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Abstract

Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of
optical code division multiple access (OCDMA) network for 2-dimensional image transmission.
There is a one-to-one correspondence between an (m,n,w, λ)-OOSPC and a (λ+ 1)-(mn,w, 1)
packing design admitting a point-regular automorphism group isomorphic to Zm×Zn. In 2010,
Sawa gave the first infinite class of (m,n, 4, 2)-OOSPCs by using S-cyclic Steiner quadruple
systems. In this paper, we use various combinatorial designs such as strictly Zm ×Zn-invariant
s-fan designs, strictly Zm×Zn-invariant G-designs and rotational Steiner quadruple systems to
present some constructions for (m,n, 4, 2)-OOSPCs. As a consequence, our new constructions
yield more infinite families of optimal (m,n, 4, 2)-OOSPCs. Especially, we see that in some
cases an optimal (m,n, 4, 2)-OOSPC can not achieve the Johnson bound. We also use Witt’s
inversive planes to obtain optimal (p, p, p+ 1, 2)-OOSPCs for all primes p ≥ 3.

Keywords: Automorphism group, packing design, optical orthogonal code, optical orthogonal
signature pattern code, spatial optical CDMA.

1 Introduction

Optical code division multiple access (OCDMA) allows many nodes, which technically collide with
one another, to transmit and be accessed simultaneously and dynamically with no waiting time
at the same wavelength [16], [53], [42], [43]. Spatial OCDMA, an extension of OCDMA to a two-
dimensional (2-D) space coding for image transmission and multiple access, can exploit the inherent
parallelism of optics. The beauty of parallelism is that a light beam can carry the information of
a 2-D array of pixels of a binary-digitized image, and hence the 2-D array of pixels of an image
can be transmitted and processed simultaneously through multicore fiber without parallel-to-serial
conversion. For details on fundamentals and applications of OCDMA and spatial OCDMA, the
reader is referred to books [29], [41], [58]. The approach, which combines the features of optical
image processing with multiple access inherent in OCDMA, has been proposed and demonstrated
for encoding two dimensional pixel arrays by Kitayama and colleagues [28, 30]. This 2-D image
multiplexing has many applications such as transmission of medical images, parallel optical inter-
connections between processors and memory in high performance computing, etc [41], [58]. And the
spatial OCDMA provides higher throughput comparing with the traditional OCDMA [29].

In spatial OCDMA, each magnified 2-D bit plane, comprising individual pixels of an image, is
encoded using a (0, 1) 2-D matrix called a 2-D optical orthogonal signature pattern (OOSP). The
encoded image is constructed by taking the Hadamard product of the overlapping matrix elements
of the magnified bit plane and OOSP. Each node on the network uses a unique OOSP to encode the
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planar data from its input image. When a receiver which possesses the signature pattern receives
the encoded signal, it extracts the input image from the received encoded signal by correlating the
received encoded signal and its own OOSP with a specific signature function. For more details, the
interested readers may refer to [24], [28].

As pointed out in [28], one of the keys to spatial OCDMA is the methodology in the construction
of the 2-D OOSPs. The construction of the OOSPs for 2-D data encoding follows many of the same
principles typical of optical CDMA codes including code orthogonality and large cardinality. In
addition, each OOSP is distinguishable from space-shifted versions of themselves (auto-correlation)
on a 2-D plane and any two different OOSPs in a set are distinguishable from each other (cross-
correlation), even with the existence of vertical or horizontal space shifts in the plane [24], [28]. The
constraints require that the correlation is much lower than the weight (the number of “1”) of the
OOSP. Now we introduce the formal definition of an optical orthogonal signature pattern code.

Let m,n,w, λ be positive integers with mn > w ≥ λ. An optical orthogonal signature pattern
code with m wavelengths, time-spreading length n, constant weight w and the maximum collision
parameter λ, or briefly (m,n,w, λ)-OOSPC, is a family, C, of m×n (0, 1)-matrices (codewords) with
constant Hamming weight w (i.e., the number of ones) such that the following correlation properties
hold:

(1) (Auto-Correlation Property)

m−1∑

i=0

n−1∑

j=0

ai,jai⊕mδ,j⊕nτ ≤ λ

for any matrix A = (ai,j) ∈ C (0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1) and any integers δ and τ with
0 ≤ δ < m, 0 ≤ τ < n and (δ, τ) 6= (0, 0);

(2) (Cross-Correlation Property)

m−1∑

i=0

n−1∑

j=0

ai,jbi⊕mδ,j⊕nτ ≤ λ

for any two distinct matrices A = (ai,j), B = (bi,j) ∈ C (0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1), and any
integers δ and τ with 0 ≤ δ < m and 0 ≤ τ < n, where ⊕m (resp. ⊕n) denotes addition modulo m
(resp. modulo n) and equality holds in each of the two inequalities for at least one instance.

When the auto-correlation property is replaced by
∑m−1

i=0

∑n−1
j=0 ai,jai,j⊕nτ ≤ λ (0 < τ < n)

and the cross-correlation property is replaced by
∑m−1

i=0

∑n−1
j=0 ai,jbi,j⊕nτ ≤ λ (0 ≤ τ < n), this

defines a two-dimensional optical orthogonal code (2-D (m× n,w, λ)-OOC). Clearly, an OOSPC is
a special 2-D OOC, for example, see [56] for other variations of 2-D OOCs. Many constructions
for 2-D (m × n,w, λ)-OOCs have been given, see [2], [3], [11], [17], [25], [37], [52], [56]. Note that
in the particular case where m = 1 and n = v, a 2-D (m,n,w, λ)-OOSPC is nothing else than a
one-dimensional (v, w, λ) optical orthogonal code (briefly, 1-D (v, w, λ)-OOC). For details on 1-D
OOCs, the reader is referred to [12], [15], [34], [44]. So far, many constructions of 1-D OOCs with
maximum size and many results have been made, for example, [1], [6], [8], [9], [10], [13], [20], [44],
[57].

Throughout this paper we always denote by Zn the additive group of integers modulo n. For
each (0, 1)-matrix A = (aij) ∈ C, whose rows are indexed by Zm and columns are indexed by Zn, we
define XA = {(i, j) ∈ Zm ×Zn : aij = 1}. Then, F = {XA : A ∈ C} is a set-theoretic representation
of an (m,n,w, λ)-OOSPC. Thus, an (m,n,w, λ)-OOSPC is a set F of w-subsets of Zm×Zn in which
each w-subset X corresponds to a signature pattern (aij) such that aij = 1 if and only if (i, j) ∈ X ,
where the two correlation properties are given as follows:

(1
′

) (Auto-Correlation Property)

|X ∩ (X + (δ, τ))| ≤ λ

for each X ∈ F and every (δ, τ) ∈ Zm × Zn \ {(0, 0)};
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(2
′

) (Cross-Correlation Property)

|X ∩ (Y + (δ, τ))| ≤ λ

for any distinct X,Y ∈ F and every (δ, τ) ∈ Zm × Zn.

The number of codewords in an OOSPC is called the size of the OOSPC. For given integers
m,n,w and λ, let Θ(m,n,w, λ) be the largest possible size among all (m,n,w, λ)-OOSPCs. An
(m,n,w, λ)-OOSPC with size Θ(m,n,w, λ) is said to be optimal. Based on the Johnson bound
[27] for constant weight codes, an upper bound on the largest possible size Θ(m,n,w, λ) of an
(m,n,w, λ)-OOSPC was given below:

Θ(m,n,w, λ) ≤ J(m,n,w, λ) =

⌊
1

w

⌊
mn− 1

w − 1

⌊
mn− 2

w − 2

⌊
· · ·

⌊
mn− λ

w − λ

⌋
· · ·

⌋⌋⌋⌋
. (1.1)

When m and n are coprime, it has been shown in [55] that an (m,n,w, λ)-OOSPC is actually
a 1-D (mn,w, λ)-OOC. However, when m and n are not coprime, the problem of constructing op-
timal (m,n,w, λ)-OOSPCs becomes difficult. Some infinite classes of optimal (m,n,w, 1)-OOSPCs
have been given for specific values of m,n,w, see [7], [38], [39], [46], [55]. To our knowledge,
the only known optimal OOSPCs with λ ≥ 2 were obtained by Sawa [45]. He showed that
there is an optimal (2ǫx, n, 4, 2)-OOSPC where ǫ ∈ {1, 2}, and each prime factor of x, n is less
than 500000 and congruent to 53 or 77 modulo 120 or belongs to S = {5, 13, 17, 25, 29, 37, 41, 53,
61, 85, 89, 97, 101, 113, 137, 149, 157, 169, 173, 193, 197, 229, 233, 289, 293, 317}. In this paper, We use
various combinatorial structures to present more infinite families of optimal (m,n, 4, 2)-OOSPCs.

This paper is organized as follows. In Section II, a correspondence between an (m,n,w, λ)-
OOSPC and a strictly Zm × Zn-invariant (λ + 1)-(mn,w, 1) packing design is described. Based on
this correspondence we give an improved upper bound on Θ(m,n, 4, 2) by analyzing the leave of a
strictly Zm ×Zn-invariant 3-(mn, 4, 1) packing design. We also construct an optimal (p, p, p+1, 2)-
OOSPC from an inversive plane of prime order p. Section III introduces a concept of strictly
Zm × Zn-invariant G(me , en, 4, 3) design, from which we can obtain a strictly Zm × Zn-invariant
3-(mn, 4, 1) packing design. We also use a cyclic SQS(m) to construct a strictly Zm × Zn-invariant
G(m,n, 4, 3) design. In Section IV, we give a recursive construction for strictly Zm × Zn-invariant
G∗(me , en, 4, 3) design. Section V uses 1-fan designs to present a recursive construction for strictly
Zm ×Zn-invariant G(m,n,w, 3) design. Based on known S-cyclic SQSs and rotational SQSs, many
new optimal (m,n, 4, 2)-OOSPCs are established in Section VI. Finally, Section VII gives a brief
conclusion. Our main results are summarized in Table I.

2 Combinatorial characterization

In this section, we describe a correspondence between an (m,n, k, λ)-OOSPC and a strictly Zm×Zn-
invariant (λ+1)-(mn, k, 1) packing design. Based on this correspondence we give an improved upper
bound on Θ(m,n, 4, 2) and construct an optimal (p, p, p+ 1, 2)-OOSPC for any prime p.

Let t, w, n be positive integers. A t-(n,w, 1) packing design consists of an n-element set X and
a collection B of w-element subsets of X , called blocks, such that every t-element subset of X is
contained in at most one block. A 3-(n, 4, 1) packing design is called a packing quadruple system

and denoted by PQS(n). When “at most” is replaced by “exactly”, this defines a Steiner system,
denoted by S(t, w, n). An S(2, 3, n) is called a Steiner triple system and denoted by STS(n). An
S(3, 4, n) is called a Steiner quadruple system and denoted by SQS(n). It is well known that there
is an SQS(n) if and only if n ≡ 2, 4 (mod 6) [21].

A t-(n,w, 1) packing design is optimal if it has the largest possible number D(n,w, t) of blocks.
It is well known [27] that

D(n,w, t) ≤

⌊
n

w

⌊
n− 1

w − 1

⌊
· · ·

⌊
n− t+ 1

w − t+ 1

⌋
· · ·

⌋⌋⌋
.
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For t = 2 and w ∈ {3, 4}, the numbers D(n,w, 2) have been completely determined, there is
also much work on D(n, 5, 2), see [51]. For t ≥ 3, only numbers D(n, 4, 3) have been completely
determined [4].

An automorphism σ of a packing design (X,B) is a permutation on X leaving B invariant. All
automorphisms of a packing design form a group, called the full automorphism group of the packing
design. Any subgroup of the full automorphism group is called an automorphism group of the
packing design. Let G be an automorphism group of a packing design. For any block B of the
packing design, the subgroup

{σ ∈ G : Bσ = B}

is called the stabilizer of B in G, where Bσ stands for σ acting on B. The orbit of B under G is the
collection OrbG(B) of all distinct images of B under G, i.e.,

OrbG(B) = {Bσ : σ ∈ G}.

It is clear that B can be partitioned into some orbits under G. An arbitrary set of representatives
for each orbit of B is called the set of base blocks of the packing design. A packing design (X,B)
is said to be G-invariant if it admits G as a point-regular automorphism group, that is, G is an
automorphism group such that for any x, y ∈ X , there exists exactly one element σ ∈ G such that
xσ = y. In particular, a Zn-invariant packing design is cyclic. Moreover, a packing design (X,B) is
said to be strictly G-invariant if it is G-invariant and the stabilizer of each B ∈ B under G equals
the identity of G. A strictly G-invariant t-(n,w, 1) packing design is called optimal if it contains the
largest possible number of base blocks.

For a Zm × Zn-invariant t-(mn,w, 1) packing design (X,B), without loss of generality we can
identify X with Zm × Zn and the automorphisms can be taken as translations σa defined by xσa =
x + a for x ∈ Zm × Zn, where a ∈ Zm × Zn. Thus, given an arbitrary family of all base blocks
of a strictly Zm × Zn-invariant t-(mn,w, 1) packing design, we can obtain the packing design by
successively adding (i, j) to each base block, where (i, j) ∈ Zm × Zn.

Based on the set-theoretic representation of an (m,n,w, λ)-OOSPC, the following connection is
then obtained.

Theorem 2.1 [45] An (m,n,w, λ)-OOSPC of size u is equivalent to a strictly Zm × Zn-invariant

(λ+ 1)-(mn,w, 1) packing design having u base blocks.

Based on this connection, Sawa established a tighter upper bound on Θ(m,n, 4, 2) with mn ≡ 0
(mod 24) than the Johnson bound.

Lemma 2.2 [45] Let m and n be positive integers. If mn ≡ 0 (mod 24) then Θ(m,n, 4, 2) ≤
J(m,n, 4, 2)− 1.

