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Abstract: Frame difference families, which can be obtained via a careful use of cyclo-
tomic conditions attached to strong difference families, play an important role in direct
constructions for resolvable balanced incomplete block designs. We establish asymp-
totic existences for several classes of frame difference families. As corollaries new infinite
families of 1-rotational (pq + 1, p + 1, 1)-RBIBDs over F

+
p × F

+
q are derived, and the

existence of (125q + 1, 6, 1)-RBIBDs is discussed. We construct (v, 8, 1)-RBIBDs for
v ∈ {624, 1576, 2976, 5720, 5776, 10200, 14176, 24480}, whose existence were previously
in doubt. As applications, we establish asymptotic existences for an infinite family of
optimal constant composition codes and an infinite family of strictly optimal frequency
hopping sequences.
Keywords: frame difference family; resolvable balanced incomplete block design; strong
difference family; partitioned difference family; constant composition code; frequency
hopping sequence
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1 Introduction

Throughout this paper, sets and multisets will be denoted by curly braces { } and
square brackets [ ], respectively. When we emphasize a set or a multiset is fixed with an
ordering, we regard it as a sequence, and denote it by ( ). Every union will be understood
as multiset union with multiplicities of elements preserved. A∪A∪ · · · ∪A (h times) will
be denoted by hA. If A and B are multisets defined on a multiplicative group, then A ·B
denotes the multiset [ab : a ∈ A, b ∈ B].

For a positive integer v, we abbreviate {0, 1, . . . , v − 1} by Zv or Iv, with the former
indicating that a cyclic group of this order is acting.

A (v, k, λ)-BIBD (balanced incomplete block design) is a pair (V,A) where V is a
set of v points and A is a collection of k-subsets of X (called blocks) such that every
2-subset of X is contained in exactly λ blocks of A. A (v, k, λ)-BIBD (V,A) is said to
be resolvable, or briefly a (v, k, λ)-RBIBD, if there exists a partition R of A (called a
resolution) into parallel classes, each of which is a partition of V .

A powerful idea to obtain resolvable designs is given by the use of a special class of
relative difference families: frame difference families. This concept was put forward by
M. Buratti in 1999 [9].

1Supported by NSFC under Grant 11471032, and Fundamental Research Funds for the Central Uni-
versities under Grant 2016JBM071, 2016JBZ012 (T. Feng), NSFC under Grant 11771227, and Zhejiang
Provincial Natural Science Foundation of China under Grant LY17A010008 (X. Wang).
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Let (G,+) be an abelian group of order g with a subgroupN of order n. A (G,N, k, λ)
relative difference family (DF ), or (g, n, k, λ)-DF over G relative to N , is a family B =
[B1, B2, . . . , Br] of k-subsets of G such that the list

∆B :=

r
⋃

i=1

[x− y : x, y ∈ Bi, x 6= y] = λ(G \N),

i.e., every element of G \ N appears exactly λ times in the multiset ∆B while it has
no element of N . The members of B are called base blocks and the number r equals to
λ(g − n)/(k(k − 1)). A (G, {0}, k, λ)-DF is said to be a difference set if it contains only
one base block, written simply as (G, k, λ)-DS or (g, k, λ)-DS over G. The complement
of a (g, k, λ)-DS over G with the base block B is a (g, g − k, g − 2k + λ)-DS over G with
the base block G \B.

Let F be a (g, n, k, λ)-DF over G relative to N . F is a frame difference family (FDF )
if it can be partitioned into λn/(k − 1) subfamilies F1,F2, . . . ,Fλn/(k−1) such that each
Fi has size of (g − n)/(nk), and the union of base blocks in each Fi is a system of
representatives for the nontrivial cosets of N in G. When λn = k− 1, a (g, n, k, λ)-FDF
is said to be elementary.

The following proposition reveals the relation between frame difference families and
resolvable designs, which can be seen as a corollary by combining the results of Theorem
1.1 in [9] and Theorem 5.11 in [26]. We outline the proof for completeness.

Proposition 1.1 If there exist a (G,N, k, λ)-FDF and a (|N | + 1, k, λ)-RBIBD, then
there exists a (|G| + 1, k, λ)-RBIBD.

Proof Let F be a (G,N, k, λ)-FDF, which can be partitioned into λ|N |/(k − 1) sub-
families F1,F2, . . . ,Fλ|N |/(k−1) such that

⋃

F∈Fi,h∈N
(F + h) = G \ N for each 1 ≤ i ≤

λ|N |/(k − 1). Set
Pi = {F + h : F ∈ Fi, h ∈ N}

for 1 ≤ i ≤ λ|N |/(k − 1). Let S be a complete system of representatives for the cosets
of N in G. For each s ∈ S, construct a (|N |+ 1, k, λ)-RBIBD on (N + s) ∪ {∞}, where
∞ 6∈ G. It has λ|N |/(k − 1) parallel classes, written as Qs,i, 1 ≤ i ≤ λ|N |/(k − 1). It
is readily checked that (Pi + s) ∪Qs,i, 1 ≤ i ≤ λ|N |/(k − 1) and s ∈ S, constitute all
parallel classes of a (|G| + 1, k, λ)-RBIBD, which is defined on G ∪ {∞}. ✷

An automorphism group of a (v, k, λ)-RBIBD (V,A) with R as its resolution is a
group of permutations on V leaving A and R invariant, respectively. A (v, k, λ)-RBIBD
is said to be 1-rotational over a group G of order v−1 if it admits G as an automorphism
group fixing one point and acting sharply transitively on the others.

By revisiting the proof of Proposition 1.1, one can have the following proposition.

Proposition 1.2 Suppose there exists a (G,N, k, λ)-FDF. If there is a 1-rotational
(|N |+1, k, λ)-RBIBD over N , then there is a 1-rotational (|G|+1, k, λ)-RBIBD over G.

The target of this paper is to construct frame difference families and (1-rotational)
resolvable designs via strong difference families. Let S = [F1, F2, . . . , Fs] with Fi =
(fi,0, fi,1, . . . , fi,k−1) for 1 ≤ i ≤ s, be a family of s multisets of size k defined on a group
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(G,+) of order g. We say that S is a (G, k, µ) strong difference family, or a (g, k, µ)-SDF
over G, if the list

∆S :=

s
⋃

i=1

[fi,a − fi,b : 0 ≤ a, b ≤ k − 1, a 6= b] = µG,

i.e., every element of G (0 included) appears exactly µ times in the multiset ∆S. The
members of S are called base blocks and the number s equals to µg/(k(k−1)). Note that
µ is necessarily even since the element 0 ∈ G is expressed in even ways as differences in
any multiset.

Proposition 1.3 A (G, k, µ)-SDF exists only if µ is even and µ|G| ≡ 0 (mod k(k−1)).

The concept of strong difference families was introduced in [9] and revisited in [14,32].
It is useful in the constructions of relative difference families and BIBDs (cf. [21]), and
perfect cycle decompositions (cf. [12]). Many direct constructions for RBIBDs in the
literature are obtained by the use of certain suitable SDFs explicitly or implicitly (cf.
[8, 9, 13,17]).

Although many authors have worked on the existence of (v, 8, 1)-RBIBDs, there are
still 66 open cases for small values of v (see Table 4 in [25] or Table 7.41 in [4]). In Section
2 we shall show that, with a careful application of cyclotomic conditions attached to a
strong difference family, we can establish the existence of three new (v, 8, 1)-RBIBDs for
v ∈ {624, 1576, 2976}. Then via known recursive constructions for RBIBDs, we obtain
another five new (v, 8, 1)-RBIBDs for v ∈ {5720, 5776, 10200, 14176, 24480}.

M. Buratti, J. Yan and C. Wang [16] proved that any (k − 1, k, kt)-SDF can lead to
a ((k− 1)p, k− 1, k, 1)-FDF for any sufficiently large prime p and p ≡ kt+1 (mod 2kt).
We shall generalize their result in Section 3 (see Theorem 3.3).

In Sections 4 and 5, we shall prove that, if the initial SDF has some particular
patterns, then the lower bound on q can be reduced greatly. Theorem 4.10 generalizes
Construction A in [13], and Theorems 4.5 and 4.7 generalize Construction B in [13].
As corollaries of Theorems 4.5-4.7 and 4.10, Theorems 4.11-4.14 give new 1-rotational
(pq+1, p+1, 1)-RBIBDs. Theorem 5.7 presents a new infinite family of (v, 6, 1)-RBIBDs.

As applications, in Section 6, we derive new optimal constant composition codes and
new strictly optimal frequency hopping sequences.

