
ar
X

iv
:1

71
2.

02
02

3v
1 

 [
m

at
h.

C
O

] 
 6

 D
ec

 2
01

7

The vertex-isoperimetric number of the incidence and

non-incidence graphs of unitals

Alice M. W. Hui∗1, Muhammad Adib Surani†2, and Sanming Zhou‡2

1Statistics Program, Beijing Normal University-Hong Kong Baptist University United
International College, China

2School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010,
Australia

November 16, 2018

Abstract

We derive upper and lower bounds for the vertex-isoperimetric number of the
incidence graphs of unitals and determine its order of magnitude. In the case when
a unital contains sufficiently large arcs, these bounds agree and give rise to the
precise value of this parameter. In particular, we obtain the exact value of the
vertex-isoperimetric number of the incidence graphs of classical unitals and a certain
subfamily of BM-unitals. In the case when the maximum size of arcs in the unital
is relatively small, we obtain an upper bound for this parameter in terms of the
vertex-isoperimetric number of the incidence graph. We also determine the exact
value of the vertex-isoperimetric number of the non-incidence graph of any unital.
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1 Introduction

A unital is a 2-(n3+1, n+1, 1) design for some integer n ≥ 2. In this paper we derive
upper and lower bounds for the vertex-isoperimetric number of the incidence graphs
of unitals and determine its order of magnitude. In the case when a unital contains
sufficiently large arcs, we obtain the precise value of the vertex-isoperimetric num-
ber of its incidence graph. In particular, this happens for all classical unitals and a
certain subfamily of BM-unitals, and from the former we obtain a new infinite fam-
ily of edge-transitive graphs whose vertex-isoperimetric number can be computed
exactly. In the case when the maximum size of arcs in the unital is relatively small,
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our upper bound can be interpreted as an upper bound for this parameter in terms
of the vertex-isoperimetric number of the incidence graph. We also determine the
precise value of the vertex-isoperimetric number of the non-incidence graph of any
unital.

Let G be a graph with vertex set V (G) and S a subset of V (G). The neighbour-
hood of S in G, denoted by NG(S) or simply N(S), is the set of vertices in V (G)\S
that are adjacent to at least one vertex in S. The vertex-isoperimetric number of
G is defined as

i(G) = min

{ |N(S)|
|S| : ∅ 6= S ⊆ V (G), |S| ≤ |V (G)|

2

}

.

The edge-isoperimetric number (also known as the Cheeger constant) of G is defined
in the same way but with N(S) replaced by the set of edges between S and V (G)\S.
These two parameters are of fundamental importance for measuring connectivity
and expansion of graphs. For example, they are used to define expander graphs,
which play a prominent role in theoretical computer science, information theory,
cryptography, combinatorics, pure mathematics, etc. The isoperimetric problems
for graphs have been studied extensively. See [15] for background information and
a large number of results (often involving eigenvalues of graphs) in the context of
expander graphs. See also [11] for the history of the vertex-isoperimetric problem
and related results. It is NP-hard to determine the vertex-isoperimetric number of a
general graph, and there are few known families of graphs whose vertex-isoperimetric
numbers have been computed explicitly.

Given positive integers v > k > λ, a 2-(v, k, λ) design [6] is a pair D = (P,B),
where P is a set of v elements each called a point, and B is a set of k-element
subsets of P each called a block, such that any 2-element subset of P is contained
in exactly λ blocks. The number of blocks containing a given point is independent
of the choice of the point. This number is denoted by r and the number of blocks is
denoted by b. We call (v, b, r, k, λ) the parameters of D. These parameters always
satisfy vr = bk and r(k − 1) = λ(v − 1) [6]. The complement of D is defined [6]

as D =
(

P,B
)

, where B = {P \ B : B ∈ B}; D is a 2-design with parameters

(v, b, b − r, v − k, b− 2r + λ).
The incidence graph of a 2-design D = (P,B), denoted by GD, is the bipartite

graph with vertex set P ∪ B and bipartition {P,B}, such that a point vertex p ∈ P
is adjacent to a block vertex B ∈ B if and only if p lies in B. Similarly, the non-
incidence graph of D is the bipartite graph with the same vertex set and bipartition
such that p ∈ P is adjacent to B ∈ B if and only if p does not lie in B. The non-

incidence graph of D is the same as the incidence graph of D and hence is denoted
by GD.

