, 56, 64]
[23, 72, 32, 128]
[25, 58, 124, 128]
[25, 66, 148, 32]
[25, 90, 20, 128]
[25, 90, 92, 160]
[25, 154, 148, 96]
[25, 194, 20, 224]
[25, 210, 196, 224]
[29, 74, 32, 128]
[33, 6, 40, 128]
[33, 6, 104, 176]
[33, 18, 20, 72]
[33, 90, 84, 128]
[33, 98, 68, 208]
[33, 130, 100, 72]
[33, 130, 148, 88]
[33, 130, 212, 88]
[33, 146, 116, 136]
[33, 162, 56, 192]
[33, 162, 180, 24]
[33, 178, 244, 200]
[33, 194, 136, 80]
[33, 210, 84, 72]
[33, 226, 4, 56]
[35, 132, 72, 112]
[35, 132, 136, 112]
[35, 164, 8, 208]
[37, 66, 88, 128]
[41, 18, 132, 192]
[41, 26, 60, 128]
[41, 42, 204, 144]
[41, 50, 164, 192]
[41, 106, 132, 112]
[41, 138, 228, 144]
[42, 36, 176, 64]
[49, 18, 148, 248]
[49, 22, 184, 64]
[49, 34, 68, 88]
[49, 50, 100, 232]
[49, 98, 164, 136]
[49, 114, 20, 216]
[49, 132, 152, 64]
[49, 146, 52, 8]
[49, 146, 148, 8]
[49, 162, 84, 24]
[49, 162, 180, 88]
[51, 132, 152, 64]
[65, 2, 4, 88]
[65, 4, 8, 144]
[65, 10, 100, 112]
[65, 10, 164, 112]
[65, 18, 244, 248]
[65, 66, 204, 16]
[65, 74, 204, 208]

[65, 82, 220, 32]
[65, 102, 136, 80]
[65, 106, 204, 16]
[65, 114, 52, 216]
[65, 130, 136, 240]
[65, 146, 196, 224]
[65, 162, 116, 168]
[65, 162, 164, 176]
[65, 170, 196, 176]
[65, 196, 152, 160]
[65, 198, 104, 80]
[66, 20, 88, 32]
[66, 212, 88, 96]
[67, 4, 208, 96]
[67, 68, 136, 96]
[67, 196, 104, 80]
[67, 228, 72, 208]
[69, 82, 24, 32]
[69, 130, 24, 32]
[73, 34, 228, 48]
[73, 66, 68, 16]
[73, 138, 36, 48]
[73, 170, 4, 208]
[73, 194, 76, 160]
[73, 218, 68, 224]
[73, 226, 68, 144]
[81, 18, 20, 56]
[81, 54, 104, 128]
[81, 74, 84, 128]
[81, 82, 132, 216]
[81, 98, 164, 200]
[81, 130, 132, 40]
[81, 178, 36, 72]
[81, 242, 180, 216]
[83, 12, 32, 128]
[85, 6, 96, 128]
[85, 66, 136, 32]
[85, 70, 216, 32]
[85, 134, 216, 224]
[89, 18, 28, 160]
[89, 202, 156, 32]
[97, 10, 60, 128]
[97, 34, 36, 184]
[97, 34, 196, 72]
[97, 50, 100, 232]
[97, 66, 100, 232]
[97, 70, 104, 16]
[97, 74, 172, 48]
[97, 130, 196, 184]
[97, 146, 132, 72]
[97, 162, 20, 24]
[97, 162, 140, 208]
[97, 166, 232, 112]
[97, 226, 148, 24]
[97, 226, 180, 88]
[97, 234, 140, 112]
[99, 84, 40, 128]
[99, 100, 56, 128]
[101, 34, 232, 16]
[101, 38, 8, 144]

