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Abstract We study the combinatorial function L(k, q), the maximum number of nonzero
weights a linear code of dimension k overFq can have.We determine it completely for q = 2,
and for k = 2, and provide upper and lower bounds in the general case when both k and q
are ≥ 3. A refinement L(n, k, q), as well as nonlinear analogues N (M, q) and N (n, M, q),

are also introduced and studied.

Keywords Linear codes · Hamming weight · Perfect difference sets
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1 Introduction

There are several problems in extremal combinatorics on distances in codes. For instance,
the famous paper [5] derives an upper bound on the size of a code C over Fq with exactly s
distinct distances:
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|C | ≤
s∑

j=0

(
n

j

)
(q − 1) j . (1)

In the same spirit, other authors have given upper bounds on the size of codes with one or
several forbidden distances [6].

In this note, we tackle a related but distinctly different problem: howmany distinct weights
can a linear code of given dimension over a given finite field have? In other words, we study
the combinatorial function L(k, q), the maximum number of nonzero weights a code of
dimension k over Fq may have. While an upper bound is easy to prove (Proposition 2), its
tightness is nontrivial1 and we only manage to establish it in some special cases like k = 2 or
q = 2 (Cf. Theorems 1 and 2). Numerical experiments with very long random codes suggest
it is tight for all k’s and q’s. We leave the question as an open problem. We can also study the
more refined function L(n, k, q), the maximum number of nonzero weights an [n, k]q code
may have. This latter function is related to both L(k, q) and Eq. (1) above. The nonlinear
counterpart of L(k, q) denoted by N (M, q), can be determined explicitly (Theorem 6). The
nonlinear counterpart of L(n, k, q) denoted by N (n, M, q), can also be studied. The rate of
convergence of N (n, M, q) towards N (M, q) requires perfect difference sets [3] and primes
in short intervals [2] for its careful study.

The material is organized as follows. Section 2 collects the necessary notations and defini-
tions. Section 3 studies upper bounds in the linear code case. Section 4 derives lower bounds
in that situation. Section 5 introduces and investigates the function L(n, k, q). Section 6 tack-
les the nonlinear analogues of L(k, q) and L(n, k, q), denoted by N (M, q), and N (n, M, q),

respectively. Section 7 concludes the article. An appendix collects some numerical values,
which comfort the Conjecture that Proposition 2 is tight.

2 Definitions and notation

Let q be a prime power, and Fq denote the finite field of order q. By a code of length n over
Fq , we shall mean a proper subset of Fn

q . This code is linear if it is a Fq -vector subspace
of Fn

q . The dimension of a code, denoted by k, is equal to its dimension as a vector space.
The parameters of such a code are written compactly as [n, k]q . The Hamming weight of
x ∈ F

n
q , denoted by w(x), is the number of indices i where xi �= 0. The Hamming distance

between x ∈ F
n
q , and y ∈ F

n
q , denoted by d(x, y), is defined by d(x, y) = w(x − y). For a

given prime power q and given values of k, let L(k, q) denote the largest possible number of
nonzero weights a q-ary code can have. If C(n) is a family of codes of parameters [n, kn]q ,
the rate R is defined as

R = lim sup
n→∞

kn
n

.

Recall that the q-ary entropy function Hq(.) is defined for 0 < y < 1, by

Hq(y) = y logq(q − 1) − y logq(y) − (1 − y) logq(1 − y).

3 Upper bounds

The following monotonicity properties of L(k, q) are given without proof.

1 After submission of this article, a proof was found in [1].
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Proposition 1 For all nonegative integers k,m and all prime powers q we have:

L(k, q) ≤ L(k + 1, q),

L(k, q) ≤ L(k, qm).

The next result is trivial but crucial.

Proposition 2 For all prime powers q, and all integers k ≥ 1, we have

L(k, q) ≤ qk − 1

q − 1
.

Proof The total numbers of nonzero codewords of a code of dimension k over Fq is qk − 1,
and all the nonzero multiples of a given codeword share the same weight. �	

This bound is met with equality if q = 2.

Theorem 1 For all integers k ≥ 1, we have

L(k, 2) = 2k − 1.

