
HAL Id: hal-01990394
https://hal.science/hal-01990394

Submitted on 10 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial interpolation of the generalized
Diffie–Hellman and Naor–Reingold functions

Thierry Mefenza, Damien Vergnaud

To cite this version:
Thierry Mefenza, Damien Vergnaud. Polynomial interpolation of the generalized Diffie–Hellman and
Naor–Reingold functions. Designs, Codes and Cryptography, 2019, 87 (1), pp.75-85. �10.1007/s10623-
018-0486-1�. �hal-01990394�

https://hal.science/hal-01990394
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Polynomial Interpolation of the Generalized Diffie-Hellman
and Naor-Reingold Functions

Thierry Mefenza · Damien Vergnaud

the date of receipt and acceptance should be inserted later

Abstract In cryptography, for breaking the security of the Generalized Diffie-
Hellman and Naor-Reingold functions, it would be sufficient to have polynomials
with small weight and degree which interpolate these functions. We prove lower
bounds on the degree and weight of polynomials interpolating these functions for
many keys in several fixed points over a finite field.

Keywords. Naor-Reingold function, Generalized Diffie-Hellman function, polyno-
mial interpolation, finite fields.

MSC2010. 11T71, 94A60

1 Introduction

The security of most cryptographic protocols relies on some unproven compu-
tational assumption which states that a well-defined computational problem is
intractable (i.e. cannot be solved by a Turing machine in polynomial time). In
group-based cryptography, we generally consider a cyclic group G (denoted mul-
tiplicatively) generated by some element g and the so called computational Diffie-

Hellman assumption states that it is difficult to compute the element gxy from
known elements gx and gy (for x and y picked uniformly at random between 1
and the order G). This assumption is the basis of the Diffie-Hellman key exchange
[1] and the most efficient means known to solve this computational problem in
groups used for cryptography is to solve the standard discrete logarithm problem
(i.e. given h an element picked uniformly at random in G, compute x such that
gx = h). Unfortunately, even the computational Diffie-Hellman assumption by it-
self is generally not sufficient to assess the security of protocols proposed and used
in group-based cryptography. Cryptographers have then proposed much stronger
assumptions in order to analyze the security of cryptosystems. For instance, the
decision Diffie-Hellman assumption [2] states that given a cyclic group G given
some elements g, gx and gy, no efficient algorithm can distinguish between gxy
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and an element picked uniformly at random in G. This assumption has been used
in numerous important cryptographic applications.

In 1997, based on the decision Diffie-Hellman assumption, Naor and Rein-
gold [3,4] proposed an efficient pseudo-random function family (i.e. a collection
of functions that can be evaluated in polynomial time using a secret-key but for
which no polynomial-time algorithm can distinguish (with significant advantage)
between a function chosen randomly from the family and a truly random func-
tion). Their function takes inputs in {0, 1}n (for some parameter n) and outputs
an element in a group G of prime order ` with generator g. The secret key is an n-
dimensional vector a = (a1, . . . , an) ∈ ((Z/`Z)∗)n and the Naor-Reingold function
is defined as

fa : {0, 1}n −→ G
(x1, . . . , xn) 7−→ fa(x1, . . . , xn) = g

∏n
i=1 a

xi
i mod `

To simplify the notation, given an n-dimensional vector a = (a1, . . . , an) ∈ ((Z/`Z)∗)n

and a variable x that will denote indifferently an n-bit string (x1, . . . , xn) ∈ {0, 1}n
or an integer x ∈ {0, 1, . . . , 2n − 1} (which implicitly defines (x1, . . . , xn) ∈ {0, 1}n
the bit representation of x with extra leading zeros if necessary), we denote ax the
element in F` = (Z/`Z) defined by ax = ax1

1 · · · a
xn
n mod `. In addition, when the

generator g is fixed, we will denote [x] = gx for any x ∈ F`. With this notation,
the Naor-Reingold function is simply defined by fa(x) = ga

x

= [ax].
It is shown in [3,4] that the Naor-Reingold function is pseudo-random if the

decision Diffie-Hellman assumption holds in the group G. Two interesting candi-
dates for G are a subgroup of the multiplicative group of a (prime) finite field and
a subgroup of the points of an elliptic curve defined over a finite field.