2 Basic lemma and new (v, 8, 1)-RBIBDs

Let q be a prime power. As usual we denote by Fq the finite field of order q, by F
+
q its

additive group, by F
∗
q its multiplicative group, by F

✷

q the set of nonzero squares, and by

F
6✷
q nonsquares in Fq.
If q ≡ 1 (mod e), then Ce,q

0 will denote the group of nonzero eth powers of Fq and once
a primitive element ω of Fq has been fixed, we set Ce,q

i = ωi ·Ce,q
0 for i = 0, 1, . . . , e− 1.

We refer to the cosets Ce,q
0 , Ce,q

1 , . . . , Ce,q
e−1 of Ce,q

0 in F
∗
q as the cyclotomic classes of index

e. Let A be a multisubset of F
∗
q. If each cyclotomic coset Ce,q

l for l ∈ Ie contains
exactly λ elements of A, then A is said to be a λ-transversal for these cosets. If A is
a 1-transversal, A is often referred to as a representative system for the cosets of Ce,q

0

in F
∗
q. The following lemma allows us to obtain frame different families by using strong

difference families.
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Lemma 2.1 Let q ≡ 1 (mod e) be a prime power and d|e. Let S be a representative sys-

tem for the cosets of Ce,q
0 in Cd,q

0 . Let d(q−1) ≡ 0 (mod ek) and t = d(q−1)/ek. Suppose
that there exists a (G, k, ktλ)-SDF S = [F1, F2, . . . , Fn], where λ|G| ≡ 0 (mod k − 1)
and Fi = (fi,0, fi,1, . . . , fi,k−1), 1 ≤ i ≤ n. If there exists a partition P of base blocks of S
into λ|G|/(k− 1) multisets, each of size t, such that one can choose appropriate multiset
[Φ1,Φ2, . . . ,Φn] of ordered k-subsets of F∗

q with Φi = (φi,0, φi,1, . . . , φi,k−1), 1 ≤ i ≤ n,
satisfying that

(1)
⋃n

i=1[φi,a − φi,b : fi,a − fi,b = h, (a, b) ∈ Ik × Ik, a 6= b] = Ce,q
0 ·Dh for each h ∈ G,

where Dh is a λ-transversal for the cosets of Cd,q
0 in F

∗
q,

(2)
⋃

i:Fi∈P
[φi,a : a ∈ Ik] = Ce,q

0 · EP for each P ∈ P, where EP is a representative

system for the cosets of Cd,q
0 in F

∗
q,

then
F = [Bi · {(1, s)} : 1 ≤ i ≤ n, s ∈ S]

is a (G×F
+
q , G×{0}, k, λ)-FDF, where Bi = {(fi,0, φi,0), (fi,1, φi,1), . . . , (fi,k−1, φi,k−1)}.

Proof Since n = λkt|G|/(k(k − 1)) and t = d(q − 1)/ek, we have

|F| = n ·
e

d
=

λ|G|(q − 1)

k(k − 1)
,

which coincides with the number of base blocks of a (G × F
+
q , G × {0}, k, λ)-FDF. Ac-

cording to P, we can partition F into λ|G|/(k − 1) subfamilies

FP = [Bi · {(1, s)} : Fi ∈ P, s ∈ S],

where P ∈ P. Each subfamily contains |P |×|S| = te/d = (q−1)/k base blocks. Because
of Condition (2),

⋃

i:Fi∈P

⋃

s∈S

Bi · {(1, s)}

forms a representative system for the nontrivial cosets of G× {0} in G× F
+
q . Finally it

is readily checked that

∆F =
⋃

s∈S

n
⋃

i=1

(∆Bi · {(1, s)}) =
⋃

s∈S

n
⋃

i=1

[(fi,a − fi,b, (φi,a − φi,b) · s) : (a, b) ∈ Ik × Ik, a 6= b]

=
⋃

s∈S

[{h} × (Ce,q
0 ·Dh · {s}) : h ∈ G] = λ(G× F

∗
q).

Therefore F is a (G× F
+
q , G× {0}, k, λ)-FDF. ✷

2.1 A 1-rotational (624, 8, 1)-RBIBD

In this subsection we shall apply Lemma 2.1 with e = q − 1 to present a new RBIBD.
Note that when e = q − 1, Ce,q

0 = {1} and S = Cd,q
0 .

Lemma 2.2 There exists an elementary (Z7 × F
+
89,Z7 × {0}, 8, 1)-FDF.
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Proof Take the (Z7, 8, 8)-SDF containing the unique base block [0, 0, 1, 1, 2, 2, 4, 4] as
the first components of base blocks of the required FDF. Let

B = {(0, 1), (0, 20), (1, 14), (1, 58), (2, 18), (2, 61), (4, 26), (4, 73)}.

Then applying Lemma 2.1 with G = Z7, q = 89, e = 88, d = 8, k = 8 and λ = 1 which
yield |P| = 1 and t = 1, we have

F = [B · (1, s) : s ∈ C8,89
0 ]

forms an elementary (Z7 × F
+
89,Z7 × {0}, 8, 1)-FDF. It is readily checked that each Dh,

h ∈ Z7, is a representative system for the cosets of C8,89
0 in F

∗
89 (for example D0 =

{19, 42, 43, 44, 45, 46, 47, 70} and D1 = {3, 4, 13, 38, 47, 49, 57, 83}). The unique EP = {1,
20, 14, 58, 18, 61, 26, 73} is also a representative system for the cosets of C8,89

0 in F
∗
89. ✷

Theorem 2.3 There exists a 1-rotational (624, 8, 1)-RBIBD over Z623.

Proof By Lemma 2.2 there exists a (Z7 × F
+
89,Z7 × {0}, 8, 1)-FDF. Apply Proposition

1.2 with a trivial 1-rotational (8, 8, 1)-RBIBD to obtain a 1-rotational (624, 8, 1)-RBIBD
over Z7 × F

+
89 that is isomorphic to Z623. ✷

2.2 A (v, 8, 1)-RBIBD for v ∈ {1576, 2976}

In this subsection we shall apply Lemma 2.1 with e = q−1
4 to present two new RBIBDs.

Lemma 2.4 There exists a (Zp, 8, 8)-SDF for p ∈ {63, 119}.

Proof For p = 63, take

F1 = [20, 20,−20,−20, 29, 29,−29,−29],
F2 = F3 = F4 = F5 = [0, 1, 3, 7, 19, 34, 42, 53],
F6 = F7 = F8 = F9 = [0, 1, 4, 6, 26, 36, 43, 51].

Then the multiset [Fi : 1 ≤ i ≤ 9] forms a (Z63, 8, 8)-SDF.
For p = 119, take

F1 = [20, 20,−20,−20, 29, 29,−29,−29],
F2 = F3 = F4 = F5 = [0, 1, 42, 28, 101, 97, 94, 114],
F6 = F7 = F8 = F9 = [0, 1, 12, 23, 41, 85, 104, 106],
F10 = F11 = F12 = F13 = [0, 2, 5, 17, 37, 47, 68, 76],
F14 = F15 = F16 = F17 = [0, 4, 10, 38, 54, 62, 86, 93].

Then the multiset [Fi : 1 ≤ i ≤ 17] forms a (Z119, 8, 8)-SDF. ✷

Lemma 2.5 There exists a (Zp × F
+
25,Zp × {0}, 8, 1)-FDF for p ∈ {63, 119}.

Proof Take the (Zp, 8, 8)-SDF from Lemma 2.4 as the first components of base blocks of
the required (Zp×F

+
25,Zp×{0}, 8, 1)-FDF. Take x2−x+2 to be a primitive polynomial

of degree 2 over F5 and ω to be a primitive root in F25. Let ξ = ω6. For p = 63, let

5



B1 = {(20, 1), (20,−1), (−20, ξ), (−20,−ξ), (29, ω), (29,−ω), (−29, ωξ), (−29,−ωξ)},
B2 = {(0, 1), (1, ω17), (3, ω12), (7, ω5), (19, ω23), (34, ω11), (42, ω18), (53, ω6)},
B6 = {(0, 1), (1, ω11), (4, ω5), (6, ω12), (26, ω23), (36, ω18), (43, ω17), (51, ω6)},
B3 = B2 · {(1,−1)}, B4 = B2 · {(1, ξ)}, B5 = B2 · {(1,−ξ)},
B7 = B6 · {(1,−1)}, B8 = B6 · {(1, ξ)}, B9 = B6 · {(1,−ξ)}.

