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SELF-RECIPROCAL POLYNOMIALS AND COTERM

POLYNOMIALS

NERANGA FERNANDO

Abstract. We classify all self-reciprocal polynomials arising from reversed Dickson
polynomials over Z and Fp, where p is prime. As a consequence, we also obtain
coterm polynomials arising from reversed Dickson polynomials.

1. Introduction

The reciprocal f ∗(x) of a polynomial f(x) of degree n is defined by f ∗(x) = xn f( 1
x
).

A polynomial f(x) is called self-reciprocal if f ∗(x) = f(x), i.e. if f(x) = a0 + a1x +
a2x

2+ · · ·+anx
n, an 6= 0, is self-reciprocal, then ai = an−i for 0 ≤ i ≤ n. Self-reciprocal

polynomials have important applications in coding theory. We briefly explain two
applications in the next two paragraphs.

Let C be a code of length n over R, where R is either a ring or a field. Consider
the codeword c = (c0, c1, . . . , cn−2, cn−1) in C, and denote its reverse by cr which is
given by cr = (cn−1, cn−2, . . . , c1, c0). A code C is defined to be reversible if cr ∈ C
for all c ∈ C. If τ denotes the cyclic shift, then τ(c) = (cn−1, c0, . . . , cn−2). A code
C is said to be a cyclic code if the cyclic shift of each codeword is also a codeword.
Cyclic codes have a representation in terms of polynomials. For example, the codeword
c = (c0, c1, . . . , cn−1) can be represented by the polynomial f(x) = c0+c1x+· · · cn−1x

n−1

and the cyclic shifts of c correspond to the polynomials xif(x) (mod xn − 1) for i =
0, 1, . . . , n − 1. Among all non-zero codewords in a cyclic code C, there is a unique
codeword whose corresponding polynomial g(x) has minimum degree and divides xn−
1. The polynomial g(x) is called the generator polynomial of the cyclic code C. In
[11], Massey studied reversible codes over finite fields and showed that the cyclic code
generated by the monic polynomial g(x) is reversible if and only if g(x) is self-reciprocal.

Deoxyribonucleic acid (DNA) is a molecule that contains all of the information nec-
essary to build and maintain an organism. DNA computing was first introduced by
Leonard Adleman when he solved the famous directed Hamiltonian path problem by
using DNA molecules as a form of computation; see [2]. Cyclic codes have played a
pivotal role in the area of error-correcting codes; see [17]. The structure of DNA is used
as a model for constructing good error correcting codes and conversely error correcting
codes that have similar properties with DNA structure are also used to understand
DNA itself. The interplay between DNA structure and error correcting codes have
been extensively studied by many authors in which self-reciprocal polynomials play a
major part. We refer the reader to [1, 5, 6, 14, 15, 19, 18] for further details.
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Let p be a prime and q a power of p. Let Fq be the finite field with q elements. From
the definition of a reciprocal polynomial, it is clear that if f(x) is irreducible over Fq,
then so is f ∗(x). Several authors have surveyed self-reciprocal irreducible monic (srim)
polynomials and obtained many results; see [8, 12, 13, 20, 16].

The present paper is a result of a recent article by the author on the reversed Dickson
polynomials of the (k+1)-th kind over finite fields in which many previously discovered
results on reversed Dickson polynomials were generalized; see [3]. For a ∈ Fq, the n-th
reversed Dickson polynomial of the (k + 1)-th kind Dn,k(a, x) is defined by

(1.1) Dn,k(a, x) =

⌊n

2
⌋

∑

i=0

n− ki

n− i

(

n− i

i

)

(−x)ian−2i,

and D0,k(a, x) = 2− k.
When p is odd, it was shown in [3] that the n-th reversed Dickson polynomial of the

(k + 1)-th kind Dn,k(1, x) can be written as

Dn,k(1, x) =
(1

2

)n

fn,k(1− 4x),

where

(1.2) fn,k(x) = k
∑

j≥0

(

n− 1

2j + 1

)

(xj − xj+1) + 2
∑

j≥0

(

n

2j

)

xj ∈ Z[x]

for n ≥ 1 and

f0,k(x) = 2− k.

In [10], Hou and Ly explored the properties of the reversed Dickson polynomials of
the first kind Dn,0(x) over finite fields and showed that

Dn,0(1, x) =
(1

2

)n−1

fn(1− 4x);

where

(1.3) fn(x) =
∑

j≥0

(

n

2j

)

xj .

In [9], Hong, Qin, and Zhao showed that the reversed Dickson polynomials of the
second kind Dn,1(x) can be written explicitly as follows.

Dn,1(1, x) =
1

2n
fn+1(1− 4x),

where

(1.4) fn(x) =
∑

j≥0

(

n

2j + 1

)

xj .
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The author of the present paper showed in [4] that the reversed Dickson polynomials
of the third kind Dn,2(x) can be written explicitly as follows.

Dn,2(1, x) =
1

2n−1
fn(1− 4x),

where

(1.5) fn(x) =
∑

j≥0

(

n

2j + 1

)

xj .