A unital of order n ≥ 2 is a 2-(n3 + 1, n+ 1, 1) design [6]; its parameters are

(v, b, r, k, λ) = (n3 + 1, n4 − n3 + n2, n2, n+ 1, 1). (1)

The blocks of a unital are often called lines, and we use these two terms interchange-
ably. Unitals are interesting because some of them are embeddable in a projective
plane as subdesigns [4]. There are two well known families of unitals embedded

in the Desarguesian projective plane PG(2, q2) over the finite field Fq2 of order q2,

where q > 2 is a prime power. One is the family of classical unitals H(q), formed by

the absolute points and non-absolute lines of a unitary polarity of PG(2, q2). The
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points of H(q) are the points of a Hermitian curve, which is projectively equivalent
to the curve

{

(x0, x1, x2) : x
q+1
0 + xq+1

1 + xq+1
2 = 0, x0, x1, x2 ∈ Fq2

}

.

It is well known [18, 19] that Aut(H(q)) = PΓU(3, q). Thus, for every G with
PSU(3, q) ≤ G ≤ PΓU(3, q), H(q) is (G, 2)-point-transitive and hence G-flag-
transitive, where a flag is an incident point-line pair.

Another family of unitals embeddable in PG(2, q2) consists of Buekenhout-Metz
unitals (thereafter BM-unitals) arising from two constructions [5, 17] of Buekenhout.
These unitals are called parabolic or hyperbolic, depending on the number of unital

points on the line at infinity of PG(2, q2). When q is odd, the point set of a parabolic
BM-unital is of the form

{

(x, αx2 + βxq+1 + r, 1) : x ∈ F
2
q, r ∈ Fq

}

∪ {(0, 1, 0)}, (2)

where α, β ∈ Fq2 , and (βq − β)2 + 4αq+1 is a non-square in Fq [3]. When q is even,

the point set of a parabolic BM-unital is of the form (2), where α, β ∈ Fq2 , β /∈ Fq,

and αq+1/(βq + β)2 has trace 0 over F2 [8]. In both cases we denote the unital
defined in (2) by U(α, β, q).

Given an integer k ≥ 3, a k-arc, or simply an arc if its size k is not a concern,
of a unital U is a set of k points of U of which no three are collinear. A k-arc is
complete if it is not contained in any (k+1)-arc. Complete k-arcs have been studied

for several classes of unitals [1, 2, 10, 13]. Their sizes range from n − 1 to n2 + 1,
where n is the order of the unital. Define

m(U) = max{k : k ≥ 3, U contains a k-arc}

to be the maximum size of an arc in U .
The purpose of this paper is to study the vertex-isoperimetric number of the

incidence and non-incidence graphs of unitals. Our first main result, stated below,
asserts that the vertex-isoperimetric number of the incidence graph of any unital of

order n is 2n
n2+1 approximately. Set

c(n) = n2 −
√
8n2 + 9− 3

2
. (3)

Theorem 1.1. Let U be a unital of order n ≥ 2. Then

2
(

n3 + 1− ⌊c(n)⌋
)

n2(n2 + 1)
≤ i(GU ) ≤

2
(

n3 + 1−min{m(U), ⌊c(n)⌋}
)

n2(n2 + 1)
. (4)

The upper bound here says that i(GU ) is bounded from above by m(U). In
particular, if a unital U admits sufficiently large arcs, namely m(U) ≥ ⌊c(n)⌋, then
i(GU ) is given by the following formula.

Corollary 1.2. Let U be a unital of order n ≥ 2. If m(U) ≥ ⌊c(n)⌋, then

i(GU ) =
2(n3 + 1− ⌊c(n)⌋)

n2(n2 + 1)
.
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The case m(U) ≥ ⌊c(n)⌋ occurs for all classical unitals and a subfamily of BM-
unitals. In fact, it was proved in [10] that for any prime power q the classical unital

H(q) admits a complete (q2− q+1)-arc. (In fact, H(q) is the disjoint union of q+1

complete arcs of size q2 − q + 1.) Hence m(H(q)) ≥ q2 − q + 1 ≥ ⌊c(q)⌋. In [2, 13]
it was proved that for an odd prime power q, if α ∈ Fq2 and β ∈ Fq are such that

(βq − β)2 + 4αq+1 is a non-square in Fq, then the BM-unital U(α, β, q) admits a

complete (q2+1)-arc and so m(U(α, β, q)) ≥ ⌊c(q)⌋. Combining these known results
and Corollary 1.2, we obtain the following corollaries.

Corollary 1.3. Let H(q) be the classical unital of order q > 2, where q is a prime
power. Then

i(GH(q)) =
2(q3 + 1− ⌊c(q)⌋)

q2(q2 + 1)
.

Corollary 1.4. Let q be an odd prime power, and let α ∈ Fq2 and β ∈ Fq be such

that (βq − β)2 + 4αq+1 is a non-square in Fq. Then

i(GU(α,β,q)) =
2(q3 + 1− ⌊c(q)⌋)

q2(q2 + 1)
.