Sawa [45] also posed an open problem: Does there exist an optimal (6, n, 4, 2)-OOSPC attaining
the Johnson bound (1.1) for a positive integer n, not being a multiple of 4 in general? By analyzing
the leave of a strictly Zm×Zn-invariant PQS(mn), we show that there does not exist an (m,n, 4, 2)-
OOSPC attaining the upper bound (1.1) for m,n ≡ 0 (mod 3) with mn ≡ 18, 36 (mod 72).

The triples of Zm × Zn are partitioned into equivalence classes called orbits of triples under the
action of Zm × Zn. The number of triples (resp. quadruples) contained in an orbit is called the
length of the orbit. If the length of an orbit is mn then it is called full. The set of triples not
contained in any quadruple of a PQS(v) is called the leave of this packing design.

For (a, b) ∈ Zm × Zn \ {(0, 0)}, denote T(a,b) = {{(0, 0), (a, b), (x, y)} : (x, y) ∈ Zm × Zn \
{(0, 0), (a, b)}}. Clearly, |T(a,b)| = mn − 2. Each quadruple of Zm × Zn either contains two triples
in T(a,b) or does not contain any triple in T(a,b). So, the number of triples which are from T(a,b) and
in the leave of a strictly Zm × Zn-invariant PQS(mn) has the same parity as mn.
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Lemma 2.3 If m ≡ 0 (mod 3), n ≡ 0 (mod 3) and mn ≡ 0, 18 or 36 (mod 72), then Θ(m,n, 4, 2) ≤
J(m,n, 4, 2)− 1.

Proof It is easy to see that the orbits generated by {(0, 0), (0, n3 ), (0,
2n
3 )}, {(0, 0), (m3 ,

n
3 ), (

2m
3 , 2n

3 )},
{(0, 0), (m3 ,

2n
3 ), (2m3 , n

3 )} and {(0, 0), (m3 , 0), (
2m
3 , 0)} under Zm × Zn are short. They have length

mn
3 and they must be in the leave of a strictly Zm × Zn-invariant PQS(mn). Also, the other

orbits of triples under Zm×Zn are all full. Consequently, there are (mn(mn−1)(mn−2)
6 − 4mn

3 )/mn =
m2n2−3mn−6

6 full orbits of triples. On the other hand, since the number of triples containing any given
two points in the leave is even, there must be at least one triple of the form {(0, 0), (x, y), (x′, y′)} with
(x′, y′) 6= (2x, 2y) in the leave for (x, y) ∈ {(0, n3 ), (0,

2n
3 ), (m3 ,

n
3 ), (

2m
3 , 2n

3 ), (m3 ,
2n
3 ), (2m3 , n

3 ), (
m
3 , 0),

(2m3 , 0)}. Clearly, one full orbit of triples can not cover all such eight triples. It follows that there

are at most m2n2−3mn−6
6 −2 full orbits of triples occurring in a strictly Zm×Zn-invariant PQS(mn).

Therefore, Θ(m,n, 4, 2) ≤ ⌊m2n2−3mn−18
24 ⌋ = J(m,n, 4, 2)− 1. ✷

We use an example to show that the improved upper bound in Lemma 2.3 is tight. The corre-
sponding optimal (6, 6, 4, 2)-OOSPC gives an answer to the problem listed in Table I in [45]

Example 2.4 There exists a strictly Z6 × Z6-invariant PQS(36) with 48 base blocks, whose size

meets the upper bound in Lemma 2.3.

Proof The following 48 base blocks generate the block set of a strictly Z6 ×Z6-invariant PQS(36)
over Z6 × Z6.

{(0, 0), a,−a, (3, 3)}, where a ∈ {(0, 1), (1, 0), (1, 2), (1, 4)};
{(0, 0), b, (3, 0), (0, 3)+ b}, where b ∈ {(0, 1), (0, 2), (1, 0),

(1, 1), (1, 2), (2, 0), (2, 1)(2, 2)};
{(0, 0), (0, 1), (1, 0), (1, 1)}, {(0, 0), (0, 1), (1, 2), (1, 3)},
{(0, 0), (0, 1), (1, 4), (1, 5)}, {(0, 0), (0, 1), (2, 0), (2, 1)},
{(0, 0), (0, 1), (2, 2), (2, 3)}, {(0, 0), (0, 1), (2, 4), (3, 2)},
{(0, 0), (0, 1), (2, 5), (4, 2)}, {(0, 0), (0, 1), (3, 5), (4, 3)},
{(0, 0), (0, 2), (1, 0), (1, 2)}, {(0, 0), (0, 2), (1, 1), (1, 3)},
{(0, 0), (0, 2), (1, 4), (2, 1)}, {(0, 0), (0, 2), (1, 5), (2, 0)},
{(0, 0), (0, 2), (2, 2), (3, 3)}, {(0, 0), (0, 2), (2, 3), (2, 5)},
{(0, 0), (0, 2), (2, 4), (4, 4)}, {(0, 0), (0, 2), (3, 5), (4, 0)},
{(0, 0), (0, 2), (4, 1), (5, 4)}, {(0, 0), (0, 2), (4, 2), (5, 3)},
{(0, 0), (1, 0), (2, 1), (3, 1)}, {(0, 0), (1, 0), (2, 2), (5, 4)},
{(0, 0), (1, 0), (2, 3), (5, 1)}, {(0, 0), (1, 0), (2, 4), (3, 5)},
{(0, 0), (1, 0), (2, 5), (5, 3)}, {(0, 0), (1, 0), (3, 2), (4, 2)},
{(0, 0), (1, 0), (4, 1), (5, 2)}, {(0, 0), (1, 1), (2, 3), (3, 4)},
{(0, 0), (1, 1), (3, 2), (4, 5)}, {(0, 0), (1, 2), (2, 0), (5, 2)},
{(0, 0), (1, 2), (2, 1), (4, 0)}, {(0, 0), (1, 2), (3, 1), (4, 3)},
{(0, 0), (1, 2), (3, 2), (5, 1)}, {(0, 0), (1, 3), (2, 2), (3, 5)},
{(0, 0), (1, 3), (3, 1), (4, 0)}, {(0, 0), (1, 3), (3, 3), (4, 2)},
{(0, 0), (1, 4), (2, 3), (4, 5)}, {(0, 0), (1, 4), (3, 5), (5, 1)}.

✷

We finish this section by giving an optimal (p, p, p+ 1, 2)-OOSPC from an inversive plane.

Let q be a prime power and GF (q) the finite field of order q. Suppose that a, b, c, d ∈ GF (q) and
ad− bc 6= 0. Define a linear fractional mapping π(

a b

c d

) : GF (q)∪{∞} → GF (q)∪{∞} as follows:

π(
a b

c d

)(x) =






ax+b
cx+d , if x ∈ GF (q), cx + d 6= 0;

∞, if x ∈ GF (q), ax + b 6= 0, cx+ d = 0;
a
c , if x = ∞, c 6= 0;
∞, if x = ∞, c = 0.
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Then π(
a b

c d

) is a permutation of GF (q) ∪ {∞}, and the permutations π(
a b

c d

) and π(
ra rb

rc rd

)

are identical if r 6= 0. Define PGL(2, q) to consist of all the distinct permutations π(
a b

c d

), where

a, b, c, d ∈ GF (q), and ad − bc 6= 0. It is well known that PGL(2, q) is a sharply 3-transitive
permutation group acting on the set GF (q) ∪ {∞}, i.e., for all choices of six elements x1, x2, x3,
y1, y2, y3 ∈ GF (q) ∪ {∞} such that x1, x2, x3 are distinct and y1, y2, y3 are distinct, there is exactly
one permutation π ∈PGL(2, q) such that π(xi) = yi for all i, 1 ≤ i ≤ 3. Witt proved that the
PGL(2, q2) orbit of the set GF (q)∪{∞} is an S(3, q+1, q2+1) (called an inversive plane) with the
point set GF (q2) ∪ {∞} [54].

Theorem 2.5 [54] For any prime power q, there is an S(3, q + 1, q2 + 1).

Theorem 2.6 For any prime p, there is an optimal (p, p, p+ 1, 2)-OOSPC with the size attaining

the upper bound (1.1).

Proof Start with an inversive plane S(3, p + 1, p2 + 1) whose point set is GF (p2) ∪ {∞} and
whose block set is the PGL(2, p2) orbit of the set GF (p) ∪ {∞}. Since the PGL(2, p2) contains the
permutation group G = {π(

1 b

0 1

) : b ∈ GF (p2)}, the inversive plane S(3, p + 1, p2 + 1) admits

an automorphism group G. Since each automorphism π(
1 b

0 1

) fixes the point ∞, the set of all

blocks containing ∞ admits the automorphism group G. On the other hand, all blocks containing
∞ with ∞ deleted form the set of an S(2, p, p2) (called an affine plane). There are total p2 + p
blocks containing ∞. Thus, deleting ∞ and all blocks containing ∞ from the inversive plane yields
a 3-(p2, p + 1, 1) packing design which admits G as a point-regular automorphism group and has
p2(p− 1) blocks. Since gcd(p+ 1, p2) = 1, the stabilizer of each block in the 3-(p2, p+ 1, 1) packing
design under G equals the identity of G, thus the 3-(p2, p+1, 1) packing design with point set GF (p2)
is strictly G-invariant. This packing design is in fact a strictly (GF (p2),+)-invariant 3-(p2, p+1, 1)
packing design. Since (GF (p2),+) is isomorphic to Zp × Zp, there is a strictly Zp × Zp-invariant
3-(p2, p+1, 1) packing design with p− 1 full orbits of blocks. By Theorem 2.1 and the upper bound
(1.1), there is an optimal (p, p, p+ 1, 2)-OOSPC. ✷

3 Construction of strictly Zm × Zn-invariant G(m, n, 4, 3) de-

signs via cyclic SQS(m)s

In this section, we introduce a concept of strictly Zm×Zn-invariantG(m,n, 4, 3) design and present a
construction of a strictly Zm×Zn-invariant PQS(mn) from a strictly Zm×Zn-invariant G(m,n, 4, 3)
design. We also use a strictly semi-cyclic G(2, n, 4, 3) design and a cyclic SQS(m) to construct a
strictly Zm × Zn-invariant G(m,n, 4, 3) design.

Let m,n, t be positive integers and K a set of some positive integers. A G(m,n,K, t) design is
a triple (X,Γ,B), where X is a set of mn points, Γ is a set of subsets of X which is partition of X
into m sets of size n (called groups) and B is a set of subsets of X with cardinalities from K, called
blocks, such that each t-set of points not contained in any group occurs in exactly one block and
each t-subset of each group does not occur in any block. When K = {k}, we simply write k for K.

G-designs were introduced by Mills [36] who determined the existence of G(m, 6, 4, 3) design.
Recently, Zhuralev et al. [59] showed that there exists a G(m,n, 4, 3) design if and only if n = 1 and
m ≡ 2, 4 (mod 6), or n is even and n(m− 1)(m− 2) ≡ 0 (mod 3).

Let m,n, t be positive integers and K a set of some positive integers. An H(m,n,K, t) design is
a triple (X,Γ,B), where X is a set of mn points, Γ is a partition of X into m sets of size n (called
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groups) and B is a set of subsets of X with cardinalities from K, called blocks, such that each block
intersect each group in at most one point and each t-set of points from t distinct groups occurs in
exactly one block.

The early idea of an H-design can be found in Hanani [22], who used different terminology. Mills
used the terminologyH-design in [36] and determined the existence of an H(m,n, 4, 3) design except
for m = 5 [35]. Recently, the second author proved that an H(5, n, 4, 3) design exists if n is even,
n 6= 2 and n 6≡ 10, 26 (mod 48) [26] .

An automorphism α of a G-design (resp. H-design) (X,Γ,B) is a permutation on X leaving Γ
and B invariant. All automorphisms of an G-design (resp. H-design) form a group, called the full

automorphism group of theG-design (resp. H-design). Any subgroup of the full automorphism group
is called an automorphism group of the G-design (resp. H-design). A G-design (resp. H-design)
(X,Γ,B) is said to be Q-invariant if it admits Q as a point-regular automorphism group. Moreover,
it is said to be strictly Q-invariant if it is Q-invariant and the stabilizer of each B ∈ B under Q
equals the identity of Q. For a Q-invariant G-design (resp. H-design), we always identify the point
set X with Q and the automorphisms are regarded as translations σa defined by σa(x) = x+ a for
x ∈ Q, where a ∈ Q. Then all blocks of this G-design (resp. H-design) can be partitioned into
some orbits under the permutation group {σa : a ∈ Q}. Let L be a subgroup of Q. If the group
set of a Q-invariant G-design (resp. H-design) is a set of cosets of L in Q, then it is a Q-invariant
G-design (resp. H-design) relative to L. A G(m,n,K, t) (resp. H(m,n,K, t)) design is said to be
semi-cyclic if the G-design (resp. H-design) admits an automorphism σ consisting of m cycles of
length n and leaving each group invariant. Note that the stabilizer of each block B of a semi-cyclic
H-design under {σi : 0 ≤ i < n} equals the identity, i.e., a semi-cyclic H-design is always strictly.

Example 3.1 There is a strictly Z10 × Z2-invariant G(5, 4, 4, 3) design relative to 5Z10 × Z2.

Proof The following base blocks under Z10 × Z2 generate the set of blocks of a strictly Z10 × Z2-
invariant G(5, 4, 4, 3) design over Z10 × Z2 with groups {i, i+ 5} × Z2, 0 ≤ i < 5.

{(0, 0), (1, 0), (9, 0), (0, 1)}, {(0, 0), (2, 0), (8, 0), (0, 1)},
{(0, 0), (3, 0), (7, 0), (0, 1)}, {(0, 0), (4, 0), (6, 0), (0, 1)},
{(0, 0), (1, 0), (3, 0), (4, 0)}, {(0, 0), (1, 0), (5, 0), (6, 1)},
{(0, 0), (1, 0), (6, 0), (5, 1)}, {(0, 0), (1, 0), (2, 1), (3, 1)},
{(0, 0), (1, 0), (4, 1), (7, 1)}, {(0, 0), (2, 0), (5, 0), (7, 1)},
{(0, 0), (2, 0), (7, 0), (5, 1)}, {(0, 0), (2, 0), (3, 1), (9, 1)},
{(0, 0), (2, 0), (4, 1), (8, 1)}, {(0, 0), (3, 0), (1, 1), (4, 1)}.