With the development of pairing-based cryptography, new assumptions in
cyclic groups G were proposed to base the security of more complex or more
efficient protocols. Joux [5] notably constructed a one-round tripartite key ex-
change whose security requires the tripartite decision Diffie-Hellman assumption (or
decision “Triffie-Hellman” assumption) which states that given group1 elements g,
gx, gy and gz no efficient algorithm can distinguish between gxyz and an element
picked uniformly at random in G. Many generalizations of the decision Diffie-
Hellman assumption were proposed (e.g. [6,7]) and can be stated as follows: given
an integer n and some specific values of the Naor-Reingold function, no efficient
algorithm can distinguish another value of the Naor-Reingold function from an el-
ement picked uniformly at random in G. A salient example is the n-partite decision

Diffie-Hellman assumption: given some elements g, ga1 , . . . , gan no efficient algo-
rithm can distinguish between ga1...an and an element picked uniformly at random
in G.

Prior work. In order to refute the computational Diffie-Hellman assumption, it
would be sufficient to know a bivariate polynomial f(X1, X2) over a finite field of
small degree or of small weight (i.e. a small number of its non-zero coefficients)
over a finite field satisfying f([x], [y]) = [xy], for all pairs (x, y) ∈ S for a large
subset S ⊆ {0, . . . , ` − 1}2, where ` is the order of g. Lower bounds on the degree
and the weight of such polynomials have been obtained (see [8–11] and references

1 Actually, the security of Joux’s key exchange relies on the stronger decision bilinear Diffie-
Hellman assumption in groups equipped with a bilinear map. This assumption implies the
tripartite decision Diffie-Hellman assumption in the so-called target group of the bilinear map.
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therein). For the decision Diffie-Hellman assumption, it would be sufficient to know
a trivariate polynomial f(X1, X2, X3) over a finite field of small weight (even if it
is of high degree) satisfying: f([x], [y], [xy]) = 0, for all pairs (x, y) ∈ S for a large
subset S ⊆ {0, . . . , `− 1}2. Typically, the complexity of a polynomial is measured
by its degree, but a more accurate complexity measure could also be the number
of monomials (or weight). Lower bounds on degree of polynomials interpolating
Diffie-Hellman triples are also known (see [11] and references therein) but there is
no result on the weight of such polynomials.

Several number-theoretic properties and complexity measures have been stud-
ied for the Naor-Reingold pseudo-random functions over finite fields as well as over
elliptic curves: distribution (see [12,13] and references therein), period (see [14]),
linear complexity (see [15–18]) and non-linear complexity (see [19]). Recently [20],
the authors of the present paper proved lower bounds on the degree of polynomi-
als interpolating the Naor-Reingold pseudo-random function at several points for
fixed keys (over a finite field and over the group of points on an elliptic curve over
a finite field). They left open the problem to give lower bounds on the degree of
general multivariate polynomials that interpolate the Naor-Reingold function in
several fixed points for many keys. The main goal of this paper is to give such
lower bounds for the Naor-Reingold and the generalized Diffie-Hellman functions
over a finite field (e.g. given ga1 , . . . , gan ∈ G, distinguish between ga1...an from an
element picked uniformly at random in G [7] and other problems from the ma-

trix Diffie-Hellman framework [?]). We prove that polynomials interpolating these
functions (implicitly or explicitly) on a large set have degree and weight in `O(1)

(i.e. exponential in the so-called security parameter in the cryptographic context).