Note that (1.2) is a genelarization of (1.3), (1.4), and (1.5) for any k. The self-
reciprocal property of (1.3), (1.4), and (1.5) was used in [10], [9], and [4], respectively,
by the aforementioned authors to find necessary conditions for the corresponding re-
versed Dickson polynomials to be a permutation of Fq. These observations led to the
inquisitive question “when is fn,k a self-reciprocal?”. This paper answers this question
completely and it is quite interesting to notice that self-reciprocal polynomials are only
arising from the reversed Dickson polynomials of the first and third kinds when n is
even, and only from the reversed Dickson polynomials of the second kind with an ex-
ception (see Theorem 2.4 and Theorem 3.4) when n is odd. An overview of the paper
is as follows.

At the end of this section, we list some preliminaries that will be used in latter
sections.

We explore fn,k(x) ∈ Z[x], fn,k(x) ∈ Fp[x], where p is an odd prime, fn,k(x) ∈ F2[x]
in Section 2, Section 3, and Section 4, respectively, and find necessary and sufficient
conditions for fn,k(x) to be a self-reciprocal.

In Section 5, we give an introduction to coterm polynomials and their applications
in coding theory. Then we obtain several coterm polynomials as a consequence of the
self-reciprocal polynomials obtained in Sections 2,3, and 4.

We note to the reader that in Sections 2,3, and 4, we allow the degree n in the
definition of a self-reciprocal polynomial to be zero, i.e. we consider non-zero constant
polynomials eventhough they are not very interesting.

1.1. Preliminaries.

Theorem 1.1. (Luca’s Theorem) Let p be a prime and let n,m ≥ 0 be two integers
with p-adic expansions

n = α0 p
0 + α1 p

1 + α2 p
2 + · · ·+ αt p

t,

and

m = β0 p
0 + β1 p

1 + β2 p
2 + · · ·+ βt p

t.

Then
(

n

m

)

≡

(

α0

β0

)(

α1

β1

)

· · ·

(

αt

βt

)

(mod p).

An immediate consequence of the Luca’s Theorem is as follows.
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Lemma 1.2.

(

n

m

)

is divisible by a prime p if and only if at least one of the base p

digits of m is greater than the corresponding digit of n.

Lemma 1.3. (See [12]) Every self-reciprocal irreducible polynomial of degree n ≥ 2 has
even degree.

2. When is fn,k a self-reciprocal?

In this section we answer the question “when is fn,k a self-reciprocal?” by considering
two cases: n is odd and n is even.

Recall that for n ≥ 1,

(2.1) fn,k(x) = k
∑

j≥0

(

n− 1

2j + 1

)

(xj − xj+1) + 2
∑

j≥0

(

n

2j

)

xj ∈ Z[x],

Theorem 2.1. Let n > 1 be even. fn,k(x) is a self-reciprocal if and only if k ∈ {0, 2}.

Proof. Let k = 0. Then (2.1) becomes

fn,k(x) = 2
∑

j≥0

(

n

2j

)

xj ,

which is a self-reciprocal since

(

n

2j

)

=

(

n

2(n
2
− j)

)

,

for 0 ≤ j ≤ n
2
.

Let k = 2. Then (2.1) becomes

fn,k(x) = 2
∑

j≥0

(

n− 1

2j + 1

)

(xj − xj+1) + 2
∑

j≥0

(

n

2j

)

xj .

So we need to show that

∑

j≥0

(

n− 1

2j + 1

)

(xj − xj+1) +
∑

j≥0

(

n

2j

)

xj

is a self-reciprocal.
Note that
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∑

j≥0

(

n− 1

2j + 1

)

(xj − xj+1) +
∑

j≥0

(

n

2j

)

xj

=
∑

j≥0

(

n− 1

2j + 1

)

xj −
∑

j≥0

(

n− 1

2j + 1

)

xj+1 +
∑

j≥0

(

n

2j

)

xj

=
∑

j≥0

(

n− 1

2j + 1

)

xj −
∑

j≥0

(

n− 1

2j + 1

)

xj+1 +
∑

j≥0

(

n− 1

2j + 1

)

xj+1

+
∑

j≥0

(

n− 1

2j

)

xj

=
∑

j≥0

(

n− 1

2j + 1

)

xj +
∑

j≥0

(

n− 1

2j

)

xj

=
∑

j≥0

(

n

2j + 1

)

xj

(2.2)

∑

j≥0

(

n

2j + 1

)

xj is a self-reciprocal since

(

n

2j + 1

)

=

(

n

2((n
2
− 1)− j) + 1

)

,

for 0 ≤ j ≤ n
2
− 1.

Now assume that

fn,k(x) = k
∑

j≥0

(

n− 1

2j + 1

)

xj − k
∑

j≥0

(

n− 1

2j + 1

)

xj+1 + 2
∑

j≥0

(

n

2j

)

xj
(2.3)

is a self-reciprocal.

Note that the degree of fn,k(x) is
n

2
and the right hand-side of (2.3) can be written

as

(2.4) (k(n− 1) + 2) +

n

2
−1

∑

j=1

[

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

]

xj + (2− k) x
n

2 .