✷

For a semi-cyclic G(m,n,K, t) (resp. H(m,n,K, t)) design, without loss of generality we can
identify the point set X with Im × Zn, and the automorphism σ can be taken as (i, j) 7→ (i, j + 1)
(−,mod n), (i, j) ∈ Im × Zn, where Im = {1, . . . ,m}. Then all blocks of this G-design (resp. H-
design) can be partitioned into some orbits under the action of σ. A set of base blocks is a set of
representatives for the orbits and each element is called a base block.

Let n be a positive integer. It is not hard to see that

{{(1, x), (2, x+ y), (3, x+ z), (4, x+ y + z)} : x, y, z ∈ Zn}

is the set of a semi-cyclic H(4, n, 4, 3) design on I4 ×Zn with groups {i}×Zn, i ∈ I4. Such a result
has been stated in [17].

Lemma 3.2 [17] For any positive integers n, there exists a semi-cyclic H(4, n, 4, 3) design.

The following construction is simple but very useful.
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Construction 3.3 Let e,m, n be positive integers such that m is divisible by e. Suppose there exists

a strictly Zm × Zn-invariant G(me , en, k, 3) design relative to m
e Zm × Zn. If there exists a strictly

Ze×Zn-invariant 3-(en, k, 1) packing design having b base blocks, then there exists a strictly Zm×Zn-

invariant 3-(mn, k, 1) packing design having b + (mn−1)(mn−2)−(en−1)(en−2)
k(k−1)(k−2) base blocks. Further, if

b = J(e, n, k, 2) then b+ (mn−1)(mn−2)−(en−1)(en−2)
k(k−1)(k−2) = J(m,n, k, 2).

Proof Let F be the family of base blocks of a strictly Zm×Zn-invariant G(me , en, k, 3) design with

group set {{i, i + m
e , . . . , i +m − m

e } × Zn : 0 ≤ i < m
e }. Then |F| = (mn−1)(mn−2)−(en−1)(en−2)

k(k−1)(k−2) .

Let A be the family of b base blocks of a strictly (me Zm) × Zn-invariant 3-(en, k, 1) packing de-
sign, where m

e Zm = {0, me ,
2m
e , . . . ,m − m

e }. Such a design exists by assumption. Then F
⋃
A

is the set of base blocks of a strictly Zm × Zn-invariant 3-(mn, k, 1) packing design having b +
(mn−1)(mn−2)−(en−1)(en−2)

k(k−1)(k−2) base blocks.

When b = J(e, n, k, 2), the same discussion as the proof of [18, Theorem 6.6] shows that

(mn− 1)(mn− 2)− (en− 1)(en− 2)

k(k − 1)(k − 2)
+

⌊
1

k

⌊
en− 1

k − 1

⌊
en− 2

k − 2

⌋⌋⌋
=

⌊
1

k

⌊
mn− 1

k − 1

⌊
mn− 2

k − 2

⌋⌋⌋
.

For completeness, we give its proof again. First we will prove that if a, b, c are positive integers,
then ⌊ 1

a⌊
c
b⌋⌋ = ⌊ c

ab⌋. Let c = xb + y, 0 ≤ y ≤ b − 1. Let x = x1a + y1, 0 ≤ y1 ≤ a − 1. It follows

that ⌊ c
ab⌋ = ⌊x

a + y
ab⌋ = ⌊x1 +

y1

a + y
ab⌋ = ⌊x1 +

y1b+y
ab ⌋ = x1 = ⌊ 1

a⌊
c
b⌋⌋.

For any given pair P of points from a group, consider all triples containing P . By the definition
of a G-design, there are total mn− en such triples and each block containing P contains k− 2 such
triples. Therefore, mn − en is divisible by k − 2. Similarly, for any given pair P of points from
distinct groups, consider all triples containing P , we then obtain that mn− 2 is divisible by k − 2,

thereby, en− 2 is also divisible by k − 2. Then (mn−1)(mn−2)−(en−1)(en−2)
k(k−1)(k−2) +

⌊
1
k

⌊
en−1
k−1

⌊
en−2
k−2

⌋⌋⌋
is

equal to

(mn−1)(mn−2)−(en−1)(en−2)
k(k−1)(k−2) +

⌊
(en−1)(en−2)
k(k−1)(k−2)

⌋
=

⌊
(mn−1)(mn−2)
k(k−1)(k−2)

⌋
=

⌊
1
k

⌊
mn−1
k−1

⌊
mn−2
k−2

⌋⌋⌋
,

as desired. ✷

Construction 3.3 shows that it is useful to find some strictly Zm × Zn-invariant G(me , en, 4, 3)
designs.

A block-orbit of a cyclic SQS(v) is said to be quarter if the block-orbit contains the block
{0, v/4, v/2, 3v/4}, while a block-orbit of a cyclic SQS(v) is said to be half if the block-orbit contains
a block of the form {0, i, v/2, v/2 + i}, 0 < i < v/4. It is easy to see that in a cyclic SQS(v), each
block-orbit is full, half, or quarter.

Construction 3.4 If there is a cyclic SQS(m) and a strictly semi-cyclic G(2, n, 4, 3) design with

n > 1, then there is a strictly Zm × Zn-invariant G(m2 , 2n, 4, 3) design relative to m
2 Zm × Zn.

Proof By the necessary condition of aG(2, n, 4, 3) design, we have that n is even. First, we construct
a strictly Zm×Z2-invariant H(m, 2, 4, 3) design over Zm×Z2 with the group set {{i}×Z2 : i ∈ Zm}.

Let (Zm,B) be a cyclic SQS(m). Let B̃1 be the set of base blocks generating all full block-orbits,

B̃2 the set of base blocks generating all half block-orbits, B̃3 the set of the base block generating the
unique quarter block-orbit. Note that B̃2, B̃3 may be empty sets.

Take any base block B = {x, y, z, w} ∈ B̃1 ∪ B̃2 ∪ B̃3, construct a semi-cyclic H(4, 2, 4, 3) design
on B × Z2 with the group set {{x} × Z2 : x ∈ B} and the following eight blocks:

{(x, 0), (y, 0), (z, 0), (w, 1)}, {(x, 1), (y, 1), (z, 1), (w, 0)},
{(x, 0), (y, 0), (z, 1), (w, 0)}, {(x, 1), (y, 1), (z, 0), (w, 1)},
{(x, 0), (y, 1), (z, 0), (w, 0)}, {(x, 1), (y, 0), (z, 1), (w, 1)},
{(x, 1), (y, 0), (z, 0), (w, 0)}, {(x, 0), (y, 1), (z, 1), (w, 1)}.
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Clearly, the four blocks on the right are obtained by adding (0, 1) to the four blocks on the left.

When B ∈ B̃2, it must be of the form {0, i,m/2, i+m/2}+ j. Let x = j, y = j+ i, z = j+m/2 and
w = j + i +m/2. Then it is easy to see that the later four blocks are obtained by adding (m/2, 0)

to the first four blocks, respectively. When B ∈ B̃3, it must be of the form {0,m/4,m/2, 3m/4}+ j.
Let x = j, y = j +m/4, z = j +m/2 and w = j + 3m/4. Then it is easy to see that the later six
blocks are obtained by adding (m/4, 0), (m/2, 0), (3m/4, 0) to the first two blocks, respectively. Let

A1
B consist of the four blocks on the left if B ∈ B̃1, let A

2
B consist of the first two blocks on the left

if B ∈ B̃2, and let A3
B consist of the first block if B ∈ B̃3.

Denote
A = (

⋃

B∈B̃1

A1
B)

⋃
(
⋃

B∈B̃2

A2
B)

⋃
(
⋃

B∈B̃3

A3
B).

It is routine to check that A is the set of base blocks of the required strictly Zm × Z2-invariant
H(m, 2, 4, 3) design.

Secondly, we construct a strictly Zm × Zn-invariant H(m,n, 4, 3) design over Zm × Zn with the
group set {{i} × Zn : i ∈ Zm}.

For n > 2, write n = 2n′. For each base block A ∈ A, construct a semi-cyclic H(4, n′, 4, 3)
design on A × Zn′ with groups {{x} × Zn′ : x ∈ A}. Such a design exists by Lemma 3.2. Denote
the family of base blocks of this design by CA. Define a mapping ϕ : Zm × Z2 × Zn′ → Zm × Zn by
ϕ(i, ℓ, k) = (i, ℓ + 2k) for (i, ℓ, k) ∈ Zm × Z2 × Zn′ . Denote D = {{ϕ(z) : z ∈ C} : C ∈ CA, A ∈ A}
and let D′ = {D + δ : D ∈ D, δ ∈ Zm × Zn}.

Simple computation shows that |D| = |A| · |CA| = (m−1)(m−2)
6 |CA| = (n′)2 · (m−1)(m−2)

6 =
(m−1)(m−2)n2

24 , which is the right number of base blocks of a strictly Zm ×Zn-invariant H(m,n, 4, 3)
design. We need only to show that each triple from three distinct groups appears in at least one
block of D′. Let T = {(i1, ℓ1 + 2k1), (i2, ℓ2 + 2k2), (i3, ℓ3 + 2k3)} be such a triple, where i1, i2, i3 are
distinct, ℓj ∈ {0, 1} and kj ∈ {0, 1, . . . , n′ − 1} for j ∈ {1, 2, 3}.

Since {A+ τ : A ∈ A, τ ∈ Zm×Z2} is a strictly Zm×Z2-invariant H(m, 2, 4, 3) design, there is a
base block A = {(a1, c1), (a2, c2), (a3, c3), (a4, c4)} ∈ A and an element (δ1, δ2), 0 ≤ δ1 < m and δ2 ∈
{0, 1}, such that {(i1, ℓ1), (i2, ℓ2), (i3, ℓ3)} ⊂ {(a1, c1), (a2, c2), (a3, c3), (a4, c4)} + (δ1, δ2). Without
loss of generality, let aj + δ1 ≡ ij (mod m) and ℓj ≡ cj + δ2 (mod 2). Denote cj + δ2 = ℓj + 2σj ,
σj ∈ {0, 1}. Since CA is the set of base blocks of a semi-cyclic H(4, n′, 4, 3) design over A × Zn′ ,
there is a base block C = {(a1, c1, d1), (a2, c2, d2), (a3, c3, d3),(a4, c4, d4)} ∈ CA and an element δ3 ∈
{0, 1, . . . , n′−1} such that kj−σj ≡ dj+δ3 (mod n′). It follows that T ⊂ ϕ(C)+(δ1, δ2+2δ3) ∈ D′.

Finally, we construct a strictly Zm × Zn-invariant G(m2 , 2n, 4, 3) design relative to m
2 Zm × Zn.

For 1 ≤ i < m
2 , construct a strictly semi-cyclic G(2, n, 4, 3) design on {0, i} × Zn with groups

{0}×Zn and {i}×Zn. Such a design exists by assumption. Denote the set of base blocks by Fi and
let F = ∪1≤i<m/2Fi. It is easy to see that D ∪ F is the set of base blocks of the required strictly
Zm × Zn-invariant G(m2 , 2n, 4, 3) design. ✷

We illustrate the idea of Construction 3.4 with m = 4 and n = 8.

Example 3.5 There is a strictly Z4 ×Z8-invariant G(2, 16, 4, 3) design relative to 2Z4×Z8 and an

optimal (4, 8, 4, 2)-OOSPC with the size meeting the upper bound (1.1).

• Step 1: Since the trivial cyclic SQS(4) has a unique block {0, 1, 2, 3}, we have A = {(0, 0), (1, 0),
(2, 0), (3, 1)} is the unique base block of a strictly Z4 × Z2-invariant H(4, 2, 4, 3) design with
groups {i} × Z2, i ∈ Z4, i.e., A = {A}.

• Step 2: Since {{(0, 0, 0), (1, 0, x), (2, 0, y), (3, 1, x+ y)} : 0 ≤ x, y < 4} is the set of base blocks
of a semi-cyclic H(4, 4, 4, 3) design on A× Z4 with groups {z} × Z4 (z ∈ A), by the mapping
ϕ : Z4 × Z2 × Z4 → Z4 × Z8 defined by ϕ(i, ℓ, k) = (i, ℓ + 2k) for (i, ℓ, k) ∈ Z4 × Z2 × Z4 we
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have
D = {{(0, 0), (1, 2x), (2, 2y), (3, 1+ 2x+ 2y)} : 0 ≤ x, y < 4}

is the set of base blocks of a strictly Z4×Z8-invariant H(4, 8, 4, 3) design with groups {i}×Z8,
i ∈ Z4.

• Step 3: Construct a strictly semi-cyclic G(2, 8, 4, 3) design on {0, 1}×Z8 with groups {i}×Z8,
i ∈ {0, 1}, whose set F of base blocks consists of the following:

{(0, 0), (0, 1), (1, 0), (1, 1)}, {(0, 0), (0, 1), (1, 2), (1, 4)},
{(0, 0), (0, 1), (1, 3), (1, 7)}, {(0, 0), (0, 1), (1, 5), (1, 6)},
{(0, 0), (0, 2), (1, 0), (1, 2)}, {(0, 0), (0, 2), (1, 1), (1, 6)},
{(0, 0), (0, 2), (1, 3), (1, 4)}, {(0, 0), (0, 2), (1, 5), (1, 7)},
{(0, 0), (0, 3), (1, 0), (1, 4)}, {(0, 0), (0, 3), (1, 1), (1, 7)},
{(0, 0), (0, 3), (1, 2), (1, 5)}, {(0, 0), (0, 3), (1, 3), (1, 6)},
{(0, 0), (0, 4), (1, 0), (1, 5)}, {(0, 0), (0, 4), (1, 2), (1, 3)}.

Then D ∪ F is the set of base blocks of a strictly Z4 × Z8-invariant G(2, 16, 4, 3) design with
groups {i, i+ 2} × Z8, 0 ≤ i < 2.

