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7 AG codes and AG quantum codes from the GGS curve

D. Bartoli, M. Montanucci, G. Zini

Abstract

In this paper, algebraic-geometric (AG) codes associated with the GGS maximal
curve are investigated. The Weierstrass semigroup at all Fq2-rational points of the
curve is determined; the Feng-Rao designed minimum distance is computed for infinite
families of such codes, as well as the automorphism group. As a result, some linear
codes with better relative parameters with respect to one-point Hermitian codes are
discovered. Classes of quantum and convolutional codes are provided relying on the
constructed AG codes.

Keywords: GGS curve, AG code, quantum code, convolutional code, code automor-
phisms.

MSC Code: 94B27. 1

1 Introduction

In [13, 14] Goppa used algebraic curves to construct linear error correcting codes, the so
called algebraic geometric codes (AG codes). The construction of an AG code with alphabet
a finite field Fq requires that the underlying curve is Fq-rational and involves two Fq-rational
divisors D and G on the curve.

In general, to construct a “good” AG code over Fq we need a curve X with low genus
g with respect to its number of Fq-rational points. In fact, from the Goppa bounds on the
parameters of the code it follows that the relative Singleton defect is upper bounded by the
ratio g/N , where N can be as large as the number of Fq-rational points of X not in the
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support of G. Maximal curves over Fq attain the Hasse-Weil upper bound for the number of
Fq-rational points with respect to their genus and for this reason they have been used in a
number of works. Examples of such curves are the Hermitian curve, the GK curve [12], the
GGS curve [10], the Suzuki curve [7], the Klein quartic when

√
q ≡ 6 (mod 7) [33], together

with their quotient curves. Maximal curves often have large automorphism groups which in
many cases can be inherited by the code: this can bring good performances in encoding [25]
and decoding [17].

Good bounds on the parameters of one-point codes, that is AG codes arising from divisors
G of type nP for a point P of the curve, have been obtained by investigating the Weierstrass
semigroup at P . These results have been later generalized to codes and semigroups at two
or more points; see e.g. [4, 5, 20, 21, 27, 30, 31].

AG codes from the Hermitian curve have been widely investigated; see [8,22–24,37,39,40]
and the references therein. Other constructions based on the Suzuki curve and the curve
with equation yq + y = xqr+1 can be found in [32] and [36]. More recently, AG Codes from
the GK curve have been constructed in [1, 3, 9].

In the present work we investigate one-point AG codes from the Fq2n-maximal GGS
curve, n ≥ 5 odd. The GGS curve has more short orbits under its automorphism group
than other maximal curves, see [15], and hence more possible structures for the Weierstrass
semigroups at one point. On the one hand this makes the investigation more complicated; on
the other hand it gives more chances of finding one-point AG codes with good parameters.
One achievement of this work is the determination of the Weierstrass semigroup at any
Fq2-rational point.

We show that the one-point codes at the infinite point P∞ inherit a large automorphism
group from the GGS curve; for many of such codes, the full automorphism group is obtained.
Moreover, for q = 2, we compute explicitly the Feng-Rao designed minimum distance, which
improves the Goppa designed minimum distance. As an application, we provide families
of codes with q = 2 whose relative Singleton defect goes to zero as n goes to infinity. We
were not able to produce analogous results for an Fq2-rational affine point P0, because of
the more complicated structure of the Weierstrass semigroup. In a comparison between one-
point codes from P∞ and one-point codes from P0, it turns out that the best codes come
sometimes from P∞, other times from P0; we give evidence of this fact with tables for the
case q = 2, n = 5.

Note that in general, many of our codes are better than the comparable one-point Her-
mitian codes on the same alphabet. In fact, let C1 be a code from a one-point divisor G1

on the Fq2n-maximal GGS curve with genus g1, with alphabet Fq2n , length N2, designed
dimension k∗

1 = degG1 − g1 + 1, and designed minimum distance d∗1 = degG1 − (2g1 − 2).
In the same way, let C2 be a code from a one-point divisor G2 on the Fq2n-maximal Hermi-
tian curve with genus g2, with the same alphabet Fq2n and length N2 = N1 as C1, designed
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dimension k∗
2 = degG2 − g2 + 1, and designed minimum distance d∗2 = degG2 − (2g2 − 2).

In order to compare C1 and C2, we can choose G1 and G2 such that k∗
1 = k∗

2. Then the
difference d∗1− d∗2, like the difference δ

∗
2 − δ∗1 between the designed Singleton defects, is equal

to g2 − g1 =
1
2
(q2n − qn+2 + q3 − q2) ≫ 0.

Finally, we apply our results on AG codes to construct families of quantum codes and
convolutional codes.

2 Preliminaries

2.1 Curves and codes

Let X be a projective, geometrically irreducible, nonsingular algebraic curve of genus g
defined over the finite field Fq of size q. The symbols X (Fq) and Fq(X ) denote the set of
Fq-rational points and the field of Fq-rational functions, respectively. A divisor D on X is a
formal sum n1P1 + · · · + nrPr, where Pi ∈ X (Fq), ni ∈ Z, Pi 6= Pj if i 6= j. The divisor D
is Fq-rational if it coincides with its image n1P

q
1 + · · ·+ nrP

q
r under the Frobenius map over

Fq. For a function f ∈ Fq(X ), div(f) and (f)∞ indicate the divisor of f and its pole divisor.
Also, the Weierstrass semigroup at P will be indicated by H(P ). The Riemann-Roch space
associated with an Fq-rational divisor D is

L(D) := {f ∈ X (Fq) \ {0} : div(f) +D ≥ 0} ∪ {0}

and its dimension over Fq is denoted by ℓ(D).
Let P1, . . . , PN ∈ X (Fq) be pairwise distinct points and consider the divisor D = P1 +

· · · + PN and another Fq-rational divisor G whose support is disjoint from the support
of D. The AG code C(D,G) is the image of the linear map η : L(G) → FN

q given by
η(f) = (f(P1), f(P2), . . . , f(PN)). The code has length N and if N > deg(G) then η is
an embedding and the dimension k of C(D,G) is equal to ℓ(G). The minimum distance d
satisfies d ≥ d∗ = N−deg(G), where d∗ is called the designed minimum distance of C(D,G);
if in addition deg(G) > 2g − 2, then by the Riemann-Roch Theorem k = deg(G) − g + 1;
see [19, Th. 2.65]. The dual code C⊥(D,G) is an AG code with dimension k⊥ = N − k
and minimum distance d⊥ ≥ degG− 2g + 2. If G = αP , α ∈ N, P ∈ X (Fq), the AG codes
C(D,G) and C⊥(D,G) are referred to as one-point AG codes. Let H(P ) be the Weierstrass
semigroup associated with P , that is

H(P ) := {n ∈ N0 | ∃f ∈ Fq(X ), (f)∞ = nP} = {ρ1 = 0 < ρ2 < ρ3 < · · · }.

Denote by fℓ ∈ Fq(X ), ℓ ≥ 1, a rational function such that (fℓ)∞ = ρℓP . For ℓ ≥ 0,
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define the Feng-Rao function

νℓ := |{(i, j) ∈ N2
0 : ρi + ρj = ρℓ+1}|.

Consider Cℓ(P ) = C⊥(P1 + P2 + · · · + PN , ρℓP ), P, P1, . . . , PN pairwise distint points in
X (Fq). The number

dORD(Cℓ(P )) := min{νm : m ≥ ℓ}
is a lower bound for the minimum distance d(Cℓ(P )) of the code Cℓ(P ), called the order

bound or the Feng-Rao designed minimum distance of Cℓ(P ); see [19, Theorem 4.13]. Also,
by [19, Theorem 5.24], dORD(Cℓ(P )) ≥ ℓ+ 1− g and equality holds if ℓ ≥ 2c− g − 1, where
c = max{m ∈ Z : m− 1 /∈ H(P )}.

A numerical semigroup is called telescopic if it is generated by a sequence (a1, . . . , ak)
such that

• gcd(a1, . . . , ak) = 1;

• for each i = 2, . . . , k, ai/di ∈ 〈a1/di−1, . . . , ai−1/di−1〉, where di = gcd(a1, . . . , ai);

see [28]. The semigroup H(P ) is called symmetric if 2g − 1 /∈ H(P ). The property of being
symmetric for H(P ) gives rise to useful simplifications of the computation of dORD(Cℓ(P )),
when ρℓ > 2g. The following result is due to Campillo and Farrán; see [2, Theorem 4.6].

Proposition 2.1. Let X be an algebraic curve of genus g and let P ∈ X (Fq). If H(P ) is a

symmetric Weierstrass semigroup then one has

dORD(Cℓ(P )) = νℓ,

for all ρℓ+1 = 2g − 1 + e with e ∈ H(P ) \ {0}.

2.2 The automorphism group of an AG code C(D,G)

In the following we use the same notation as in [11, 26]. Let MN,q ≤ GL(N, q) be the
subgroup of matrices having exactly one non-zero element in each row and column. For
γ ∈ Aut(Fq) and M = (mi,j)i,j ∈ GL(N, q), let Mγ be the matrix (γ(mi,j))i,j. Let WN,q be
the semidirect product MN,q⋊Aut(Fq) with multiplication M1γ1 ·M2γ2 := M1M

γ
2 ·γ1γ2. The

automorphism group Aut(C(D,G)) of C(D,G) is the subgroup of WN,q preserving C(D,G),
that is,

Mγ(x1, . . . , xN) := ((x1, . . . , xN) ·M)γ ∈ C(D,G) for any (x1, . . . , xN ) ∈ C(D,G).
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Let AutFq
(X ) denote the Fq-automorphism group of X . Also, let

AutFq,D,G(X ) = {σ ∈ AutFq
(X ) | σ(D) = D, σ(G) ≈D G},

where G′ ≈D G if and only if there exists u ∈ Fq(X ) such that G′ −G = (u) and u(Pi) = 1
for i = 1, . . . , N , and

Aut+Fq,D,G(X ) := {σ ∈ AutFq
(X ) | σ(D) = D, σ(|G|) = |G|},

where |G| = {G + (f) | f ∈ Fq(X )} is the linear series associated with G. Note that
AutFq,D,G(X ) ⊆ Aut+Fq,D,G(X ).