If k 6= 2, since fn,k is a self-reciprocal, we have

2− k = k(n− 1) + 2

which implies k = 0.
If k 6= 0, then k = 2. Otherwise, it contradicts the fact that n > 1. Note that for

k = 2 and j = n
2
− 1, we have

(

n− 1

2j + 1

)

−

(

n− 1

2j − 1

)

+

(

n

2j

)

6= 0,
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and

2

(

n− 1

2j + 1

)

− 2

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

= 2
[

(

n− 1

2j + 1

)

−

(

n− 1

2j − 1

)

+

(

n

2j

)

]

= 2
[

(

n− 1

2j + 1

)

+

(

n− 1

2j

)

]

= 2

(

n

2j + 1

)

= 2

(

n

n− 1

)

= 2n

= k(n− 1) + 2.

�

Remark 2.2. When n is even, note that in (2.4), if we replace the constant term by
the coefficient of x

n

2 and viceversa, (2.4) does not generate self-reciprocal polynomials
for any k.

To give an example, let k = 1 and consider

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

in (2.4) for 1 ≤ j ≤ n
2
− 1. We have

(

n− 1

2j + 1

)

−

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

=

(

n− 1

2j + 1

)

+

(

n− 1

2j

)

+

(

n

2j

)

=

(

n

2j + 1

)

+

(

n

2j

)

=

(

n+ 1

2j + 1

)

Clearly, when j = 1 and j = n
2
− 1
(

n+ 1

3

)

6=

(

n + 1

n− 1

)

.

Let’s replace the constant term by the coefficient of x
n

2 in (2.4) and define gn,k to be

(2.5) gn,k(x) := (2− k) +

n

2
−1

∑

j=1

[

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

]

xj + (2− k) x
n

2 .

Also, replace the coefficient of x
n

2 by the constant term in (2.4) and define hn,k to be

hn,k(x) := (k(n−1)+2)+

n

2
−1

∑

j=1

[

k

(

n− 1

2j + 1

)

−k

(

n− 1

2j − 1

)

+2

(

n

2j

)

]

xj+(k(n−1)+2) x
n

2 .
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Then we have the following result.

Theorem 2.3. Let n > 1 be even. gn,k and hn,k are self-reciprocal if and only if k = 0

Proof. We only need to claim that

(2.6)

k

(

n− 1

2j + 1

)

−k

(

n− 1

2j − 1

)

+2

(

n

2j

)

= k

(

n− 1

2(n
2
− j) + 1

)

−k

(

n− 1

2(n
2
− j)− 1

)

+2

(

n

2(n
2
− j)

)

for 1 ≤ j ≤ n
2
− 1 when and only when k = 0.

When k = 0, clearly equality holds. Now assume that k 6= 0. Then from (2.6) we
have

k

(

n− 1

2j + 1

)

−k

(

n− 1

2j − 1

)

+2

(

n

2j

)

= k

(

n− 1

2(n
2
− j) + 1

)

−k

(

n− 1

2(n
2
− j)− 1

)

+2

(

n

2(n
2
− j)

)

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

= k

(

n− 1

n− 2j + 1

)

− k

(

n− 1

n− 2j − 1

)

k
[

(

n− 1

2j + 1

)

+

(

n− 1

2j

)

]

= k
[

(

n− 1

2j − 1

)

+

(

n− 1

2j − 2

)

]

which implies

(

n

2j + 1

)

=

(

n

2j − 1

)

for 1 ≤ j ≤
n

2
− 1,

which is a contradiction.
�

Theorem 2.4. Let n > 1 be odd. fn,k(x) is a self-reciprocal if and only if k = 1 or
n = 3 when k = 3.

Proof. Let k = 1 in (2.1). Then we have

fn,k(x) =
∑

j≥0

(

n− 1

2j + 1

)

xj −
∑

j≥0

(

n− 1

2j + 1

)

xj+1 + 2
∑

j≥0

(

n

2j

)

xj

=
∑

j≥0

(

n

2j + 1

)

xj +
∑

j≥0

(

n

2j

)

xj

=
∑

j≥0

(

n + 1

2j + 1

)

xj

Clearly,
∑

j≥0

(

n + 1

2j + 1

)

xj is a self-reciprocal polynomial since

(

n+ 1

2j + 1

)

=

(

n+ 1

2(n−1
2

− j) + 1

)

,

for 0 ≤ j ≤ n−1
2
.
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Now assume that fn,k(x) is a self-reciprocal polynomial. Note that the degree of

fn,k(x) is
n− 1

2
and the right hand-side of (2.3) can be written as

(2.7)

(k(n−1)+2)+

n−1

2
−1

∑

j=1

[

k

(

n− 1

2j + 1

)

−k

(

n− 1

2j − 1

)

+2

(

n

2j

)

]

xj+(−k(n−1)+2n) x
n−1

2 .

k(n− 1) + 2 = −k(n− 1) + 2n implies k = 1.
When k 6= 1, If −k(n− 1) + 2n = 0, then k 6= 0, 2.
Now assume that k 6= 0, 1, 2. Then−k(n − 1) + 2n = 0 if and only if n = 3 when

k = 3 since n is odd and

n =
k

k − 2
∈ Z if and only if k = 3.

Note that fn,k(x) = 8 when n = 3 and k = 3.
�

Remark 2.5. Note that when n = 1, fn,k(x) = 2 for all k.

Remark 2.6. When n > 1 is odd, note that in (2.7), if we replace the constant term by

the coefficient of x
n−1

2 and viceversa, (2.4) does not generate self-reciprocal polynomials
for any k.