Since there is a (2, 8, 4, 2)-OOSPCwith J(2, 8, 4, 2) codewords from [45], there is a strictly Z2×Z8-
invariant PQS(16) with J(2, 8, 4, 2) base blocks by Theorem 2.1. By Construction 3.3, there is a
strictly Z4×Z8-invariant PQS(32) with J(4, 8, 4, 2) base blocks, which leads to an optimal (4, 8, 4, 2)-
OOSPC with the size meeting the upper bound (1.1) by Theorem 2.1. ✷

4 Constructions of strictly Zm×Zn-invariant G∗(m, n, 4, 3) de-
signs

In this section, we give product constructions of strictly Zm × Zn-invariant G
∗(m,n, 4, 3) designs.

Let e,m, n be positive integers such that m is divisible by e. Let m− e ≡ n ≡ 0 (mod 2). In a
Zm × Zn-invariant G(me , en, 4, 3) design (Zm × Zn, {{i, i +

m
e , . . . ,m − m

e } × Zn : 0 ≤ i < m
e },B),

there exist n(m−e)/2 triples of the form {(0, 0), (i, j), (−i,−j)}, (i, j) ∈ I×Zn, and (m−e)n triples
of the form {(0, 0), (i, j), (0, n/2)}, (i, j) ∈ (Zm \ m

e Zm) × Zn, respectively, where I = {k : 1 ≤ k ≤
⌊m

2 ⌋, k 6≡ 0 (mod m
e )} and m

e Zm = {0, me , . . . ,m− m
e }. If any triple of the form {y, y+ x, y − x} or

{y, y + z, y + (0, n/2)}, where x ∈ I× Zn, z ∈ (Zm \ m
e Zm)× Zn and y ∈ Zm × Zn, is contained in

the block {y, y+ a, y− a, y+ (0, n/2)} for some a ∈ I× {0, 1, . . . , n
2 − 1}, then such a G(me , en, 4, 3)

design is denoted by G∗(me , en, 4, 3).

In Example 3.1, the first four base blocks generate 80 blocks which contain all triples of the
form {y, y + x, y − x}, {y, y + z, y + (0, 1)}, where x ∈ {1, 2, 3, 4} × Z2, z ∈ (Z10 \ {0, 5})× Z2 and
y ∈ Z10 × Z2, thereby, this G-design is also a strictly Z10 × Z2-invariant G

∗(5, 4, 4, 3).

Two constructions for Zm ×Zn-invariant G
∗-designs are presented in Constructions 4.1 and 4.2.

The proofs of constructions are of design theory. Here, we only describe how to construct them.
The detailed proof of Construction 4.1 is moved to Appendix A. The detailed proof of Construction
4.2 is omitted, which is similar to that of Construction 4.1.

Construction 4.1 Let m,n, e, g be positive integers such that m is divisible by e, both n and m− e
are even, g is odd and g ≥ 3. If there exists a strictly Zm × Zn-invariant G∗(me , en, 4, 3) design

relative to m
e Zm×Zn, then there exists a strictly Zm×Zng-invariant G

∗(me , eng, 4, 3) design relative

to m
e Zm × Zng.

Proof Let (Zm × Zn, {{i, i +
m
e , . . . , i + m − m

e } × Zn : 0 ≤ i < m
e },B) be a strictly Zm × Zn-

invariant G∗(me , en, 4, 3) design. Let I = {i : 1 ≤ i ≤ ⌊m
2 ⌋, i 6≡ 0 (mod m

e )}. Denote the family
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of base blocks of this design by F = F1

⋃
F2, where F1 consists of all base blocks in the form

of {(0, 0), (0, n2 ), (i, j), (−i,−j)} for i ∈ I and 0 ≤ j < n
2 , and F2 consists of all the other base

blocks. It is easy to see that |F1| = n(m − e)/4 and |F2| = n(m − e)(mn + en − 9)/24. We
construct the required Zm × Zng-invariant G∗(me , eng, 4, 3) design on Zm × Zng with group set
G = {{i, i+ m

e , . . . , i+m− m
e } × Zng : 0 ≤ i < m

e }.

Define

C1 = {{(i0, j0), (i1, j1 + k1n), (i2, j2 + k2n), (i3, j3 + k1n+ k2n)} : {(i0, j0), . . . , (i3, j3)} ∈ F2,

0 ≤ k1, k2 < g},
C2 = {{(0, 0), (i, j′), (−i,−j′), (0, ng

2 )} : i ∈ I, 0 ≤ j′ < ng
2 },

C3 = {{(0, 0), (i, j + ℓn), (i, j + ℓ′n), (2i, 2j + ℓn+ ℓ′n)} : i ∈ I, 0 ≤ j < n, 0 ≤ ℓ < ℓ′ < g},

C4 = {{(0, 0), (0, n2 + ℓn), (i, j + ℓ′n), (i, j + n
2 + ℓn+ ℓ′n)} : i ∈ I, 0 ≤ j < n

2 , 0 ≤ ℓ < g−1
2 ,

0 ≤ ℓ′ < g}.

Note that for each base block B = {(i0, j0), (i1, j1), (i2, j2), (i3, j3)} ∈ F2, AB = {{(i0, j0), (i1, j1 +
k1n), (i2, j2 + k2n), (i3, j3 + k1n + k2n)} : 0 ≤ k1, k2 < g} is the set of base blocks of a semi-cyclic
H(4, g, 4, 3) design on {(x, y + kn) : (x, y) ∈ B, 0 ≤ k < g} with group set {{(x, y + kn) : 0 ≤ k <
g} : (x, y) ∈ B} through +(0, n) mod (m,ng).

Let C′
i = {C + δ : C ∈ Ci, δ ∈ Zm ×Zng} for 1 ≤ i ≤ 4. Denote C′ = C′

1 ∪C′
2 ∪C′

3 ∪C′
4. We claim

that C′ is the set of blocks of the required strictly Zm × Zng-invariant G
∗(me , eng, 4, 3) design. ✷

Construction 4.2 Let m,n, e, g be positive integers such that m is divisible by e, both n and m− e
are even, g is odd and g ≥ 3. If there exists a strictly Zm × Zn-invariant G∗(me , en, 4, 3) design

relative to m
e Zm×Zn, then there exists a strictly Zmg×Zn-invariant G

∗(me , egn, 4, 3) design relative

to m
e Zmg × Zn.

Proof We keep the notations of Construction 4.1 and we adapt the proof to the present situation.
Define

D1 = {{(i0, j0), (i1 + k1m, j1), (i2 + k2m, j2), (i3 + k1m+ k2m, j3)} : {(i0, j0), . . . , (i3, j3)} ∈ F2,

0 ≤ k1, k2 < g},
D2 = {{(0, 0), (i+ ℓm, j), (−i− ℓm,−j), (0, n2 )} : i ∈ I, 0 ≤ j < n

2 , 0 ≤ ℓ < g},

D3 = {{(0, 0), (i+ ℓm, j), (i+ ℓ′m, j), (2i+ ℓm+ ℓ′m, 2j)} : i ∈ I, 0 ≤ j < n, 0 ≤ ℓ < ℓ′ < g},

D4 = {{(0, 0), (ℓm, n2 ), (i+ ℓ′n, j), (i+ ℓm+ ℓ′m, n
2 + j)} : i ∈ I, 0 ≤ j < n

2 , 1 ≤ ℓ ≤ g−1
2 , 0 ≤ ℓ′ < g}.

Let D′
i = {D+ δ : D ∈ Di, δ ∈ Zmg × Zn} for 1 ≤ i ≤ 4. Denote D′ = D′

1 ∪ D′
2 ∪D′

3 ∪D′
4. Similar

to the proof of Theorem 4.1, it is readily checked that D′ is the set of blocks of the required strictly
Zmg × Zn-invariant G

∗(me , egn, 4, 3) design relative to m
e Zmg × Zn. ✷

Example 4.3 There is a strictly Z10 × Z10-invariant G∗(5, 20, 4, 3) design relative to 5Z10 × Z10

and an optimal (10, 10, 4, 2)-OOSPC with the size meeting the upper bound (1.1).

Proof As it has been pointed out before Construction 4.1, the strictly Z10×Z2-invariantG(5, 4, 4, 3)
design relative to 5Z10 ×Z2 in Example 3.1 is also a strictly Z10 ×Z2-invariant G

∗(5, 4, 4, 3) design.
Applying Construction 4.1 with g = 5 yields a strictly Z10 × Z10-invariant G∗(5, 20, 4, 3) design
relative to 5Z10 × Z10. Since a strictly Z10 × Z2-invariant G∗(5, 4, 4, 3) design is also a strictly
Z10 × Z2-invariant PQS(20) with J(10, 2, 4, 3) base blocks, by Construction 3.3 there is a strictly
Z10×Z10-invariant PQS(100) with J(10, 10, 4, 2) base blocks, which leads to an optimal (10, 10, 4, 2)-
OOSPC with the size meeting the upper bound (1.1) by Theorem 2.1. ✷
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5 Constructions of strictly Zm × Zn-invariant G(m, n, 4, 3) de-

signs via 1-fan designs

In this section, use s-fan designs admitting an automorphism group to construct strictly Zm × Zn-
invariant G(m,n, 4, 3) designs.

Let s be a non-negative integer and K0, K1, . . . ,Ks be sets of positive integers. An s-fan design

is an (s+3)-tuple (X,G,B0, . . . ,Bs) where X is a set of mn points, G is a partition of X into m sets
of size n (called groups) and B0, . . . ,Bs are sets of subsets of X satisfying that each (X,G,Bi) is an
H(m,n,Ki, 2) design for 0 ≤ i < s and (X,G,B0 ∪ · · · ∪ Bs) is a G(m,n,K1 ∪ · · · ∪Ks, 3) design.
For simplicity, it is denoted by s-FG(3, (K0, . . . ,Ks),mn) of type nm. Note that a 0-FG is nothing
but a G-design. For general s-fan designs, the reader is referred to [23].

An automorphism group of an s-fan design (X,G,B0, . . . ,Bs) is a permutation group onX leaving
G, B0, . . . ,Bs invariant, respectively. All automorphisms of an s-fan design form a group, called the
full automorphism group of the s-fan design. Any subgroup of the full automorphism group is called
an automorphism group of the s-fan design. An s-fan design (X,Γ,B0, . . . ,Bs) is said to be G-
invariant if it admits G as a point-regular automorphism group. Moreover, it is said to be strictly

G-invariant if it is G-invariant and the stabilizer of each B ∈ B under G equals the identity of
G. For a G-invariant s-FG, we always identify the point set X with G and the automorphisms are
regarded as translations σa defined by σa(x) = x+ a for x ∈ G, where a ∈ G. Let L be a subgroup
of G. If the group set of a G-invariant s-FG is a set of cosets of L in G, then it is a G-invariant
s-FG relative to L.

Example 5.1 (Z3 ×Z3, {{i}×Z3 : i ∈ Z3},B0,B1) is a Z3 ×Z3-invariant 1-FG(3, (3, 4), 9) of type
33, where B0 and B1 are as follows:

B0 =
⋃

0≤i≤2

{
{(0, i), (1, i), (2, i)}, {(i, 0), (i+ 1, 1)(i+ 2, 2)}, {(i, 0), (i+ 2, 1), (i+ 1, 2)}

}
,

B1 =
⋃

0≤i,j≤2

{
{(i, j + 1), (i, j + 2), (i+ 1, j), (i+ 2, j)}, {(i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)}

}
.

An s-fan design of type nm (X,Γ,B0, . . . ,Bs) is said to be semi-cyclic if the s-fan design admits
an automorphism σ consisting of m cycles of length n and leaving each group, B0, . . . ,Bs invariant.
For a semi-cyclic s-fan design of type nm, without loss of generality we can identify the point set X
with Im×Zn, and the automorphism σ can be taken as (i, j) 7→ (i, j+1) (−,mod n), (i, j) ∈ Im×Zn.

A rotational SQS(m+1) is an SQS(m+1) with an automorphism consisting of a cycle of length
m and one fixed point. Such a design is denoted by RoSQS(m+ 1). As pointed out in [19], there is
an equivalence between 1-FGs and RoSQSs as follows.

Lemma 5.2 [19] An RoSQS(m + 1) with m ≡ 1 (mod 6) is equivalent to a strictly cyclic 1-
FG(3, (3, 4),m) of type 1m. An RoSQS(m + 1) with m ≡ 3 (mod 6) is equivalent to a strictly

cyclic 1-FG(3, (3, 4),m) of type 3m/3.

Bitan and Etzion have pointed out in [5] that the existence of an RoSQS(v + 1) implies the
existence of an optimal 1-D (v, 4, 2)-OOC. Similarly, we can give the following relationship.

Lemma 5.3 Let mn ≡ 1, 3 (mod 6). Then there is an optimal (m,n, 4, 2)-OOSPC with the size

attaining the upper bound (1.1) if and only if there is a Zm × Zn-invariant 1-FG(3, (3, 4),mn) of

type 1mn.

Proof Suppose that C is an (m,n, 4, 2)-OOSPC with the size attaining the upper bound (1.1). By

Theorem 2.1, there is a strictly Zm ×Zn-invariant PQS(mn) with (mn−1)(mn−3)
24 base blocks, whose

set of base blocks is denoted by B. Then, there are mn(mn−1)
6 triples in the leave L, and the leave is

Zm ×Zn-invariant. Clearly, for any pair {(a1, b1), (a2, b2)} of Zm ×Zn there is at least one triple in
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the leave containing {(a1, b1), (a2, b2)} sincemn−2 is odd. It follows that there are at least mn(mn−1)
6

triples in the leave. Consequently, each pair occurs in exactly one triple in the leave, i.e., the leave
is the block set of an STS(mn) over Zm × Zn admitting Zm × Zn as a point-regular automorphism
group. So, (Zm × Zn, {{x} : x ∈ Zm × Zn},L,B) is a Zm × Zn-invariant 1-FG(3, (3, 4),mn) of type
1mn.