Our contributions. In order to break the security of the Naor-Reingold pseudo-
random function, it would be sufficient to have an efficiently computable k-variate
polynomial f(X1, . . . , Xk) over a finite field (of low weight) satisfying:

f
(

[ax
1

], . . . , [ax
k

]
)

= [ax
k+1

],

for all a = (a1, . . . , an) ∈ S for a large subset S ⊆ (F∗` )
n, for some k ≥ 1 and for

some known values x1, . . . , xk+1 ∈ {0, · · · , 2n − 1}. One can easily see that this
polynomial interpolation is a generalization of the polynomial interpolation of the
computational Diffie-Hellman assumption in the case n = 2, k = 2, x1 = (1, 0),
x2 = (0, 1) and x3 = (1, 1). Adapting the known lower bounds on the polynomial
interpolation on the discrete logarithm and the Diffie-Hellman Problem in sub-
groups of the multiplication group of a finite field (e.g. [21–25,10,11] and references
therein), we prove that a low-weight multivariate polynomial cannot reveal infor-
mation on the functions values. Using the same methods, we also prove that no low
weight polynomial f over a finite field can satisfy: f([a1], . . . , [an], [a1 . . . an]) = 0,
for all a = (a1, . . . , an) ∈ S for a large subset S ⊆ (F∗` )

n. In particular, for n = 2,
this means that a low weight polynomial cannot break the decision Diffie-Hellman
assumption.

2 Preliminaries

Let p be an odd prime number and q a prime power of p. We denote by Fp the finite
field with p elements and the elements of Fp are identified with the set of integers
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{0, · · · , p− 1} and Fq an extension of the prime finite field Fp. Given g ∈ F∗q with
prime order ` (with ` | q − 1) we can consider the Naor-Reingold pseudo-random
function defined over G = 〈g〉: fa(x) = ga

x

= [ax] ∈ G ⊂ F∗q , for a secret key
a = (a1, . . . , an) ∈ (F∗` )

n where as above x will denote indifferently an n-bit string
(x1, . . . , xn) ∈ {0, 1}n or an integer x ∈ {0, 1, . . . , 2n − 1} (with x =

∑n
i=1 xi2

i−1).

In the following, we will use the following lemmas (see [10]) where the weight

w(f) (or sparsity) of a polynomial f(X1, . . . , Xn) ∈ Fq[X1, . . . , Xn] is the number
of its non-zero coefficients.

Lemma 1 [[10]] Let D be an integral domain, n ∈ N and f ∈ D[X1, . . . , Xn] a poly-

nomial of total degree d with at least N zeros in Tn with components in T . If f is not

the zero polynomial, then we have

d ≥ N

|T |n−1
.

Lemma 2 [[10]] Let γ ∈ Fq be an element of order d, G the group generated by γ, n

a positive integer, and f ∈ Fq[X1, . . . , Xn] be a nonzero polynomial of local degree at

most d−1 in each variable with at least N zeros in Gn. If f is not the zero polynomial,

then we have

w(f) ≥ dn

dn −N .

3 Polynomial Interpolation

In this section, q is a prime power, n is an integer and g ∈ F∗q is an element of
prime order ` (with ` | q − 1). We prove results on the multivariate polynomial
interpolation of the Naor-Reingold functions over a finite field and generalized
Diffie-Hellman problems. We consider polynomials that interpolate values of these
functions for fixed values in {0, · · · , 2n − 1} and a large set of keys. First, we
consider an interpolation by a polynomial with k variables, with k ≤ n.

Theorem 1 Let 1 ≤ k ≤ n be an integer. Let S ⊆ (F∗` )
n, with |S| = (` − 1)n − s

with |S| > k(`− 1)n−1. Let x1, . . . , xk+1 ∈ {1, · · · , 2n− 1} be pairwise distinct and let

f ∈ Fq[X1, . . . , Xk], be a polynomial satisfying:

f
(

[ax
1

], . . . , [ax
k

]
)

= [ax
k+1

], for all a = (a1, . . . , an) ∈ S. (1)

If the elements xi, i ∈ {1, . . . , k} seen as vectors over Fn2 are linearly independent over

F2, then:

deg(f) ≥ `− 1

2
− s

(`− 1)n−1

and if degXi
(f) ≤ `−1

2 , for all i ∈ {1, . . . , n}, we have

w(f) ≥ `k/2

21/2(`k − (`− 1)k + 2s/(`− 1)n−k)1/2
.