Remark 2.2. Suppose that supp(D)∪ supp(G) = X (Fq) and each point in supp(G) has the
same weight in G. Then

AutFq,D,G(X ) = Aut+Fq,D,G(X ) = {σ ∈ AutFq
(X ) | σ(supp(G)) = supp(G)}.

In [11] the following result was proved.

Theorem 2.3. ([11, Theorem 3.4]) Suppose that the following conditions hold:

• G is effective;

• ℓ(G− P ) = ℓ(G)− 1 and ℓ(G− P −Q) = ℓ(G)− 2 for any P,Q ∈ X ;

• X has a plane model Π(X ) with coordinate functions x, y ∈ L(G);

• X is defined over Fp;

• the support of D is preserved by the Frobenius morphism (x, y) 7→ (xp, yp);

• N > deg(G) · deg(Π(X )).

Then

Aut(C(D,G)) ∼= (Aut+Fq,D,G(X )⋊Aut(Fq))⋊ F∗
q.

If any non-trivial element of AutFq
(X ) fixes at most N − 1 Fq-rational points of X then

Aut(C(D,G)) contains a subgroup isomorphic to (AutFq,D,G(X ) ⋊ Aut(Fq)) ⋊ F∗
q; see [1,

Proposition 2.3].
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2.3 The GGS curve

Let q be a prime power and consider an odd integer n. The GGS curve GGS(q, n) is defined
by the equations

{

Xq +X = Y q+1

Y q2 − Y = Zm , (1)

where m = (qn + 1)/(q + 1); see [10]. The genus of GGS(q, n) is 1
2
(q − 1)(qn+1 + qn − q2),

and GGS(q, n) is Fq2n-maximal.
Let P0 = (0, 0, 0), P(a,b,c) = (a, b, c), and let P∞ be the unique ideal point of GGS(q, n).

Note that GGS(q, n) is singular, being P∞ its unique singular point. Yet, there is only
one place of GGS(q, n) centered at P∞; therefore, we can actually construct AG codes
from GGS(q, n) as described in Section 2.1 (see [38, Appendix B] and [18, Chapter 8] for
an introduction to the concept of place of a curve). The divisors of the functions x, y, z
satisfying xq + x = yq+1, yq

2 − y = zm are

(x) = m(q + 1)P0 −m(q + 1)P∞,

(y) = m
∑

αq+α=0

P(α,0,0) −mqP∞,

(z) =
∑

αq + α = β

β ∈ Fq2

P(α,β,0) − q3P∞.

Throughout the paper we indicate by D and D̃ the divisors

D =
∑

P∈GGS(q,n)(F
q2n

), P 6=P∞

P, D̃ =
∑

P∈GGS(q,n)(F
q2n

), P 6=P0

P. (2)

2.4 Structure of the paper

The paper is organized as follows. In Section 3 the value of dORD(Cℓ(P∞)) for q = 2 and
n ≥ 5 is obtained, where Cℓ(P∞) = C⊥(D, ℓP∞); this is applied in Section 3.5 to two families
of codes with q = 2 whose relative Singleton defect goes to zero as n goes to infinity. In
Section 4 we determine the Weierstrass semigroup at P0, and hence at any Fq2-rational affine
point of GGS(q, n). The tables in Section 5 describe the parameters of CℓP∞ and Cℓ(P0)
in the particular case q2n = 210. Sections 6 and 7 provide families of quantum codes and
convolutional codes constructed from Cℓ(P∞) and Cℓ(P0). Finally, we compute in Section 8
the automorphism group of the AG code C(D, ℓP∞) for qn + 1 ≤ ℓ ≤ qn+2 − q3.
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3 The computation of dORD(Cℓ(P∞)) for q = 2

In this section we deal with the codes Cℓ(P∞) = C⊥(D, ρℓP∞), where D is as in (2). Our
purpose is to exhibit the exact value of dORD(Cℓ(P∞)) for the case q = 2. First of all
we determine the values of νℓ (Subsection 3.1); in Subsections 3.2, 3.3, 3.4 we compute
dORD(Cℓ(P∞)).

3.1 The Feng-Rao function νℓ for q = 2

Assume that q = 2 and n ≥ 5 is odd. Let m = 2n+1
3

. Then, from [15, Corollary 3.5],

H(P∞) =

{

i(2n + 1) + 2j
2n + 1

3
+ 8k | i ∈ {0, 1}, j ∈ {0, 1, 2, 3}, k ≥ 0

}

.

Remark 3.1. Let ρℓ = i(2n + 1) + 2j 2n+1
3

+ 8k ∈ H(P∞). Then ρℓ is uniquely determined

by the triple (i, j, k).

Proof. Assume that i(2n+1)+2j 2n+1
3

+8k = i′(2n+1)+2j′ 2
n+1
3

+8k′. Then i ≡ i′ (mod 2)
and since i, i′ < 2 we have that i = i′. Thus, 2j 2n+1

3
+ 8k = 2j′ 2

n+1
3

+ 8k′. Since this implies
that j ≡ j′ (mod 4) and j, j′ < 4, we have that j = j′ and k = k′ and the claim follows.

According to Remark 3.1, the notation (i, j, k) is used to indicate the non-gap at P∞

associated with the choices of the parameters i, j, k. In order to compute dORD(Cℓ(P∞))
the following definition is required. Let ρℓ ∈ H(P∞) be fixed. Assume that ρℓ+1 = (i, j, k).
Then,

νℓ =
∣

∣{(ir, jr, kr), r = 1, 2 | (i, j, k) = (i1, j1, k1) + (i2, j2, k2)}
∣

∣.

In the following lemmas we determine the value of νℓ.

Lemma 3.2. Let ρℓ ∈ H(P∞) be fixed. Assume that ρℓ+1 = (1, j, k) for some j = 0, 1, 2, 3
and k ≥ 0. Then,

νℓ =

{

2(j + 1)(k + 1), if k < m,

2(j + 1)(k + 1) + 2(3− j)(k −m+ 1), otherwise.

Proof. Let i1, i2, j1, j2, k1, and k2 ∈ N be such that

(2n+1)+2jm+8k = (i1+i2)(2
n+1)+2(j1+j2)m+8(k1+k2) = 3(i1+i2)m+2(j1+j2)m+8(k1+k2).

Then i1 + i2 ≡ 1 (mod 2) and since i1 + i2 ≤ 2 we have that i1 + i2 = 1. This implies that

3m+ 2jm+ 8k = 3m+ 2(j1 + j2)m+ 8(k1 + k2),
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and hence
jm+ 4k = (j1 + j2)m+ 4(k1 + k2). (3)

Assume that j = 0. Then from (3), (j1 + j2)m ≡ 0 (mod 4) and so, j1 + j2 = 4h for some
integer h. Since 0 ≤ j1+ j2 ≤ 6 we have that h = 0 or h = 1. In the first case k1+k2 = k, in
the second case k1 + k2 = k −m. Since k1 + k2 ≥ 0, if k < m the second case cannot occur.
Thus, if k < m, since we have 2 possible choices for i1 and (k+1) choices for k1 (while i2 and
k2 are determined according to the choices of i1 and k1, respectively), then νℓ = 2(k + 1).
Also, if k ≥ m we have that

νℓ = 2(k+1)+2 · |{(j1, j2) : 0 ≤ j1, j2 ≤ 3, j1+j2 = 4}| · (k−m+1) = 2(k+1)+6(k−m+1)

and the claim follows by direct checking.
Assume that j = 1. Then from (3), (j1+ j2)m ≡ m (mod 4) and so j1+ j2 = 1+4h for some
integer h. Since 0 ≤ j1+ j2 ≤ 6 we have that h = 0 or h = 1. In the first case k1+k2 = k, in
the second case k1 + k2 = k −m. Since k1 + k2 ≥ 0 if k < m the second case cannot occur.
Thus, if k < m, since we have 2 possible choices for i1, 2 possible choices for j1 and (k + 1)
choices for k1, then νℓ = 4(k + 1). Also, if k ≥ m we have that,

νℓ = 4(k+1)+2 · |{(j1, j2) : 0 ≤ j1, j2 ≤ 3, j1+j2 = 5}| ·(k−m+1) = 4(k+1)+4(k−m+1),

and the claim follows by direct checking.
Assume that j = 2. Then from (3), (j1 + j2)m ≡ 2m (mod 4) and so j1 + j2 = 2 + 4h,
for some integer h. Since 0 ≤ j1 + j2 ≤ 6 we have that h = 0 or h = 1. In the first case
k1 + k2 = k, in the second case k1 + k2 = k−m. Since k1 + k2 ≥ 0, if k < m the second case
cannot occur. Thus, if k < m, since we have 2 possible choices for i1, 3 possible choices for
j1 and (k + 1) choices for k1, then νℓ = 6(k + 1). Also, if k ≥ m we have that

νℓ = 6(k+1)+2(k−m+1) ·
∣

∣{(j1, j2) : 0 ≤ j1, j2 ≤ 3, j1+j2 = 6}
∣

∣ = 6(k+1)+2(k−m+1),

and the claim follows by direct checking.
Assume that j = 3. Then from (3), (j1+ j2)m ≡ 3m (mod 4) and so j1+ j2 = 3+4h, for

some integer h. Since 0 ≤ j1+j2 ≤ 6 we have that h = 0. Since this implies that k1+k2 = k,
we have that νℓ = 8(k + 1).

Using a similar approach we can prove the following.
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Lemma 3.3. Let ρℓ ∈ H(P∞) be fixed. Assume that ρℓ+1 = (0, j, k) for some j = 0, 1, 2, 3
and k ≥ 0. Then,

νℓ =



















(j + 1)(k + 1) + ⌊ j

3
⌋(k + 1), if k < m,

(j + 1)(k + 1) + ⌊ j

3
⌋(k + 1) + (5− 2max{0, j − 2})(k −m+ 1), if m ≤ k < 2m,

(j + 1)(k + 1) + ⌊ j

3
⌋(k + 1)+

+(5− 2max{0, j − 2})(k −m+ 1) + max{0, 2− j}(k − 2m+ 1), otherwise.

3.2 Computation of dORD(Cℓ(P∞)) for ρℓ+1 = (1, j, k) and ρℓ ≤ 2g

Let ρℓ ∈ H(P∞). Assume that ρℓ+1 = (1, j, k) for some j = 0, 1, 2, 3 and k ≥ 0. Recall that
Cℓ(P∞) is the dual code of the AG code C(D, ρℓP∞), where D is as in (2).