For p = 119, let

B1 = {(20, 1), (20,−1), (−20, ξ), (−20,−ξ), (29, ω), (29,−ω), (−29, ωξ), (−29,−ωξ)},
B2 = {(0, ω), (1, ω7), (42, 1), (28, ω6), (101, ω18), (97, ω13), (94, ω12), (114, ω19)},
B6 = {(0, 1), (1, ω12), (12, ω), (23, ω18), (41, ω13), (85, ω7), (104, ω6), (106, ω19)},
B10 = {(0, ω), (2, ω7), (5, ω12), (17, ω6), (37, ω19), (47, ω18), (68, 1), (76, ω13)},
B14 = {(0, ω), (4, ω4), (10, ω10), (38, ω7), (54, ω22), (62, ω19), (86, ω16), (93, ω13)}.
B3 = B2 · {(1,−1)}, B4 = B2 · {(1, ξ)}, B5 = B2 · {(1,−ξ)},
B7 = B6 · {(1,−1)}, B8 = B6 · {(1, ξ)}, B9 = B6 · {(1,−ξ)},
B11 = B10 · {(1,−1)}, B12 = B10 · {(1, ξ)}, B13 = B10 · {(1,−ξ)},
B15 = B14 · {(1,−1)}, B16 = B14 · {(1, ξ)}, B17 = B14 · {(1,−ξ)}.

Let S be a representative system for the cosets of C6,25
0 = {1,−1, ξ,−ξ} in C2,25

0 . Then,
applying Lemma 2.1 with G = Zp, q = 25, e = 6, d = 2, k = 8 and λ = 1 which yield
|P| = p/7 and t = 1, we have a (Zp×F

+
25,Zp×{0}, 8, 1)-FDF for p ∈ {63, 119}. Note that

for any i, 1 ≤ i ≤ p/7,
⋃

s∈S Bi · {(1, s)} forms a representative system for the nontrivial
cosets of Zp × {0} in Zp × F

+
25. ✷

Theorem 2.6 There exists a (1576, 8, 1)-RBIBD and a (2976, 8, 1)-RBIBD.

Proof By Lemma 2.5, there exists a (Zp × F
+
25, Zp × {0}, 8, 1)-FDF for p ∈ {63, 119}.

Apply Proposition 1.1 with a (p + 1, 8, 1)-RBIBD, which exists by Table 7.41 in [4], to
obtain a (1576, 8, 1)-RBIBD and a (2976, 8, 1)-RBIBD. ✷

2.3 Five new RBIBDs via recursive constructions

A transversal design is a triple (V,G,B), where V is a set of km points, G is a partition of
V into k groups, each of size m, and B is a set of k-subsets (called blocks) of V satisfying
every pair of V is contained either in exactly one group or in exactly one block, but not
both. Such a design is denoted by a TD(k,m).

It is well known that the existence of a TD(k,m) is equivalent to the existence of
k− 2 mutually orthogonal Latin squares of order m. A TD(q+1, q) exists for any prime
power q (cf. Theorem 6.44 in [34]), and a TD(10, 48) exists by Theorem 2.1 in [3].

Lemma 2.7 (Lemma 4.9 in [25]) Suppose there exist a TD(10,m) and a (56m+8, 8, 1)-
RBIBD. For any given 0 ≤ n ≤ m, if there exists a (56n + 8, 8, 1)-RBIBD, then there
exists a (56(9m + n) + 8, 8, 1)-RBIBD.

Lemma 2.8 (Lemma 4.34 in [25]) Suppose there exist a TD(9, 8n), a (56n + 8, 8, 1)-
RBIBD and a (56m+8, 8, 1)-RBIBD. Then there exists a (56(8mn+n)+8, 8, 1)-RBIBD.

Theorem 2.9 There exists a (v, 8, 1)-RBIBD for v ∈ {5720, 5776, 10200, 24480}.
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Proof Apply Lemma 2.8 with m = 2 and n = 6 to obtain a (5720, 8, 1)-RBIBD, where
the needed (v, 8, 1)-RBIBDs for v ∈ {120, 344} are from Table 7.41 in [4].

For v ∈ {5776, 10200, 24480}, apply Lemma 2.7 with (m,n) ∈ {(11, 4), (19, 11), (48, 5)}
to obtain a (v, 8, 1)-RBIBD, where the needed (624, 8, 1)-RBIBD is from Theorem 2.3
and the needed (u, 8, 1)-RBIBDs for u ∈ {232, 288, 1072, 2696} are from Table 7.41 in [4].

✷

Let (H,+) be an abelian group of order h. An (H, k, λ) difference matrix (briefly,
(H, k, λ)-DM) is a k× hλ matrix D = (dij) with entries from H so that for each 1 ≤ i <
j ≤ k the multiset

{dil − djl : 1 ≤ l ≤ hλ}

contains every element of H exactly λ times. An (H, k, 1)-DM is homogeneous if its each
row is a permutation of elements of H.

The property of a difference matrix is preserved even if one add any element of H to
all entries in any row or column of the difference matrix. Then, w.l.o.g., all entries in the
first row in a difference matrix are zero. Such a difference matrix is said to be normalized.
Any normalized difference matrix can yield a homogeneous difference matrix by deleting
its first row. Thus the existence of a homogeneous (H, k− 1, 1)-DM is equivalent to that
of an (H, k, 1)-DM. The multiplication table for the finite field Fq is an (F+

q , q, 1)-DM [23].
The following construction is a variation of standard recursive construction for dif-

ference families (see for example Theorem 6.1 in [16]).

Construction 2.10 Suppose there exists a (G,N, k, 1)-FDF. If there exists a homoge-
neous (H, k, 1)-DM, then there exists a (G×H,N ×H, k, 1)-FDF.

Theorem 2.11 There exists a (14176, 8, 1)-RBIBD.

Proof Take a (Z63×F
+
25, Z63×{0}, 8, 1)-FDF from Lemma 2.5. Then apply Construction

2.10 with a homogeneous (F+
9 , 8, 1)-DM to obtain a (Z63×F

+
25×F

+
9 , Z63×{0}×F

+
9 , 8, 1)-

FDF. Finally apply Proposition 1.1 with a (568, 8, 1)-RBIBD, which exists by Table 7.41
in [4], to obtain a (14176, 8, 1)-RBIBD. ✷

3 Asymptotic existence of FDFs

Throughout this paper we always write

Q(d,m) =
1

4
(U +

√

U2 + 4dm−1m)2, where U =

m
∑

h=1

(

m

h

)

(d− 1)h(h− 1)

for given positive integers d and m. The following theorem characterizes existences of
elements satisfying certain cyclotomic conditions in a finite field.

Theorem 3.1 [15, 19] Let q ≡ 1 (mod d) be a prime power, let B = {b0, b1, . . . , bm−1}
be an arbitrary m-subset of Fq and let (β0, β1, . . . , βm−1) be an arbitrary element of Zm

d .

Set X = {x ∈ Fq : x − bi ∈ Cd,q
βi

for i = 0, 1, . . . ,m − 1}. Then X is not empty for any
prime power q ≡ 1 (mod d) and q > Q(d,m).

7



Abel and Buratti [1] announced Theorem 3.1 without proving it. The case of m =
3 in Theorem 3.1 was first shown by Buratti [10]. Then a proof similar to that of
m = 3 allows Chang and Ji [19], and Buratti and Pasotti [15] to generalize this result
to any m. Theorem 3.1 is derived from Weil’s Theorem (see [29], Theorem 5.41) on
multiplicative character sums and plays an essential role in the asymptotic existence
problem for difference families (cf. [20]).

The idea of the following lemma is from Theorem 4.1 in [16].

Lemma 3.2 If there exists a (G, k, ktλ)-SDF with λ|G| ≡ 0 (mod k − 1), then there
exists a (G× F

+
q , G × {0}, k, λ)-FDF

• for any even λ and any prime power q ≡ 1 (mod kt) with q > Q(kt, k);

• for any odd λ and any prime power q ≡ kt+ 1 (mod 2kt) with q > Q(kt, k).

Proof By assumption one can take a (G, k, ktλ)-SDF S = [F1, F2, . . . , Fn], where
n = tλ|G|/(k − 1) and Fi = [fi,0, fi,1, . . . , fi,k−1], 1 ≤ i ≤ n. To apply Lemma 2.1 with
e = q− 1 and d = kt, we need to give a partition P of base blocks of S into λ|G|/(k− 1)
multisets, each of size t, such that one can choose appropriate multiset [Φ1,Φ2, . . . ,Φn]
of ordered k-subsets of F∗

q with Φi = (φi,0, φi,1, . . . , φi,k−1), 1 ≤ i ≤ n, satisfying that

(1)
⋃n

i=1[φi,a − φi,b : fi,a − fi,b = h, (a, b) ∈ Ik × Ik, a 6= b] = Dh for each h ∈ G,

(2)
⋃

i:Fi∈P
[φi,a : a ∈ Ik] = EP for each P ∈ P,

where Dh is a λ-transversal for the cosets of Cd,q
0 in F

∗
q and EP is a representative system

for the cosets of Cd,q
0 in F

∗
q.