Proof Denote by Gk the generator matrix of an [n, k]q with L(k, 2) weights w1 < w2 <

· · · < wL(k,2). Define Hk+1 a matrix obtained from Gk by adding a k by t block of zeros,
and by Gk+1 the matrix obtained by Hk+1 by adding an a row with first n coordinates zero
and last t coordinates = 1. The code spanned by the rows of Gk+1 has all these weights plus
the L(k, 2) + 1 new weights t < t + w1 < · · · < t + wL(k,2). The two sets of weights will
have void intersection if wL(k,2) < t. This makes 2L(k, 2) + 1 weights altogether. Note that
the rank of Gk+1 is k + 1. Thus we have proved that L(k + 1, 2) ≥ 2L(k, 2) + 1, which
implies by induction, starting from L(1, 2) = 1, the lower bound L(k, 2) ≥ 2k − 1. The
result follows. �	
Remark We are now ready to given an alternative proof of Theorem 1. we can exhibit a linear
code C with dimension k over F2 with 2k − 1 nonzero weights. Let the generator matrix of
C be

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · · 1 1 · · · 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · · 0 0 · · · 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 · · · 0 0 · · · 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 · · · 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 · · · 0 0

,

a1 a2 a3 a4 ak

where a1 = 1, a2 = 2, a3 = 22, a4 = 23, . . ., ak = 2k−1. Since a j1 + a j2 + . . . +
a jt = (. . . 010 . . . 010 . . . 010 . . .)2︸ ︷︷ ︸

k

in base 2, and the coordinates of 1′s are j1, j2, . . . , jt ,

respectively. Thus, we obtain all integers of k bits as possible weights that is the set
{1, 2, 3, . . . , 2k − 1} of cardinality 2k − 1 in all.

The bound in Proposition 2 is also tight when k = 2.
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90 M. Shi et al.

Theorem 2 For all prime powers q, we have L(2, q) = q + 1.

Proof Let {u, v} be a basis of a code C candidate to have q + 1 weights. Denote by S, T
the supports of u, v respectively. Let |S \ T | = a, |T \ S| = b. On the intersection S

⋂
T

assume v is the all-one vector. Denote by ω a primitive root of Fq . Assume |S ⋂
T | = (q

2

)

and that u restricted to S
⋂

T is

(1, ω, ω, ω2, ω2, ω2, . . . , ωq−2, . . . , ωq−2),

where ωi occurs i + 1 times. With these conventions, we see that the weights of C are

• w(u) = a + (q
2

)
,

• w(v) = b + (q
2

)
,

• w(u − xv) = a + b + (q
2

) − i if x = ωi−1 for i = 1, 2, . . . , q − 1.

Assume a < b.The aboveweights will be pairwise different if a+b+(q
2

)−(q−1) > b+(q
2

)
,

that is if a ≥ q. Thus, under these conditions, C counts 2+ q − 1 = q + 1 nonzero weights.
�	

Remark The shortest [n, 2]q codewith L(2, q) nonzeroweights obtained by this construction
has n = (q

2

) + 2q + 1.

4 Lower bounds

The easiest lower bound is

Proposition 3 For all prime powers q, and all integers k ≥ 1, we have L(k, q) ≥ k.

Proof Consider the code Fk
q , of length and dimension k. �	

This can be improved to a bound that is exponential in k.

Proposition 4 For all prime powers q, and all integers k ≥ 1, we have

L(k + 1, q) ≥ 2L(k, q) + 1.

In particular, for all integers k ≥ 2, we have

L(k, q) ≥ 2k−2q + 2k−2 + 1.

Proof Same argument as in the first proof of Theorem 1. The second assertion follows by
iterating this bound starting from L(2, q) = q + 1. �	
An asymptotic version of the preceding results is as follows. Define

λ(q) = lim sup
n→∞

1

k
logq(L(k, q)).

Theorem 3 For all prime powers q we have

logq 2 ≤ λ(q) ≤ 1.

In particular λ(2) = 1.

Proof The first inequality comes from Proposition 4. The second one comes Proposition 2.
�	

Remark Sincewe conjecture that the bound of Proposition 2 is tight, it is natural to conjecture
that λ(q) = 1 for all prime powers q.
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5 Refinements and asymptotics

Amore complex function is L(n, k, q) the largest number of nonzero weights an [n, k]q -code
can have. This function is related to L(k, q) in several ways. The following monotonicity
properties of L(n, k, q) are given without proof.

Proposition 5 For all nonegative integers k,m and all prime powers q we have:

L(n, k, q) ≤ L(n, k + 1, q),

L(n, k, q) ≤ L(n, k, qm).

The three following lemmas are useful for the proof of Theorem 4.

Lemma 1 For all prime powers q, and all nonnegative integers n, k we have L(n, k, q) ≤
L(k, q).

Proof Immediate from the definitions. �	
The new function is also monotone in n.

Lemma 2 For all prime powers q, and all nonnegative integers n, k we have L(n, k, q) ≤
L(n + 1, k, q).