Lemma 3.4. If ρℓ+1 = (1, 0, k) for some k < m then

dORD(Cℓ(P∞)) =



























































2, if k = 0,

3, if k ≤ ⌊m
8
⌋,

4, if m
8
< k ≤ ⌊m

4
⌋,

5, if m
4
< k ≤ ⌊3m

8
⌋,

6, if 3m
8

< k ≤ ⌊m
2
⌋,

8, if m
2
< k ≤ ⌊3m

4
⌋,

8
(

⌈k − 3m
4
⌉+ 1

)

, if 3m
4

≤ k ≤ m− 2,

νℓ = 2m, if k = m− 1.

Proof. For ρs ∈ H(P∞) the following system of inequalities is considered:

{

ρs+1 ≥ ρℓ+1,

νs ≤ νℓ.
(4)

In order to compute dORD(Cℓ(P∞)) we take the minimum value of νs such that System (4)
is satisfied. Also, a case-by-case analysis with respect to a ∈ {0, 1} is required. Assume that
ρs+1 = (a, b, c) for some a ∈ {0, 1}, b ∈ {0, 1, 2, 3} and c ≥ 0. From Lemma 3.2, System (4)
reads,

{

3am+ 2bm+ 8c ≥ 3m+ 8k,

νs ≤ 2(k + 1).
(5)
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Case 1: a = 1 and c < m. From Lemma 3.2, System (5) reads

{

2bm+ 8c ≥ 8k,

2(b+ 1)(c+ 1) ≤ 2(k + 1).

• If b = 0 then c = k and so the unique solution is νℓ itself.

• If b = 1 then c ≥ ⌈k−m
4
⌉ and c ≤ ⌊k−1

2
⌋. Such a c exists if and only if ⌈k− m

4
⌉ ≤ ⌊k−1

2
⌋.

Assume that k is odd. Then k − ⌊m
4
⌋ = ⌈k − m

4
⌉ ≤ ⌊k−1

2
⌋ = k−1

2
if and only if

k ≤ 2⌊m
4
⌋ − 1. Similarly if k is even then c exists if and only if k − ⌊m

4
⌋ ≤ k−2

2
, that is

k ≤ 2⌊m
4
⌋ − 2. For these cases the minimum is obtained taking c = max{0, ⌈k − m

4
⌉}

and hence νs = 4(max{0, ⌈k − m
4
⌉}+ 1).

• If b = 2 then c ≥ ⌈k − m
2
⌉ and c ≤ ⌊k−2

3
⌋. As before, such a c exists if and only if

⌈k−m
2
⌉ ≤ ⌊k−2

3
⌋. This is equivalent to k ≤ 3

2
(⌊m

2
⌋−1) if k ≡ 0 (mod 3), to k ≤ 3

2
⌊m

2
⌋−2

if k ≡ 1 (mod 3), to k ≤ 3
2
⌊m

2
⌋ − 1 if k ≡ 2 (mod 3). For these cases the minimum is

obtained taking c = max{0, ⌈k − m
2
⌉} and hence νs = 6(max{0, ⌈k − m

2
⌉} + 1).

• If b = 3 then c ≥ ⌈k− 3m
4
⌉ and c ≤ ⌊k−3

4
⌋. As before, such a c exists if and only if ⌈k−

3m
4
⌉ ≤ ⌊k−3

4
⌋. By direct checking, this is equivalent to k ≤ m− 2. Here the minimum

is obtained taking c = max{0, ⌈k − 3m
4
⌉} and hence νs = 8(max{0, ⌈k − 3m

4
⌉}+ 1).

When k > 3m
4

and k ≤ m− 2 the minimum value above is obtained as νs = 8(⌈k− 3m
4
⌉+1).

We observe that if k = m − 1 then νℓ = 2(k + 1) = 2m and 8(max{0, ⌈k − 3m
4
⌉} + 1) =

8(⌈m − 1 − 3m
4
⌉} + 1) > 2m. This implies that if k = m − 1 then the minimum value is

νℓ = 2m itself. Thus, combining the previous results we obtain

min{νs | a = 1 and c < m} =







































2, if k = 0,

4 if 1 ≤ k ≤ ⌊m
4
⌋,

6, if m
4
< k ≤ ⌊m

2
⌋,

8, if m
2
< k ≤ ⌊3m

4
⌋,

8(⌈k − 3m
4
⌉+ 1), if 3m

4
< k ≤ m− 2,

2m = νℓ, if k = m− 1.

(6)

Case 2: a = 1 and c ≥ m. From Lemma 3.2 System (5) reads,

{

2bm+ 8c ≥ 8k,

2(b+ 1)(c+ 1) + 2(3− b)(c−m+ 1) ≤ 2(k + 1).
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Since 2(b+ 1)(c+ 1) + 2(3− b)(c−m+ 1) ≥ 2(c+ 1) and c > k this case cannot occur.

Case 3: a = 0 and c < m. From Lemma 3.3 (5) reads,
{

2bm+ 8c ≥ 3m+ 8k,

(b+ 1)(c+ 1) + ⌊ b
3
⌋(c+ 1) ≤ 2(k + 1).

• If b = 0 then c ≥ ⌈k+ 3m
8
⌉ and c ≤ 2k+1. Such a c exists if and only if k ≥ ⌊3m

8
⌋. For

these cases, the minimum is obtained taking c = ⌈k+ 3m
8
⌉ and hence νs = (⌈k+ 3m

8
⌉ +1).

• The case b = 1 cannot occur. In fact we have c ≥ ⌈k + m
8
⌉ and 2(c+ 1) ≤ 2(k + 1), a

contradiction.

• If b = 2 then c ≥ ⌈k − m
8
⌉ and c ≤ ⌊2k−1

3
⌋. Such a c exists if and only if k + ⌈−m

8
⌉ ≤

⌊2k+1
3

⌋. This is equivalent to k ≤ 3⌊m
8
⌋ − 1 if 2k ≡ 1 (mod 3), to k ≤ 3⌊m

8
⌋ + 1 if

2k ≡ 2 (mod 3), to k ≤ 3⌊m
8
⌋ − 3 if 2k ≡ 0 (mod 3). For these cases, the minimum is

obtained taking c = max{0, ⌈k − m
8
⌉} and hence νs = 3(max{0, ⌈k − m

8
⌉} + 1).

• If b = 3 then c ≥ ⌈k − 3m
8
⌉ and c ≤ ⌊2k−3

5
⌋. Such a c exists if and only if k + ⌈−3m

8
⌉ ≤

⌊2k−3
5

⌋. This is equivalent to k ≤ 5
3
⌊3m

8
⌋ − 5

3
if 2k ≡ 0 (mod 5), to k ≤ 5

3
⌊3m

8
⌋ − 2 if

2k ≡ 1 (mod 5), to k ≤ 5
3
⌊3m

8
⌋ − 7

3
if 2k ≡ 2 (mod 5), to k ≤ 5

3
⌊3m

8
⌋ − 1 if 2k ≡ 3

(mod 5), to k ≤ 5
3
⌊3m

8
⌋− 4

3
if 2k ≡ 4 (mod 5). In these cases, the minimum is obtained

taking c = max{0, ⌈k − 3m
8
⌉} and hence νs = 5(max{0, ⌈k − 3m

8
⌉}+ 1).

Thus, we obtain

min{νs | a = 0 and c < m} =



















3, if k ≤ ⌊m
8
⌋,

5, if m
8
< k ≤ ⌊3m

8
⌋,

5(⌈k − 3m
8
⌉+ 1), if ⌈3m

8
⌉ ≤ k ≤ ⌊5

3
⌊3m

8
⌋ − 7

3
⌋,

(⌈k + 3m
8
⌉ + 1), otherwise.

(7)

Case 4: a = 0 and m ≤ c < 2m. From Lemma 3.3 System (5) reads,
{

2bm+ 8c ≥ 3m+ 8k,

(b+ 1)(c+ 1) + ⌊ b
3
⌋(c + 1) + (5− 2max{0, b− 2})(c−m+ 1) ≤ 2(k + 1).

Since (b+1)(c+1)+ ⌊ b
3
⌋(c+1)+ (5−2max{0, b−2})(c−m+1) ≥ (b+1)(c+1) and c > k,

cases b = 1, 2, 3 cannot occur. Thus b = 0 and
{

8c ≥ 3m+ 8k,

(c+ 1) + 5(c−m+ 1) ≤ 2(k + 1).
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Hence c ≥ ⌈k + 3m
8
⌉ and c ≤ ⌊2k+5m−4

6
⌋. Since c ≥ m then k ≥ m+4

2
. The minimum value is

obtained (when it is possible) for c = ⌈k+ 3m
8
⌉. By direct checking the minimum νℓ is bigger

than the one obtained in (6), and hence we can discard this case.

Case 5: a = 0 and c ≥ 2m. From Lemma 3.3 System (5) reads,

{

2bm+ 8c ≥ 3m+ 8k,

(b+ 1)(c+ 1) + ⌊ b
3
⌋(c+ 1) + (5− 2max{0, b− 2})(c−m+ 1) + max{0, 2− b}(c− 2m+ 1) ≤ 2(k + 1).

Since (b+1)(c+1)+⌊ b
3
⌋(c+1)+(5−2max{0, b−2})(c−m+1)+max{0, 2−b}(c−2m+1) ≥

(b+ 1)(c+ 1) ≥ 2m+ 1 and 2(k + 1) ≤ 2m this case cannot occur.
Taking the minimum of the values in (6) and (7) the claim follows.

Using the same arguments the following results are obtained.

Lemma 3.5. If ρℓ+1 = (1, 3, k) for some k < m then

dORD(Cℓ(P∞)) = νℓ.

Lemma 3.6. If ρℓ+1 = (1, 1, k) for some k < m then

dORD(Cℓ(P∞)) =



















































4, if k = 0,

5, if k ≤ ⌊m
8
⌋,

6 if m
8
< k ≤ ⌊m

4
⌋,

8, if m
4
< k ≤ ⌊m

2
⌋,

8(⌈k − m
2
⌉ + 1), if ⌈m

2
⌉ ≤ k ≤ ⌊3m

4
⌋ − 2,

2(⌈m
4
+ k⌉+ 1) + 6(⌈m

4
+ k⌉ −m+ 1), if ⌊3m

4
⌋ − 1 ≤ k ≤ m− 2,

4m, if k = m− 1.