In particular, for s = o(`n), we have deg(f) = Ω(`) and and if degXi
(f) ≤ `−1

2 ,

for all i ∈ {1, . . . , n}, we have w(f) = Ω(`k/2).
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Proof For any i ∈ {1, . . . , k+ 1}, we denote xi = xi1 . . . x
i
n its binary representation

and put x̃i = xi1 . . . x
i
k0 . . . 0 which is obtained from xi by considering the k first

positions of its binary representation and replacing the n − k last positions by 0.
We suppose without loss of generality that the elements x̃i, i ∈ {1, . . . , k} seen as
vectors over Fn2 are linearly independent over F2.

Since |S| > k(`− 1)n−1, we have w(f) ≥ 2 by the following claim:

Claim If w(f) = 1 then (1) holds for at most k(`− 1)n−1 keys a ∈ (F∗` )
n.

Proof If w(f) = 1, then f is a monomial and there exists (α1, . . . , αk) ∈ {0, . . . , `−
1}k such that α1a

x1

+ · · · + αka
xk

= ax
k+1

mod ` (where f is the monomial
f(X1, . . . , Xk) = Xα1

1 . . . Xαk

k ). We prove by induction on k that the number of

a ∈ (F∗` )
n such that α1a

x1

+ · · ·+ αka
xk

= ax
k+1

does not exceed k(`− 1)n−1 .

1. For k = 0, the equation ax
k+1

= 0 has no solution and the statement is clearly
true.

2. Otherwise, because xk+1 6= xk, there exists j such that the j-th component
of xk+1 is different from the j-th component of xk. Then the above equation
can be written in the form A = Baj where A and B do not depend on aj . If
B 6= 0, then for any vector (a1, · · · , aj−1, aj+1, · · · , an) ∈ (F∗` )

n−1, the value
of aj is defined uniquely. If B = 0, then A = 0 and by induction, the number
of (a1, · · · , aj−1, aj+1, · · · , an) ∈ (F∗` )

n−1 does not exceed (k − 1)(` − 1)n−2.
Therefore, the number of solutions does not exceed (k − 1)(` − 1)n−1 + (` −
1)n−1 = k(`− 1)n−1, and the result follows.

There is some t ∈ {1, . . . , n} such that xk+1
t = 1 and let T0 = {i : xit = 1} ⊆

{1, . . . , k} that we denote T0 = {i1, . . . , iv}, with ij < ij+1 for j ∈ {1, . . . , v − 1}.
Let

W =

{
a ∈ (F∗` )

n :
a = (a1, . . . , an) ∈ S
and (a1, . . . , at−1, 2at, at+1, . . . , an) ∈ S

}
,

then by the the union bound, |W | ≥ (` − 1)n − 2s. By the pigeonhole principle,
there exists (bk+1, . . . , bn) ∈ (F∗` )

n−k such that the set

T = {(a1, . . . , ak) ∈ (F∗` )
k : a′ = (a1, . . . , ak, bk+1, . . . , bn) ∈W}

satisfies |T | ≥ (` − 1)k − 2s/(` − 1)n−k. For all a0 = (a1, . . . , ak) ∈ T , putting
a′ = (a1, . . . , ak, bk+1, . . . , bn), we have:

f
(

[a′x1

], . . . , [a′xk

]
)

= [a′xk+1

]

f
(

[a′x1

], . . . , [a′xi1−1

], [2a′xi1

], [a′xi1+1

], . . .