[101, 134, 200, 240]
[105, 10, 28, 128]
[105, 106, 100, 48]
[105, 130, 140, 240]
[105, 226, 172, 208]
[105, 234, 68, 112]
[113, 50, 84, 168]
[113, 50, 108, 128]
[113, 50, 196, 8]
[113, 54, 104, 128]
[113, 162, 228, 248]
[113, 226, 100, 104]
[113, 242, 100, 184]
[115, 36, 8, 128]
[129, 2, 52, 192]
[129, 34, 72, 240]
[129, 38, 200, 176]
[129, 50, 100, 88]
[129, 50, 148, 184]
[129, 66, 4, 8]
[129, 66, 12, 80]
[129, 74, 156, 96]
[129, 74, 204, 224]
[129, 100, 136, 208]
[129, 130, 72, 96]
[129, 130, 212, 120]
[129, 134, 136, 240]
[129, 146, 20, 40]
[129, 162, 40, 80]
[129, 210, 88, 96]
[129, 226, 44, 144]
[130, 36, 200, 80]
[130, 76, 16, 96]
[133, 70, 200, 240]
[133, 102, 72, 48]
[133, 166, 40, 48]
[133, 194, 8, 48]
[134, 8, 80, 96]
[137, 10, 76, 96]
[137, 34, 156, 192]
[137, 106, 4, 240]
[137, 130, 156, 224]
[137, 132, 144, 224]
[137, 138, 44, 64]
[137, 154, 204, 32]
[137, 218, 148, 224]
[137, 226, 36, 48]
[141, 202, 144, 224]
[145, 2, 212, 232]
[145, 18, 4, 168]
[145, 82, 244, 88]
[145, 86, 88, 96]
[145, 98, 68, 72]
[145, 98, 116, 232]
[145, 98, 212, 184]
[145, 114, 212, 136]
[145, 130, 196, 24]
[145, 170, 12, 64]
[145, 194, 164, 120]
[145, 202, 84, 32]

[145, 226, 52, 40]
[145, 242, 196, 216]
[149, 6, 160, 192]
[149, 18, 32, 192]
[149, 194, 88, 224]
[149, 214, 200, 160]
[153, 82, 212, 224]
[153, 194, 140, 160]
[161, 2, 100, 176]
[161, 2, 164, 88]
[161, 18, 100, 248]
[161, 42, 16, 192]
[161, 50, 132, 56]
[161, 66, 40, 176]
[161, 82, 36, 8]
[161, 130, 136, 176]
[161, 130, 228, 72]
[161, 138, 76, 112]
[161, 138, 164, 144]
[161, 164, 232, 176]
[161, 194, 36, 56]
[161, 210, 148, 72]
[162, 132, 8, 48]
[162, 164, 136, 112]
[162, 180, 184, 192]
[163, 36, 48, 64]
[163, 196, 104, 80]
[165, 50, 40, 192]
[169, 130, 12, 16]
[169, 138, 156, 64]
[169, 186, 148, 64]
[169, 194, 164, 112]
[169, 202, 108, 240]
[177, 10, 148, 192]
[177, 18, 116, 8]
[177, 50, 116, 72]
[177, 82, 132, 248]
[177, 162, 52, 8]
[177, 162, 148, 88]
[177, 178, 228, 200]
[177, 194, 4, 88]
[177, 242, 148, 248]
[185, 2, 172, 192]
[185, 146, 164, 64]
[193, 2, 68, 56]
[193, 2, 104, 48]
[193, 6, 208, 96]
[193, 10, 220, 96]
[193, 74, 212, 224]
[193, 98, 132, 48]
[193, 130, 104, 176]
[193, 134, 72, 160]
[193, 146, 212, 160]
[193, 178, 100, 136]
[193, 178, 116, 200]
[193, 194, 148, 104]
[193, 202, 100, 240]
[193, 226, 12, 80]
[193, 234, 100, 240]
[194, 68, 16, 32]

[194, 164, 104, 240]
[194, 164, 136, 48]
[195, 148, 216, 224]
[197, 66, 80, 96]
[197, 70, 136, 176]
[197, 230, 232, 48]
[201, 14, 208, 160]
[201, 138, 132, 160]
[201, 202, 108, 208]
[203, 132, 144, 96]
[209, 18, 196, 184]
[209, 18, 228, 72]
[209, 34, 132, 200]
[209, 66, 148, 120]
[209, 98, 36, 216]
[209, 146, 20, 24]
[209, 150, 216, 32]
[209, 194, 4, 24]
[209, 210, 68, 136]
[209, 226, 100, 216]
[211, 68, 136, 32]
[213, 22, 136, 32]
[213, 70, 136, 160]
[217, 218, 20, 160]
[225, 2, 204, 144]
[225, 18, 100, 136]
[225, 18, 180, 232]
[225, 34, 36, 152]
[225, 36, 72, 80]
[225, 66, 100, 56]
[225, 66, 104, 144]
[225, 98, 196, 216]
[225, 130, 8, 48]
[225, 130, 36, 80]
[225, 130, 116, 200]
[225, 166, 72, 48]
[225, 194, 196, 120]
[225, 198, 232, 48]
[225, 202, 132, 112]
[225, 226, 72, 176]
[225, 242, 212, 216]
[226, 228, 104, 240]
[227, 100, 40, 176]
[229, 102, 40, 112]
[229, 102, 200, 80]
[229, 130, 168, 240]
[229, 130, 200, 208]
[233, 66, 172, 80]
[233, 130, 100, 144]
[233, 162, 12, 176]
[241, 18, 132, 88]
[241, 66, 4, 56]
[241, 82, 68, 8]
[241, 146, 148, 232]
[241, 194, 84, 24]
[241, 194, 180, 248]
[241, 226, 20, 216]
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Table 3: 2-(8, 4, 217; 2) design B3