Lemma 3.7. If ρℓ+1 = (1, 2, k) for some k < m then

dORD(Cℓ(P∞)) =







































6, if k = 0,

8, if k ≤ ⌊m
4
⌋,

8(⌈k − m
4
⌉ + 1), if ⌈m

4
⌉ ≤ k ≤ ⌊m

2
⌋ − 2,

2(⌈k + m
2
⌉+ 1) + 6(⌈k + m

2
⌉ −m+ 1), if ⌊m

2
⌋ − 1 ≤ k ≤ ⌊3m

4
⌋ − 2,

4(⌈k + m
4
⌉+ 1) + 4(⌈k + m

4
⌉ −m+ 1), if ⌊3m

4
⌋ − 1 ≤ k ≤ m− 2,

νℓ = 6m, if k = m− 1.
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3.3 Computation of dORD(Cℓ(P∞)) for ρℓ+1 = (0, j, k) and ρℓ ≤ 2g

Using the same arguments as above we obtain the following results in the case ρℓ ≤ 2g.

Lemma 3.8. If ρℓ+1 = (0, 0, k) for some k < m then

dORD(Cℓ(P∞)) =







































2, if k ≤ ⌊3m
8
⌋,

3, if ⌈3m
8
⌉ ≤ k ≤ ⌊m

2
⌋,

4, if ⌈m
2
⌉ ≤ k ≤ ⌊5m

8
⌋,

5, if ⌈5m
8
⌉ ≤ k ≤ ⌊3m

4
⌋,

6, if ⌈3m
4
⌉ ≤ k ≤ ⌊7m

8
⌋,

8, if ⌈7m
8
⌉ ≤ k ≤ m− 1.

Lemma 3.9. If ρℓ+1 = (0, 1, k) for some k < m then

dORD(Cℓ(P∞)) =







































2, if k ≤ ⌊m
8
⌋,

3, if ⌈m
8
⌉ ≤ k ≤ ⌊m

4
⌋,

4, if ⌈m
4
⌉ ≤ k ≤ ⌊3m

8
⌋,

5, if ⌈3m
8
⌉ ≤ k ≤ ⌊m

2
⌋,

6, if ⌈m
2
⌉ ≤ k ≤ ⌊5m

8
⌋,

8(max{0, ⌈k − 7m
8
⌉} + 1), if ⌈5m

8
⌉ ≤ k ≤ m− 1.

Lemma 3.10. If ρℓ+1 = (0, 3, k) for some k < m then

dORD(Cℓ(P∞)) =











6, if k ≤ ⌊m
8
⌋,

8(max{0, ⌈3m
8
⌉}+ 1), if ⌈m

8
⌉ ≤ k ≤ m− 2,

νℓ = 5(k + 1), if k = m− 1.

Lemma 3.11. If ρℓ+1 = (0, 2, k) for some k < m then

dORD(Cℓ(P∞)) =







































4, if k ≤ ⌊m
8
⌋,

5, if ⌈m
8
⌉ ≤ k ≤ ⌊m

4
⌋,

6, if ⌈m
4
⌉ ≤ k ≤ ⌊3m

8
⌋,

8(max{0, ⌈k − 5m
8
⌉}+ 1), if ⌈3m

8
⌉ ≤ k ≤ ⌊7m

8
⌋ − 2,

2(⌈k + m
8
⌉ + 1), if ⌊7m

8
⌋ − 1 ≤ k ≤ m− 3,

3(k + 1) = νℓ, if k ∈ {m− 2, m− 1}.
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Lemma 3.12. If ρℓ+1 = (0, 0, k) for some m ≤ k < 2m then

dORD(Cℓ(P∞)) =

{

8(⌈k − 9m
8
⌉+ 1), if m ≤ k < ⌊11m

8
− 1⌋,

2(⌈k − 3m
8
⌉+ 1) + max{0, 6(⌈k − 3m

8
⌉ −m+ 1)}, if ⌊11m

8
− 1⌋ ≤ k < 2m.

3.4 Computation of dORD(Cℓ(P∞)) for ρℓ > 2g

Proposition 3.13. The Weierstrass semigroup H(P∞) = 〈q3, mq, qn + 1〉 is telescopic.

Proof. Let a1 = q3, a2 = mq, a3 = qn + 1, d0 = 0, d1 = q3, d2 = gcd(q3, mq) = q,
d3 = gcd(q3, mq, qn + 1) = 1. Then ai/di ∈ 〈a1/di−1, . . . , ai−1/di−1〉 for i = 2, 3; that is,
H(P∞) is telescopic.

Proposition 3.13 implies that H(P∞) is symmetric, from [28, Lemma 6.5]. This also
follows from the fact that the divisor (2g − 2)P∞ is canonical; see [15, Lemma 3.8] and [28,
Remark 4.4].

In the following, Proposition 2.1 is used to reduce the direct computation of dORD(Cℓ(P∞))
with ρℓ > 2g, only to those cases for which ρℓ+1 6= 2g− 1+ e for any e ∈ H(P∞) \ {0}. Since
the cases in which ρℓ+1 = (0, 0, k) for k < 2m or ρℓ+1 = (i, j, k) for k < m have been already
studied, they can be excluded.

Proposition 3.14. Let ρℓ ∈ H(P∞) with ρℓ > 2g and ρℓ+1 = (i, j, k) and k ≥ m. If

ρℓ+1 6= (0, 0, k) for any k ∈ [m, 2m), then ρℓ+1−2g+1 6∈ H(P∞) if and only if ρℓ+1 = (0, 1, k)
for some k ∈ [m, 2m).

Proof. Write k = m + s for some s ≥ 0. We prove the claim using a case-by-case analy-
sis with respect to the values of i and j. We recall that 2g−1 = (2n+1+2n−4)−1 = 9m−8.

Case 1: i = 1. Clearly, ρℓ+1 = 3m+ 2jb+ 8m+ 8s.

• If j = 0, then ρℓ+1 = 3m+8m+8s = (9m−8)+ (2m+8(s+1)) = 2g−1+ e. Writing
e = (0, 1, s+ 1) we have that e ∈ H(P∞), so this case cannot occur.

• If j = 1, then ρℓ+1 = 3m+ 2m+ 8m+ 8s = (9m− 8) + (4m+ 8(s+ 1)) = 2g − 1 + e.
Writing e = (0, 2, s+ 1) we have that e ∈ H(P∞), so this case cannot occur.

• If j = 2, then ρℓ+1 = 3m+ 4m+ 8m+ 8s = (9m− 8) + (6m+ 8(s+ 1)) = 2g − 1 + e.
Writing e = (0, 3, s+ 1) we have that e ∈ H(P∞), so this case cannot occur.

• If j = 3, then ρℓ+1 = 3m + 6m + 8k = (9m − 8) + (8(k + 1)) = 2g − 1 + e. Writing
e = (0, 0, k + 1) we have that e ∈ H(P∞), so this case cannot occur.
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Case 2: i = 0. Clearly, ρℓ+1 = 2jb+ 8k = 2jb+ 8m+ 8s.

• If j = 0, then in particular we can write k = 2m + t for t ≥ 0, since k ≥ 2m. Thus,
ρℓ+1 = 16m+ 8t = (9m− 8) + (7m+ 8(t + 1)) = 2g − 1 + e. Writing e = (1, 2, t+ 1)
we have that e ∈ H(P∞), so this case cannot occur.

• If j = 1, then ρℓ+1 = 2m+8k. We first assume that k ≥ 2m and so that k = 2m+ t for
some t ≥ 0. In this case ρℓ+1 = 2m+16m+8t = (9m−8)+(9m+8(t+1)) = 2g−1+e.
Writing e = (1, 3, t + 1) we have that e ∈ H(P∞), so this case cannot occur. Thus,
k ∈ [m, 2m). In this case, ρℓ+1 = 2m+8m+8s = (9m−8)+(m+8(s+1)) = 2g−1+e.
By direct computation e 6∈ H(P∞) and the claim follows.

• If j = 2, then ρℓ+1 = 4m+8m+8s = (9m−8)+ (3m+8(s+1)) = 2g−1+ e. Writing
e = (1, 0, s+ 1) we have that e ∈ H(P∞), so this case cannot occur.

• If j = 3, then ρℓ+1 = 6m+8m+8s = (9m−8)+ (5m+8(s+1)) = 2g−1+ e. Writing
e = (1, 1, s+ 1) we have that e ∈ H(P∞), so this case cannot occur.

Since from Proposition 3.13 the Weierstrass semigroupH(P∞) is symmetric, its conductor
is c = 2g; equivalently, its largest gap is 2g− 1. The following theorem shows that the exact
value of dORD(Cℓ(P∞)) is known for ρℓ+1 ≥ 4g; see [2, Proposition 4.2 (iii)].

Theorem 3.15. Let H(P ) be a Weierstrass semigroup. Then dORD(Cℓ(P )) ≥ ℓ+1− g and

equality holds if ρℓ+1 ≥ 4g.

According to the results obtained in the previous sections, Remark 3.14, and Theorem
3.15, to complete the computation of dORD(Cℓ(P∞)) for every ρℓ ∈ H(P∞), only the case
ρℓ ∈ [2g, 4g − 1) with ρℓ+1 = (0, 1, k) and k ∈ [m, 2m) has to be considered.

Proposition 3.16. Let ρℓ ∈ H(P∞) be such that ρℓ > 2g and ρℓ+1 = (0, 1, k) < 4g for

k ∈ [m, 2m). Then

dORD(Cℓ(P∞)) =











νℓ+5 = 8k − 7m+ 13, if k < 9m−11
8

,

νℓ+3 = 8k − 7m+ 11, if 9m−11
8

≤ k < 11m−9
8

,

νℓ+1 = 8k − 7m+ 9, if k ≥ 11m−9
8

.
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Proof. Arguing as in the previous propositions one can prove that the value of dORD(Cℓ(P∞))
is obtained by νℓ+5, νℓ+3, and νℓ+1, if k < 9m−11

8
, 9m−11

8
≤ k < 11m−9

8
, and k ≤ 11m−9

8

respectively. Since ρℓ+1 ≥ 2g, we have that ρℓ+t = ρℓ+1 + (t− 1) for every t ≥ 1.
Assume that k < 9m−11

8
. By direct checking ρℓ+6 = ρℓ+1 + 5 = (1, 3, k̃), where k̃ =

k − 7m−5
8

. Hence from Lemma 3.2, dORD(Cℓ(P∞)) = 8(k − 7m−5
8

+ 1) = 8k − 7m + 13, as

k̃ < 9m−11
8

− 7m−5
8

< m.