Thus if one can choose an appropriate mapping π acting on symbolic expressions
satisfying that

(1′)
⋃n

i=1[π(φi,a − φi,b) : fi,a − fi,b = h, (a, b) ∈ Ik × Ik, a 6= b] = λId for each h ∈ G,

(2′)
⋃

i:Fi∈P
[π(φi,a) : a ∈ Ik] = Id for each P ∈ P.

and can choose appropriate elements of Φi, 1 ≤ i ≤ n, such that these elements are
consistent with the mapping π, i.e., π can be seen as a function from F

∗
q to Zd satisfying

π(x) = θ if x ∈ Cd,q
θ , then one can apply Lemma 2.1 to obtain a (G×F

+
q , G×{0}, k, λ)-

FDF.
This procedure can always be done. First we need to choose an appropriate mapping

π satisfying Conditions (1′) and (2′). Condition (2′) can be satisfied easily. The key is
how to meet Condition (1′). Let G2 denote the subgroup of {h ∈ G : 2h = 0}. When λ
is even, we can specify π to satisfy







⋃n
i=1[π(φi,a − φi,b) : fi,a − fi,b = h, (a, b) ∈ Ik × Ik, a 6= b] = λId, h ∈ G \G2,

⋃n
i=1[π(φi,a − φi,b) : fi,a − fi,b = h, (a, b) ∈ Ik × Ik, a < b] = λ

2 Id, h ∈ G2.

When λ is odd, we can specify π to satisfy







⋃n
i=1[π(φi,a − φi,b) : fi,a − fi,b = h, (a, b) ∈ Ik × Ik, a 6= b] = λId, h ∈ G \G2,

⋃n
i=1[π(φi,a − φi,b) : fi,a − fi,b = h, (a, b) ∈ Ik × Ik, a < b] = λI d

2

, h ∈ G2.

8



Note that when λ is odd, by Proposition 1.3, the existence of the given (G, k, ktλ)-SDF

implies d = kt is even. When q ≡ d+ 1 (mod 2d), −1 ∈ Cd,q
d
2

.

Once π is fixed, one can apply Theorem 3.1 and Lemma 2.1 to obtain the required
(G× F

+
q , G× {0}, k, λ)-FDF. ✷

Theorem 3.3 If there exists a (G, k, ktλ)-SDF with λ|G| ≡ 0 (mod k − 1), then there
exists a (G× F

+
q , G × {0}, k, λ)-FDF

• for any even λ and any prime power q ≡ 1 (mod kt) with q > Q(kt, k);

• for any odd λ and any prime power q ≡ krt + 1 (mod 2krt) with q > Q(krt, k),
where r is any positive integer.

Proof For even λ, the conclusion is straightforward by Lemma 3.2. For odd λ, if a
(G, k, ktλ)-SDF exists with n base blocks, then there exists a (G, k, krtλ)-SDF with rn
base blocks for any positive integer r, which means by Lemma 3.2 that there exists a
(G × F

+
q , G × {0}, k, λ)-FDF for any prime power q ≡ krt + 1 (mod 2krt) with q >

Q(krt, k). ✷

4 FDFs from SDFs with particular patterns

The application of Theorem 3.3 results in a huge lower bound on q. To reduce the
lower bound, we shall request the initial SDF has some special patterns. If an SDF only
contains one base block, then it is referred to as a difference multiset (cf. [9]) or a regular
difference cover (cf. [5]).

Lemma 4.1 [9]

(1) Let p ≡ 3 (mod 4) be a prime power. Then 2({0}∪F
✷

p ) is an (F+
p , p+1, p+1)-SDF

(called Paley difference multiset of the second type).

(2) Let p be an odd prime power. Set X1 = 2({0} ∪ F
✷

p ) and X2 = 2({0} ∪ F
6✷
p ). Then

[X1,X2] is an (F+
p , p+ 1, 2p + 2)-SDF (called Paley strong difference family of the

third type).

(3) Given twin prime powers p > 2 and p+2, the set (F✷

p×F
✷

p+2)∪(F
6✷
p×F

6✷
p+2)∪(Fp×{0})

is a (p(p + 2), p(p+2)−1
2 , p(p+2)−3

4 )-DS over F
+
p × F

+
p+2. Let D be its complement.

Then 2D is a (p(p + 2), p(p + 2) + 1, p(p + 2) + 1) difference multiset (called twin
prime power difference multiset).

(4) Given any prime power p and any integer m ≥ 3, there is a (p
m−1
p−1 , p

m−1−1
p−1 , p

m−2−1
p−1 )

difference set over Z pm−1

p−1

. Let D be its complement. Then pD is a (p
m−1
p−1 , pm, pm(p−

1)) difference multiset (called Singer difference multiset).

By Theorem 3.3 we can easily obtain an infinite family of FDFs from each of the
SDFs in Lemma 4.1. For example, by the second type Paley (F+

p , p+ 1, p + 1)-SDF, we
get

9



Corollary 4.2 Let p ≡ 3 (mod 4) be a prime power. Then there exists an (F+
p ×F

+
q ,F

+
p ×

{0}, p+1, 1)-FDF for any prime power q ≡ p+2 (mod 2(p+1)) and q > Q(p+1, p+1).

The lower bound on q in Corollary 4.2 is huge even if p is small. For example, if
p = 11, then Q(12, 12) = 7.94968× 1027. Thus it would be meaningful to develop a new
technique to reduce the bound.

Lemma 4.3 Let G be an additive group of odd order l. Suppose that there exists a
(G, l + 1, l + 1)-SDF whose unique base block (f0, f1, . . . , fl) =

(x0, x0, x1, x1, . . . , x l−1

2

, x l−1

2

),

where x0, x1, . . . , x(l−1)/2 are distinct elements of G. Let q be a prime power satisfying
q ≡ 1 (mod l + 1) and let d = (l + 1)/2 . Suppose that one can choose an appropriate
multiset (φ0, φ1, . . . , φl) =

(y0,−y0, y1,−y1, . . . , y l−1

2

,−y l−1

2

)

such that {y0, y1, . . . , y(l−1)/2} ⊆ F
∗
q and for each h ∈ G,

[φa − φb : fa − fb = h, (a, b) ∈ Il+1 × Il+1, a 6= b] = {1,−1} ·Dh,

where Dh is a representative system for the cosets of Cd,q
0 in F

∗
q. Let S be a representative

system for the cosets of {1,−1} in Cd,q
0 . Let B = {(f0, φ0), (f1, φ1), . . . , (fl, φl)}. Then

F = [B · {(1, s)} : s ∈ S]

forms an elementary (G× F
+
q , G× {0}, l + 1, 1)-FDF.

Proof Since d is a divisor of l + 1 and q ≡ 1 (mod l + 1), d is also a divisor of q − 1.

This makes Cd,q
0 meaningful. The assumption q ≡ 1 (mod l + 1) ensures −1 ∈ Cd,q

0 .
Since q is odd, yi 6= −yi for any 0 ≤ i ≤ (l − 1)/2, B · {(1, s)} is a set of size l + 1 for
any s ∈ S. Then applying Lemma 2.1 with e = (q − 1)/2, d = (l + 1)/2, k = l + 1 and
λ = 1 which yield |P| = 1 and t = 1, we have a (G × F

+
q , G × {0}, l + 1, 1)-FDF. Note

that {1,−1} = C
(q−1)/2,q
0 and {y0,−y0, y1,−y1, . . . , y l−1

2

,−y l−1

2

} = {1,−1} · 1
2 ·D0. ✷

Lemma 4.4 Follow the notation in Lemma 4.3.

(1) W.l.o.g., D0 = 2 · {y0, y1, . . . , y(l−1)/2}.

(2) For each h ∈ G \ {0}, let

Th = [φa − φb : fa − fb = h, (a, b) ∈ Il+1 × Il+1, a 6= b].

Then Th = {1,−1} · Dh for some Dh ⊂ Fq and the size of Dh is (l + 1)/2. Fur-
thermore, Dh = D−h and w.l.o.g., Dh consists of elements of type yi ± yj.

(3) Let T be a representative system for the cosets of {1,−1} in G \ {0}. Any element
of type yi ± yj must be contained in a unique Dh for some h ∈ T (note that the
term “element” here is a symbolic expression; for example y1 − y2 and y3 + y4 are
different element but they may have the same value).

Proof The verification is straightforward. ✷
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Begin with SDFs from Lemma 4.1(1), (3) and (4), and then apply Lemma 4.3, 4.4,
and Theorem 3.1. We have the following theorems. Note that we take p = 2 when use
Lemma 4.1(4).

Theorem 4.5 Let p ≡ 3 (mod 4) be a prime power. Then there exists an elementary
(F+

p × F
+
q ,F

+
p × {0}, p + 1, 1)-FDF for any prime power q ≡ 1 (mod p + 1) and q >

Q((p + 1)/2, p).

Theorem 4.6 Let p and p+2 be twin prime powers satisfying p > 2. Then there exists
an elementary (F+

p × F
+
p+2 × F

+
q ,F

+
p × F

+
p+2 × {0}, p(p + 2) + 1, 1)-FDF for any prime

power q ≡ 1 (mod p(p+ 2) + 1) and q > Q((p(p + 2) + 1)/2, p(p + 2)).