. . . , [ax
iv−1

], [2ax
iv

], [ax
iv+1

], . . . , [ax
n

]
)

= [2a′xk+1

]

Since the elements x̃i, i ∈ {1, . . . , k} seen as vectors over Fn2 are linearly independent
over F2, one can verify that the set

T1 =

{(
[a′x1

], . . . , [a′xk

]

)
∈ (F∗q)k : a′ = (a0, bk+1, . . . , bn) ∈W, anda0 ∈ T

}
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is of the same cardinality as T . Hence the polynomial

F (X1, . . . , Xk) = f(X1, . . . , X
2
i1 , . . . , . . . , X

2
iv , . . . , Xk)− f2(X1, . . . , Xk)

has at least |T | ≥ (`− 1)k − 2s/(`− 1)n−k zeros. Since w(f) ≥ 2, one can see that
F is a nonzero polynomial and degF ≤ 2 deg f . By Lemma 1, we obtain:

deg(f) ≥ `− 1

2
− s

(`− 1)n−1
.

Furthermore if degXi
(f) ≤ `−1

2 , for all i ∈ {1, . . . , n}, and since w(F ) ≤ 2w(f)2,
then by applying Lemma 2 we have:

w(f) ≥ `k/2

21/2(`k − (`− 1)k + 2s/(`− 1)n−k)1/2
.

Remark 1 The previous proof uses only the fact that the x̃i are linearly independent
and we need this assumption to prove that the set T1 has the same cardinality as
T . Note that if x̃i = 2n+i−k−1 for i ∈ {1, . . . , k}, then the set T1 is of the same
cardinality as T and Theorem 1 holds. Theorem 1 is more general and applies to
numerous settings. For instance for k = 3, x̃1 = 1000 . . . 0, x̃2 = 1100 . . . 0 and
x̃3 = 1010 . . . 0, the set T1 is of the same cardinality as T and the vectors x̃1, x̃2, x̃3

are linearly independent.

Remark 2 In Equation (1), if we replace each [ax
i

] by Xi, for i ∈ {1, . . . , k + 1},
the polynomial f(X1, . . . , Xk)−Xk+1 has k+ 1 indeterminates and has at least N
zeros in Gk+1, where N is the cardinality of the set{

(ax
1

, . . . ,ax
k+1

) ∈ (F∗` )
k+1 : a ∈ S

}
.

We do not know a lower bound on N but obviously we have N ≤ (` − 1)k+1. By
applying Lemma 1, we obtain

deg(f) ≥ N

(`− 1)k
.

If the vectors xi, for i ∈ {1, . . . , k} are linearly independent, then N ≥ (` − 1)n.
Thus we have n ≤ k+ 1 and deg(f) ≥ (`− 1)n−k. The result is non-trivial only for
k = n−1 (and in this case we obtain deg(f) ≥ `−1) but is much less general than
Theorem 1.

Remark 3 Note that all the previous results on the polynomial interpolation of the
Diffie-Hellman function dealt with k = n = 2, x1 = 10, x2 = 01 and x3 = 11 while
our results are more general and holds for many k, n and xi, for i ∈ {1, . . . , k}. In
the special case, k = n = 2, x1 = 10, x2 = 01, x3 = 11 and s = o(`n), Mahassni
and Shparlinski obtained in [8] the bound deg(f) ≥ `/128 while we obtain the
bound deg(f) ≥ `/2. The remainding theorems of the paper cannot be compared
with the known results on the polynomial interpolation of the Diffie-Hellman map
(since k > n).

Now we consider an interpolation by a polynomial with k variables and k > n

with some technical conditions on the input values xi ∈ {0, · · · , 2n − 1} for i ∈
{1, . . . , k}.
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Theorem 2 Let k > n be some integer. Let S ⊆ (F∗` )
n, with |S| = (` − 1)n − s. Let

x1, . . . , xk+1 ∈ {0, · · · , 2n−1} be pairwise distinct such that x1 = 2n−1 = (1, 0, . . . , 0),

xk+1
1 = 1 and xi1 = 0 for i ∈ {2, . . . , k} and let f ∈ Fq[X1, . . . , Xk], with k > n be a

polynomial satisfying:

f
(

[ax
1

], . . . , [ax
k

]
)

= [ax
k+1

], for all a = (a1, . . . , an) ∈ S.

We have

deg(f) ≥ `− 1

2
− s

(`− 1)n−1
.