Assume that 9m−11
8

≤ k < 11m−9
8

. By direct checking ρℓ+4 = ρℓ+1 + 3 = (1, 0, k̃) where

k̃ = k − m−3
8

. Hence k̃ ≥ m− 1 and from Lemma 3.2, dORD(Cℓ(P∞)) = 2m = 8k − 7m+ 11

if k̃ = m− 1, while dORD(Cℓ(P∞)) = 2(k̃ + 1) + 6(k̃ −m+ 1) = 8k − 7m+ 11 if k̃ ≥ m.
Assume that k ≥ 11m−9

8
. By direct checking ρℓ+2 = ρℓ+1+1 = (1, 1, k̃) where k̃ = k− 3m−1

8
.

Hence k̃ ≥ m− 1 and from Lemma 3.2, dORD(Cℓ(P∞)) = 4m = 8k − 7m + 9 if k̃ = m − 1,
while dORD(Cℓ(P∞)) = 4(k̃ + 1) + 4(k̃ −m+ 1) = 8k − 7m+ 9 if k̃ ≥ m.

For q 6= 2, we cannot determine dORD(Cℓ(P∞) for all ℓ. Yet, this is possible for certain
ℓ, as shown in the following propositions.

Proposition 3.17. If ρℓ+1 ≤ (q − 1)(qn + 1), then

dORD(Cℓ(P∞)) = j + 1,

where j ≤ q − 1 satisfies (j − 1)(qn + 1) < ρℓ+1 ≤ j(qn + 1).

Proof. Since H(P∞) is telescopic from Proposition 3.13, we can apply [28, Theorem 6.11].

The claim then follows because qn + 1 = max{ q3

1
, mq

1
, qn+1

1
}.

Proposition 3.18. If 3
2
(q− 1)(qn+1 + 1

3
qn − q2 − 2

3
)− 2 < ℓ ≤ 3

2
(q− 1)(qn+1 + qn − q2)− 2,

then

dORD(Cℓ(P∞)) = min{ρt | ρt ≥ ℓ+ 1− g}.

Proof. This is the claim of [28, Theorem 6.10].

3.5 Application for q = 2: families of AG codes with relative Sin-

gleton defect going to zero

In this section, we assume that q = 2 and provide two families of codes of type Cℓ(P∞) in
the cases ρℓ = 9m and ρℓ = 9m + 8, with relative Singleton defect going to zero as n goes
to infinity. We denote by δ and ∆ the Singleton defect and the relative Singleton defect of
Cℓ(P∞), respectively.

Lemma 3.19. Fix n ≥ 5 odd. Then 9m− 1, 9m, 9m+ 1 ∈ H(P∞).
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Proof. A direct computation shows that 9m − 1 = (0, 3, 2
n

8
), 9m = (1, 3, 0), and 9m + 1 =

(0, 2, 5·2
n−3+1
3

), thus the claim follows.

We now assume that ρℓ = 9m. Since ρℓ+1 = 9m+ 1 = (0, 2, 5·2
n−3+1
3

) the following result
follows from Lemma 1.3.

Corollary 3.20. Assume that ρℓ = (1, 3, 0). Then νℓ = 3 ·
(

5·2n−3+1
3

+ 1
)

≥ 24.

Proposition 3.21. The code Cℓ(P∞) is an [N, k, d]22n-linear code with

• N = (3m− 1)2 + (3m− 1)(9m− 7),

• k = N − 9m+9
2

,

• d ≥ dORD(Cℓ(P∞)) = 16,

• δ ≤ N − k + 1− dORD(Cℓ(P∞)) = 9m−21
2

,

• ∆ = δ
N

≤ 9m−21
2(3m−1)(12m−8)

; hence, ∆ goes to zero as n goes to infinity.

Proof. Since GGS(q, n) is F22n-maximal, we have

N = (22n + 1 + 2g(GGS(q, n))2n)− 1 = 22n + 2n(9m− 7) = (3m− 1)2 + (3m− 1)(9m− 7);

the last equality follows from m = (2n + 1)/3. Since Cℓ(P∞) = C⊥(D, ρℓP∞), k = N − k̃
where k̃ is the dimension of C(D, ρℓP∞). As deg(ρℓP∞) > 2g(GGS(q, n)) − 2, from the
Riemann-Roch Theorem follows

k = N− k̃ = N−(deg(ρℓP∞)+1−g(GGS(q, n))) = N−
(

9m+ 1− 9m− 7

2

)

= r− 9m+ 9

2
.

By Lemma 3.11, dORD(Cℓ(P∞)) ≥ 16. To prove the claim is sufficient to show that there
exists ρs ≥ ρℓ such that νs = 16. To this end we take ρs+1 = (1, 3, 1) = 9m + 8 > 9m + 1.
From Lemma 1.1, νs = 2(b + 1)(c + 1) = 2(3 + 1)(1 + 1) = 16 and the claim follows. Now
the claim on δ and ∆ follows by direct computation.

We now assume that ρℓ = 9m+8, so that ρℓ+1 = 9m+9 = (0, 2, 5·2
n−3+1
3

+1) = (0, 2, 5m+9
8

).
Arguing as in the proof of Proposition 3.21 and using Lemma 3.11, the following result is
obtained.

Proposition 3.22. The code Cℓ(P∞) is an [r, k, d]22n-linear code with

• r = (3m− 1)2 + (3m− 1)(9m− 7),
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• k = r − 9m+25
2

,

• d ≥ dORD(Cℓ(P∞)) = 2
(

⌈6m+9
8

⌉+ 1
)

,

• δ ≤ r − k + 1− dORD(Cℓ(P∞)) = 9m+25
2

− 2
(

⌈6m+9
8

⌉ + 1
)

< 6m+21
2

,

• ∆ = δ
r
< 6m+21

2(3m−1)(12m−8)
; hence, ∆ goes to zero as n goes to infinity.

4 Weierstrass semigroup at P0

In this section we describe the Weierstrass semigroup at P0, and hence at any Fq2-rational
affine point by Lemma 8.1. Consider the functions

yrzt

xs
, s ∈ [0, q2 − 1], r ∈ [0, s], t ∈

[

0,

⌊

sm(q + 1)− rqm

q3

⌋]

. (8)

All these functions belong to H(P0). In fact,

(

yrzt

xs

)

= (mr + t−m(q + 1)s)P0 + (m(q + 1)s−mqr − tq3)P∞

and by assumption
m(q + 1)s−mqr − tq3 ≥ 0.

Proposition 4.1. Let t ∈
[

0,min
(⌊

sm(q+1)−rqm

q3

⌋

, m− 1
)]

and

s ∈ [0, q], r ∈ [0, s]

or

s ∈ [q + 1, q2 − 1], r ∈ [0, q].

Then all the integers mr + t−m(q + 1)s are distinct.

Proof. Suppose mr + t − m(q + 1)s = mr + t − m(q + 1)s. Then t ≡ t (mod m), which
implies t = t. Now, from mr−m(q+1)s = mr−m(q+1)s, r ≡ r (mod q+1), which yields
r = r and s = s.
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Proposition 4.2. Consider the following sets

L1 :=
{

− t− rm+m(q + 1)s | s ∈ [0, q], r ∈ [0, s],

t ∈
[

0, ((s− r)q + s)m−q2+q−1
q3

+ s− r
]}

;

L2 :=
{

− t− rm+m(q + 1)s | s ∈ [q + 1, q2 − q], r ∈ [0, q],

t ∈
[

0, ((s− r)q + s)m−q2+q−1
q3

+ s− r
]}

;

L3 :=
{

− t− rm+m(q + 1)s | s ∈ [q2 − q + 1, q2 − 2],

r ∈ [0, q + s− q2 − 1], t ∈ [0, m− 1]
}

;

L4 :=
{

− t− rm+m(q + 1)s | s ∈ [q2 − q + 1, q2 − 2], r ∈ [q + s− q2, q],

t ∈
[

0, ((s− r)q + s)m−q2+q−1
q3

+ s− r
]}

;

L5 := {−t+m(q + 1)(q2 − 1) | t ∈ [q3, m− 1]} ;

L6 := {−t− rm+m(q + 1)(q2 − 1) | r ∈ [1, q − 2], t ∈ [0, m− 1]} ;

L7 :=
{

− t− rm+m(q + 1)(q2 − 1) | r ∈ [q − 1, q],

t ∈
[

0, ((q2 − 1− r)q + q2 − 1)m−q2+q−1
q3

+ q2 − 1− r
]}

.

Then each Li is contained in L((2g − 1)P0).

Proof. By direct computations.

Finally, we can give the description of the Weierstrass semigroup H(P0).

Proposition 4.3.
7
⋃

i=1

Li = H(P0) ∩ {0, . . . , 2g − 1}.

Proof. By direct computations, since

|L1| =
(

q4 + 5q3 + 8q2 + 4q

6

)(

m− q2 + q − 1

q3

)

+
(q + 1)(q + 2)(q + 3)

6
,
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|L2| =
(

q6 − q5 − q4 − 3q2 − 2q

2

)(

m− q2 + q − 1

q3

)

+
q5 − 2q4 + 2q3 − q2 − 6q

2
,

|L4| =
(

3q5 + 2q4 − 20q3 + q2 + 8q + 12

6

)(

m− q2 + q − 1

q3

)

+
3q4 − q3 − 18q2 + 22q − 12

6
,

|L3| =
m(q − 2)(q − 1)

2
, |L5| = m− q3, |L6| =

q−2
∑

r=1

m = (q − 2)m,

|L7| =
m− q2 + q − 1

q3
(2q3 − q − 2) + 2q2 − 2q + 1

and Li ∩ Lj = ∅ if i 6= j.