Theorem 4.7 Let m ≥ 3 be an integer. Then there exists an elementary (Z2m−1 ×
F
+
q ,Z2m−1×{0}, 2m, 1)-FDF for any prime power q ≡ 1 (mod 2m) and q > Q(2m−1, 2m−

1).

Compared with Corollary 4.2, Theorem 4.5 not only reduce the lower bound on q
but also relax the congruence condition on q. Take for example p = 11. By Theorem 4.5
the bound is Q(6, 11) = 8.77844 × 1018, which is much smaller than Q(12, 12).

Theorems 4.5 and 4.7 can be seen as a generalization of M. Buratti and N. Finizio’s
construction in [13] for (Z7 × Zq,Z7 × {0}, 8, 1)-FDFs, where q is a prime.

Lemma 4.8 Let p ≡ 1 (mod 4) be a prime power and d = p+1. Let q be a prime power
satisfying q ≡ 1 (mod 2p + 2). Let ω be a generator of Fp. Take the third type Paley
(F+

p , p+ 1, 2p + 2)-SDF from Lemma 4.1(2) whose base blocks are:

(f10, f11, . . . , f1p) = (0, 0, ω2, ω2, ω4, ω4, . . . , ωp−1, ωp−1),
(f20, f21, . . . , f2p) = (0, 0, ω, ω, ω3, ω3, . . . , ωp−2, ωp−2).

Suppose that one can choose appropriate multisets

(φ10, φ11, . . . , φ1p) = (y0,−y0, y1,−y1, y2,−y2, . . . , y p−1

2

,−y p−1

2

),

(φ20, φ21, . . . , φ2p) = (y p+1

2

,−y p+1

2

, y p+3

2

,−y p+3

2

, . . . , yp,−yp),

such that {y0, y1, . . . , yp} ⊆ F
∗
q and for each h ∈ Fp,

2
⋃

i=1

[φia − φib : fia − fib = h, (a, b) ∈ Ip+1 × Ip+1, a 6= b] = {1,−1} ·Dh,

where Dh is a representative system for the cosets of Cd,q
0 in F

∗
q. Let S be a representative

system for the cosets of {1,−1} in Cd,q
0 . Let Bi = {(fi0, φi0), (fi1, φi1), . . . , (fip, φip)},

where i = 1, 2. Then

F =
2
⋃

i=1

[Bi · {(1, s)} : s ∈ S]

forms an elementary (F+
p × F

+
q ,F

+
p × {0}, p + 1, 1)-FDF.

Proof Applying Lemma 2.1 with G = F
+
p , e = (q−1)/2, d = p+1, k = p+1 and λ = 1

which yield |P| = 1 and t = 2, we obtain a (F+
p ×F

+
q ,F

+
p ×{0}, p+1, 1)-FDF. Note that

{1,−1} = C
(q−1)/2,q
0 and {y0,−y0, y1,−y1, . . . , yp,−yp} = {1,−1} · 1

2 ·D0. ✷
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Lemma 4.9 Follow the notation in Lemma 4.8.

(1) W.l.o.g., D0 = 2 · {y0, y1, y2, . . . , yp}.

(2) For each h ∈ F
∗
p, let

Th =
2
⋃

i=1

[φia − φib : fia − fib = h, (a, b) ∈ Ip+1 × Ip+1, a 6= b].

Then Th = {1,−1}·Dh for some Dh ⊂ Fq and the size of Dh is p+1. Furthermore,
Dh = D−h and w.l.o.g., Dh consists of elements of type yi ± yj.

(3) Let T be a representative system for the cosets of {1,−1} in F
∗
p. Any element of

type yi ± yj must be contained in a unique Dh for some h ∈ T .

Proof The verification is straightforward. ✷

Combining the results of Lemmas 4.8 and 4.9, and then applying Theorem 3.1, we
have

Theorem 4.10 Let p ≡ 1 (mod 4) be a prime power. Then there exists an elementary
(F+

p × F
+
q ,F

+
p × {0}, p + 1, 1)-FDF for any prime power q ≡ 1 (mod 2p + 2) and q >

Q(p+ 1, p).

Theorem 4.10 can be seen as a generalization of M. Buratti and N. Finizio’s con-
struction in [13] for (Z5 × Zq,Z5 × {0}, 6, 1)-FDFs, where q is a prime.

Start from the FDFs in Theorems 4.5, 4.6, 4.7 and 4.10. Then apply Proposition 1.2
with a trivial 1-rotational (k, k, 1)-RBIBD. We obtain the following theorems.

Theorem 4.11 There exists a 1-rotational (pq+1, p+1, 1)-RBIBD over F+
p ×F

+
q for any

prime powers p and q with p ≡ 3 (mod 4), q ≡ 1 (mod p+ 1) and q > Q((p + 1)/2, p).

Theorem 4.12 Let p and p + 2 be twin prime powers satisfying p > 2. There exists a
1-rotational (p(p + 2)q + 1, p(p + 2) + 1, 1)-RBIBD over F

+
p × F

+
p+2 × F

+
q for any prime

power q ≡ 1 (mod p(p+ 2) + 1) and q > Q((p(p + 2) + 1)/2, p(p + 2)).

Theorem 4.13 There exists a 1-rotational ((2m−1)q+1, 2m, 1)-RBIBD over Z2m−1×F
+
q

for any integer m ≥ 3 and any prime power q ≡ 1 (mod 2m) and q > Q(2m−1, 2m − 1).

Theorem 4.14 There exists a 1-rotational (pq + 1, p + 1, 1)-RBIBD over F
+
p × F

+
q for

any prime powers p and q with p ≡ 1 (mod 4), q ≡ 1 (mod 2p+2) and q > Q(p+1, p).

5 A family of RBIBDs with block size 6

Lemma 5.1 There exists a (Z125, 6, 6)-SDF.

Proof Take
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A1 = [0, 0, 19, 19, 71, 71], A2 = A3 = [0, 10, 28, 51, 78, 97],
A4 = A5 = [0, 3, 62, 75, 86, 110], A6 = A7 = [0, 5, 12, 58, 70, 112],
A8 = A9 = [0, 7, 27, 44, 70, 96], A10 = A11 = [0, 1, 42, 93, 85, 45],
A12 = A13 = [0, 1, 100, 104, 109, 88], A14 = A15 = [0, 1, 90, 81, 21, 32],
A16 = A17 = [0, 3, 16, 40, 46, 50], A18 = A19 = [0, 2, 7, 29, 35, 68],
A20 = A21 = [0, 2, 8, 57, 102, 116], A22 = A23 = [0, 2, 22, 32, 36, 96],
A24 = A25 = [0, 8, 23, 38, 72, 86].

Then the multiset [Ai : 1 ≤ i ≤ 25] forms a (Z125, 6, 6)-SDF. ✷

Applying Theorem 3.3 with a (Z125, 6, 6)-SDF, we can obtain a (Z125 × F
+
q ,Z125 ×

{0}, 6, 1)-FDF for any prime power q ≡ 7 (mod 12) and q > Q(6, 6). But the bound
Q(6, 6) = 3.4829× 1010 is a little big. We shall reduce the bound by supplying a refined
construction in this section.

Lemma 5.2 Let q ≡ 7 (mod 12) be a prime power. Take the (Z125, 6, 6)-SDF given in
Lemma 5.1, whose base blocks are A1, A2, . . . , A25. Suppose one can choose appropriate
multisets

C1 = (y11,−y11, y12,−y12, y13,−y13),

C2i = (y2i,1,−y2i,1, y2i,2,−y2i,2, y2i,3, y2i,4), C2i+1 = −C2i,

where 1 ≤ i ≤ 12, such that each Cj , 1 ≤ j ≤ 25, is a representative system for

the cosets of C6,q
0 in F

∗
q. Furthermore, write Aj = (aj1, aj2, aj3, aj4, aj5, aj6), Cj =

(cj1, cj2, cj3, cj4, cj5, cj6), and

Bj = {(aj1, cj1), (aj2, cj2), (aj3, cj3), (aj4, cj4), (aj5, cj5), (aj6, cj6)},

where 1 ≤ j ≤ 25. Set
25
⋃

j=1

∆Bj =
⋃

l∈Z125

{l} ×∆l.

If for any l ∈ Z125, ∆l is a representative system for the cosets of C6,q
0 in F

∗
q, then

F = [Bj · {(1, α)} : α ∈ C6,q
0 , 1 ≤ j ≤ 25]

forms a (Z125 × F
+
q ,Z125 × {0}, 6, 1)-FDF.

Proof Apply Lemma 2.1 with G = Z125, e = q− 1, d = 6, k = 6 and λ = 1 which yield
|P| = 25 and t = 1 to obtain the required a (Z125 × F

+
q ,Z125 × {0}, 6, 1)-FDF. ✷

Lemma 5.3 Follow the notation in Lemma 5.2.