[1, 2, 4, 96]
[1, 2, 76, 176]
[1, 2, 96, 128]
[1, 10, 32, 64]
[1, 34, 20, 136]
[1, 34, 100, 240]
[1, 66, 164, 184]
[1, 98, 212, 136]
[1, 106, 108, 144]
[1, 114, 196, 248]
[1, 130, 108, 48]
[1, 136, 160, 192]
[1, 138, 68, 144]
[1, 138, 140, 240]
[1, 146, 180, 72]
[1, 162, 12, 192]
[1, 162, 132, 56]
[1, 194, 20, 24]
[1, 228, 136, 16]
[1, 234, 236, 16]
[2, 8, 32, 64]
[2, 68, 40, 128]
[2, 100, 136, 240]
[2, 148, 72, 96]
[2, 228, 72, 144]
[2, 228, 136, 112]
[3, 116, 88, 128]
[5, 74, 48, 128]
[5, 162, 56, 64]
[5, 162, 104, 176]
[5, 166, 200, 240]
[9, 2, 196, 208]
[9, 6, 96, 128]
[9, 10, 12, 240]
[9, 10, 44, 48]
[9, 10, 68, 96]
[9, 18, 156, 96]
[9, 44, 16, 128]
[9, 76, 208, 96]
[9, 106, 4, 128]
[9, 202, 76, 176]
[9, 202, 80, 96]
[9, 202, 148, 224]
[11, 4, 16, 64]
[11, 12, 48, 64]
[14, 144, 160, 192]
[17, 18, 92, 160]
[17, 26, 44, 192]
[17, 42, 60, 64]
[17, 66, 148, 232]
[17, 114, 84, 128]
[17, 114, 164, 168]
[17, 132, 152, 160]
[17, 134, 72, 160]
[17, 148, 200, 224]
[17, 166, 136, 64]
[17, 178, 100, 168]
[17, 178, 188, 64]
[17, 196, 152, 224]
[17, 218, 12, 224]

[18, 8, 96, 128]
[21, 6, 136, 32]
[25, 66, 148, 96]
[25, 74, 20, 32]
[33, 2, 72, 80]
[33, 2, 76, 112]
[33, 2, 176, 64]
[33, 2, 212, 24]
[33, 10, 76, 128]
[33, 10, 76, 176]
[33, 10, 100, 128]
[33, 18, 4, 24]
[33, 100, 104, 144]
[33, 132, 8, 112]
[33, 162, 4, 216]
[33, 194, 12, 144]
[33, 210, 52, 232]
[33, 210, 84, 200]
[33, 226, 236, 112]
[33, 230, 72, 112]
[33, 230, 200, 112]
[34, 8, 144, 192]
[34, 36, 168, 48]
[34, 44, 16, 64]
[34, 132, 200, 144]
[35, 36, 184, 192]
[35, 100, 168, 48]
[37, 34, 40, 144]
[37, 70, 136, 80]
[37, 98, 40, 128]
[37, 198, 72, 176]
[41, 42, 132, 64]
[41, 50, 188, 192]
[41, 66, 4, 144]
[41, 98, 84, 128]
[41, 106, 108, 16]
[41, 106, 172, 240]
[41, 194, 196, 208]
[49, 18, 180, 8]
[49, 26, 4, 128]
[49, 82, 116, 232]
[49, 114, 180, 88]
[49, 178, 212, 88]
[49, 226, 164, 168]
[49, 226, 164, 232]
[49, 242, 68, 120]
[50, 52, 72, 128]
[51, 4, 24, 128]
[57, 58, 28, 64]
[61, 46, 64, 128]
[65, 6, 104, 80]
[65, 10, 236, 144]
[65, 18, 156, 32]
[65, 66, 8, 48]
[65, 66, 180, 8]
[65, 68, 136, 96]
[65, 74, 172, 80]
[65, 82, 100, 8]
[65, 98, 132, 216]
[65, 98, 148, 136]