Let Cℓ(P0) = C⊥(D̃, ρ̃ℓP0), where D̃ is as in (2) and ρ̃ℓ is the ℓ-th positive non-gap at
P0. In this case it has not been possible to determine dORD(Cℓ(P0)) for any n since we do
not have a basis of the Weierstrass semigroup at P0. Nevertheless, Tables 1, 2, and ?? give
evidence that for some specific values of ℓ the AG codes and AG quantum codes from Cℓ(P0)
are better than Cℓ(P∞), since the designed relative Singleton defect of Cℓ(P0) is smaller than
the one of Cℓ(P∞).

5 AG codes on the GGS curve for q = 2 and n = 5

In this section a more detailed description of the results obtained in the previous sections is
given for the particular case q = 2, n = 5. Recall that in this case

H(P∞) = {0, 8, 16, 22, 24, 30, 32, 33, 38, 40, 41, 44, 46, 48, 49, 52}∪ {54, . . . , 57}

∪ {60} ∪ {62, . . . , 66} ∪ {68} ∪ {70, . . . , 74} ∪ {76, . . . , 82} ∪ {84, . . . , 90} ∪ {92, . . .}.
For the point P0 (and hence for any Fq2-rational point), we have from Proposition 4.3

H(P0) = {0, 21, 22}∪{29, . . . , 33}∪{42, 43, 44}∪{50, . . . , 55}∪{58, . . . , 66}∪{71, . . . , 77}∪{79, . . .}.

Table 1 contains the parameters of the codes Cℓ∞(P∞) and Cℓ0(P0); in particular, their
common lengthN = 3968 and dimension k, their Feng-Rao designed minimum distance d∞ORD

and d0ORD, their designed Singleton defects δ∞ = N+1−k−d∞ORD and δ0 = N+1−k−d0ORD,
and their designed relative Singleton defects ∆∞ = δ∞

N
and ∆0 =

δ0
N
.
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Table 1: Codes Cℓ∞ (P∞) and Cℓ0 (P0), qn = 25

N k ρℓ∞ d∞ORD δ∞ ≤ ∆∞ ≤ ρℓ0 d0ORD δ0 ≤ ∆0 ≤

3968 3966 8 2 1 0,0003 21 2 1 0,0003
3968 3965 16 2 2 0,0006 22 2 2 0,0006
3968 3964 22 2 3 0,0008 29 2 3 0,0008
3968 3963 24 2 4 0,0011 30 2 4 0,0011
3968 3962 30 2 5 0,0013 31 2 5 0,0013
3968 3961 32 2 6 0,0016 32 2 6 0,016
3968 3960 33 3 6 0,0016 33 3 6 0,016
3968 3959 38 3 7 0,0018 42 3 7 0,018
3968 3958 40 3 8 0,0021 43 3 8 0,021
3968 3957 41 3 9 0,0023 44 3 9 0,023
3968 3956 44 4 9 0,0023 50 3 10 0,026
3968 3955 46 4 10 0,0026 51 3 11 0,028
3968 3954 48 4 11 0,0028 52 3 12 0,031
3968 3953 49 4 12 0,0031 53 3 13 0,033
3968 3952 52 4 13 0,0033 54 3 14 0,036
3968 3951 54 4 14 0,0036 55 3 15 0,038
3968 3950 55 5 14 0,0036 58 4 15 0,038
3968 3949 56 5 15 0,0038 59 5 15 0,038
3968 3948 57 5 16 0,0041 60 5 16 0,041
3968 3947 60 5 17 0,0043 61 5 17 0,043
3968 3946 62 5 18 0,0046 62 5 18 0,046
3968 3945 63 5 19 0,0048 63 5 19 0,048
3968 3944 64 5 20 0,0051 64 5 20 0,051
3968 3943 65 5 21 0,0053 65 5 21 0,053
3968 3942 66 6 21 0,0053 66 6 21 0,053
3968 3941 68 6 22 0,0056 71 6 22 0,056
3968 3940 70 6 23 0,0058 72 6 23 0,058
3968 3939 71 6 24 0,0061 73 6 24 0,061
3968 3938 72 6 25 0,0064 74 6 25 0,064
3968 3937 73 6 26 0,0066 75 6 26 0,066
3968 3936 74 6 27 0,0069 76 6 27 0,069
3968 3935 76 6 28 0,0071 77 6 28 0,0071
3968 3934 77 8 27 0,0069 79 8 27 0,069
3968 3933 78 8 28 0,0071 80 8 28 0,0071
3968 3932 79 8 29 0,0074 81 8 29 0,0074
3968 3931 80 8 30 0,0076 82 8 30 0,0076
3968 3930 81 8 31 0,0079 83 8 31 0,0079
3968 3929 82 8 32 0,0081 84 8 32 0,0081
3968 3928 84 8 33 0,0084 85 8 33 0,0084
3968 3927 85 8 34 0,0086 86 8 34 0,0086
3968 3926 86 8 35 0,0089 87 8 35 0,0089
3968 3925 87 8 36 0,0091 88 8 36 0,0091
3968 3924 88 8 37 0,0094 89 8 37 0,0094
3968 3923 89 8 38 0,0096 90 8 38 0,0096
3968 3922 90 8 39 0,0099 91 8 39 0,0099
3968 3921 92 8 40 0,0101 92 8 40 0,0101
3968 3920 93 8 41 0,0104 93 8 41 0,0104
3968 3919 94 8 42 0,0106 94 8 42 0,0106
3968 3918 95 8 43 0,0109 95 8 43 0,0109
3968 3917 96 8 44 0,0111 96 8 44 0,0111
3968 3916 97 8 45 0,0114 97 8 45 0,0114
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Table 1 : continued from previous page

n k ρℓ∞ d∞ORD δ∞ ≤ ∆∞ ≤ ρℓ0 d0ORD δo ≤ ∆0 ≤

3968 3915 98 8 46 0,0116 98 8 46 0,0116
3968 3914 99 16 39 0,0099 99 9 46 0,0116
3968 3913 100 16 40 0,0101 100 16 40 0,0101
3968 3912 101 16 41 0,0104 101 21 36 0,0091
3968 3911 102 16 42 0,0106 102 22 36 0,0091
3968 3910 103 16 43 0,0109 103 22 37 0,0094
3968 3909 104 16 44 0,0111 104 22 38 0,0096
3968 3908 105 16 45 0,0114 105 22 39 0,0099
3968 3907 106 16 46 0,0116 106 22 40 0,0101
3968 3906 107 22 41 0,0104 107 22 41 0,0104
3968 3905 108 22 42 0,0106 108 22 42 0,0106
3968 3904 109 22 43 0,0109 109 22 43 0,0109
3968 3903 110 22 44 0,0111 110 22 44 0,0111
3968 3902 111 22 45 0,0114 111 26 41 0,0104
3968 3901 112 22 46 0,0116 112 29 39 0,0099
3968 3900 113 24 45 0,0114 113 29 40 0,0101
3968 3899 114 24 46 0,0116 114 29 41 0,0104
3968 3898 115 30 41 0,0104 115 29 42 0,0106
3968 3897 116 30 42 0,0106 116 29 43 0,0109
3968 3896 117 30 43 0,0109 117 29 44 0,0111
3968 3895 118 30 44 0,0111 118 29 45 0,0114
3968 3894 119 30 45 0,0114 119 29 46 0,0116
3968 3893 120 30 46 0,0116 120 30 46 0,0116
3968 3892 121 32 45 0,0114 121 31 46 0,0116
3968 3891 122 32 46 0,0116 122 36 42 0,0106
3968 3890 123 33 46 0,0116 123 37 42 0,0106
3968 3889 124 38 42 0,0106 124 37 43 0,0109
3968 3888 125 38 43 0,0109 125 37 44 0,0111
3968 3887 126 38 44 0,0111 126 37 45 0,0114
3968 3886 127 38 45 0,0114 127 37 46 0,0116
3968 3885 128 38 46 0,0116 128 38 46 0,0116
3968 3884 129 40 45 0,0114 129 39 46 0,0116
3968 3883 130 40 46 0,0116 130 40 46 0,0116
3968 3882 131 41 46 0,0116 131 41 46 0,0116
3968 3881 132 44 44 0,0111 132 42 46 0,0116
3968 3880 133 44 45 0,0114 133 46 43 0,0109
3968 3879 134 44 46 0,0116 134 48 42 0,0106
3968 3878 135 46 45 0,0114 135 48 43 0,0109
3968 3877 136 46 46 0,0116 136 50 42 0,0106
3968 3876 137 48 45 0,0114 137 50 43 0,0109
3968 3875 138 48 46 0,0116 138 50 44 0,0111
3968 3874 139 49 46 0,0116 139 50 45 0,0114
3968 3873 140 52 44 0,0111 140 50 46 0,0116
3968 3872 141 52 45 0,0114 141 51 46 0,0116
3968 3871 142 52 46 0,0116 142 52 46 0,0116
3968 3870 143 54 45 0,0114 143 53 46 0,0116
3968 3869 144 54 46 0,0116 144 56 44 0,0111
3968 3868 145 55 46 0,0116 145 57 44 0,0111
3968 3867 146 56 46 0,0116 146 58 44 0,0111
3968 3866 147 57 46 0,0116 147 58 45 0,0114
3968 3865 148 60 44 0,0111 148 58 46 0,0116
3968 3864 149 60 45 0,0114 149 59 46 0,0116
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Table 1 : continued from previous page