Let’s replace the constant term by the coefficient of x
n−1

2 in (2.7) and define g∗n,k to
be

g∗n,k(x) := (−k(n− 1) + 2n) +

n−1

2
−1

∑

j=1

[

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

]

xj

+ (−k(n− 1) + 2n) x
n−1

2 .

(2.8)

Also, replace the coefficient of x
n−1

2 by the constant term in (2.7) and define h∗
n,k to

be

h∗
n,k(x) := (k(n−1)+2)+

n−1

2
−1

∑

j=1

[

k

(

n− 1

2j + 1

)

−k

(

n− 1

2j − 1

)

+2

(

n

2j

)

]

xj+(k(n−1)+2) x
n−1

2 .

Then we have the following result.

Theorem 2.7. Let n > 1 be odd. g∗n,k and h∗
n,k are self-reciprocal if and only if k = 1

Proof. We only need to claim that

(2.9)

k

(

n− 1

2j + 1

)

−k

(

n− 1

2j − 1

)

+2

(

n

2j

)

= k

(

n− 1

2(n−1
2

− j) + 1

)

−k

(

n− 1

2(n−1
2

− j)− 1

)

+2

(

n

2(n−1
2

− j)

)

for 1 ≤ j ≤ n−1
2

− 1 when and only when k = 1.
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Let k = 1. Then from the left hand side of (2.9), we have

(

n− 1

2j + 1

)

−

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

=

(

n− 1

2j + 1

)

+

(

n− 1

2j

)

+ 2

(

n

2j

)

=

(

n

2j + 1

)

+

(

n

2j

)

=

(

n+ 1

2j + 1

)

=

(

n+ 1

n− 2j

)

=

(

n + 1

n− 1− 2j + 1

)

=

(

n + 1

2(n−1
2

− j) + 1

)

=

(

n

2(n−1
2

− j) + 1

)

+

(

n

2(n−1
2

− j)

)

=

(

n− 1

2(n−1
2

− j) + 1

)

+

(

n− 1

2(n−1
2

− j)

)

+

(

n

2(n−1
2

− j)

)

=

(

n− 1

2(n−1
2

− j) + 1

)

−

(

n− 1

2(n−1
2

− j)− 1

)

+ 2

(

n

2(n−1
2

− j)

)

,

which is the right hand side of (2.9).
Now assume that k 6= 1. Then from (2.9) we have

k

(

n− 1

2j + 1

)

−k

(

n− 1

2j − 1

)

+2

(

n

2j

)

= k

(

n− 1

2(n−1
2

− j) + 1

)

−k

(

n− 1

2(n−1
2

− j)− 1

)

+2

(

n

2(n−1
2

− j)

)

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+2

(

n

2j

)

= k

(

n− 1

n− 2j

)

− k

(

n− 1

n− 2j − 2

)

+2

(

n

n− 1− 2j

)

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

= k

(

n− 1

2j − 1

)

− k

(

n− 1

2j + 1

)

+ 2

(

n

2j + 1

)

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+

(

n

2j

)

−

(

n

2j + 1

)

= 0

(k − 1)

(

n− 1

2j + 1

)

+ (1− k)

(

n− 1

2j − 1

)

= 0

which implies

(

n− 1

2j + 1

)

=

(

n− 1

2j − 1

)

for 1 ≤ j ≤
n− 1

2
− 1,

which is a contradiction.
�
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3. In Odd Characteristic

Let n > 1, p be an odd prime, and 0 ≤ k ≤ p− 1. Consider

(3.1) fn,k(x) = k
∑

j≥0

(

n− 1

2j + 1

)

(xj − xj+1) + 2
∑

j≥0

(

n

2j

)

xj ∈ Fp[x].

Theorem 3.1. Assume that n is even. Then fn,k(x) is a self-reciprocal if and only if
one of the following holds

(i) k = 0.
(ii) k = 2 and n 6= (2l)p, where l ∈ Z

+.

Proof. Let k = 0. Then

fn,k(x) = 2
∑

j≥0

(

n

2j

)

xj .

We claim that

(

n

2j

)

≡

(

n

2(n
2
− j)

)

(mod p),

for 0 ≤ j ≤ n
2
.

Consider the p-adic expansions

n = α0 p
0 + α1 p

1 + α2 p
2 + · · ·+ αt p

t,

and

2j = β0 p
0 + β1 p

1 + β2 p
2 + · · ·+ βt p

t.

Then by Luca’s theorem, we have

(

n

2j

)

≡

(

α0

β0

)(

α1

β1

)(

α2

β2

)

· · ·

(

αt

βt

)

(mod p)

=

(

α0

α0 − β0

)(

α1

α1 − β1

)(

α2

α2 − β2

)

· · ·

(

αt

αt − βt

)

≡

(

n

2(n
2
− j)

)

(mod p)

Then the claim follows from the fact that
(

n

2j

)

≡ 0 (mod p) if and only if there exists an 0 ≤ l ≤ t such that βl > αl if and only

if
(

n

2(n
2
−j)

)

≡ 0 (mod p).

Let k = 2 and n 6= (2l)p, where l ∈ Z
+. Note that n 6= (2l)p implies p 6 |(2n).