[65, 98, 164, 232]
[65, 98, 228, 120]
[65, 130, 228, 24]
[65, 130, 244, 72]
[65, 134, 144, 224]
[65, 146, 68, 40]
[65, 146, 196, 56]
[65, 154, 212, 32]
[65, 166, 104, 80]
[65, 178, 116, 216]
[65, 202, 12, 176]
[65, 226, 148, 200]
[65, 234, 68, 112]
[67, 36, 72, 128]
[67, 68, 72, 208]
[67, 76, 16, 32]
[67, 132, 8, 208]
[67, 228, 136, 16]
[69, 2, 88, 128]
[69, 14, 208, 224]
[69, 38, 232, 48]
[69, 82, 88, 32]
[69, 102, 232, 48]
[69, 146, 152, 96]
[69, 162, 136, 80]
[69, 214, 72, 96]
[73, 2, 4, 80]
[73, 2, 16, 224]
[73, 10, 12, 160]
[73, 42, 172, 16]
[73, 44, 112, 128]
[73, 74, 16, 128]
[73, 74, 148, 224]
[73, 106, 44, 208]
[73, 122, 100, 128]
[73, 202, 220, 160]
[73, 234, 236, 48]
[81, 38, 56, 128]
[81, 82, 148, 136]
[81, 90, 140, 96]
[81, 98, 52, 200]
[81, 210, 116, 248]
[81, 210, 244, 8]
[81, 226, 244, 104]
[82, 72, 32, 128]
[82, 116, 40, 128]
[85, 150, 88, 32]
[89, 10, 204, 32]
[89, 82, 84, 32]
[89, 106, 52, 128]
[89, 202, 4, 32]
[89, 202, 220, 224]
[91, 12, 96, 128]
[97, 34, 164, 168]
[97, 66, 12, 144]
[97, 66, 80, 128]
[97, 66, 100, 184]
[97, 66, 104, 80]
[97, 74, 228, 112]
[97, 106, 140, 80]

[97, 162, 100, 80]
[97, 194, 236, 16]
[97, 226, 100, 240]
[97, 226, 136, 80]
[97, 228, 40, 240]
[97, 228, 200, 48]
[98, 4, 104, 112]
[98, 4, 136, 144]
[98, 4, 168, 144]
[98, 164, 104, 176]
[98, 196, 8, 80]
[99, 132, 232, 240]
[101, 106, 16, 128]
[105, 42, 204, 176]
[105, 170, 4, 176]
[105, 194, 76, 176]
[113, 38, 40, 128]
[113, 50, 196, 136]
[113, 82, 84, 72]
[113, 178, 132, 120]
[113, 178, 228, 120]
[113, 210, 116, 152]
[129, 2, 4, 248]
[129, 6, 216, 32]
[129, 10, 12, 192]
[129, 18, 132, 104]
[129, 38, 16, 192]
[129, 38, 176, 192]
[129, 66, 68, 200]
[129, 82, 20, 40]
[129, 82, 132, 160]
[129, 98, 68, 168]
[129, 130, 92, 160]
[129, 130, 116, 40]
[129, 146, 20, 104]
[129, 146, 52, 152]
[129, 146, 84, 72]
[129, 162, 196, 176]
[129, 164, 48, 64]
[129, 178, 116, 152]
[129, 194, 232, 80]
[129, 212, 88, 96]
[129, 218, 4, 32]
[129, 218, 92, 32]
[129, 242, 4, 72]
[130, 100, 136, 48]
[130, 132, 200, 176]
[131, 36, 200, 80]
[133, 6, 176, 64]
[133, 50, 56, 192]
[133, 134, 48, 64]
[133, 134, 232, 144]
[133, 194, 200, 144]
[133, 206, 208, 96]
[137, 2, 204, 96]
[137, 2, 236, 176]
[137, 18, 156, 96]
[137, 34, 36, 16]
[137, 42, 4, 208]
[137, 162, 236, 144]