n k ρℓ∞ d∞ORD δ∞ ≤ ∆∞ ≤ ρℓ0 d0ORD δo ≤ ∆0 ≤

3968 3863 150 60 46 0,0116 150 60 46 0,0116
3968 3862 151 62 45 0,0114 151 61 46 0,0116
3968 3861 152 62 46 0,0116 152 62 46 0,0116
3968 3860 153 63 46 0,0116 153 63 46 0,0116
3968 3859 154 64 46 0,0116 154 64 46 0,0116
3968 3858 155 65 46 0,0116 155 66 45 0,0114
3968 3857 156 66 46 0,0116 156 66 46 0,0116
3968 3856 157 68 45 0,0114 157 67 46 0,0116
3968 3855 158 68 46 0,0116 158 68 46 0,0116
3968 3854 159 70 45 0,0114 159 69 46 0,0116
3968 3853 160 70 46 0,0116 160 70 46 0,0116
3968 3852 161 71 46 0,0116 161 71 46 0,0116
3968 3851 162 72 46 0,0116 162 72 46 0,0116
3968 3850 163 73 46 0,0116 163 73 46 0,0116
3968 3849 164 74 46 0,0116 164 74 46 0,0116
3968 3848 165 76 45 0,0114 165 75 46 0,0116
3968 3847 166 76 46 0,0116 166 76 46 0,0116
3968 3846 167 77 46 0,0116 167 77 46 0,0116
3968 3845 168 78 46 0,0116 168 78 46 0,0116
3968 3844 169 79 46 0,0116 169 79 46 0,0116
3968 3843 170 80 46 0,0116 170 80 46 0,0116
3968 3842 171 81 46 0,0116 171 81 46 0,0116
3968 3841 172 82 46 0,0116 172 82 46 0,0116
3968 3840 173 84 45 0,0114 173 83 46 0,0116
3968 3839 174 84 46 0,0116 174 84 46 0,0116
3968 3838 175 85 46 0,0116 175 85 46 0,0116
3968 3837 176 86 46 0,0116 176 86 46 0,0116
3968 3836 177 87 46 0,0116 177 87 46 0,0116
3968 3835 178 88 46 0,0116 178 88 46 0,0116
3968 3834 179 89 46 0,0116 179 89 46 0,0116
3968 3833 180 90 46 0,0116 180 90 46 0,0116
3968 3832 181 92 45 0,0114 181 91 46 0,0116
3968 3831 182 92 46 0,0116 182 92 46 0,0116
3968 3968 − ℓ∞ ρℓ∞ ≥ 183 ℓ∞ − 45 46 0,0116 ρℓ0 ≥ 183 ℓ0 − 45 46 0,0116

Table 2 provides some examples in which codes of type Cℓ0(P0) have better parameters
than codes of type Cℓ∞(P∞). In particular, the length n of the two codes is 3968, the
dimension k0 and the Feng-Rao designed minimum distance d0ORD of Cℓ0(P0) are greater
than or equal to the corresponding parameters k∞ and d∞ORD of Cℓ∞(P∞), and the designed
Singleton defect δ0 = n + 1 − k0 − d0ORD of Cℓ0(P0) is strictly smaller than the designed
Singleton defect δ∞ = n+ 1− k∞ − d∞ORD of Cℓ∞(P∞).
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Table 2: Designed Singleton defect of Cℓ0(P0) and Cℓ∞(P∞), qn = 25

ℓ0 3 4 5 6 8 9 10 19 20 21 22 23 24 26 27
ℓ∞ 4 5 6 7 9 10 11 20 21 22 23 24 25 27 28

δ∞ − δ0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ℓ0 28 29 30 31 32 34 35 36 37 38 39 40 41 42 43
ℓ∞ 29 30 31 32 33 35 36 37 38 39 40 41 42 43 44

δ∞ − δ0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ℓ0 44 45 46 47 48 49 50 51 52 55 56 56 57 57 58
ℓ∞ 45 46 47 48 49 50 51 52 53 56 56 57 57 58 58

δ∞ − δ0 1 1 1 1 1 1 1 1 1 1 5 6 6 7 6

ℓ0 58 59 59 60 60 61 61 62 63 64 65 66 66 67 67
ℓ∞ 59 59 60 60 61 61 62 63 64 65 66 66 67 67 68

δ∞ − δ0 7 6 7 6 7 6 1 1 1 1 1 4 6 7 6

ℓ0 68 68 69 77 77 78 88 88 89 89 90 90 91 91
ℓ∞ 68 69 69 77 78 78 88 89 89 90 90 91 91 92

δ∞ − δ0 5 4 5 4 4 4 2 3 4 3 2 3 4 3

ℓ0 92 92 93 93 94 99 99 100 100 101 101 102 110 110
ℓ∞ 92 93 93 94 94 99 100 100 101 101 102 102 110 111

δ∞ − δ0 2 1 2 2 1 2 2 2 2 2 2 1 1 1

6 Quantum codes from one-point AG codes on the

GGS curves

In this section we use families of one-point AG codes from the GGS curve to construct
quantum codes. The main ingredient is the so called CSS contruction which enables to
construct quantum codes from classical linear codes; see [29, Lemma 2.5].

We denote by q a prime power. A q-ary quantum code Q of length N and dimension
k is defined to be a qk-dimensional Hilbert subspace of a qN -dimensional Hilbert space
H = (Cq)⊗n = Cq ⊗· · ·⊗Cq. If Q has minimum distance D, then Q can correct up to ⌊D−1

2
⌋

quantum errors. The notation [[N, k,D]]q is used to denote such a quantum code Q. For a
[[N, k,D]]q-quantum code the quantum Singleton bound holds, that is, the minimum distance
satisfies D ≤ 1+(N−k)/2. The quantum Singleton defect is δQ := N−k−2D+2 ≥ 0, and
the relative quantum Singleton defect is ∆Q := δQ/N . If δQ = 0, then the code is said to
be quantum MDS. For a detailed introduction on quantum codes see [29] and the references
therein.

Lemma 6.1. (CSS construction) Let C1 and C2 denote two linear codes with parameters

[N, ki, di]q, i = 1, 2, and assume that C1 ⊂ C2. Then there exists an [[N, k2 − k1, D]]q code

with D = min{wt(c) | c ∈ (C2 \ C1) ∪ (C⊥
1 \ C⊥

2 )}, where wt(c) is the weight of c.

We consider the following general t-point construction due to La Guardia and Pereira;
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see [29, Theorem 3.1]. It is a direct application of Lemma 6.1 to AG codes.

Lemma 6.2. (General t-point construction) Let X be a nonsingular curve over Fq with genus

g and N + t distinct Fq-rational points, for some N, t > 0. Assume that ai, bi, i = 1, . . . , t,
are positive integers such that ai ≤ bi for all i and 2g − 2 <

∑t

i=1 ai <
∑t

i=1 bi < N . Then

there exists a quantum code with parameters [[N, k,D]]q with k =
∑t

i=1 bi −
∑t

i=1 ai and

D ≥ min
{

N −∑t

i=1 bi,
∑t

i=1 ai − (2g − 2)
}

.

Let n ≥ 5 be an odd integer. We apply Lemma 6.2 to one-point codes on the GGS curve.

Proposition 6.3. Let a, b ∈ N be such that

(q − 1)(qn+1 + qn − q2)− 2 < a < b < q2n+2 − qn+3 + qn+2.

Then there exists a quantum code with parameters [[N, b− a,D]]q2n, where

N = q2n+2 − qn+3 + qn+2,

D ≥ min
{

q2n+2 − qn+3 + qn+2 − b, a− (q − 1)(qn+1 + qn − q2) + 2
}

.

Proof. Let GGS(q, n) be the GGS curve with equations (1), genus g, and infinite point
P∞. Consider the divisors D as in (2), G1 = aP∞, and G2 = bP∞. Note that supp(G1) ∩
supp(D) = supp(G2) ∩ supp(D) = ∅. From Lemma 6.2, there exists a quantum code with
parameters [[N, b − a,D]]q2n , where D ≥ min

{

N − b, a − (2g − 2)
}

= min
{

q2n+2 − qn+3 +
qn+2 − b, a− (q − 1)(qn+1 + qn − q2)− 2

}

.

Another application of the CSS construction can be obtained looking at the dual codes
of the one-point codes from the GGS curve. Let P ∈ GGS(q, n). Fix a = ρℓ ∈ H(P ) and
b = ρℓ+s ∈ H(P ) with C2 = Cℓ(P ) = Cℓ and C1 = Cℓ+s(P ) = Cℓ+s, where s ≥ 1. Clearly
C1 ⊂ C2, as Cℓ ( Cℓ+s for every s ≥ 1. The dimensions of C2 and C1 are k2 = N − hℓ and
k1 = N − hℓ+s = N − hℓ − s respectively, where hi denotes the number of non-gaps at P
which are smaller than or equal to i. Thus, k2− k1 = s. According to the CSS construction,
these choices induce an [[N, s,D]]q2n quantum code, where N = q2n+2−qn+3+ qn+2 and D =
min{wt(c) | c ∈ (C2\C1)∪(C⊥

1 \C⊥
2 )} = min{wt(c) | c ∈ (Cℓ\Cℓ+s)∪(C(D,G1)\C(D,G2))},

with G2 = ρℓP and G1 = ρℓ+sP . In particular,

D ≥ min{dORD(Cℓ), d1}, (9)

where d1 denotes the minimum distance of the code C(D,G1). Following this construction
and using an improvement of Inequality (9), the next theorem is obtained.
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Theorem 6.4. Let g = (q − 1)(qn+1 + qn − q2)/2 and N = q2n+2 − qn+3 + qn+2. For

every ℓ ∈ [3g − 1, N − g] and s ∈ [1, N − 2ℓ], there exists a quantum code with parameters

[[N, s,D]]q2n, where D ≥ ℓ+ 1− g.

Proof. Since ℓ ≥ 3g − 1, we have ρℓ+s = g − 1 + ℓ + s, and hence d1 ≥ N − deg(G1) =
N − ρℓ+s = N − ℓ − s − g + 1. From Theorem 3.15, dORD(Cℓ) = ℓ + 1 − g. Thus, D ≥
min{dORD(Cℓ), d1} = ℓ + 1− g. The claim follows.

For fixed q, we can construct as a direct consequence of Theorem 6.4 families of quantum
codes depending on n such that their relative quantum Singleton defect goes to zero as n
goes to infinity. An example is the following.

Corollary 6.5. Let g = (q−1)(qn+1+qn−q2)/2 and N = q2n+2−qn+3+qn+2. For every ℓ ∈
[3g−1, N−g], fix s = N−2ℓ. Then there exists a quantum code with parameters [[N, s,D]]q2n
with D ≥ ℓ + 1 − g, whose relative quantum Singleton defect ∆Q

n = (N − s − 2D + 2)/N
satisfies

∆Q
n ≤ 2g

N
=

(q − 1)(qn+1 + qn − q2)

q2n+2 − qn+3 + qn+2
.

Hence, limn→∞∆Q
n = 0.