(1) C1 = {1,−1} · {y11, y12, y13}.

(2) For 1 ≤ i ≤ 12, C2i = ({1,−1} · {y2i,1, y2i,2}) ∪ {y2i,3, y2i,4} and C2i+1 = ({1,−1} ·
{y2i,1, y2i,2}) ∪ {−y2i,3,−y2i,4}.

(3) For each l ∈ Z125, ∆l = ∆−l = {1,−1} ·Dl for some Dl ⊂ Fq and the size of Dl is
3.

(4) W.l.o.g., D0 = 2 · {y11, y12, y13}.
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(5) For each l ∈ Z
∗
125, w.l.o.g., Dl consists of elements having the following types

(I) y1,t1 ± y1,t2 for some 1 ≤ t1 6= t2 ≤ 3;
(II) y2i,r ± y2i,s for some 1 ≤ i ≤ 12, r ∈ {3, 4} and s ∈ {1, 2};
(III) y2i,4 ± y2i,3 for some 1 ≤ i ≤ 12;
(IV ) y2i,2 ± y2i,1 for some 1 ≤ i ≤ 12;
(V ) 2y2i,s for some 1 ≤ i ≤ 12 and s ∈ {1, 2}.

(6) Any element of Types (I), (II), (III) and (V ) is contained in a unique Dl for
some 1 ≤ l ≤ 62.

(7) Any element of Type (IV ) is contained in exactly two different Dl’s, say Dl1 and
Dl2 , for some 1 ≤ l1 6= l2 ≤ 62.

Proof It is readily checked that (1)-(6) hold. The verification for (7) is a little more
complicated, which relies heavily on the given (Z125, 6, 6)-SDF. For example, since B2 =
{(0, y21), (10,−y21), (28, y22), (51,−y22), (78, y23), (97, y24)}, we have y22− y21 ∈ D28 and
D41; y22+y21 ∈ D18 andD51. By tedious calculation, one can check (7). For convenience,
we list each Dl explicitly for 0 ≤ l ≤ 62 in Table 1. ✷

Theorem 5.4 There exists a (Z125 × F
+
q ,Z125 × {0}, 6, 1)-FDF for any prime q ≡ 7

(mod 12) and q > 43.

Proof Since q ≡ 7 (mod 12), −1 ∈ C6,q
3 . By Lemma 5.3 (1)-(4), if one can choose an

appropriate mapping g acting on symbolic expressions satisfying that

• {g(y11), g(y12), g(y13)} = {0, 1, 2},

• g(y2i,1) 6= g(y2i,2) for 1 ≤ i ≤ 12,

• {g(d) : d ∈ Dl} is {0, 1, 2} for each 1 ≤ l ≤ 62,

and can choose appropriate elements of Cj , 1 ≤ j ≤ 25, such that these elements
are consistent with the mapping g, i.e., g can be seen as a function from F

∗
q to Z3

satisfying g(x) = θ if x ∈ C3,q
θ , then one can apply Lemma 5.2 to obtain a (Z125 ×

F
+
q ,Z125 × {0}, 6, 1)-FDF. Note that once the above second condition is satisfied, let

αi = Z3 \{f(y2i,1), f(y2i,2)}, 1 ≤ i ≤ 12, and we require y2i,3 and y2i,4 belong to different

cosets C6,q
αi and C6,q

αi+3.
By Lemma 5.3 (6) and (7), the key to pick up an appropriate mapping g is to assign

values of g for elements of Types (IV) and (V) (note that elements of Type (V) is
contained in a unique Dl for some 1 ≤ l ≤ 62 and is related with some C2i, 1 ≤ i ≤ 12).
We here give explicit values of g for elements of Types (IV) and (V) in Table 2. Then
combining Table 1, one can give values of g for elements of Types (I), (II) and (III). For
example, for D33 = [y10,2−y10,1, y18,3+y18,1, y18,4−y18,3], by Table 2, g(y10,2−y10,1) = 1,
so it suffices to require {g(y18,3 + y18,1), g(y18,4 − y18,3)} = {0, 2}.

Once g is fixed, one can apply Theorem 3.1 and Lemma 5.2 to obtain a (Z125 ×
F
+
q ,Z125 × {0}, 6, 1)-FDF for any prime q ≡ 7 (mod 12) and q > Q(3, 7) = 6.43306 ×

107. Note that the number 7 in Q(3, 7) is from the fact that the number of cyclotomic
conditions on y2i,s is 7 for 1 ≤ i ≤ 12 and s ∈ {1, 2}; the number of cyclotomic conditions
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D0 = [2y1,1, 2y1,2, 2y1,3], D1 = [2y10,1, 2y12,1, 2y14,1],
D2 = [2y18,1, 2y20,1, 2y22,1], D3 = [2y4,1, y10,4 − y10,2, 2y16,1],
D4 = [2y12,2, y16,4 − y16,3, y22,3 + y22,2], D5 = [2y6,1, y12,3 + y12,2, y18,2 + y18,1],
D6 = [y16,3 + y16,2, y18,3 + y18,2, y20,2 + y20,1], D7 = [y6,2 + y6,1, 2y8,1, y18,2 − y18,1],
D8 = [y10,3 + y10,2, y20,2 − y20,1, 2y24,1], D9 = [y12,3 − y12,2, 2y14,2, y20,4 − y20,1],
D10 = [2y2,1, y16,4 + y16,2, 2y22,2], D11 = [y4,3 + y4,2, y14,4 − y14,3, y20,4 + y20,1],
D12 = [y6,2 − y6,1, y6,3 + y6,2, y12,4 − y12,2], D13 = [2y4,2, y6,4 − y6,1, y16,2 + y16,1],
D14 = [y20,4 − y20,3, y22,3 − y22,2, y24,4 − y24,3], D15 = [y4,4 − y4,1, 2y24,2, y24,2 + y24,1],
D16 = [y12,3 − y12,1, y12,4 + y12,2, y16,2 − y16,1], D17 = [2y8,2, y12,3 + y12,1, y20,4 − y20,2],
D18 = [y2,2 + y2,1, y4,4 + y4,1, y6,4 + y6,1], D19 = [y1,2 + y1,1, y1,2 − y1,1, y2,4 − y2,3],
D20 = [y8,2 + y8,1, y14,3 + y14,1, y22,2 + y22,1], D21 = [y12,2 + y12,1, y12,4 − y12,3, y14,3 − y14,1],
D22 = [y12,2 − y12,1, 2y18,2, y22,2 − y22,1], D23 = [2y2,2, y20,3 − y20,1, y24,2 − y24,1],
D24 = [y4,3 − y4,2, y4,4 − y4,3, 2y16,2], D25 = [y6,4 − y6,2, y12,2 − y12,1, y20,3 + y20,1],
D26 = [y8,3 + y8,2, y8,4 − y8,3, y12,2 + y12,1], D27 = [y2,3 + y2,2, y8,2 − y8,1, y18,2 − y18,1],
D28 = [y2,2 − y2,1, y2,4 − y2,1, y18,3 − y18,2], D29 = [y8,4 − y8,1, y18,2 + y18,1, y22,4 − y22,1],
D30 = [y16,3 − y16,2, y22,2 − y22,1, y24,2 − y24,1], D31 = [y14,4 + y14,1, y20,3 − y20,2, y22,4 + y22,1],
D32 = [y10,2 + y10,1, y14,4 − y14,1, y22,2 + y22,1], D33 = [y10,2 − y10,1, y18,3 + y18,1, y18,4 − y18,3],
D34 = [y16,4 − y16,2, y22,3 + y22,1, y24,3 + y24,2], D35 = [y4,4 + y4,2, y14,2 − y14,1, y18,3 − y18,1],
D36 = [y8,4 + y8,1, y14,2 + y14,1, y22,3 − y22,1], D37 = [y8,2 − y8,1, y12,4 − y12,1, y16,2 − y16,1],
D38 = [y2,4 + y2,1, y12,4 + y12,1, y24,2 + y24,1], D39 = [y4,3 − y4,1, y18,4 + y18,2, y24,4 − y24,1],
D40 = [y10,3 − y10,1, y10,4 − y10,3, y16,2 + y16,1], D41 = [y2,2 − y2,1, y10,2 + y10,1, y10,3 + y10,1],
D42 = [y4,3 + y4,1, y6,4 − y6,3, y10,2 − y10,1], D43 = [y8,3 − y8,2, y10,3 − y10,2, y16,3 + y16,1],
D44 = [y8,2 + y8,1, y10,4 + y10,1, y14,2 + y14,1], D45 = [y10,4 − y10,1, y14,2 − y14,1, y20,3 + y20,2],
D46 = [y2,4 + y2,2, 2y6,2, y16,3 − y16,1], D47 = [y2,3 − y2,1, y16,4 + y16,1, y24,4 + y24,1],
D48 = [y4,4 − y4,2, y10,4 + y10,2, y24,4 + y24,2], D49 = [y14,4 + y14,2, 2y20,2, y24,3 − y24,2],
D50 = [y2,3 − y2,2, y4,2 + y4,1, y16,4 − y16,1], D51 = [y2,2 + y2,1, 2y10,2, y22,4 − y22,2],
D52 = [y1,3 − y1,2, y1,3 + y1,2, y8,4 + y8,2], D53 = [y4,2 − y4,1, y6,2 − y6,1, y24,3 − y24,1],
D54 = [y1,3 − y1,1, y1,3 + y1,1, y6,4 + y6,2], D55 = [y6,3 − y6,1, y8,3 − y8,1, y20,2 − y20,1],
D56 = [y2,4 − y2,2, y8,4 − y8,2, y14,3 − y14,2], D57 = [y2,3 + y2,1, y18,4 − y18,1, y20,2 + y20,1],
D58 = [y6,2 + y6,1, y6,3 − y6,2, y14,4 − y14,2], D59 = [y4,2 + y4,1, y18,4 + y18,1, y20,4 + y20,2],
D60 = [y6,3 + y6,1, y14,3 + y14,2, y22,4 − y22,3], D61 = [y18,4 − y18,2, y22,4 + y22,2, y24,3 + y24,1],
D62 = [y4,2 − y4,1, y8,3 + y8,1, y24,4 − y24,2].