[137, 194, 68, 48]
[137, 194, 140, 224]
[137, 202, 4, 224]
[137, 226, 164, 240]
[141, 202, 208, 96]
[145, 26, 84, 96]
[145, 50, 196, 184]
[145, 52, 168, 192]
[145, 114, 36, 72]
[145, 146, 76, 96]
[145, 146, 180, 64]
[145, 162, 116, 8]
[145, 178, 36, 40]
[145, 178, 52, 192]
[145, 226, 244, 168]
[145, 242, 212, 168]
[153, 42, 60, 192]
[161, 2, 136, 240]
[161, 34, 40, 80]
[161, 34, 136, 176]
[161, 36, 200, 16]
[161, 54, 8, 64]
[161, 66, 100, 216]
[161, 74, 108, 240]
[161, 98, 148, 248]
[161, 100, 72, 16]
[161, 178, 148, 8]
[161, 194, 180, 232]
[162, 36, 72, 80]
[162, 44, 48, 192]
[163, 100, 104, 176]
[163, 132, 104, 112]
[169, 34, 140, 208]
[169, 34, 164, 208]
[169, 106, 228, 48]
[169, 154, 180, 64]
[169, 186, 52, 64]
[169, 194, 140, 208]
[177, 6, 56, 64]
[177, 18, 132, 136]
[177, 34, 52, 192]
[177, 42, 132, 192]
[177, 66, 132, 152]
[177, 66, 228, 136]
[177, 114, 132, 8]
[177, 114, 180, 24]
[177, 134, 24, 192]
[177, 146, 196, 88]
[177, 162, 52, 136]
[177, 162, 140, 192]
[177, 194, 132, 104]
[177, 226, 212, 216]
[179, 20, 8, 192]
[181, 22, 184, 192]
[181, 178, 184, 192]
[185, 138, 172, 192]
[193, 38, 72, 16]
[193, 50, 20, 88]
[193, 66, 140, 32]
[193, 68, 8, 48]

[193, 82, 200, 224]
[193, 106, 76, 144]
[193, 114, 196, 120]
[193, 114, 228, 168]
[193, 140, 208, 96]
[193, 162, 168, 16]
[193, 178, 212, 56]
[193, 194, 232, 16]
[193, 196, 136, 224]
[193, 196, 152, 96]
[193, 226, 236, 16]
[193, 226, 244, 136]
[194, 68, 104, 176]
[195, 4, 80, 32]
[197, 18, 24, 32]
[197, 66, 136, 240]
[197, 150, 24, 224]
[197, 214, 152, 32]
[197, 230, 40, 176]
[201, 2, 76, 224]
[201, 10, 4, 208]
[201, 12, 144, 32]
[201, 132, 144, 96]
[201, 138, 208, 224]
[201, 170, 140, 144]
[209, 130, 152, 32]
[209, 130, 164, 200]
[209, 148, 72, 96]
[209, 162, 244, 184]
[209, 194, 8, 96]
[209, 210, 212, 216]
[213, 134, 24, 96]
[225, 2, 136, 112]
[225, 4, 232, 176]
[225, 34, 4, 56]
[225, 34, 12, 80]
[225, 34, 12, 208]
[225, 34, 148, 40]
[225, 34, 164, 240]
[225, 36, 232, 16]
[225, 98, 180, 200]
[225, 114, 36, 72]
[225, 130, 164, 112]
[225, 138, 172, 16]
[225, 194, 4, 168]
[225, 194, 84, 40]
[225, 210, 100, 168]
[225, 226, 100, 200]
[226, 132, 72, 48]
[229, 134, 104, 48]
[233, 106, 68, 48]
[233, 106, 140, 176]
[233, 106, 164, 240]
[233, 170, 44, 176]
[241, 82, 52, 136]
[241, 98, 20, 8]
[241, 114, 116, 168]
[241, 210, 20, 104]

Table 4: Realizable large sets used in the proof of Theorem 1

i LS2[3](t1, i, 5 − i) LS2[3](t2, k − i, v − 6− i) t1 + t2 + 1

i ≡ 0 mod 6 t1 = −1 t2 = 2 2
i ≡ 1 mod 6 t1 = 0 t2 = 1 2
i ≡ 2 mod 6 t1 = 1 t2 = 0 2

i ≡ 3, 4, 5 mod 6 t1 = 2 t2 = −1 2
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Remark 5.1. We would like to mention that the proof of Theorem 1 works for any value
of q and N , provided that there exist LSq[N ](2, 3, 8) and LSq[N ](2, 4, 8). For example,
the parameters LS3[7](2, 3, 8) and LS3[7](2, 4, 8) are admissible, but the realizability is
open. If both large sets actually do exist, then we get an infinite series like in Theorem 1.