Since H(q) is flag-transitive, its incidence graph GH(q) is edge-transitive. So

Corollary 1.3 provides an infinite family of edge-transitive graphs whose vertex-
isoperimetric numbers are known explicitly.

Another way to interpret the upper bound in Theorem 1.1 is as follows.

Corollary 1.5. Let U be a unital of order n ≥ 2. Then either

m(U) > ⌊c(n)⌋

or

m(U) ≤ n3 + 1− n2(n2 + 1)

2
i(GU ).

In other words, either m(U) is large or it can be bounded from above by i(GU ).
Our second main result is the following formula for the vertex-isoperimetric

number of the non-incidence graph of any unital.

Theorem 1.6. Let U be a unital of order n ≥ 2. Then

i(GU ) =

{

4
5 , if n = 2
2(n3+1)
n2(n2+1)

, if n ≥ 3.
(5)

Theorems 1.1 and 1.6 will be proved in sections 3 and 4, respectively. In order to
prove the lower bound in (4), we will first derive lower bounds on the size of N(S)
in GD for a general 2-design D and any S containing only point vertices or block
vertices. These general lower bounds are of interest for their own sake as they may
be used in studying the vertex-isoperimetric problem for other families of 2-designs.

We conclude this section by mentioning a few results relevant to this paper.
Denote by Γn,q the incidence graph of PG(n, q), where n ≥ 2 and q is a prime power.
These graphs form a major subfamily of the family of 2-arc transitive Cayley graphs
of dihedral groups [7]. Lanphier et al. [16] studied the edge-isoperimetric number of
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Γ2,q, and Harper and Hergert [12] and Ure [20] studied the problem of minimizing

|N(X)| for a subset of points X in PG(2, q) with a given size. Determining the
precise value of i(Γn,q) turns out to be a difficult problem, even when n = 2 and q
is small. With Elvey-Price the last two authors of the present paper determined in
[9] the order of magnitude of 1 − i(Γn,q) and found the precise value of i(Γ2,q) for

q ≤ 16. In [14], Høholdt and Janwa studied eigenvalues and expansion of bipartite
graphs. In particular, they obtained lower bounds on the edge-isoperimetric number
of GD in terms of its eigenvalues for any 2-design D.

2 Lower bounds for 2-designs

We first prove the following general lower bounds.

Theorem 2.1. Let D = (P,B) be a 2-(v, k, λ) design of b blocks, with r blocks
through each point, and let G be the incidence graph GD of D. Let m be any
positive integer. Then for any X ⊆ P and Y ⊆ B,

|N(X)| ≥ 2rm− λ(|X| − 1)

m(m+ 1)
|X|; (6)

|N(X)| ≥ r2

r + λ(|X| − 1)
|X|; (7)

|N(Y )| ≥ rk

r2 − λ(b− |Y |) |Y |; (8)

|N(X) \ Y | ≥ 4λ

k2
|X||P \ (X ∪N(Y ))|. (9)

Moreover, equality in (6) holds if every block vertex in N(X) contains exactly m or
m+ 1 points in X.

Proof Denote by F the set of edges of G with one end-vertex in X and the other
end-vertex in N(X). By double counting, we have

r|X| = |F | =
∑

B∈N(X)

|B ∩X|. (10)

Denote by Q the set of paths of length two in G with both end-vertices in X. By
double counting again, we obtain

λ|X|(|X| − 1) = |Q| =
∑

B∈N(X)

|B ∩X|(|B ∩X| − 1). (11)

Since n2 ≥ n for any integer n, by (10) and (11) we obtain

0 ≤
∑

B∈N(X)

{

(|B ∩X| −m)2 − (|B ∩X| −m)
}

=
∑

B∈N(X)

{|B ∩X|(|B ∩X| − 1)− 2m|B ∩X|+m(m+ 1)}

= λ|X|(|X| − 1)− 2rm|X|+m(m+ 1)|N(X)|.
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Rearranging this inequality yields (6). In addition, if |B ∩X| ∈ {m,m+1} for each
B ∈ N(X), then the inequality above is sharp and so equality in (6) is achieved.

Take m =
⌊

λ(|X|−1)
r

⌋

+ 1. Then

(

λ(|X| − 1)

r
+ 1−m

)(

m− λ(|X| − 1)

r

)

≥ 0.

That is,
(

λ(|X| − 1)

r
+ 1

)(

2m− λ(|X| − 1)

r

)

≥ m(m+ 1).

Rearranging this inequality yields

2rm− λ(|X| − 1)

m(m+ 1)
≥ r2

r + λ(|X| − 1)
.