Table 1: Dl, 0 ≤ l ≤ 62

on y2i,r is 6, 1 ≤ i ≤ 12, r ∈ {3, 4}; the number of cyclotomic conditions on y1,t is 5,
t ∈ {1, 2, 3}.

For primes q ≡ 7 (mod 12) and 50023 ≤ q ≤ Q(3, 7), by computer search, we can
pick up appropriate elements of Cj , 1 ≤ j ≤ 25, such that they are consistent with the
mapping g given in Table 2.

On the other hand, elements of Cj do not have to be what they look like in Lemma
5.2. It’s enough to require each Cj, 1 ≤ j ≤ 25, is a representative system for the

cosets of C6,q
0 in F

∗
q, such that each ∆l, l ∈ Z125, is also a representative system for

the cosets of C6,q
0 in F

∗
q. If we allow Cj to vary among the multisets that satisfy the

required conditions, by the use of computer, we can also find appropriate elements of
Cj, 1 ≤ j ≤ 25, for primes q ≡ 7 (mod 12) and 43 < q < 50023. For example for p = 67,
we can take

C1 = {1,−1, 6,−6, 7,−7}, C2 = {1,−1, 2,−2, 4, 20},
C4 = {1,−1, 2,−2, 4, 11}, C6 = {1,−1, 17,−17, 12, 29},
C8 = {2,−2, 1,−1, 4, 32}, C10 = {1,−1, 30,−30, 12, 35},
C12 = {2,−2, 5,−5, 20, 4}, C14 = {1, 43, 13, 19, 4, 46},
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i 1 2 3 4 5 6 7 8 9 10 11 12

g(2y2i,1) 1 1 1 2 1 2 0 0 1 2 0 2

g(2y2i,2) 2 2 2 1 2 1 2 1 0 0 2 0

g(y2i,2 − y2i,1) 2 1 2 1 1 2 2 2 0 1 1 0

g(y2i,2 + y2i,1) 1 1 1 1 1 0 2 1 2 0 0 1

Table 2: the values of g for elements of Types (IV) and (V)

C16 = {1, 5, 13, 16, 31, 36}, C18 = {1, 3, 10, 44, 46, 33},
C20 = {1, 53, 17, 50, 63, 21}, C22 = {2, 37, 63, 4, 42, 9},
C24 = {2, 6, 53, 1, 35, 12}.

and C2i+1 = −C2i for 1 ≤ i ≤ 12. The interested reader may get a copy of these data
from the authors. ✷

Lemma 5.5 (Theorem 4.4 in [13]) There exists a (Z5 ×F
+
q ,Z5 ×{0}, 6, 1)-FDF for any

prime q ≡ 1 (mod 12) and q > 37.

Theorem 5.6 There exists a (F+
125 × F

+
q ,F

+
125 × {0}, 6, 1)-FDF for any prime q ≡ 1

(mod 12) and q > 37.

Proof By Lemma 5.5, there exists a (Z5 × F
+
q ,Z5 × {0}, 6, 1)-FDF for any prime q ≡ 1

(mod 12) and q > 37. Start from this FDF and then apply Construction 2.10 with a
homogeneous (F+

25, 6, 1)-DM to obtain a (Z5 ×F
+
q × F

+
25,Z5 ×{0} × F

+
25, 6, 1)-FDF. Note

that Z5 × F
+
25 is isomorphic to F

+
125. ✷

Theorem 5.7 (1) There exists a (125q+1, 6, 1)-RBIBD for any prime q ≡ 7 (mod 12)
and q > 43.

(2) There exists a 1-rotational (125q + 1, 6, 1)-RBIBD over F
+
125 × F

+
q for any prime

q ≡ 1 (mod 12) and q > 37.

Proof (1) For any prime q ≡ 7 (mod 12) and q > 43, by Theorem 5.4, there exists a
(Z125 × F

+
q ,Z125 × {0}, 6, 1)-FDF. Then apply Proposition 1.1 with a (126, 6, 1)-RBIBD

(a unital design (cf. [7])) to get a (125q + 1, 6, 1)-RBIBD.
(2) By Theorem 5.6, there exists a (F+

125×F
+
q ,F

+
125×{0}, 6, 1)-FDF for any prime q ≡ 1

(mod 12) and q > 37. Then apply Proposition 1.2 with a 1-rotational (126, 6, 1)-RBIBD
over F

+
125, which exists by Example 16.92 in [2], to get a 1-rotational (125q + 1, 6, 1)-

RBIBD over F+
125 × F

+
q . ✷

6 Applications

In this section we establish asymptotic existences for optimal constant composition codes
and strictly optimal frequency hopping sequences by the use of frame difference families
obtained in this paper.
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6.1 Partitioned difference families and constant composition codes

Let (G,+) be an abelian group of order g with a subgroup N of order n. A (G,N,K, λ)
partitioned relative difference family (PRDF ) is a family B = [B1, B2, . . . , Br] of G such
that the elements of B form a partition of G \N , and the list

∆B :=

r
⋃

i=1

[x− y : x, y ∈ Bi, x 6= y] = λ(G \N),

where K is the multiset {|Bi| : 1 ≤ i ≤ r}. When N = {0}, a (G, {0},K, λ)-PRDF
is called a partitioned difference family and simply written as a (G,K, λ)-PDF. The
members of B are called base blocks.

We often use an exponential notation to describe the multiset K: a (G,N, [ku1

1 ku2

2

· · · kul

l ], λ)-PRDF is a PRDF in which there are uj base blocks of size kj , 1 ≤ j ≤ l.

Proposition 6.1 If there exists an elementary (G,N, k, 1)-FDF with |N | = k − 1, then
there exists a (G, [(k − 1)1ks], k − 1)-PDF, where s = (|G| − k + 1)/k.

Proof Let F be an elementary (G,N, k, 1)-FDF with |N | = k − 1. Then F satisfies
⋃

F∈F,h∈N(F + h) = G \N . Set

B = {F + h : F ∈ F, h ∈ N} ∪ {N}.

Then B forms a (G, [(k − 1)1ks], k − 1)-PDF, where s = (|G| − k + 1)/k. ✷

Combining the results of Lemma 2.2, Theorems 4.5, 4.6, 4.7, 4.10 and Proposition
6.1, we have

Theorem 6.2 (1) There exists a (Z7 × F
+
89, [7

1877], 7)-PDF.

(2) There exists an (F+
p × F

+
q , [p

1(p+ 1)s], p)-PDF

– for any prime power p ≡ 3 (mod 4) and any prime power q ≡ 1 (mod p+ 1)
with q > Q((p+ 1)/2, p);

– for any prime power p ≡ 1 (mod 4) and any prime power q ≡ 1 (mod 2p+2)
with q > Q(p+ 1, p),

where s = p(q − 1)/(p + 1).

(3) Let p and p + 2 be twin prime powers satisfying p > 2. There exists an (F+
p ×

F
+
p+2 × F

+
q , [(p(p + 2))1(p(p + 2) + 1)s], p(p + 2))-PDF for any prime power q ≡ 1

(mod p(p + 2) + 1) and q > Q((p(p + 2) + 1)/2, p(p + 2)), where s = p(p + 2)(q −
1)/(p(p + 2) + 1).