Proof IfC is an [n, k]q code with L(n, k, q) nonzero weights, thenC extended by a constant
zero coordinate is an [n + 1, k]q -code with the same number of nonzero weights. �	
Lemma 3 For all prime powers q, and all nonnegative integers n, k we have L(n, k, q) ≤ n.

Proof Note that, by definition of the Hamming weight, a code of length n can have at most
n distinct weights. �	

We now connect the new function L(n, k, q) with L(k, q).

Theorem 4 For all prime powers q, and all nonnegative integers k we have

lim
n→∞ L(n, k, q) = L(k, q).

Moreprecisely, there is an integer n0 ≥ L(k, q), such that for all n ≥ n0wehave L(n, k, q) =
L(k, q).

Proof By Lemmas 1 and 2, the sequence n �→ L(n, k, q) is increasing and bounded. Hence,
being integral, it converges stably to a limit which can be no other than L(k, q). Let n0 be
such that L(n0, k, q) = L(k, q). By Lemma 3, we see that n0 ≥ L(k, q). �	
Remark The computations of the Appendix suggest that such an n0 can be very large. If

Proposition 2 is tight then, by Theorem 4 n0 ≥ qk−1
q−1 . In the special case q = 2, the second

proof of Theorem 1 shows that n0 = 2k − 1.

There is a link to Delsarte’s bound (Eq. (1)) quoted in the Introduction.

Proposition 6 For all prime powers q, and all integers n ≥ k ≥ 1, we have

qk ≤
L(n,k,q)∑

i=0

(
n

i

)
(q − 1)i .
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92 M. Shi et al.

Fig. 1 Definition of t (q)

Further

L(k, q) ≤

L(n,k,q)∑
i=0

(n
i

)
(q − 1)i − 1

q − 1
.

Proof The first assertion is a direct application of Eq. (1) in Introduction ([5, Theorem 4.1])
with |C | = qk, and s = L(n, k, q).Combining this result with Proposition 2 gives the second
assertion. �	
We give an asymptotic version of the preceding results. Let

L(R) = lim sup
n→∞

1

n
logq(L(n, �Rn
, q)).

Theorem 5 If Cn is a family of codes of rate R then

L(R) ≤ Rλ(q) ≤ Hq(L(R)).

In particular L(R) ≤ t (q), where t (q) is the unique solution in the range (0, q−1
q ) of

Hq(x) = x . See Fig. 1.

Proof The first inequality follows by Lemma 1, upon observing that

lim sup
n→∞

1

n
(L(k, q)) = Rλ(q).

The second inequality comes from the second assertion of Proposition 6, after using standard
entropic estimates [7]. The second assertion is obtained by combining the first and second
inequality. �	

Define the domain D as the set of points in the plane (R,L) that are realized by a family
of codes. By the preceding result, this domain is contained in the domain of boundaries given
by, counterclockwise, in Fig. 2 by

1. the straight line L = R from R = 0 till R = t (q),

2. the horizontal line L = t (q) from R = t (q) till R = 1,
3. the vertical line R = 1 from L = t (q) till L = q−1

q ,

4. the curve L = H−1
q (R), from R = 1 till R = 0.

Determining the domain D explicitly, in the same way as the domain of packing and
covering codes in [4] is a challenging open problem.
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How many weights can a linear code have? 93

Fig. 2 Boundaries of domain D

6 Nonlinear codes

Warning In this section only q is an arbitrary integer > 1.
The nonlinear analogue of the function L(k, q) is the function N (M, q) which is the

largest number of distances between two codewords of an unrestricted code of size M over
some finite alphabet Aq of size q. This function is completely determined in the following
Theorem.

Theorem 6 For all integers M ≥ 2, we have

N (M, q) =
(
M

2

)
.

Proof By definition we have immediately N (M, q) ≤ (M
2

)
. By an inductive process, we

construct a codeCM with
(M
2

)
distances. To simplify matters take q = 2.We search for codes

in a special form where nonzero codewords are of the form (1, 1, . . . , 1, 0, . . . , 0), that is a
run of ones followed by a run of zeros. Thus the distance between two such codewords is equal
to the difference of their weights. For M = 2, we may take the length 1 code {0, 1}. Assume
CM is constructed with codewords of successive weights w0 = 0 < w1 < · · · < wM−1. We
construct a code CM+1 by adding a tail of zeros to CM on the right, of length to be specified
later, and by adding a new codeword of weight wM . The new distances are M in number,
given by wM , wM − w1, . . . , wM − wM−1. These distances are pairwise distinct because
(wM − wi ) − (wM − w j ) = w j − wi . To make sure they are distinct from the distances in
CM , we must check that

(wM − wi ) �= w j − wk,

with i, j, k distinct nonegative integers ≤ M − 1. This is enforced if we take wM large
enough. This condition on wM , in turn, will determine how long the tail must be. Since(M+1

2

) − (M
2

) = M, we are done. �	
The nonlinear analogue of the function L(n, k, q) is the function N (n, M, q) which is the

largest number of distances between two codewords of an unrestricted code of size M and
length n over some alphabet Aq , of size q.