Conversely, there are mn(mn−1)(mn−3)
24 quadruples in a Zm × Zn-invariant 1-FG(3, (3, 4),mn) of

type 1mn, and all orbits of quadruples are full under Zm × Zn. Therefore, all quadruples form a
strictly Zm × Zn-invariant PQS(mn), which leads to an (m,n, 4, 2)-OOSPC by Theorem 2.1 with
the size attaining the upper bound (1.1). ✷

In [19], Feng et al. showed that there exists a semi-cyclic 1-FG(3, (3, 4), 3h) of type h3 if there
exists an RoSQS(h + 1). By the necessary condition, h must be odd. It follows that all orbits of
quadruples of a semi-cyclic 1-FG(3, (3, 4), 3h) of type h3 are full. Since the blocks of size three are
from three distinct groups, all block-orbits of size three in a semi-cyclic 1-FG(3, (3, 4), 3h) are also
full. So, a semi-cyclic 1-FG(3, (3, 4), 3h) of type h3 must be strictly semi-cyclic.

Lemma 5.4 If there exists an RoSQS(h+1), then there exists a strictly semi-cyclic 1-FG(3, (3, 4), 3h)
of type h3.

Hartman established a fundamental construction for 3-designs [23]. By using it, Hartman gave
a new existence proof of Steiner quadruple systems. The following is a special case.

Theorem 5.5 [23] Suppose there is a 1-FG(3, (K0,K1),mn) of type nm (called a master design). If

there exists an s-FG(3, (L0, L1, . . . , Ls), gk) of type gk for any k ∈ K0 and an H(k, g, Ls, 3) design

for any k ∈ Ks, then there exists an s-FG(3, (L0, . . . , Ls),mng) of type (ng)m.

By using Theorem 5.5, Feng et al. established a recursive construction for strictly cyclic s-fan
designs [18]. We generalize it as follows. The detailed proof Construction 5.6 is moved to Appendix
B.

Construction 5.6 Suppose there is a strictly Zm × Zn-invariant 1-FG(3, (K0,K1),mn) of type

(en)m/e relative to m
e Zm × Zn (called a master design). If there exists a strictly semi-cyclic s-

FG(3, (L0, L1, . . . , Ls), gk) of type gk for any k ∈ K0, and a semi-cyclic H(k, g, Ls, 3) design for any

k ∈ K1, then there exists a strictly Zm ×Zng-invariant s-FG(3, (L0, . . . , Ls),mng) of type (eng)m/e

relative to m
e Zm×Zng and a strictly Zmg×Zn-invariant s-FG(3, (L0, . . . , Ls),mng) of type (eng)m/e

relative to m
e Zmg × Zn.

Proof Let (Zm × Zn,G,B0,B1) be a strictly Zm × Zn-invariant 1-FG(3, (K0,K1),mn) of type
(en)m/e where G = {{i, i+ m

e , . . . , i+m− m
e } × Zn : 0 ≤ i < m

e }. Denote the family of base blocks
of this design by F = F0

⋃
F1, where F0 and F1 generate all blocks of B0 and B1, respectively.

For each base block B ∈ F0, construct a strictly semi-cyclic s-FG(3, (L0, . . . , Ls), |B|g) of type
g|B| on B × Zg with group set {{x} × Zg : x ∈ B}. Denote the family of base blocks of the j-th

subdesign H(|B|, g, Lj, 2) design by Aj
B for 0 ≤ j < s, and denote the family of all the other base

blocks by As
B . Let AB =

⋃s
j=0 A

j
B .

For each base block B ∈ F1, construct a semi-cyclic H(|B|, g, Ls, 3) design on B×Zg with groups
{{x} × Zg : x ∈ B}. Denote the family of base blocks of this design by DB.

Let Aj =
⋃

B∈F0
Aj

B for 0 ≤ j < s and As = (
⋃

B∈F0
As

B)
⋃
(
⋃

B∈F1
DB), and G′ = {{i, i +

m
e , . . . , i +m − m

e } × Zng : 0 ≤ i < m
e }. Define a mapping τ from Zm × Zn × Zg to Zm × Zng by

τ(x, y, z) = (x, y + zn). Now we construct a strictly Zm × Zng-invariant s-FG(3, (L0, . . . , Ls),mng)
of type (eng)m/e as follows: For each C ∈ (

⋃
0≤j≤s Aj), define τ(C) = {τ(c) : c ∈ C}. For 0 ≤ j ≤ s,

let
A∗

j =
⋃

C∈Aj

τ(C),
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A′
j = {A+ δ : A ∈ A∗

j , δ ∈ Zm × Zng},

where A + δ = {u + δ : u ∈ A}. We claim that (Zm × Zng,G
′,A′

0, . . . ,A
′
s) is a strictly Zm × Zng-

invariant s-FG(3, (L0, . . . , Ls),mng) of type (eng)m/e.

Let G
′′

= {{i, i + m
e , . . . , i + mg − m

e } × Zn : 0 ≤ i < m
e }. Define a mapping ϕ from Zm ×

Zn × Zg to Zmg × Zn by τ(x, y, z) = (x + zm, y). Now we construct a strictly Zmg × Zn-invariant
s-FG(3, (L0, . . . , Ls),mng) of type (eng)m/e as follows: For each C ∈ (

⋃
0≤j≤s Aj), define ϕ(C) =

{ϕ(c) : c ∈ C}. For 0 ≤ j ≤ s, let

A∗∗
j =

⋃

C∈Aj

ϕ(C),

A
′′

j = {A+ δ : A ∈ A∗∗
j , δ ∈ Zmg × Zn},

where A+ δ = {u+ δ : u ∈ A}. Similarly, it is readily checked that (Zmg ×Zn,G
′′

,A
′′

0 , . . . ,A
′′

s ) is a
strictly Zmg × Zn-invariant s-FG(3, (L0, . . . , Ls),mng) of type (eng)m/e. ✷

Corollary 5.7 Suppose that there is a strictly Zm × Zn-invariant G(me , en, 4, 3) design relative to
m
e Zm ×Zn such that all elements of order 2 are contained in m

e Zm ×Zn. If there is a strictly semi-

cyclic G(2, g, 4, 3) design, then there exists a strictly Zm × Zng-invariant G(me , emg, 4, 3) design

relative to m
e Zm×Zng and a strictly Zmg ×Zn-invariant G(me , emg, 4, 3) design relative to m

e Zmg×
Zn.

Proof Let B1 be the set of blocks of a strictly Zm ×Zn-invariant G(me , en, 4, 3) design on Zm ×Zn

with group set G = {{i, i + m
e , . . . , i + m − m

e } × Zn : 0 ≤ i < m
e }. Let F0 = {{(0, 0), (i, j)} :

1 ≤ i ≤ ⌊m
2 ⌋, i 6≡ 0 (mod m

e ), j ∈ Zn} and B0 = {P + δ : P ∈ F0, δ ∈ Zm × Zn}. Since all
elements of order 2 are contained in m

e Zm × Zn, the quadruple (X,G,B0,B1) is a strictly Zm × Zn-

invariant 1-FG(3, (2, 4),mn) of type (en)m/e. Since there is a strictly semi-cyclic G(2, g, 4, 3) design
by assumption and a semi-cyclic H(4, g, 4, 3) design by Lemma 3.2, applying Construction 5.6 yields
a strictly Zm×Zng-invariantG(me , emg, 4, 3) design and a strictly Zmg×Zn-invariantG(me , emg, 4, 3)
design. ✷

Corollary 5.8 Suppose there is an RoSQS(m+ 1) and an RoSQS(n+ 1). If m ≡ 1 (mod 6) then

there is a strictly Zm × Zn-invariant 1-FG(3, (3, 4),mn) of type nm relative to {0} × Zn. If m ≡ 3
(mod 6) then there is a strictly Zm × Zn-invariant 1-FG(3, (3, 4),mn) of type (3n)m/3 relative to
m
3 Zm × Zn.

Proof Since there is an RoSQS(m+ 1) by assumption, there is a strictly cyclic 1-FG(3, (3, 4),m)
of type 1m if m ≡ 1 (mod 6), a strictly cyclic 1-FG(3, (3, 4),m) of type 3m/3 if m ≡ 3 (mod 6) by
Lemma 5.2. Since there is an RoSQS(n + 1), there is a strictly semi-cyclic 1-FG(3, (3, 4), 3n) of
type n3 by Lemma 5.4. Also, there is a semi-cyclic H(4, n, 4, 3) design by Lemma 3.2. Therefore,
applying Construction 5.6 gives a strictly Zm×Zn-invariant 1-FG(3, (3, 4),mn) of type nm if m ≡ 1
(mod 6), a strictly Zm × Zn-invariant 1-FG(3, (3, 4),mn) of type (3n)m/3 if m ≡ 3 (mod 6). ✷

Corollary 5.9 If there is an RoSQS(m+1) and a strictly semi-cyclic G(3, g, 4, 3) design, then there

exists a strictly Zm × Zg-invariant G(m, g, 4, 3) design relative to {0} × Zg if m ≡ 1 (mod 6), and
a strictly Zm × Zg-invariant G(m3 , 3g, 4, 3) design relative to m

3 Zm × Zg if m ≡ 3 (mod 6).

Proof Since there is an RoSQS(m+ 1) by assumption, there is a strictly cyclic 1-FG(3, (3, 4),m)
of type 1m if m ≡ 1 (mod 6), a strictly cyclic 1-FG(3, (3, 4),m) of type 3m/3 if m ≡ 3 (mod 6) by
Lemma 5.2. Since there is a strictly semi-cyclic G(3, g, 4, 3) design by assumption and a semi-cyclic
H(4, g, 4, 3) design by Lemma 3.2, applying Construction 5.6 gives the conclusion. ✷
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6 New (m, n, 4, 2)-OOSPCs

In this section, we use constructions in Sections 3, 4 and 5 to establish new optimal (m,n, 4, 2)-
OOSPCs.

Since the survey of Lindner and Rosa [32], many recursive constructions for cyclic SQSs have been
given, including the doubling construction, product constructions. Recently, Feng et al. established
some recursive constructions for strictly cyclic 3-designs, as corollaries, many known constructions
for strictly cyclic Steiner quadruple systems were unified [18]. The work of Köhler on S-cyclic SQS
has been extended by Bitan and Etzion [5], Siemon [47], [48], [49], [50]. Although a great deal has
been done on cyclic SQSs, the spectrum remains wide open.

A cyclic SQS(v) (Zv,B) is said to be S-cyclic if each block satisfies −B = B+a for some a ∈ Zv.
Piotrowski gave necessary and sufficient conditions for the existence of an S-cyclic SQS(v) [40].

Theorem 6.1 [40] An S-cyclic SQS(v) exists if and only if v ≡ 0 (mod 2), v 6≡ 0 (mod 3), v 6≡ 0
(mod 8), v ≥ 4 and if for any prime divisor p of v there exists an S-cyclic SQS(2p).

Theorem 6.2 [5] For any prime p ≡ 5 (mod 12) with p < 1500000, there is an S-cyclic SQS(4p).

Theorem 6.3 [33] For each prime p ≡ 1 (mod 4) with p ≤ 105, there is an S-cyclic SQS(2p).

Let n be even and mn ≡ n (mod 4). In a cyclic G(m,n, 4, 3) design, if any triple of form
{j, j + i, j + 2i} or {j, j + i, j +mn/2}, where 1 ≤ i ≤ mn/2, i 6≡ 0 (mod m) and 0 ≤ j ≤ mn− 1,
is contained in the block {j, j + a, j − a, j + mn

2 } for some 1 ≤ a ≤ ⌊mn
4 ⌋ and a 6≡ 0 (mod m), then

such a cyclic G-design is denoted by cyclic G∗(m,n, 4, 3) design. As pointed out in [18], a cyclic
G∗(m,n, 4, 3) is always strictly cyclic. The following recursive construction for cyclic G∗-designs
was given in [18]. For the completeness, we describe how to construct a cyclic G∗(m,ng, 4, 3) design
from a cyclic G∗(m,n, 4, 3) design here.

Theorem 6.4 [18] If there exists a cyclic G∗(m,n, 4, 3) design, then there exists a cyclic G∗(m,ng, 4, 3)
design for any odd integer g.

Proof Let (Zmn, {{i, i + m, . . . , i + mm −m} : 0 ≤ i < m},B) be a cyclic G∗(m,n, 4, 3) design.
Denote the family of base blocks of this design by F = F1

⋃
F2, where F1 consists of all base blocks

in the form of {0, mn
2 , i,−i, }, 1 ≤ i ≤ ⌊mn

4 ⌋ and i 6≡ 0 (mod m), and F2 consists of all the other
base blocks. It is easy to see that |F1| = n(m− 1)/4 and |F2| = n(m− 1)(mn+ n− 9)/24.

Define

D1 = {{i0, i1 + k1mn, i2 + k2mn, i3 + k1mn+ k2mn} : {i0, i1, i2, i3} ∈ F2, 0 ≤ k1, k2 < g},

D2 = {{0, i,−i, mng
2 } : 1 ≤ i ≤ mng

4 , i 6≡ 0 (mod m)},

D3 = {{0, i+ ℓmn, i+ ℓ′mn, 2i+ ℓmn+ ℓ′mn} : 1 ≤ i ≤ mn
2 , i 6≡ 0 (mod m), 0 ≤ ℓ < ℓ′ < g},

D4 = {{0, mn
2 + ℓmn, i+ ℓ′mn, i+ mn

2 + ℓmn+ ℓ′mn} : 1 ≤ i ≤ mn
4 , i 6≡ 0 (mod m),

0 ≤ ℓ < g−1
2 , 0 ≤ ℓ′ < g}.