(4) There exists a (Z2m−1 × F
+
q , [(2

m − 1)1(2m)s], 2m − 1)-PDF for any integer m ≥ 3
and any prime power q ≡ 1 (mod 2m) with q > Q(2m−1, 2m − 1), where s =
(2m − 1)(q − 1)/2m.

Partitioned difference families were explicitly introduced in [22] to construct optimal
constant composition codes, which can be used in the MFSK modulation of power line
communications (cf. [33]). For more information on partitioned difference families and
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its relationship with other topics such as zero-difference balanced functions (cf. [36]), the
interested reader may refer to [28]. We remark that recently M. Buratti [11] established a
construction for partitioned difference families by the use of Hadamard strong difference
families.

Let Q = {0, 1, . . . , q − 1} be an alphabet with q symbols. An (n,M, d, [ω0, ω1, . . . ,
ωq−1])q constant composition code (CCC) is a subset C ⊆ Qn with size M and minimum
Hamming distance d, such that the symbol i, i ∈ Q, appears exactly ωi times in each
codeword of C.

Since there is no essential difference among the symbols of Q, one often regards
[ω0, ω1, . . . , ωq−1] as a multiset and denotes it by [ku1

1 ku2

2 · · · kul

l ], where kj appears uj
times in [ω0, ω1, . . . , ωq−1], 1 ≤ j ≤ l. Let Aq(n, d, [ω0, ω1, . . . , ωq−1]) be the maximal size
of an (n,M, d, [ω0, ω1, . . . , ωq−1])q-CCC.

Proposition 6.3 [31] If nd− n2 + (ω2
0 + ω2

1 + · · ·+ ω2
q−1) > 0, then

Aq(n, d, [ω0, ω1, . . . , ωq−1]) ≤
nd

nd− n2 + (ω2
0 + ω2

1 + · · ·+ ω2
q−1)

. (6.1)

A constant composition code attaining the bound (6.1) is called optimal. The follow-
ing proposition indicates that optimal CCCs can be derived from PDFs.

Proposition 6.4 (Construction 6 in [22]) If a (G, [ku1

1 ku2

2 · · · kul

l ], λ)-PDF exists, then
there is an optimal (|G|, |G|, |G|−λ, [ku1

1 ku2

2 · · · kul

l ])q-CCC meeting the bound (6.1), where

q =
∑l

j=1 uj.

Applying Proposition 6.4 with PDFs from Theorem 6.2, we have

Theorem 6.5 (1) There exists an optimal (623, 623, 616, [71877])78-CCC.

(2) There exists an optimal (pq, pq, p(q − 1), [p1(p + 1)s])s+1-CCC

– for any prime power p ≡ 3 (mod 4) and any prime power q ≡ 1 (mod p+ 1)
with q > Q((p+ 1)/2, p);

– for any prime power p ≡ 1 (mod 4) and any prime power q ≡ 1 (mod 2p+2)
with q > Q(p+ 1, p),

where s = p(q − 1)/(p + 1).

(3) Let p and p + 2 be twin prime powers satisfying p > 2. There exists an optimal
(p(p + 2)q, p(p + 2)q, p(p + 2)(q − 1), [(p(p + 2))1(p(p + 2) + 1)s])s+1-PDF for any
prime power q ≡ 1 (mod p(p+2)+1) and q > Q((p(p+2)+1)/2, p(p+2)), where
s = p(p+ 2)(q − 1)/(p(p + 2) + 1).

(4) There exists an optimal ((2m−1)q, (2m−1)q, (2m−1)(q−1), [(2m−1)1(2m)s])s+1-
PDF for any integer m ≥ 3 and any prime power q ≡ 1 (mod 2m) with q >
Q(2m−1, 2m − 1), where s = (2m − 1)(q − 1)/2m.
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6.2 Frequency hopping sequences

Frequency hopping multiple-access has been widely used in the modern communication
systems such as ultrawideband, military communications and so on (cf. [24, 35]).

Let F = {f0, f1, . . . , fl−1} be a set (called an alphabet) of l ≥ 2 available frequencies.
A sequence X = {x(t)}n−1

t=0 is called a frequency hopping sequence (FHS) of length n over
F if x(t) ∈ F for any 0 ≤ t ≤ n− 1.

For any FHS X = {x(t)}n−1
t=0 , the partial Hamming autocorrelation function of X for

a correlation window length L starting at j is defined by

HX,X(τ ; j|L) =

j+L−1
∑

t=j

h[x(t), x(t + τ)], 0 ≤ τ ≤ n− 1, (6.2)

where 1 ≤ L ≤ n, 0 ≤ j ≤ n − 1, h[a, b] = 1 if a = b and 0 otherwise, and the addition
is performed modulo n. If L = n, the partial Hamming correlation function defined in
(6.2) becomes the conventional periodic Hamming correlation (cf. [27]).

For any FHS X = {x(t)}n−1
t=0 and any given 1 ≤ L ≤ n, define

H(X;L) = max
0≤j<n

max
1≤τ<n

{HX,X(τ ; j|L)}.

Proposition 6.6 [18] Let X be an FHS of length n over an alphabet of size l. Then,
for each window length L with 1 ≤ L ≤ n,

H(X;L) ≥

⌈

L

n

⌈

(n− ǫ)(n+ ǫ− l)

l(n− 1)

⌉⌉

, (6.3)

where ǫ is the least nonnegative residue of n modulo l.

Let X be an FHS of length n over an alphabet F . It is said to be strictly optimal if
the bound (6.3) in Proposition 6.6 is met for any 1 ≤ L ≤ n.

Proposition 6.7 (Theorem 3.7 in [6]) Let k and v be positive integers satisfying k +
1|v − 1. Then there exists a strictly optimal FHS of length kv over an alphabet of size
(kv+1)/(k+1) if and only if there exists an elementary (kv, k, k +1, 1)-FDF over Zkv.

Combining the results of Lemma 2.2, Theorems 4.5, 4.6, 4.7, 4.10 and Proposition
6.6, we have the following theorem. Note that to apply Proposition 6.6, the needed FDFs
must be defined on a cyclic group.

Theorem 6.8 (1) There exists a strictly optimal FHS of length 623 over an alphabet
of size 78.

(2) There exists a strictly optimal FHS of length pq over an alphabet of size (pq +
1)/(p + 1)

– for any prime p ≡ 3 (mod 4) and any prime q ≡ 1 (mod p + 1) with q >
Q((p + 1)/2, p);

– for any prime p ≡ 1 (mod 4) and any prime q ≡ 1 (mod 2p + 2) with q >
Q(p+ 1, p).
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(3) Let p and p + 2 be twin primes. There exists a strictly optimal FHS of length
p(p+2)q over an alphabet of size (p(p+2)q+1)/(p(p+2)+1) for any prime q ≡ 1
(mod p(p+ 2) + 1) and q > Q((p(p + 2) + 1)/2, p(p + 2)).

(4) There exists a strictly optimal FHS of length (2m − 1)q over an alphabet of size
((2m − 1)q + 1)/2m for any integer m ≥ 3 and any prime q ≡ 1 (mod 2m) with
q > Q(2m−1, 2m − 1).

7 Concluding remarks

By a careful application of cyclotomic conditions attached to strong difference fami-
lies, this paper establishes (asymptotic) existences of several classes of frame difference
families, which are used to derive new resolvable balanced incomplete block designs,
new optimal constant composition codes and new strictly optimal frequency hopping
sequences.

We believe that starting from those CCCs or FHSs obtained in Section 6, and ap-
plying appropriate known recursive constructions in the literature, one can obtain more
new existence results on them. For example, by Construction 3 in [28] and via similar
technique in the proof of Theorems 18 and 19 in [28], one can obtain more new PDFs,
which can yield new CCCs; apply Theorem 6.8 in [6] to obtain more new FHSs, and so
on.

Frame difference families can be seen as special resolvable difference families (cf.
[8,16]). By using a (44, 4, 5, 2) resolvable difference family, which is not a frame difference
family, M. Buratti, J. Yan and C. Wang [16] presented the first example of a (45, 5, 2)-
RBIBD. Thus an interesting future direction is to establish constructions, especially
direct constructions, for resolvable difference families.

Most of our results in this paper rely heavily on existences of elements satisfying
certain cyclotomic conditions in a finite field, and Theorem 3.1 just supplies us a way to
ensure existences of such elements. We remark that recently X. Lu improved the lower
bound on q in Theorem 3.1 in some circumstances (see Theorem 3 in [30]). He intro-
duced an existence bound L(d, t) for elements x that satisfies the following cyclotomic
conditions:

i) x ∈
⋃

i∈U(Zd)
Cd,q
i , where U(Zd) is the set of all units in Zd;

ii) xd−cj (ajx+ bj) ∈ Cd,q
0 for 1 ≤ j ≤ t− 1.

One possible development of this paper could be to find suitable constructions that use
his result.
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