From (2.2), we have
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fn,k(x) = 2
∑

j≥0

(

n− 1

2j + 1

)

(xj − xj+1) + 2
∑

j≥0

(

n

2j

)

xj

= 2
∑

j≥0

(

n

2j + 1

)

xj

(3.2)

Consider the p-adic expansions

n = α0 p
0 + α1 p

1 + α2 p
2 + · · ·+ αt p

t,

and

2j + 1 = β0 p
0 + β1 p

1 + β2 p
2 + · · ·+ βt p

t.

Then by Luca’s theorem, we have

(

n

2j + 1

)

≡

(

α0

β0

)(

α1

β1

)(

α2

β2

)

· · ·

(

αt

βt

)

(mod p)

=

(

α0

α0 − β0

)(

α1

α1 − β1

)(

α2

α2 − β2

)

· · ·

(

αt

αt − βt

)

≡

(

n

2((n
2
− 1)− j) + 1

)

(mod p)

Then the claim follows from the fact that
(

n

2j+1

)

≡ 0 (mod p) if and only if there exists an 0 ≤ l ≤ t such that βl > αl if and

only if
(

n

2((n
2
−1)−j)+1

)

≡ 0 (mod p).

Now assume that fn,k(x) is self-reciprocal. From (2.4), we have

(3.3) (k(n− 1) + 2) +

n

2
−1

∑

j=1

[

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

]

xj + (2− k) x
n

2 .

Since fn,k(x) is self-reciprocal, we have

k(n− 1) + 2 ≡ 2− k (mod p)

which implies k = 0 for any even n or p|n.
Note that since n is even, n

p
is even, so we can write n = (2l)p for some l ∈ Z

+.

Now we claim that when k 6= 0, 2 and p|n, it contradicts our assumption that fn,k(x)
is self-reciprocal.

Let k 6= 0, 2 and p|n. Then from (3.3) we have

(3.4) (2− k) +

n

2
−1

∑

j=1

[

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

]

xj + (2− k) x
n

2 .

Now we claim that
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k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

6≡ k

(

n− 1

2(n
2
− j) + 1

)

− k

(

n− 1

2(n
2
− j)− 1

)

+ 2

(

n

2(n
2
− j)

)

(mod p)

(3.5)

for 1 ≤ j ≤ n
2
− 1.

Let

k

(

n− 1

2j + 1

)

− k

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

≡ k

(

n− 1

2(n
2
− j) + 1

)

− k

(

n− 1

2(n
2
− j)− 1

)

+ 2

(

n

2(n
2
− j)

)

(mod p)

Then by the proof of Theorem 2.3, we have

(

n

2j + 1

)

≡

(

n

2j − 1

)

(mod p),

for 1 ≤ j ≤ n
2
− 1, which is clearly a contradiction.

Now let k = 2 in (3.3). Then we have

(3.6) 2n+

n

2
−1

∑

j=1

[

2

(

n− 1

2j + 1

)

− 2

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

]

xj .

We show that when k = 2, if fn,k is a self-reciprocal, then n 6= p(2l), i.e. p 6 |n.
When k = 2, Assume that n = p(2l), i.e. p|n. Then the constant term in (3.6)

vanishes, and as a result fn,k is not a self-reciprocal. Hence the proof.
Note that (3.6) can also be written as

(3.7) 2n+ 2

n

2
−1

∑

j=1

(

n

2j + 1

)

xj = 2

n

2
−1

∑

j=0

(

n

2j + 1

)

xj

�

Corollary 3.2. If k = 0 and n > 2 with n ≡ 2 (mod 4), then fn,k(x) is not an
irreducible self-reciprocal polynomial.

Proof. If n ≡ 2 (mod 4), then the degree of fn,k(x) is odd. The rest of the proof follows
from Theorem 3.1 (i) and Lemma 1.3. �

Corollary 3.3. If k = 2 and n 6= (2l)p with n ≡ 0 (mod 4), where l ∈ Z
+, then fn,k(x)

is not an irreducible self-reciprocal polynomial.

Proof. If n ≡ 0 (mod 4), then the degree of fn,k(x) is odd when k = 2. The rest of the
proof follows from Theorem 3.1 (i) and Lemma 1.3. �

Theorem 3.4. Assume that n > 0 is odd. Then fn,k(x) is a self-reciprocal if and only
if one of the following holds

(i) n = 1 for any k.
(ii) k = 0 and n = pl, where l ∈ Z

+.
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(iii) n = 3 and k = 3 when p > 3.
(iv) k = 1 and n+ 1 6= (2l)p, where l ∈ Z

+.

Proof. From Remark 2.5, we have f1,k(x) = 2 for all k. When p > 3, f3,3(x) = 8.
Let k = 0 and n = pl in (3.1), where l ∈ Z

+. Then

fn,k(x) = 2
∑

j≥0

(

n

2j

)

xj = 2.

Now let k = 1 in (3.1) and assume that n + 1 6= (2l)p, where l ∈ Z
+. Then from

Theorem 2.4 we have

fn,k(x) =
∑

j≥0

(

n+ 1

2j + 1

)

xj

Note that n+ 1 6= (2l)p implies p 6 |(n+ 1).
Consider the p-adic expansions

n+ 1 = α0 p
0 + α1 p

1 + α2 p
2 + · · ·+ αt p

t,

and

2j + 1 = β0 p
0 + β1 p

1 + β2 p
2 + · · ·+ βt p

t.