Let D′
i = {D + δ : D ∈ Di, δ ∈ Zmng} for 1 ≤ i ≤ 4 and D′ = D′

1 ∪ D′
2 ∪ D′

3 ∪ D′
4. Then

D′ is the set of blocks of the required cyclic G∗(m,ng, 4, 3) design on Zmng with the group set
{{i, i+m, . . . , i+mng −m} : 0 ≤ i < m}. ✷

Theorem 6.5 Let m,n, g be odd integers such that there is an S-cyclic SQS(2p) for each prime

divisor p of m and n. If there is an optimal 1-D (2ǫg, 4, 2)-OOC with J(1, 2ǫg, 4, 2) codewords,

then there is an optimal (m, 2ǫng, 4, 2)-OOSPC and an optimal (mg, 2ǫn, 4, 2)-OOSPC with the size

attaining the upper bound (1.1), where ǫ ∈ {1, 2}.
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Proof Since there is an S-cyclic SQS(2p) for each prime divisor p of m and n, there is an S-
cyclic SQS(2εm) and an S-cyclic SQS(2εn) by Theorem 6.1, where ǫ ∈ {1, 2}. Since Z2εm is
isomorphic to Zm × Z2ǫ , the existence of an S-cyclic SQS(2εm) implies that there is a strictly
Zm × Z2ǫ -invariant G

∗(m, 2ε, 4, 3) design. Applying Construction 4.1 gives a strictly Zm × Z2ǫng-
invariant G∗(m, 2εng, 4, 3) design relative to {0} × Z2ǫng and applying Construction 4.2 gives a
strictly Zmg × Z2ǫn-invariant G

∗(m, 2εng, 4, 3) design relative to mZmg × Z2ǫn.

Since an S-cyclic SQS(2εn) implies the existence of a cyclic G∗(n, 2ǫ, 4, 3) design, applying
Theorem 6.4 gives a cyclic G∗(n, 2εg, 4, 3) design. Since there is an optimal 1-D (2ǫg, 4, 2)-OOC
with J(1, 2ǫg, 4, 2) codewords by assumption which corresponds to a strictly cyclic PQS(2ǫg) with
J(1, 2ǫg, 4, 2) base blocks, there is a strictly cyclic PQS(2ǫng) with J(1, 2εng, 4, 2) base blocks by
Construction 3.3. When we input this cyclic PQS(2ǫng) into the strictly Zm × Z2ǫng-invariant
G∗(m, 2εng, 4, 3) design, applying Construction 3.3 gives a strictly Zm×Z2ǫng-invariant PQS(2ǫmng)
with J(m, 2ǫng, 4, 2) base blocks, which leads to an optimal (m, 2εng, 4, 2)-OOSPC with the size at-
taining the upper bound (1.1).

Since an S-cyclic SQS(2εn) implies the existence of a strictly Zn × Z2ǫ -invariant G
∗(n, 2ε, 4, 3)

design, applying Construction 4.1 gives a strictly Zn × Z2ǫg-invariant G
∗(n, 2εg, 4, 3) design. Since

there is a strictly cyclic PQS(2ǫg) with J(1, 2ǫg, 4, 2) base blocks, there is a strictly Zn×Z2ǫg-invariant
PQS(2ǫng) with J(n, 2εg, 4, 2) base blocks by Construction 3.3. Since Zn × Z2ǫg is isomorphic
to Z2ǫn × Zg, there is a strictly Z2ǫn × Zg-invariant PQS(2ǫng) with J(2εn, g, 4, 2) base blocks.
Further, we put this PQS into the strictly Zmg × Z2ǫn-invariant G

∗(m, 2εng, 4, 3) design relative to
mZmg ×Z2ǫn. By applying Construction 3.3 we obtain a strictly Zmg ×Z2ǫn-invariant PQS(2ǫmng)
with J(mg, 2ǫn, 4, 2) base blocks, which leads to an optimal (mg, 2εn, 4, 2)-OOSPC with the size
attaining the upper bound (1.1). ✷

Lemma 6.6 [14, 18] There is an optimal 1-D (n, 4, 2)-OOC with J(1, n, 4, 2) codewords for all

7 ≤ n ≤ 100 with the definite exceptions of n ∈ {9, 12, 13, 24, 48, 72, 96} and possible exceptions

of n ∈ {45, 47, 53, 55, 59, 60, 65, 66, 69, 71, 76, 77, 81, 83, 84, 85, 89, 91, 92, 95, 97, 99}. There

is an optimal 1-D (n, 4, 2)-OOC with J(1, n, 4, 2)− 1 codewords for each n ∈ {9, 12, 13, 24, 48, 72,
96}.

Corollary 6.7 Let m and n be composite numbers whose prime divisors each belong to {p ≡ 1
(mod 12) : p is a prime, p < 105} ∪ {p ≡ 5 (mod 12) : p is a prime, p < 1500000}. Then, there

is an optimal (m, 2ng, 4, 2)-OOSPC (resp. (mg, 2n, 4, 2)-OOSPC) with the size attaining the upper

bound (1.1) for g ∈ {1, 3, 5, . . ., 49}\{33}, and an optimal (m, 4ng, 4, 2)-OOSPC (resp. (mg, 4n, 4, 2)-
OOSPC) with the size attaining the upper bound (1.1) for g ∈ {1, 3, 5, . . . , 13} \ {3}.

Proof Since there is an S-cyclic SQS(2p) for any prime divisor p of m and n by Theorems 6.2-
6.3 and an optimal 1-D (2g, 4, 2)-OOC with J(1, 2g, 4, 2) codewords for g ∈ {1, 3, 5, . . . , 49} \ {33}
by Lemma 6.6, applying Theorem 6.5 gives an optimal (m, 2ng, 4, 2)-OOSPC (resp. (mg, 2n, 4, 2)-
OOSPC) with the size attaining the upper bound (1.1). Similarly, since there is an optimal 1-D
(4g, 4, 2)-OOC with J(1, 4g, 4, 2) codewords for g ∈ {1, 3, 5, . . . , 13} \ {3} by Lemma 6.6, applying
Theorem 6.5 gives an optimal (m, 4ng, 4, 2)-OOSPC (resp. (mg, 4n, 4, 2)-OOSPC) with the size
attaining the upper bound (1.1). ✷

Remark: The optimal (m, 2ǫn, 4, 2)-OOSPC in [45] is obtained again in Corollary 6.7. Com-
paring with Sawa’s method, our construction seems easier.

Lemma 6.8 There exists an optimal (3, 12, 4, 2)-OOSPC with the size attaining the upper bound in

Lemma 2.3.

Proof The following 48 base blocks generate the block set of a strictly Z3×Z12-invariant PQS(36),
which corresponds to an optimal (3, 12, 4, 2)-OOSPC with the size attaining the upper bound in
Lemma 2.3.
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{(0, 0), (0, 1), (0, 11), (0, 6)}, {(0, 0), (1, 1), (2, 11), (0, 6)},
{(0, 0), (1, 3), (2, 9), (0, 6)}, {(0, 0), (1, 5), (2, 7), (0, 6)},
{(0, 0), (0, 1), (0, 3), (0, 4)}, {(0, 0), (0, 1), (0, 5), (0, 8)},
{(0, 0), (0, 1), (1, 0), (1, 1)}, {(0, 0), (0, 1), (1, 2), (1, 3)},
{(0, 0), (0, 1), (1, 4), (1, 5)}, {(0, 0), (0, 1), (1, 6), (1, 7)},
{(0, 0), (0, 1), (1, 8), (1, 9)}, {(0, 0), (0, 1), (1, 10), (1, 11)},
{(0, 0), (0, 2), (0, 5), (1, 0)}, {(0, 0), (0, 10), (0, 7), (2, 0)},
{(0, 0), (0, 2), (0, 6), (1, 2)}, {(0, 0), (0, 10), (0, 6), (2, 10)},
{(0, 0), (0, 2), (1, 1), (1, 3)}, {(0, 0), (0, 2), (1, 4), (1, 6)},
{(0, 0), (0, 2), (1, 5), (1, 7)}, {(0, 0), (0, 2), (1, 8), (1, 10)},
{(0, 0), (0, 2), (1, 9), (1, 11)}, {(0, 0), (0, 3), (1, 0), (1, 3)},
{(0, 0), (0, 3), (1, 1), (1, 4)}, {(0, 0), (0, 3), (1, 2), (1, 5)},
{(0, 0), (0, 3), (1, 6), (1, 9)}, {(0, 0), (0, 3), (1, 7), (2, 4)},
{(0, 0), (0, 9), (2, 5), (1, 8)}, {(0, 0), (0, 3), (1, 8), (2, 7)},
{(0, 0), (0, 4), (1, 1), (1, 5)}, {(0, 0), (0, 4), (1, 2), (1, 10)},
{(0, 0), (0, 4), (1, 3), (1, 8)}, {(0, 0), (0, 8), (2, 9), (2, 4)},
{(0, 0), (0, 4), (1, 4), (2, 5)}, {(0, 0), (0, 8), (2, 8), (1, 7)},
{(0, 0), (0, 4), (1, 6), (2, 10)}, {(0, 0), (0, 4), (1, 7), (2, 9)},
{(0, 0), (0, 4), (1, 9), (2, 7)}, {(0, 0), (0, 5), (1, 1), (2, 4)},
{(0, 0), (0, 5), (1, 2), (2, 3)}, {(0, 0), (0, 5), (1, 3), (2, 2)},
{(0, 0), (0, 5), (1, 5), (2, 8)}, {(0, 0), (0, 7), (2, 7), (1, 4)},
{(0, 0), (0, 5), (1, 6), (2, 11)}, {(0, 0), (0, 5), (1, 7), (2, 7)},
{(0, 0), (0, 7), (2, 5), (1, 5)}, {(0, 0), (0, 5), (1, 11), (2, 6)},
{(0, 0), (0, 6), (1, 0), (2, 8)}, {(0, 0), (0, 6), (2, 0), (1, 4)}.

✷

Theorem 6.9 Let m,n be equal to 1 or the composite numbers of primes as in Corollary 6.7. Then
there is an optimal (3m, bn, 4, 2)-OOSPC with J(3m, bn, 4, 2)−1 codewords attaining the upper bound

in Lemma 2.3 for b ∈ {6, 12}.

Proof Start with a strictly Zm×Z2ǫ·3n-invariant G
∗(m, 2ε ·3n, 4, 3) design relative to {0}×Z2ǫ·3n,

ǫ ∈ {1, 2}, which exists from the proof of Theorem 6.5. Applying Construction 4.2 gives a strictly
Z3m × Z2ǫ·3n-invariant G∗(m, 2ε · 9n, 4, 3) design relative to mZ3m × Z2ǫ·3n. Similarly, there is a
strictly Z3n × Z2ǫ·3-invariant G

∗(n, 2ǫ · 9, 4, 3) design relative to nZ3n × Z2ǫ·3. Since Z3n × Z2ǫ·3 is
isomorphism to Z2ε·3n ×Z3, there is a strictly Z2ǫ·3n ×Z3-invariant G

∗(n, 2ǫ · 9, 4, 3) design relative
to nZ2ǫ·3n × Z3. Since there is an optimal (3, 6, 4, 2)-OOSPC from [45] and an optimal (3, 12, 4, 2)-
OOSPC by Lemma 6.8 with the size attaining the upper bound in Lemma 2.3 which is equivalent
to a strictly Z3 × Zb-invariant PQS(3b) for b ∈ {6, 12}, applying Construction 3.3 yields a strictly
Z3×Zbn PQS(3bn) with the size attaining the upper bound in Lemma 2.3. Further, input this PQS
into the strictly Z3m × Z2ǫ·3n-invariant G

∗(m, 2ǫ · 9n, 4, 3) design and apply Construction 3.3. We
then obtain an optimal strictly Z3m × Zbn-invariant PQS(3bmn) with the size attaining the upper
bound in Lemma 2.3, which leads to an optimal (3m, 3 · 2ǫn, 4, 2)-OOSPC. ✷

Lemma 6.10 [18] There exists a strictly cyclic G(2, g, 4, 3) design for each integer g ≡ 0 (mod 8).

Lemma 6.11 [18, Corollary 6.21] Suppose there is a cyclic SQS(n) with n ≡ 2 or 10 (mod 12) and
a strictly cyclic PQS(g) of the size J(1, g, 4, 2) − 1 attaining the upper bound in Lemma 2.2 with

g ≡ 0 (mod 24). Then there is a strictly cyclic PQS(2a3b5cndg) of the size J(1, 2a3b5cndg, 4, 2)− 1
attaining the upper bound in Lemma 2.2 for any nonnegative integers a, b, c, d.

Theorem 6.12 Let m,n be equal to 1 or the composite numbers of primes as in Corollary 6.7.
Then there is an optimal (m, 2a3bn, 4, 2)-OOSPC with J(m, 2a3bn, 4, 2)− 1 codewords attaining the

upper bound in Lemma 2.2 for a ≥ 4, b ≥ 1.
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Proof Start with a strictly Zm × Z2n-invariant G
∗(m, 2n, 4, 3) design relative to {0} × Z2n, which

exists from the proof of Theorem 6.5. Since there is a strictly semi-cyclic G(2, 2a−13b, 4, 3) design by
Lemma 6.10, there is strictly a Zm×Z2a3bn-invariantG(m, 2a3bn, 4, 3) design relative to {0}×Z2a3bn.
Since there is an S-cyclic SQS(2n) and an optimal 1-D (24, 4, 2)-OOCwith J(1, 24, 4, 2)−1 codewords
by Lemma 6.6 which is equivalent to a strictly cyclic PQS(24), by Lemma 6.11 there is a strictly
cyclic PQS(2a3bn) with J(1, 2a3bn, 4, 2)− 1 base blocks. Further, input this PQS into the strictly
Zm × Z2a3bn-invariant G∗(m, 2a3bn, 4, 3) design and apply Construction 3.3. We then obtain a
strictly cyclic Zm × Z2a3bn-invariant PQS(2a3bmn) with J(m, 2a3bn, 4, 2)− 1 base blocks attaining
the upper bound in Lemma 2.2, which leads to an optimal (m, 2a3bn, 4, 2)-OOSPC. ✷

Theorem 6.13 Let m,n be equal to 1 or odd integers such that there is an S-cyclic SQS(2p) for

each prime divisor p of m and n. Let g ≡ 0 (mod 8). If there is an optimal (2ǫ, g, 4, 2)-OOSPC

with J(2ε, g, 4, 2) codewords, then there is an optimal (2ǫm,ng, 4, 2)-OOSPC with the size attaining

the upper bound (1.1), where ǫ ∈ {1, 2}. If 2ǫg ≡ 0 (mod 24) and there is an optimal (2ǫ, g, 4, 2)-
OOSPC with J(2ε, g, 4, 2) − 1 codewords, then there is an optimal (2ǫm,ng, 4, 2)-OOSPC with the

size attaining the upper bound in Lemma 2.2, where ǫ ∈ {1, 2}.