Proof Let W be the set of vectors a ∈ (F∗` )
n such that a = (a1, . . . , an) ∈ S,

(a1 + 1, . . . , an) ∈ S and a′ = (1, a2, . . . , an) satisfies a′xk+1

6= α mod ` for all
α ∈ {1, . . . , d}, where d denotes the degree of f .

Claim We have

|W | ≥ (`− 1)n − 2s− deg(f)(`− 1)n−1.

Proof It is worth noting that, since k > n, we cannot prove Theorem 2 in the same
way as we proved Theorem 1. Let α ∈ {1, . . . , d}, the number of a ∈ (F∗` )

n such

that a′xk+1

= α mod ` does not exceed (`− 1)n−1.
Indeed, since xk 6= x1, there exists j ∈ {2, . . . , n} such that xk+1

j = 1, then

for any vector (a1, . . . , aj−1, aj+1, · · · , an) ∈ (F∗` )
n−1, the value of aj is defined

uniquely by this equation. Since the number of vectors a = (a1, . . . , an) ∈ S such
that (a1 + 1, . . . , an) /∈ S does not exceed s, the result follows.

By the pigeonhole principle, there exists b = (1, b2, . . . , bn) ∈ (F∗` )
n such that the

set

T = {a1 ∈ F` : a = (a1, b2, . . . , bn) ∈W}

satisfies |T | ≥ ` − 1 − deg(f) − 2s
(`−1)n−1 . Then for all a1 ∈ T , putting a =

(a1, b2, . . . , bn), we have:

 f
(

[a1], [bx
2

] . . . , [bx
k

]
)

= [ax
k+1

]

f
(

[a1 + 1], [bx
2

], . . . , [bx
k

]
)

= [(a1 + 1, b2, . . . , bn)x
k+1

] = [bx
k+1

].[ax
k+1

]

We have for all a1 ∈ T

f
(
g.[a1], [bx

2

], . . . , [bx
k

]
)
− [bx

k+1

]f
(

[a1], [bx
2

] . . . , [bx
k

]
)

= 0

and the polynomial

F (X) = f
(
gX, [bx

2

], . . . , [bx
k

]
)
− [bx

k+1

]f
(
X, [bx

2

] . . . , [bx
k

]
)

has at least `− 1− deg(f)− 2s
(`−1)n−1 zeros.

The polynomial f(X, [bx
2

], . . . , [bx
k

]) is a nonzero polynomial by the first equa-
tion of the previous system and has degree smaller than deg(f). Let d0 its degree,

then bx
k+1

6= d0 mod ` by construction of W and it follows that the leading
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monomial of F is nonzero which implies that the polynomial F is nonzero. We
also have deg(F ) ≤ deg(f) and hence, by Lemma 1, we obtain:

deg(f) ≥ `− 1− deg(f)− 2s

(`− 1)n−1
,

and the result follows.

Remark 4 The technical condition on x1 seems necessary since using another x1,
we obtain the polynomial

F (X) = f
(
X2, [bx

2

], . . . , [bx
k

]
)
− f2

(
X, [bx

2

] . . . , [bx
k

]
)
,

and it is unknown how to show that this polynomial is nonzero (without adding
new technical conditions on the b’s and thus on the a’s).

Theorem 2 can be applied to give lower bounds on the degree of interpolating
polynomials for several generalized Diffie-Hellman problems (with k > n variables)
from [7].

Since the weight of a polynomial is a more discerning complexity estimate,
we now prove a lower bound on the weight of an interpolation by a polynomial
with k variables and k > n (and without any condition on the input values xi ∈
{0, · · · , 2n − 1} for i ∈ {1, . . . , k}).

Theorem 3 Let k > n be some integer. Let S ⊆ (F∗` )
n, with |S| = (` − 1)n − s. Let

x1, . . . , xk+1 ∈ {1, · · · , 2n − 1} be pairwise distinct and let f ∈ Fq[X1, . . . , Xk] be a

polynomial satisfying:

f
(

[ax
1

], . . . , [ax
k

]
)

= [ax
k+1

], for all a = (a1, . . . , an) ∈ S,

for some different values x1, . . . , xk+1 ∈ {1, · · · , 2n − 1}. Then

w(f) ≥

(
`− 3− s

(`−1)n−1

2 + 2k + s
(`−1)n−1

)1/2

.