Then by Luca’s theorem, we have

(

n+ 1

2j + 1

)

≡

(

α0

β0

)(

α1

β1

)(

α2

β2

)

· · ·

(

αt

βt

)

(mod p)

=

(

α0

α0 − β0

)(

α1

α1 − β1

)(

α2

α2 − β2

)

· · ·

(

αt

αt − βt

)

≡

(

n + 1

2(n−1
2

− j) + 1

)

(mod p)

Then the claim follows from the fact that
(

n+1
2j+1

)

≡ 0 (mod p) if and only if there exists an 0 ≤ l ≤ t such that βl > αl if and

only if
(

n+1
2(n−1

2
−j)+1

)

≡ 0 (mod p).

Now assume that fn,k(x) is a self-reciprocal. From (2.7) we have

(3.8)

(k(n−1)+2)+

n−1

2
−1

∑

j=1

[

k

(

n− 1

2j + 1

)

−k

(

n− 1

2j − 1

)

+2

(

n

2j

)

]

xj+(−k(n−1)+2n) x
n−1

2 .

Case 1. Here we consider the case where the constant term and the coefficient of
x

n−1

2 being non-zero.
Since fn,k is a self-reciprocal, we have

k(n− 1) + 2 ≡ −k(n− 1) + 2n (mod p),
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which implies

(k − 1)(n− 1) ≡ 0 (mod p).

Since n is odd, we have n = 1 for any k 6= 1.
Let k = 1 in (3.8) to obtain

(n+ 1) +

n−1

2
−1

∑

j=1

[

(

n− 1

2j + 1

)

−

(

n− 1

2j − 1

)

+ 2

(

n

2j

)

]

xj + (n+ 1) x
n−1

2

=

n−1

2
∑

j=0

(

n+ 1

2j + 1

)

xj .

(3.9)

Since (3.9) is a self-reciprocal, we have either n = 1, in which case fn,k(x) is a
constant polynomial, or p 6 |(n + 1) which implies n + 1 6= (2l)p, where l ∈ Z

+. Hence
we have (i) and (iv).

Case 2. Here we consider the case where the constant term is non-zero, but coeffi-

cient of x
n−1

2 is zero in (3.8), i.e.

(3.10) k(n− 1) + 2 6≡ 0 (mod p) and − k(n− 1) + 2n ≡ 0 (mod p).

−k(n− 1) + 2n ≡ 0 (mod p) implies n 6≡ 1 (mod p) and k 6= 2.
From −k(n− 1) + 2n ≡ 0 (mod p) we have

(3.11) n ≡
k

k − 2
(mod p),

which implies

(a) k = 0 for any p,
(b) k = 3 when p > 3,
(c) k = 1 for any p, or
(d) k = 4 when p > 3.

If k = 0, since n is an odd, we have n = pl, where l ∈ Z
+. Note that in this case

fn,k(x) = 2.
If k = 3 and p > 3, we have n ≡ 3 (mod p). Since n is odd, n = 3. Note that in this

case fn,k(x) = 8.
If k = 1, then it contradicts (3.10).

The coefficient of x
n−1

2
−1 in (3.8) is

k

(

n− 1

1

)

− k

(

n− 1

3

)

+ 2

(

n

3

)

.

Assume that k = 4 when p > 3. When k = 4, from (3.11), n ≡ 2 (mod p). Then

the coefficient of x
n−1

2
−1 is

4

(

n− 1

1

)

− 4

(

n− 1

3

)

+ 2

(

n

3

)

= 4

(

n

2

)

− 2

(

n

3

)

≡ 4 (mod p)
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But the constant term in (3.8) is

k(n− 1) + 2 = 4(n− 1) + 2 ≡ 6 (mod p).

This contradicts our assumption that fn,k(x) is a self-reciprocal.
Hence the proof.

�

Corollary 3.5. If k = 1 and n + 1 6= (2l)p with n ≡ 3 (mod 4), where l ∈ Z
+, then

fn,k(x) is not an irreducible self-reciprocal polynomial.

Proof. If n ≡ 3 (mod 4), then the degree of fn,k(x) is odd when k = 1. The rest of the
proof follows from Theorem 3.4 (iv) and Lemma 1.3. �

4. In Characteristic 2

When p = 2, (2.1) becomes

(4.1) fn,k(x) = k
∑

j≥0

(

n− 1

2j + 1

)

(xj − xj+1) ∈ F2[x].

Note that we only need to consider k = 1. We note to the reader that when p = 2,
the polynomials defined by fn,k do not arise from reversed Dickson polynomials.

Theorem 4.1. Let n > 1 and k = 1. Then fn,k(x) is a self-reciprocal if and only if n
is even.

Proof. Necessity immediately follows from the fact that
(

n−1
2j+1

)

= 0 when n is odd. For

the sufficiency, assume that n is even. Then from (4.1) we have

fn,k(x) =
∑

j≥0

(

n− 1

2j + 1

)

xj +
∑

j≥0

(

n− 1

2j + 1

)

xj+1

= 1 +

n

2
−1

∑

j=1

[

(

n− 1

2j + 1

)

+

(

n− 1

2j − 1

)

]

xj + x
n

2

(4.2)

Note that

(

n− 1

2j + 1

)

+

(

n− 1

2j − 1

)

=

(

n− 1

2j + 1

)

+

(

n− 1

2j

)

+

(

n− 1

2j

)

+

(

n− 1

2j − 1

)

=

(

n

2j + 1

)

+

(

n

2j

)

=

(

n+ 1

2j + 1

)

Then (4.2) can be written as
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fn,k(x) =

n

2
∑

j=0

(

n+ 1

2j + 1

)

xj(4.3)

For 0 ≤ j ≤ n
2
, we have

(

n+ 1

2j + 1

)

=

(

n+ 1

2(n
2
− j) + 1

)

.