Our knowledge for the existence of LS2[3](2, k, v) is shown in Table 5. A minus sign
indicates that the parameters are not admissible, and a question mark that the param-
eters are admissible, but the realizability is open. All known realizability results are
covered by Theorem 1. In these cases we display the parameter k in the table. Because
of duality, only the parameter range 3 ≤ k ≤ v/2 is shown. Apart from the already
known LS2[3](2, 3, 8) (and its dual LS2[3](2, 5, 8)), all these realizability results are new.
The smallest open case is given by the admissible parameter set LS2[3](2, 6, 20), which
is out of reach of our current construction methods.
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Large sets of t-designs over finite fields. J. Comb. Theory Ser. A, 124:195–202, May
2014.

[9] Peter J. Cameron. Generalisation of Fisher’s inequality to fields with more than
one element. In Combinatorics, volume 13 of London Mathematical Society Lecture
Note Series, pages 9–13. Cambridge University Press, Cambridge, 1974.

[10] Peter J. Cameron. Locally symmetric designs. Geom. Dedicata, 3:65–76, 1974.

[11] Yeow Meng Chee, Charles J. Colbourn, Steven C. Furino, and Donald L. Kreher.
Large sets of disjoint t-designs. Australasian J. of Combinatorics, 2:111–119, 1990.

[12] Charles J. Colbourn and Jeffrey H. Dinitz. Handbook of Combinatorial Designs, Sec-
ond Edition (Discrete Mathematics and Its Applications). Chapman & Hall/CRC,
2006.

[13] Philippe Delsarte. Association Schemes and t-Designs in Regular Semilattices. Jour-
nal of Combinatorial Theory, Series A, 20(2):230–243, 1976.

[14] Ralph H. F. Denniston. Some packings of projective spaces. Atti della Accademia
Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Natu-
rali. Serie VIII, 52:36–40, 1972.

[15] Tuvi Etzion and Alexander Vardy. Automorphisms of codes in the Grassmann
scheme. arXiv:1210.5724, 2012.

[16] Tatsuro Itoh. A New Family of 2-Designs over GF (q) Admitting SLm(ql). Geome-
triae Dedicata, 69:261–286, 1998.

[17] G. B. Khosrovshahi and Tayfeh-Rezaie B. Trades and t-designs. In Surveys in
combinatorics 2009, number 365 in London Mathematical Society Lecture Note
Series, pages 91–111. Cambridge Univ. Press, 2009.

[18] Michael Kiermaier and Reinhard Laue. Derived and residual subspace designs. Adv.
Math. Commun., 9(1):105–115, 2015.

[19] Earl S. Kramer and Dale M. Mesner. t-designs on hypergraphs. Discrete Math.,
15:263–296, 1976.

[20] D. S. Krotov, I. Yu. Mogilnykh, and V. N. Potapov. To the theory of q-ary steiner
and other-type trades. Discrete Mathematics, 339(3):1150–1157, 2016.

[21] Denis Krotov. The minimum volume of subspace trades. arXiv:1512.02592, 2015.

[22] Masashi Miyakawa, Akihiro Munemasa, and Satoshi Yoshiara. On a Class of Small
2-Designs over GF (q). Journal of Combinatorial Designs, 3:61–77, 1995.

[23] Jumela F. Sarmiento. On point-cyclic resolutions of the 2-(63,7,15) design associated
with PG(5,2). Graphs and Combinatorics, 18(3):621–632, 2002.

12



[24] Hiroshi Suzuki. 2-Designs over GF (2m). Graphs and Combinatorics, 6:293–296,
1990.

[25] Hiroshi Suzuki. 2-Designs over GF (q). Graphs and Combinatorics, 8:381–389, 1992.

[26] Simon Thomas. Designs over Finite Fields. Geometriae Dedicata, 24:237–242, 1987.

[27] Ferenc Wettl. On parallelisms of odd dimensional finite projective spaces. Periodica
Polytechnica, 19(1-2):111–116, 1991.

13


	1 Introduction
	2 Preliminaries
	3 The method of Kramer and Mesner
	4 An LS2[3](2, 4, 8)
	5 An infinite series of large sets