The analogue of Theorem 4 in this context is as follows. The proof is similar and omitted.

Theorem 7 For all integers q > 1, and all nonnegative integers M we have

lim
n→∞ N (n, M, q) = N (M, q).

More precisely, there is an integer n0 ≥ N (M, q), such that for all n ≥ n0 we have
N (n, M, q) = N (M, q).

123



94 M. Shi et al.

Denote by N0(M, q) the smallest integer n such that N (n, M, q) = N (M, q).

Proposition 7 If M − 1 is a power of a prime, then N0(M, q) ≤ 2N (M, q) + 1.

Proof Assume M = s + 1, where s is a power of a prime. We know there is a Singer
difference set [9] S = {v0, v1, . . . , vs+1}, with parameters (s2 + s + s, s + 1, 1). Consider
the s + 1 by s2 + s + 1 matrix with rows gi , when gi contains vi consecutive ones to the
left and zeros elsewhere. The Hamming distance from gi to g j is |vi − v j |. The code formed
by the M rows of this matrix has length s2 + s + 1 = M2 − M + 1 = 2

(M
2

) + 1 and
(M
2

)

distances, by the design property. Hence, in this case, n0 ≤ 2
(M
2

)+ 1. For instance, if s = 2,
we have S = {1, 2, 4}, and the code is {1000000, 1100000, 1111000}. See [3, p. 264] for
details on, and examples of Singer difference sets. �	
Denote, for any integer t, by pp(t) the smallest prime power ≥ t.

Corollary 1 For all integers M > 1, we have

N0(M, q) ≤ 2N (pp(M − 1) + 1, q) + 1 ≤ 2N (2M, q) ∼ 8

(
M

2

)
.

Proof We claim that N0(M, q) is a nondecreasing function of M. The first inequality will
follow by the previous theorem, since M ≤ pp(M − 1) + 1. To prove the claim note that,
if we have a set of M + 1 vectors of length N0(M + 1, q), with

(M+1
2

)
distances, removing

any vector will result into a set of M vectors with
(M+1

2

) − M = (M
2

)
distances. Hence

N0(M, q) ≤ N0(M + 1, q). The second inequality follows by the crude bound pp(x) ≤ 2x,
valid for any positive integer x . �	
Remark It is possible to reduce the upper boundon pp(x) to pp(x) ≤ x+xa,witha = 0.525,
building on recent estimates on the existence of primes in short intervals [2]. This sharpens
the upper bound on N0(M, q) to 2N (M + O(Ma), q) + 1 ∼ 2

(M
2

)
, for M → ∞.

7 Conclusion and open problems

In this note, we have studied a problem of extremal combinatorics: maximizing the number of
distinct nonzero weights a linear code can have.We conjecture, based on extensive numerical
calculations on very long codes, that the bound of Proposition 2 is tight but cannot prove it.
A proof was found later in [1]. A recursive approach in the manner of the proof of Theorem 6
would require to produce qk new weights to go from L(k, q) to L(k + 1, q). But a code

achieving L(k, q) has only qk−1
q−1 < qk distinct weights. Thus establishing the tightness of

Proposition 1 is themain open problem of this note. Sharpening the upper bound on N0(M, q)

of Corollary 1 is also a challenging question. Determining explicitly the domainD of Sect. 5
seems to require better lower bounds on L(n, kq) that those at our disposal.

Appendix: numerical examples

We provide lower bounds on L(k, q) by computing the number of weights in long random
codes produced by the computer package Magma [8]. We give some numerical examples in
Table 1 about the lower bound of Proposition 4.

When n is in the millions, we can find linear [n, k]q -codes that meet the upper bound in
Proposition 2: see Table 2.
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Table 1 Proposition 4

k 3 4 4 6 6 10 10 12 12 12

q 3 5 8 9 13 16 25 29 49 121

L(k, q) ≥ 11 29 41 177 241 4609 6913 31, 745 52, 225 125, 953

Table 2 n = 6, 000, 000

k 3 3 3 3 3 3 3 4 4 4 5 5

q 3 4 5 7 8 9 11 3 4 5 3 4

L(k, q) = 13 21 31 57 73 91 133 40 85 156 121 341
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