Proof Let I = {i ∈ {1, . . . , k} : xin = 1} that we denote I = {i1, . . . , iv} with
i1 < i2 < · · · < iv. Let A = {αi = (α1

i , . . . , α
v
i ) ∈ {0, . . . ,deg(f)}v} be a set of

cardinality at most w(f) which will be given explicitly later in the proof and WA

be the set of vectors a ∈ (F∗` )
n such that:

1. a = (a1, . . . , an) ∈ S
2. a satisfies α1

ia
xi1−1 + · · ·+ αvi a

xiv−1 6= ax
k+1−1 for all αi ∈ A

Claim We have |WA| ≥ (`− 1)n − T0, where T0 = s+ w(f)k(`− 1)n−1.

Proof For a fixed tuple αi ∈ A, by proceeding exactly as in the proof of Claim 1

one can prove by induction in v that the number of a ∈ (F∗` )
n such that α1

ia
xi1−1+

· · ·+ αvi a
xiv−1 6= ax

k+1−1 does not exceed v(`− 1)n−1. Since the cardinality of A
is at most w(f) and v ≤ k, we thus have |WA| ≥ |S| − kw(f)(`− 1)n−1.
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There exists by the pigeonhole principle b = (b1, . . . , bn−1, 1) ∈ (F∗` )
n such that

T = {an ∈ F` : a = (b1, . . . , bn−1, an) ∈WA}

satisfies |T | ≥ `− 1− T0

(`−1)n−1 . Then for all an ∈ T , we have:

f
(

[bx
1

], . . . , [bx
i1−1

], [bx
i1
an], [bx

i1+1

], . . .

. . . , [bx
iv−1

], [bx
iv−1an], [bx

iv+1

], . . . , [bx
k

]
)

= [bx
k+1−1an].

Let

H(X) = f

(
[bx

1

], . . . , [bx
i1−1

], Xbxi1−1

, [bx
i1+1

], . . .

. . . , , [bx
iv−1

], Xbxiv−1

, [bx
iv+1

], . . . , [bx
k

]

)
−Xbxk+1−1

and K(X) the polynomial obtained from H(X) by reducing the exponents of every
monomial modulo `. If we choose A to be the set of vectors obtained from the mul-
tivariate polynomial f by considering the monomials with variables Xi1 , . . . , Xiv
from each monomial of f , then A is of cardinality at most w(f) and does not
depend on b. One can see that K(X) is a nonzero polynomial by the choice of b

and has degree less than ` with at least |T | zeros. Hence by Lemma 2, we obtain:

w(f) + 1 ≥ w(K) ≥ `

1 + T0

(`−1)n−1

,

and (w(f) + 1)
(
2(`− 1)n−1 + s+ w(f)k(`− 1)n−1

)
≥ (`− 1)n. We thus have:

w(f)2
(

2(`− 1)n−1 + s+ 2k(`− 1)n−1
)
≥ (`− 1)n − 2(`− 1)n−1 − s,

and the result follows.

Theorem 3 gives a lower bound on the weight of explicit polynomials inter-
polating the Naor-Reingold pseudo-random function and it immediately gives a
lower bound on the weight of explicit polynomials interpolating the n-partite Diffie-
Hellman problem by some well chosen inputs:

Corollary 1 Let S ⊆ (F∗` )
n, with |S| = (`− 1)n − s.

Let f ∈ Fq[X1, . . . , Xn] be a polynomial satisfying f([a1], . . . , [an]) = [a1 . . . an] for all

a = (a1, . . . , an) ∈ S. We have

w(f) ≥

(
`− 3− s

(`−1)n−1

2 + 2n+ s
(`−1)n−1

)1/2

.