Proof For m = 1 and n > 1, from the proof of Theorem 6.5, there is a strictly Zn × Z2ǫ -invariant
G(n, 2ǫ, 4, 3) design. Since there is a strictly semi-cyclic G(2, g, 4, 3) design by Lemma 6.10, Corollary
5.7 shows that there is a strictly Zng × Z2ǫ -invariant G(n, 2ǫg, 4, 3) design relative to nZng × Z2ǫ .
Since there is an (2ǫ, g, 4, 2)-OOSPC with J(2ǫ, g, 4, 2) codewords by assumption, which is equivalent
to a strictly Zg × Z2ǫ -invariant PQS(2ǫg) with J(2ǫ, g, 4, 2) base blocks, applying Construction 3.3
gives a strictly Zng × Z2ǫ -invariant PQS(2ǫng) with J(ng, 2ǫ, 4, 2) base blocks. Therefore, there is
an optimal (2ǫ, ng, 4, 2)-OOSPC with the size attaining the upper bound (1.1) by Theorem 2.1.

For m > 1, from the proof of Theorem 6.5, there is an S-cyclic SQS(2ǫm), which implies the exis-
tence of strictly cyclic G(m, 2ǫ, 4, 3) design. Since there is a strictly semi-cyclic G(2, ng, 4, 3) design
by Lemma 6.10, Corollary 5.7 shows that there is a strictly Z2ǫm×Zng-invariant G(m, 2ǫng, 4, 3) de-
sign relative to mZ2ǫm×Zng. Applying Construction 3.3 with the known strictly Z2ǫ ×Zng-invariant
PQS(2ǫng) with J(2ǫ, ng, 4, 2) base blocks gives a strictly Z2ǫm × Zng-invariant PQS(2ǫmng) with
J(2ǫm,ng, 4, 2) base blocks. Therefore, there is an optimal (2ǫm,ng, 4, 2)-OOSPC with the size
attaining the upper bound (1.1).

When 2ǫg ≡ 0 (mod 24), similar discussion as above gives the conclusion. ✷

Theorem 6.14 Let m,n be equal to 1 or the composite numbers of primes as in Corollary 6.7 and

ǫ ∈ {1, 2}. Then there is an optimal (2ǫm, 8n, 4, 2)-OOSPC with the size attaining the upper bound

(1.1).

Proof For m = n = 1, there is a (2, 8, 4, 2)-OOSPC with J(2, 8, 4, 2) codewords [45]. By Example
3.5, there is an optimal (4, 8, 4, 2)-OOSPC with J(4, 8, 4, 2) codewords. For other values m and n,
applying Theorem 6.13 gives the conclusion. ✷

Denote U = {4r − 1 : r is a positive integer} ∪ {1, 27, 33, 39, 51, 87, 123, 183}, and P = {p ≡ 7
(mod 12) : p is a prime} ∪ {2n − 1 : odd integer n ≥ 1} ∪ {25, 37, 61, 73, 109, 157, 181, 229, 277},
V = {v : v ∈ P or v is a product of integers from the set P} and M = {uv : u ∈ U, v ∈ V } ∪ {21ru :
r ≥ 0, u ∈ {3, 15, 21, 27, 33, 39, 51, 57, 63, 75, 87, 93}}.

Lemma 6.15 [19] There exists an RoSQS(m+ 1) for m ∈ M .

Theorem 6.16 For m,n ∈ M , there is an optimal (m,n, 4, 2)-OOSPC with the size attaining the

upper bound (1.1).

Proof If m ≡ 1 (mod 6), by Corollary 5.8, there is a strictly Zm×Zn-invariant 1-FG(3, (3, 4),mn)
of type nm relative to {0}×Zn. Construct a cyclic 1-FG(3, (3, 4), n) on {0}×Zn which is obtained
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by deleting the fixed point. Then we obtain a Zm × Zn-invariant 1-FG(3, (3, 4),mn) type 1mn. By
Lemma 5.3, there is an optimal (m,n, 4, 2)-OOSPC.

If m ≡ 3 (mod 6), by Corollary 5.8, there is a strictly Zm × Zn-invariant 1-FG(3, (3, 4),mn) of
type (3n)m/3 relative to m

3 Zm × Zn. Also by Corollary 5.8, there is a strictly Zn × Z3-invariant
1-FG(3, (3, 4),mn) of type 3n if n ≡ 1 (mod 6), and a strictly Zn×Z3-invariant 1-FG(3, (3, 4), 3n) of
type 9n/3 relative to n

3Zn×Z3 if n ≡ 3 (mod 6). Since there is a Z3×Z3-invariant 1-FG(3, (3, 4), 9)
of type 33 by Example 5.1 or from the proof of Theorem 2.6, there is a Zn × Z3-invariant 1-
FG(3, (3, 4), 3n) of type 13n whenever n ≡ 1 (mod 6) or n ≡ 3 (mod 6). Therefore, there is a
Zm × Zn-invariant 1-FG(3, (3, 4),mn) type 1mn. By Lemma 5.3, there is an optimal (m,n, 4, 2)-
OOSPC. ✷

Lemma 6.17 [18, Lemma 4.8] There exists a strictly cyclic G(3, g, 4, 3) design for each integer

g ≡ 0 (mod 12).

Lemma 6.18 [18, Corollary 6.14] If there is an RoSQS(n+1), then for any integers a, b ≥ 0, there
is an optimal 1-D (3a5bn · 36, 4, 2)-OOC with the size attaining the upper bound (1.1).

Theorem 6.19 Let m,n ∈ M and a, b nonnegative integers. If m ≡ 1 (mod 6) then there is an

optimal (m, 223a+25bn, 4, 2)-OOSPC with the size attaining the upper bound (1.1).

Proof Since there is an RoSQS(m+1) by Lemma 6.15 and a strictly semi-cyclicG(3, 223a+25bn, 4, 3)
design by Lemma 6.17, there is a strictly Zm × Z223a+25bn-invariant G(m, 223a+25bn, 4, 3) design
relative to {0}×Z223a+25bn by Corollary 5.9. By Lemma 6.18, there is an optimal 1-D (3a5bn·36, 4, 2)-
OOC with J(1, 3a5bn·36, 4, 2) codewords, which is equivalent to a strictly PQS(3a5bn·36). Applying
Construction 3.3 gives an optimal (m, 3a5bn·36, 4, 2)-OOSPCwith the size attaining the upper bound
(1.1). ✷

Theorem 6.20 Let m,n ∈ M . If m ≡ n ≡ 3 (mod 6), then there is an optimal (m, 4n, 4, 2)-
OOSPC with the size attaining the upper bound in Lemma 2.3.

Proof Since there is an RoSQS(m + 1) by Lemma 6.15 and a strictly semi-cyclic G(3, 4n, 4, 3)
design by Lemma 6.17, there is a strictly Zm × Z4n-invariant G(m3 , 12n, 4, 3) design relative to
m
3 Zm × Z4n by Corollary 5.9. Since there is an RoSQS(n + 1) by assumption and a strictly semi-
cyclic G(3, 12, 4, 3) design by Lemma 6.17, there is a strictly Zn×Z12-invariantG(n/3, 36, 4, 3) design
relative to n

3Zn×Z12 by Corollary 5.9, thereby, there is a strictly Z4n×Z3-invariant G(n/3, 36, 4, 3)
design n

3Z4n × Z3. Since there is an optimal (3, 12, 4, 2)-OOSPC with the size attaining the upper
bound in Lemma 2.3, there is a strictly Z4n × Z3-invariant PQS(12n) with J(4n, 3, 4, 2) − 1 base
blocks. Applying Construction 3.3 gives optimal (m, 4n, 4, 2)-OOSPC with the size attaining the
upper bound in Lemma 2.3. ✷

Theorem 6.21 Let m ∈ M and n be composite numbers of primes as in Corollary 6.7 and let a, b be
two nonnegative integers. If m ≡ 1 (mod 6), then there is an optimal (m, 2a+23b+1n, 4, 2)-OOSPC

with the size attaining the upper bound in Lemma 2.2.

Proof Since there is an RoSQS(m+1) by Lemma 6.15 and a strictly semi-cyclicG(3, 2a+23b+1n, 4, 3)
design by Lemma 6.17, there is a strictly Zm × Z2a+23b+1n-invariant G(m, 2a+23b+1n, 4, 3) design
relative to {0} × Z2a+23b+1n by Corollary 5.9. Since n is a composite number of primes as in
Corollary 6.7, there is a cyclic SQS(2n) by Theorem 6.1. By Lemma 6.11, there is an optimal 1-D
(2a+23b+1n, 4, 2)-OOC with the size attaining the upper bound in Lemma 2.2, which is equivalent to
a strictly cyclic PQS(2a+23b+1n). Applying Construction 3.3 gives an optimal (m, 2a+23b+1n, 4, 2)-
OOSPC with the size attaining the upper bound in Lemma 2.2. ✷

19



Table I

New Infinite families of optimal (m, n, k, 2)-OOSPCs

Parameters Conditions Size Source
(p, p, p+ 1, 2) p is a prime J(p, p, p+ 1, 2) Theorem 2.6
(m, 2ng, 4, 2) m,n ∈ W J(m, 2ng, 4, 2) Corollary 6.7
(mg, 2n, 4, 2) g ∈ {1, 3, 5, . . . , 49} \ {33} J(mg, 2n, 4, 2)
(m, 4ng, 4, 2) m,n ∈ W J(m, 4ng, 4, 2) Corollary 6.7
(mg, 4n, 4, 2) g ∈ {1, 3, 5, . . . , 13} \ {3} J(mg, 4n, 4, 2)
(3m, bn, 4, 2) m,n ∈ W , b ∈ {6, 12} J(3m, bn, 4, 2)− 1 Theorem 6.9
(m, 2a3bn, 4, 2) m,n ∈ W , a ≥ 4, b > 1 J(m, 2a3bn, 4, 2)− 1 Theorem 6.12
(2ǫm, 8n, 4, 2) m,n ∈ W , ǫ ∈ {1, 2} J(2ǫm, 8n, 4, 2) Theorem 6.14
(m,n, 4, 2) m,n ∈ M J(m,n, 4, 2) Theorem 6.16

(m, 223a+25bn, 4, 2) m,n ∈ M , m ≡ 1 (mod 6), J(m, 223a+25bn, 4, 2) Theorem 6.19
a, b ≥ 0

(m, 4n, 4, 2) m,n ∈ M , m,n ≡ 3 (mod 6) J(m, 4n, 4, 2)− 1 Theorem 6.20

(m, 2a+23b+1n, 4, 2) m ∈ M , m ≡ 1 (mod 6), J(m, 2a+23b+1n, 4, 2)− 1 Theorem 6.21
n ∈ W , a, b ≥ 0

W = {pa1

1
p
a2

2
· · · par

r : each prime pi ≡ 1 (mod 12) and pi < 105, or pi ≡ 5 (mod 12) and p < 1500000};

M = {uv : u ∈ U, v ∈ V }∪ {21ru : r ≥ 0, u ∈ {3, 15, 21, 27, 33, 39, 51, 57, 63, 75, 87, 93}}, where U = {4r − 1 :

r is a positive integer} ∪ {1, 27, 33, 39, 51, 87, 123, 183}, and P = {p ≡ 7 (mod 12) : p is a prime} ∪ {2n − 1 :

odd integer n ≥ 1}∪{25, 37, 61, 73, 109, 157, 181, 229, 277}, V = {v : v ∈ P or v is a product of integers from

the set P}.

7 Concluding Remark

In this paper, we gave some combinatorial constructions for optimal (m,n, 4, 2)-OOSPCs. As ap-
plications, many infinite families of optimal (m,n, 4, 2)-OOSPCs were obtained. We summarized all
infinite families obtained in this table I. As pointed out in the remark of Lemma 6.7, Sawa’s result in
[45] was obtained again and our construction seemed easier. We also obtained some infinite classes
of optimal (m,n, 4, 2)-OOSPCs with gcd(m,n) being divisible by 2 or 3. Our constructions strength
the importance of S-cyclic SQSs and RoSQSs. They are worth studying.

By Lemma 2.2 and Lemma 2.3, we see that the Johnson bound can not be achieved in some cases.
The problem of constructing optimal (m,n,w, λ)-OOSPC is apparently a difficult and challenging
task in general weight. Although the case of w = 4 is too small for practical application, we hope
that it may help us to study the other larger cases.

APPENDIX A

Proof of Construction 4.1: Firstly, we compute the number of blocks in C′. Since m− e is even,
the cardinality of I is m−e

2 . It is easy to see that |C1| = g2|F2| = g2n(m − e)(mn + en − 9)/24,
|C2| = ng(m− e)/4, |C3| = ng(g − 1)(m− e)/4 and |C4| = ng(m− e)(g − 1)/8. Thus,

|C′| = mng(|C1|+ |C2|+ |C3|+ |C4|) =
n2g2m(m− e)(mng + eng − 3)

24
,

which is the expected number of quadruples. Also, it is Zm×Zn-invariant, thereby, it suffices to show
that each triple containing (0, 0) and not contained in any group appears in at least one quadruple
of C′. Let T = {(0, 0), (x1, y1 + z1n), (x2, y2 + z2n)} be such a triple, where xk ∈ Zm, 0 ≤ yk < n,
0 ≤ zk < g and 1 ≤ k ≤ 2. Clearly, at most one of (x1, y1) and (x2, y2) belongs to (me Zm) × Zn.
The proof is divided into two cases.