Now we claim that for 1 ≤ j ≤ n
2
− 1, If

(

n+1
2j+1

)

vanishes, then so does
(

n+1
2(n

2
−j)+1

)

.

Consider the 2-adic expansions

n+ 1 = α0 2
0 + α1 2

1 + α2 2
2 + · · ·+ αt 2

t,

and

2j + 1 = β0 2
0 + β1 2

1 + β2 2
2 + · · ·+ βt 2

t.

Note that α0 = 1 and β0 = 1 since n+ 1 and 2j + 1 are odd. Then

n− 2j + 1 = 20 + (α1 − β1) 2
1 + (α2 − β2) 2

2 + · · ·+ (αt − βt) 2
t.

Then by Luca’s theorem, we have

(

n + 1

2j + 1

)

≡

(

α0

β0

)(

α1

β1

)

· · ·

(

αt

βt

)

(mod 2),

and

(

n+ 1

2(n
2
− j) + 1

)

≡

(

α0

1

)(

α1

α1 − β1

)

· · ·

(

αt

αt − βt

)

(mod 2).

Then the claim follows from the fact that

(

n+1
2j+1

)

≡ 0 (mod 2) if and only if there exists an 1 ≤ l ≤ t such that βl > αl if and

only if
(

n+1
2(n

2
−j)+1

)

≡ 0 (mod 2).

�

Corollary 4.2. If n > 2 with n ≡ 2 (mod 4), then fn,k(x) is not an irreducible self-
reciprocal polynomial.

Proof. If n ≡ 2 (mod 4), then the degree of fn,k(x) is odd. The rest of the proof follows
from Lemma 1.3. �

Remark 4.3. Note that when n = 2, fn,k = x+ 1 which is irreducible.
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5. Coterm Polynomials

5.1. Introduction. Coterm polynomials were introduced by Oztas, Siap, and Yildiz
in [14]. They studied DNA codes over an extension ring of F2 + uF2 with the use of
coterm polynomials.

Let R be a commutative ring with identity.

Definition 5.1. (See [14]) Let f(x) = a0 + a1x+ · · ·+ an−1x
n−1 ∈ R[x]/(xn − 1) be a

polynomial, with ai ∈ R. If for all 1 ≤ i ≤ ⌊n
2
⌋, we have ai = an−i, then f(x) is said to

be a coterm polynomial over R.

According to the definition f(x) = a0 + a1x+ · · ·+ an−1x
n−1 is a coterm polynomial

in R[x]/(xn − 1) if and only if (a1, a2, . . . , an−1) is self-reversible.
The classical way of constructing a reversible code is to find a self-reciprocal divisor

of xn−1 and construct the cyclic code generated by that divisor. However, Oztas, Siap,
and Yildiz explained a new way to construct reversible codes using coterm polynomials.
We refer the reader to [14] and the references therein for further details.

5.2. Coterm Polynomials from reversed Dickson polynomials. Clearly, If f(x) =
a0 + a1x + a2x

2 + · · ·+ anx
n, an 6= 0, is a self-reciprocal polynmial, then the removal

of the term anx
n from f(x) gives a coterm polynomial. Using the above fact and the

self-reciprocal polynomials obtained in the previous sections, we have the following
results.

Consider

(5.1) fn,k(x) = k
∑

j≥0

(

n− 1

2j + 1

)

(xj − xj+1) + 2
∑

j≥0

(

n

2j

)

xj ∈ Z[x].

Theorem 5.2. Let n ≥ 4 be even. Define

Cn,k(x) := fn,k(x)− 2x
n

2 .

If k = 0, then Cn,k(x) is a coterm polynomial over Z.

Proof. If k = 0, then fn,k(x) is a self-reciprocal (see Theorem 2.1). The rest of the
proof follows from (2.4). �

Theorem 5.3. Let n ≥ 6 be even. Define

Cn,k(x) := fn,k(x)− 2nx
n

2
−1.

If k = 2, then Cn,k(x) is a coterm polynomial over Z.

Proof. If k = 2, then fn,k(x) is a self-reciprocal (see Theorem 2.1). The rest of the
proof follows from (2.4). �

Theorem 5.4. Let n ≥ 4 be even. Define

Cn,k(x) := gn,k(x)− 2x
n

2 ,

where gn,k(x) is the polynomial defined in (2.5). If k = 0, then Cn,k(x) is a coterm
polynomial over Z.
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Proof. If k = 0, then fn,k(x) is a self-reciprocal (see Theorem 2.3). The rest of the
proof follows from (2.5). �

Theorem 5.5. Let n > 3 be odd. Define

Cn,k(x) := fn,k(x)− (n+ 1)x
n−1

2 .

If k = 1, then Cn,k(x) is a coterm polynomial over Z.