The next theorem extends the previous approach and gives a lower bound
on the weight of implicit polynomials interpolating the generalized Diffie-Hellman
problem.
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Theorem 4 Let S ⊆ (F∗` )
n, with |S| = (`− 1)n − s.

Let f ∈ Fq[X1, . . . , Xn+1] be a polynomial satisfying:

f([a1], . . . , [an], [a1 . . . an]) = 0, for all a = (a1, . . . , an) ∈ S,

then

w(f) ≥
(

`(`− 1)n−1

2(`− 1)n−1 + s

)1/2

.

Proof Let (α, β) ∈ {0, . . . ,deg(f)}2} with (α, β) 6= (0, 0).
Let A = {(α′, β′) ∈ {0, . . . ,deg(f)}2} be a set of cardinality at most w(f) with
(α, β) /∈ A and let WA be the set of vectors a ∈ (F∗` )

n such that:

1. a = (a1, . . . , an) ∈ S
2. a satisfies α+ β(a2 . . . an) 6= α′ + β′(a2 . . . an) mod ` for all (α′, β′) ∈ A

Claim We have |WA| ≥ (`− 1)n − s− w(f)(`− 1)n−1.

Proof Given (α′, β′) ∈ A, the number of a ∈ (F∗` )
n such that

α+ β(a2 . . . an) = α′ + β′(a2 . . . an) mod `

does not exceed (`− 1)n−1. Indeed, we have

α− α′ + (β − β′)(a2 . . . an) = 0 mod `,

and we can easily see that β−β′ 6= 0 mod ` (since otherwise, we have α−α′ = 0
mod `). Therefore, for any vector (a1, a3, · · · , an) ∈ (F∗` )

n−1, the value of a2 is
defined uniquely.

Since the total number of couples (α′, β′) does not exceed w(f), the number of
a ∈ S such that a /∈WA does not exceed w(f)(`− 1)n−1.

There exists by the pigeonhole principle b = (b2, . . . , bn) ∈ (F∗` )
n−1 such that

T = {a1 ∈ F` : a = (a1, b) ∈WA} satisfies |T | ≥ `− 1− w(f)− s
(`−1)n−1 . Then for

all a1 ∈ T , we have:

f([a1], [b2], . . . [bn], [a1b2 . . . bn]) = 0.

Let H(X) = f(X, [b2], . . . [bn], Xb2...bn) and K(X) the polynomial obtained from
H(X) by reducing the exponents of every monomial modulo `. If we choose A

independent of b and of cardinality at most w(f), as in the proof of Theorem 3
(but this time with variables X1 and Xn+1) , then K(X) is not a zero polynomial
by the choice of b and has degree less than ` with at least |T | zeros. Hence by
Lemma 2, we obtain:

w(f) ≥ w(K) ≥ `

1 + w(f) + s
(`−1)n−1

,

and the result follows.
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4 Conclusion

In this paper, we proved lower bounds on the degree of multivariate polynomial
representations of the Naor-Reingold function in several fixed points for many keys
over a finite field. We also proved such bounds on the generalized Diffie-Hellman
function over a finite field. It is interesting to extend these results to the group
of rational points of an elliptic curve over a finite field. Using techniques from
[20], one can extend the results of Theorem 2 to this setting but is unclear how
to adapt the techniques from Theorem 1, Theorem 3, and Theorem 4 for elliptic
curves. Another natural open problem is to generalize our bounds to a smaller set
of keys.
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15. D. Gómez, J. Gutierrez, A. Ibeas, On the linear complexity of the Naor-Reingold sequence.,
Inf. Process. Lett. 111 (17) (2011) 854–856.

16. I. E. Shparlinski, Linear complexity of the Naor-Reingold pseudo-random function, Inf.
Process. Lett. 76 (3) (2000) 95–99.

17. I. E. Shparlinski, J. H. Silverman, On the linear complexity of the Naor-Reingold pseudo-
random function from elliptic curves, Des. Codes Cryptography 24 (3) (2001) 279–289.



12 Thierry Mefenza, Damien Vergnaud
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