Using the computation of dORD(Cℓ(P∞)) in Section 3, we produce infinite families of
quantum codes in which the lower bound in (9) is explicitely determined. We look at those
cases for which (9) reads D ≥ dORD(Cℓ(P∞)) > ℓ+ 1− g and this bound is better than the
one stated in Theorem 6.4. According to Proposition 3.14, we choose ρℓ ∈ H(P∞) such that
ρℓ+1 = (0, 1, k) for some k ∈ [m, 2m).

Proposition 6.6. Let q = 2n for n ≥ 5 odd, g = (q − 1)(qn+1 + qn − q2)/2, and N =
q2n+2−qn+3+ qn+2. Let ℓ ∈ [g, 3g−1] be such that ρℓ+1 ∈ H(P∞) is of type (0, 1, k) for some

k ∈ [m, 2m). Let s ∈ [1, N − 2ℓ − 5]. Then there exists a quantum code with parameters

[[N, s,D]]q2n where

D ≥ ℓ+ 1− g +











5, if k < m or m ≤ k < 9m−11
8

,

3, if 9m−11
8

≤ k < 11m−9
8

,

1, if 11m−9
8

≤ k.

Proof. Arguing as in the proof of Theorem 6.4, we have that d1 ≥ N − ℓ− s− g + 1. Thus,
from Proposition 3.16 and Lemma 3.9, Inequality (9) reads

D ≥ dORD(Cℓ(P∞)) =











8k − 7m+ 13, if k < m or m ≤ k < 9m−11
8

,

8k − 7m+ 11, if 9m−11
8

≤ k < 11m−9
8

,

8k − 7m+ 9, if 11m−9
8

≤ k.
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Since ℓ+1−g = ρℓ+1−2g+1 = 2m+8k− (9m−7)+1 = 8k−7m+8, the claim follows.

7 Convolutional codes from one-point AG codes on the

GGS curves

In this section we use a result due to De Assis, La Guardia, and Pereira [6] which allows to
construct unit-memory convolutional codes with certain parameters (N, k, γ;m, df)q starting
from AG codes.

Consider the polynomial ring R = Fq[X ]. A convolutional code C is an R-submodule of
rank k of the module RN . Let G(X) = (gij(X)) ∈ Fq[X ]k×N be a generator matrix of C over

Fq[X ], γi = max{deg gij(X) | 1 ≤ j ≤ N}, γ =
∑k

i=1 γi, m = max{γi | 1 ≤ i ≤ k}, and df be
the minimum weight of a word c ∈ C. Then we say that C has length N , dimension k, degree
γ, memory m, and free distance. If m = 1, C is said to be a unit-memory convolutional
code. In this case we use for C the notation (N, k, γ;m, df)q. For a detailed introduction on
convolutional codes see [6, 35] and the references therein.

Lemma 7.1. ([6, Theorem 3]) Let X be a nonsingular curve over Fq with genus g. Consider
an AG code C⊥(D,G) with 2g − 2 < deg(G) < N . Then there exists a unit-memory

convolutional code with parameters (N, k−ℓ, ℓ; 1, df ≥ d)q, where ℓ ≤ k/2, k = deg(G)+1−g
and d ≥ N − deg(G).

We apply Lemma 7.1 to one-point AG codes from the GGS curve.

Proposition 7.2. Consider the Fq2n-maximal GGS curve GGS(q, n) and let ρℓ ∈ H(P∞) be
such that (q − 1)(qn+1 + qn − q2)− 2 < ρℓ < N , where N = q2n+2 − qn+3 + qn+2. Then there

exists a unit-memory convolutional code with parameters (N, k−s, s; 1, df ≥ dORD(Cℓ(P∞))),

where k = ρℓ + 1− (q−1)(qn+1+qn−q2)
2

and s ≤ k/2.

Proof. The result follows from Lemma 7.1. The inequality df ≥ dORD(Cℓ(P∞)) follows from
df ≥ d and Theorem 3.15 applied to the dual code Cℓ(P∞).

In particular, Theorem 3.15 yields the following corollary.

Corollary 7.3. Consider the Fq2n-maximal GGS curve GGS(q, n) and let ρℓ ∈ H(P∞)
be such that (q − 1)(qn+1 + qn − q2) − 2 < ρℓ < N , where N = q2n+2 − qn+3 + qn+2

and ℓ ≥ 3 (q−1)(qn+1+qn−q2)
2

. Then there exists a unit-memory convolutional code with pa-

rameters (N, k − s, s; 1, df), where k = ρℓ + 1 − (q−1)(qn+1+qn−q2)
2

, s ≤ k/2, and df ≥
ℓ+ 1− (q−1)(qn+1+qn−q2)

2
.
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8 The Automorphism group of C(D, ℓP∞)

In this section we investigate the automorphism group of the code C(D, ℓP∞), where D is
as in (2).

Lemma 8.1. The automorphism group Aut(GGS(q, n)) has exactly two short orbits on

GGS(q, n); one consists of P∞, the other consists of the q3 Fq2-rational points other than

P∞.

Proof. From [15, 16], Aut(GGS(q, n)) = Q⋊ Σ, where Q = {Qa,b | a, b ∈ Fq2 , a
q + a = bq+1}

and Σ = 〈gζ〉, with

Qa,b =









1 bq 0 a
0 1 0 b
0 0 1 0
0 0 0 1









, gζ =









ζq
n+1 0 0 0

0 ζ
qn+1

q+1 0 0
0 0 ζ 0
0 0 0 1









, (10)

ζ a primitive (qn + 1)(q − 1)-th root of unity. Therefore, Aut(GGS(q, n)) fixes P∞. Also,
Aut(GGS(q, n)) acts transitively on the q3 affine points ofGGS(q, n) having zero Z-coordinate,
which coincide with the Fq2-rational points of GGS(q, n) other than P∞.

Suppose Aut(GGS(q, n)) has another short orbit O. Since GGS(q, n) has zero p-rank and
Aut(GGS(q, n)) fixes P∞, O is tame. Hence, by Schur-Zassenhaus Theorem [34, Theorem
9.19], the stabilizer of a point P ∈ O is contained up to conjugation in Σ. This is a
contradiction, as Σ acts semiregularly out of the plane Z = 0.

Note from (10) that Aut(GGS(q, n)) is defined over Fq2n . Let πa be the plane Z = a.
The points of π0 ∩GGS(q, n) are exactly the q3 + 1 Fq2-rational points of GGS(q, n), while
all coordinates of any point of GGS(q, n) \ π0 are not in Fq2 . The group Σ fixes all points in
π0 ∩GGS(q, n) and acts semiregularly on the planes πa, while the group Q acts transitively
on π0∩GGS(q, n) and fixes GGS(q, n)∩πa for all a. Also, Q acts faithfully on the Hermitian
curve Hq : Y

q+1 = Xq+X by (X, Y, T ) 7→ Q̄ · (X, Y, T ), where Q̄ is obtained from Q deleting
the third row and column.

Proposition 8.2. The automorphism group of C(D, ℓP∞) contains a subgroup isomorphic

to

(Aut(GGS(q, n))⋊Aut(Fq2n))⋊ F∗
q2n .

Proof. The set Sσ of points ofGGS(q, n) fixed by a non-trivial automorphism σ of AutF
q2n

(GGS(q, n)) =

Aut(GGS(q, n)) has size Nσ ≤ q3 + 1. In fact, if σ /∈ Q, then Sσ ⊆ π0. If σ ∈ Q, then from
σ(P∞) = P∞ we have that the induced automorphism σ̄ ∈ Aut(Hq) fixes only Fq2-rational
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points of Hq; hence, σ fixes only Fq2-rational points of GGS(q, n), that is, Sσ ⊆ π0. Since
|GGS(q, n)∩ π0| = q3+1, Nσ ≤ q3+1. Now the claim follows from [1, Proposition 2.3].

Proposition 8.3. If qn + 1 ≤ ℓ ≤ qn+2 − q3 and {ℓ, ℓ− 1} ⊂ H(P∞), then

Aut(C(D, ℓP∞)) ∼= (Aut(GGS(q, n))⋊ Aut(Fq2n))⋊ F∗
q2n .

Proof. We apply [11, Theorem 3.4].

• The divisor G = ℓP∞ is effective.

• A plane model of degree qn + 1 for GGS(q, n) is

Π(GGS(q, n)) : Zqn+1 = Xq3 +X − (Xq +X)q
2−q+1. (11)

In fact, Zm(q+1) = Y q+1h(X)q+1 = Xq3 +X − (Xq +X)q
2−q+1; also, Equation (11) is

irreducible since it defines a Kummer extension K(x, z)/K(x) totally ramified over the
pole of x. Therefore, K(GGS(q, n)) = K(x, z), and x, z ∈ L(G) from the assumption
ℓ ≥ qn + 1.

• The support of D is preserved by the Frobenius morphism ϕ : (x, z) 7→ (xp, zp), since
ϕ(P∞) = P∞ and supp(D) = GGS(q, n)(Fq2n) \ {P∞}.

• LetN be the length of C(D, ℓP∞). Then the conditionN > deg(G)·deg(Π(GGS(q, n)))
reads

q2n+2 − qn+3 + qn+2 > ℓ(qn + 1),

which is implied by the assumption ℓ ≤ qn+2 − q3.

• – If P = P∞, then L(G) 6= L(G− P ) since ℓ ∈ H(P∞).

– If P 6= P∞, then 1 ∈ L(G) \ L(G− P ).

– If P = Q = P∞, then L(G− P ) 6= L(G− P −Q) since ℓ− 1 ∈ H(P∞).

– If P = P∞ and Q 6= P∞, then 1 ∈ L(G− P ) \ L(G− P −Q).

– If P 6= P∞ and Q = P∞, then f −µ ∈ L(G−P ) \L(G−P −Q), where f ∈ L(G)
has pole divisor ℓP∞ and µ = f(P ).

– If P,Q 6= P∞ and P 6= Q, choose f = z − z(P ) or f = x − x(P ) according to
z(P ) 6= z(Q) or x(P ) 6= x(Q); then f ∈ L(G− P ) \ L(G− P −Q).

– If P = Q 6= P∞, then z − z(P ) ∈ L(G− P ) \ L(G− P −Q).

Thus we can apply [11, Theorem 3.4] to prove the claim.
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[15] C. Güneri, M. Özdemir, and H. Stichtenoth,“ The automorphism group of the general-
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