Proof. If k = 1, then fn,k(x) is a self-reciprocal (see Theorem 2.4). The rest of the
proof follows from (2.7). �

Theorem 5.6. Let n > 3 be odd. Define

Cn,k(x) := g∗n,k(x)− (n + 1)x
n−1

2 ,

where g∗n,k(x) is the polynomial defined in (2.8). If k = 1, then Cn,k(x) is a coterm
polynomial over Z.

Proof. If k = 1, then fn,k(x) is a self-reciprocal (see Theorem 2.7). The rest of the
proof follows from (2.8). �

Let’s consider

(5.2) fn,k(x) = k
∑

j≥0

(

n− 1

2j + 1

)

(xj − xj+1) + 2
∑

j≥0

(

n

2j

)

xj ∈ Fp[x],

where p is an odd prime and 0 ≤ k ≤ p− 1.

Theorem 5.7. Let n ≥ 4 be even. Define

Cn,k(x) := fn,k(x)− 2 x
n

2 .

If k = 0 and wp(n) 6= 2, where wp(n) is the base p weight of n, then Cn,k(x) is a coterm
polynomial over Fp.

Proof. If k = 0, then fn,k(x) is a self-reciprocal (see Theorem 3.1). The rest of the
proof follows from (3.3). �

Remark 5.8. Let wp(n) = 2 in Theorem 5.7. From (3.3), we have

Cn,k(x) = fn,k(x)− 2 x
n

2

= 2

n

2
−1

∑

j=0

(

n

2j

)

xj

= 2 +

n

2
−1

∑

j=1

(

n

2j

)

xj .

(5.3)

Assume that 1 ≤ j ≤ n
2
− 1, i.e. 2 ≤ 2j ≤ n− 2.

Consider the p-adic expansions

n = α0 p
0 + α1 p

1 + α2 p
2 + · · ·+ αt p

t,
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and

2j = β0 p
0 + β1 p

1 + β2 p
2 + · · ·+ βt p

t.

Then by Luca’s theorem, we have

(

n

2j

)

≡

(

α0

β0

)(

α1

β1

)(

α2

β2

)

· · ·

(

αt

βt

)

(mod p)

We claim that there exists 0 ≤ i ≤ t such that αi < βi for all 1 ≤ j ≤ n
2
− 1.

Assume to the contrary αi ≥ βi for all 0 ≤ i ≤ t.
Since wp(n) = 2, we have

α0 + α1 + α2 + · · ·+ αt = 2.

Since αi ≥ βi for all 0 ≤ i ≤ t, we have

β0 + β1 + β2 + · · ·+ βt ≤ 2.

If β0 + β1 + β2 + · · ·+ βt = 0, then it contradicts the fact that 2j ≥ 2.
If β0 + β1 + β2 + · · · + βt = 1, then there esists an 0 ≤ i ≤ t such that 2j = pi, a

contradiction.
If β0 + β1 + β2 + · · ·+ βt = 2, then it contradicts the fact that 2j ≤ n− 2.
Hence

(

n

2j

)

≡ 0 (mod p) for all 1 ≤ j ≤
n

2
− 1.

From (5.3), we have
Cn,k(x) ≡ 2 (mod p).

Theorem 5.9. Let n ≥ 6 be even. Define

Cn,k(x) := fn,k(x)− 2nx
n

2
−1.

If k = 2, n 6= (2l1)p, where l1 ∈ Z
+, and n 6= pl2 + 1, where l2 ∈ Z

+, then Cn,k(x) is a
coterm polynomial over Fp.

Proof. If k = 2 and n 6= (2l1)p, where l1 ∈ Z
+, then fn,k(x) is a self-reciprocal (see

Theorem 3.1). The rest of the proof follows from (3.3). �

Remark 5.10. Let n = pl2 + 1, where l2 ∈ Z
+, in Theorem 5.9. From (3.2), we have

Cn,k(x) = fn,k(x)− 2nx
n

2
−1

= 2

n

2
−2

∑

j=0

(

n

2j + 1

)

xj

≡ 2 (mod p).

Theorem 5.11. Let n > 3 be odd. Define

Cn,k(x) := fn,k(x)− (n+ 1)x
n−1

2 .

If k = 1, n + 1 6= (2l1)p, where l1 ∈ Z
+, and n 6= pl2, where l2 ∈ Z

+, then Cn,k(x) is a
coterm polynomial over Fp.
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Proof. If k = 1 and n+ 1 6= (2l1)p, where l1 ∈ Z
+, then fn,k(x) is a self-reciprocal (see

Theorem 3.4). The rest of the proof follows from (3.8). �

Remark 5.12. Let n = pl2, where l2 ∈ Z
+, in Theorem 5.11. From (3.8), we have

Cn,k(x) = fn,k(x)− (n+ 1)x
n−1

2

=

n−1

2
−1

∑

j=0

(

n+ 1

2j + 1

)

xj

≡ 1 (mod p).

Remark 5.13. In characteristic 2, fn,k(x) − x
n

2 is a coterm polynomial over F2 if
n ≥ 4 is even and n 6= 2l, where l ∈ Z

+. Note that when n = 2l, where l ∈ Z
+, we

have fn,k(x)− x
n

2 ≡ 1 (mod 2).
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