Case 1: Two of (0, 0), (x1, y1) and (x2, y2) are equal. When (x1, y1) = (x2, y2), we have x1 6∈
m
e Zm. If x1 ∈ I then there is a block B = {(0, 0), (x1, y1 + z1n), (x1, y1 + z2n), (2x1, 2y1 + z1n +
z2n)} ∈ C3 ⊂ C′

3 such that T ⊂ B. If x1 6∈ I, then −x1 ∈ I, thereby there is a base block
B = {(0, 0), (−x1,−y1 − z1n), (−x1,−y1 − z2n), (−2x1,−2y1 − z1n − z2n)} ∈ C3 such that T ⊂
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B + (2x1, 2y1 + z1n + z2n) ∈ C′
3. When one of (x1, y1) and (x2, y2) is equal to (0, 0), without loss

of generality let (x1, y1) = (0, 0), consider the triple T − (x2, y2 + z2n). Similarly, there is a block
C ∈ C′ such that T − (x2, y2 + z2n) ⊂ C, thereby, there is a block C′ ∈ C′ containing T .

Case 2: (0, 0), (x1, y1) and (x2, y2) are distinct. Since (Zm × Zn, {{i, i +
m
e , . . . , i + m − m

e } ×
Zn : 0 ≤ i < m

e },B) is a Zm × Zn-invariant G∗(me , en, 4, 3) design, there is a base block B =
{(x′

1, y
′
1), (x

′
2, y

′
2), (x

′
3, y

′
3), (x

′
4, y

′
4)} ∈ F and (τ, µ) ∈ Zm × Zn such that {(0, 0), (x1, y1), (x2, y2)} ⊂

B + (τ, µ). Without loss of generality, let (xk, yk) = (x′
k, y

′
k) + (τ, µ) for 1 ≤ k ≤ 2 and (0, 0) =

(x′
3, y

′
3) + (τ, µ). If B ∈ F2 then let y′k + µ = akn + yk, ak ∈ {0, 1} for 1 ≤ k ≤ 3 where y3 = 0.

Since AB is the set of base blocks of a semi-cyclic H(4, g, 4, 3) design on {(x′
l, y

′
k + un) : 1 ≤ k ≤

4, 0 ≤ u < g} with groups {(x′
k, y

′
k + un) : 0 ≤ u < g} (1 ≤ k ≤ 4), there is a unique base

block A = {(x′
1, y

′
1 + z′1n), (x

′
2, y

′
2 + z′2n), (x

′
3, y

′
3 + z′3n), (x

′
4, y

′
4 + z′4n)} ∈ AB and an element ρ ∈

{0, 1, . . . , g−1} such that {(x′
1, y

′
1+z1n−a1n), (x

′
2, y

′
2+z2n−a2n),(x

′
3, y

′
3+z3n−a3n)} ⊂ A+(0, ρn).

It follows that T ⊂ A + (τ, µ + ρn) ∈ C′
1. If B ∈ F1, then {(0, 0), (x1, y1), (x2, y2)} is of the form

{(−x,−y), (0, 0), (x, y)}+ (τ, µ) where (x, y) ∈ I × Zn, or of the form {(0, 0), (x, y), (0, n2 )} + (τ, µ)
where (x, y) ∈ (Zm \ m

e Zm)× {0, 1, . . . , n−2
2 }.

Suppose that {(0, 0), (x1, y1), (x2, y2)} is of the form (τ, µ) + {(0, 0), (x, y), (−x,−y)}, x ∈ I, 0 ≤
y < n. Then there is a triple of the form {(0, 0), (x, y + zn), (−x,−y + z′n)} (0 ≤ z, z′ < g)
in the orbit generated by {(0, 0), (x1, y1 + z1n), (x2, y2 + z2n)} under Zm × Zn. If z′ = −z then
{(0, 0), (x, y + zn), (−x,−y + z′n)} ⊂ {(0, 0), (x, y + zn), (−x,−y + z′n), (0, gn

2 )} ∈ C2. Otherwise,
{(0, 0), (x, y + zn), (−x,−y + z′n)} ⊂ {(0, 0), (x, y + zn), (x, y + (g − z′)n), (2x, 2y + zn − z′n)} −
(x, y − z′n) ∈ C′

3. It follows that T occurs in a block of C′
2 ∪ C′

3.

Suppose that {(0, 0), (x1, y1), (x2, y2)} is of the form (τ, µ) + {(0, 0), (x, y), (0, n2 )}, x ∈ Zm \
m
e Zm, 0 ≤ y < n

2 . Then there is a triple of the form {(0, 0), (x, y+ zn), (0, ℓn+ n
2 )} (0 ≤ z, ℓ < g) in

the orbit generated by {(0, 0), (x1, y1+z1n), (x2, y2+z2n)} under Zm×Zn. For x ∈ I, if 0 ≤ ℓ < g−1
2

then {(0, 0), (x, y + zn), (0, ℓn+ n
2 )} ⊂ {(0, 0), (0, ℓn+ n

2 ), (x, y + zn), (x, y + n
2 + ℓn+ zn)} ∈ C4, if

ℓ = g−1
2 then {(0, 0), (x, y + zn), (0, ℓn+ n

2 )} ⊂ {(0, 0), (x, y + zn), (−x,−y − zn), (0, ℓn+ n
2 )} ∈ C2

or {(0, 0), (x, y + zn), (0, ℓn + n
2 )} ⊂ {(0, 0), (x, y + zn), (−x,−y − zn), (0, ℓn + n

2 )} + (0, ng2 ) ∈ C′
2

according to 0 ≤ y + zn < ng
2 or not, otherwise, {(0, 0), (x, y + zn), (0, ℓn+ n

2 )} ⊂ {(0, 0), (0, (g −
ℓ− 1)n+ n

2 ), (x, y−
n
2 + zn− ℓn), (x, y+ zn)}+ (0, n2 + ln) ∈ C′

4. It follows that T occurs in a block
of C′

4. For −x ∈ I, similar discussion shows that T is contained a block of C′. ✷

APPENDIX B

Proof of Construction 5.6: For checking the required design, it suffices to show that: (1) the
resulting design is strictly Zm × Zng-invariant; (2) any triple T , T ⊂ Zm × Zng, |T ∩ G′| < 3
for all G′ ∈ G′, is contained in a unique block of the resulting design; (3) any pair of points P ,
P ⊂ Zm ×Zng, |P ∩G′| < 2 for all G′ ∈ G′, is contained in a unique block of A′

j for each 0 ≤ j < s.

(1) Suppose that A = {(x1, y1 + z1n), (x2, y2 + z2n), . . . , (xr, yr + zrn)} is a base block of the
resulting design, where xl ∈ Zm, 0 ≤ yl ≤ n−1, 0 ≤ zl ≤ g−1, 1 ≤ l ≤ r. We need to show that the
stabilizer of A is trivial, i.e. A+ δ = A if and only if δ = (0, 0). The sufficiency follows immediately,
so we consider the necessity.

Assume that δ = (δ1, δ2 + δ3n), δ1 ∈ Zm, 0 ≤ δ2 ≤ n, 0 ≤ δ3 < g. If A+ δ = A then

{(xl, yl + zln) : 1 ≤ l ≤ r} = {(xl + δ1, yl + zln+ δ2 + δ3n) : 1 ≤ l ≤ r},

where the arithmetic is in the ring Zm × Zng. It follows that

{(xl, yl) : 1 ≤ l ≤ r} = {(xl + δ1, yl + δ2) : 1 ≤ l ≤ r},

where the arithmetic is in the ring Zm × Zn. Let U = {(xl, yl) : 1 ≤ l ≤ r}.

If A ∈ A′
j , 0 ≤ j < s, then |U | = r ≥ 2. Since the subdesign (X,G,B0) of the master design

1-FG(3, (K0,K1),mn) of type (en)
m/e

(Zm × Zn,G,B0,B1) is strictly Zm × Zn-invariant and it
requires that any 2-subset of Zm × Zn which intersects any group of G in at most one point occurs
in exactly one block, we have (δ1, δ2) = (0, 0).
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If A ∈ A′
s, without loss of generality we can always assume that A ∈ A∗

s. If A = τ(C) for some
C ∈

⋃
B∈F1

DB, then |U | = r ≥ 3. Since the master design 1-FG(3, (K0,K1),mn) of type (en)m/e is
strictly Zm ×Zn-invariant and it requires that any 3-subset of Zm ×Zn which intersects any group
of G in at most two points occurs in exactly one block, we have (δ1, δ2) = (0, 0). If A = τ(C) for
some C ∈

⋃
B∈F0

As
B, then |U | ≥ 2. Note that in this case U may be a multiset, i.e. |U | may be not

equal to r. By similar arguments as the case of A ∈ A′
j , we have (δ1, δ2) = (0, 0).

Hence,
{(xl, yl + zln) : 1 ≤ l ≤ r} = {(xl, yl + zln+ δ3n) : 1 ≤ l ≤ r},

where the arithmetic is in the ring Zm ×Zng. Since the input designs are all strictly semi-cyclic, we
have δ3 = 0. Thus the resulting design is strictly Zm × Zng-invariant.

(2) Take any triple T = {(x1, y1 + z1n), (x2, y2 + z2n), (x3, y3 + z3n)} ⊂ Zm × Zng which is not
contained in any group of G′, where xl ∈ Zm, 0 ≤ yl ≤ n− 1, 0 ≤ zl ≤ g− 1, 1 ≤ l ≤ 3 and x1, x2, x3

are not congruent to the same number modulo m
e . We consider the following cases.

Case 1. Suppose that x1, x2, x3 are pairwise distinct modulo m
e . Then there exists a unique

base block B in F and unique elements δ1, δ2 with 0 ≤ δ1 < m and 0 ≤ δ2 < n, such that
{(x1, y1), (x2, y2), (x3, y3)} ⊆ B + (δ1, δ2). Let (x∗

l , y
∗
l ) ∈ B satisfy xl ≡ x∗

l + δ1 (mod m) and
y∗l + δ2 = yl + σln for some σl ∈ {0, 1}, 1 ≤ l ≤ 3. Note that x∗

1, x
∗
2, x

∗
3 are also pairwise distinct

modulo m
e .

If B ∈ F0, then there exists a unique base block C ∈ AB and a unique element δ3 with 0 ≤ δ3 < g,
such that {(x∗

1, y
∗
1 , z

∗
1), (x

∗
2, y

∗
2 , z

∗
2), (x

∗
3, y

∗
3 , z

∗
3)} ⊆ C and (x∗

l , y
∗
l , z

∗
l + δ3) = (x∗

l , y
∗
l , zl − σl + σ′

lg) for
some σ′

l ∈ {0, 1}, 1 ≤ l ≤ 3. By the mapping τ , we have that (x∗
l , y

∗
l + z∗l n) + (δ1, δ2 + δ3n) =

(x∗
l + δ1, y

∗
l + δ2 + z∗l n + δ3n) = (xl, yl + σln+ z∗l n + δ3n) = (xl, yl + zln). Let δ = (δ1, δ2 + δ3n).

By (1) the resulting design is strictly Zm × Zng-invariant, so T is contained in the unique block
τ(C)+ δ, which is generated by τ(C). Similar arguments show that if B ∈ F1 then there is a unique
base block C ∈ DB and a unique element δ ∈ Zm × Zng such that T ⊂ τ(C) + δ.

Case 2. Suppose that x1 ≡ x2 6≡ x3 (mod m
e ), x1 6= x2. By similar arguments as in Case 1,

there exists a unique base block B ∈ F1, a unique base block C ∈ DB and unique elements δ1, δ2, δ3
with 0 ≤ δ1 < m, 0 ≤ δ2 < n and 0 ≤ δ3 < g, such that T is contained in the unique block τ(C)+ δ,
where δ = (δ1, δ2 + δ3n), which is generated by τ(C).

Case 3. Suppose that x1 = x2, y1 6= y2 and x1 6≡ x3 (mod m
e ). By similar arguments as in

Case 1, there exists a unique base block B ∈ F0, a unique base block C ∈ AB and unique elements
δ1, δ2, δ3 with 0 ≤ δ1 < m, 0 ≤ δ2 < n and 0 ≤ δ3 < g, such that T is contained in the unique block
τ(C) + δ, where δ = (δ1, δ2 + δ3n), which is generated by τ(C).

(3) Take any 2-subset P = {(x1, y1 + z1n), (x2, y2 + z2n)} which is not contained in any group
of G′, where xl ∈ Zm, 0 ≤ yl ≤ n− 1, 0 ≤ zl ≤ g − 1, 1 ≤ l ≤ 2. Then x1 6≡ x2 (mod m

e ) and there
exists a unique base block B in F0 and unique elements δ1, δ2 with 0 ≤ δ1 < m and 0 ≤ δ2 < n, such
that {(x∗

1, y
∗
1), (x

∗
2, y

∗
2)} ⊆ B and x∗

l + δ1 ≡ xl (mod m) and y∗l + δ2 = y1 + σln for some σl ∈ {0, 1},
1 ≤ l ≤ 2. Note that x∗

1, x
∗
2 are also distinct modulo m

e .

Then, given any 0 ≤ j < s, there exists a unique base block Cj in A∗
j and a unique element

δ3 ∈ Zg, such that {(x∗
1, y

∗
1 , z

∗
1), (x

∗
2, y

∗
2 , z

∗
2)} ⊆ Cj and (x∗

l , y
∗
l , z

∗
l +δ3) = (x∗

l , y
∗
l , zl−σl+σ′

lg) for some
σ′
l ∈ {0, 1}, 1 ≤ l ≤ 2. By the mapping τ , we have that (x∗

l + δ1, y
∗
l + δ2+z∗l n+ δ3n) = (xl, yl+zln).

Let δ = (δ1, δ2 + δ3n). By (1) the resulting design is strictly cyclic, so P is contained in the unique
block τ(Cj) + δ, which is generated by τ(Cj).

So, (Zm×Zng,G
′,A′

0, . . . ,A
′
s) is a strictly Zm×Zng-invariant s-FG(3, (L0, . . . , Ls),mng) of type

(eng)m/e. ✷
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