This together with (6) implies (7).
We now prove (8). If N(Y ) = P , then

|N(Y )| = v ≥ rk|Y |
r2 − λ(b− |Y |)

and (8) holds. Assume that N(Y ) 6= P . Then Y 6= B and so b > |Y |. Note that
N(P \N(Y )) ⊆ B \ Y . This together with (7) for X = P \N(Y ) yields

b−|Y | ≥ |N(P\N(Y ))| ≥ r2

r + λ(v − |N(Y )| − 1)
(v−|N(Y )|) = r2

r−λ
v−|N(Y )| + λ

. (12)

Since vr = bk and r(k − 1) = λ(v − 1), we have r2

λb
= k(v−1)

v(k−1) > 1. So r2

b−|Y | − λ > 0.

Thus, by (12),

|N(Y )| ≥ v − r − λ
r2

b−|Y | − λ

=
vr2 − (b− |Y |)(λ(v − 1) + r)

r2 − λ(b− |Y |)

=
rk

r2 − λ(b− |Y |) |Y |

and (8) is established.
Finally, let A be the set of paths of length two in G with one end-vertex in X

and the other end-vertex in P \ (X ∪N(Y )). Since each pair of points in X × (P \
(X ∪N(Y ))) are contained in exactly λ blocks, we have

|A| = λ|X||P \ (X ∪N(Y ))|. (13)

Consider a block B that is the middle vertex of a path in A. Since B is adjacent
to a point in X, we have B ∈ N(X). Similarly, B is adjacent to a point outside
N(Y ), and so B /∈ Y . Hence B ∈ N(X) \Y . Denote by aB the number of points in
X adjacent to B in G, and bB the number of points in P \ (X ∪N(Y )) adjacent to

B in G. Then aB + bB ≤ k and so aBbB ≤
(

k
2

)2
. It follows that each such block B
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can contribute at most
(

k
2

)2
paths to A. Since there are at most |N(X) \ Y | such

blocks, it follows that

|A| ≤ k2

4
|N(X) \ Y |.

This together with (13) implies (9). ✷

We now introduce notations that will be used in subsequent discussions. Let
D = (P,B) be a 2-design and G its incidence graph. If X ⊆ P and Y ⊆ B, set

x = |X|, y = |Y |, x′ = |N(Y ) \X|, y′ = |N(X) \ Y |. (14)

Thus, if S is a subset of the vertex set of G, by setting X = S ∩ P and Y = S ∩ B,
we have

|S| = x+ y, |N(S)| = x′ + y′.

Corollary 2.2. Let D = (P,B) be a 2-(v, k, λ) design of b blocks, with r blocks
through each point, and let G be the incidence graph GD of D. Let m be any
positive integer. Then for any X ⊆ P and Y ⊆ B, and x, y, x′ and y′ as defined in
(14),

y + y′ ≥ x(2rm− λ(x− 1))

m(m+ 1)
;

y + y′ ≥ r2x

r + λ(x− 1)
;

x+ x′ ≥ rky

r2 − λ(b− y)
;

y′ ≥ 4λ

k2
(v − x− x′).

Proof Since y + y′ ≥ |N(X)| and x + x′ ≥ |N(Y )|, each inequality follows from
the corresponding inequality in Theorem 2.1 immediately.

3 Proof of Theorem 1.1

Throughout this section we assume that U = (P,B) is a unital of order n ≥ 2 and
G its incidence graph GU . Denote the vertex set of G by V = P ∪ B. Recall that

the parameters of U are given by (1). Since r = n2 and λ = 1, applying (6) to U

and m = 1 yields |N(X)| ≥ n2x − x(x−1)
2 for X ⊆ P with |X| = x. Motivated by

this, we define g : [0, n2 + 1] →
[

0, (n
2+1)(n2+2)

2

]

by

g(z) = (n2 + 1)z − z(z − 1)

2
.

Then |N(X)| ≥ g(x)− x for any subset X of P with size x. Moreover, by Theorem
2.1, |N(X)| = g(x) − x if X is an x-arc of U since every line in N(X) contains
exactly one or two points in X. It can be verified that the function g is increasing,

concave, and bijective in the domain [0, n2+1]. The function c(n) introduced in (3)
can be expressed as

c(n) = g−1

(

n2(n2 + 1)

2

)

.

7



3.1 Upper bound

We now prove the upper bound in Theorem 1.1 by an explicit construction. Denote

x = min{m(U), ⌊c(n)⌋}.

Take a subset X of some m(U)-arc of U with size x. Then X is an x-arc of U . Since

g is increasing in [0, n2 + 1], and x ≤ c(n), from the discussion above we obtain

|N(X)| = g(x) − x ≤ g (c(n))− x =
n2(n2 + 1)

2
− x.

So we can take a subset Y of B such that N(X) ⊆ Y and |Y | = n2(n2+1)
2 − x. It

then follows that
N(X ∪ Y ) = N(Y ) ⊆ P \X.

Hence
|N(X ∪ Y )|
|X ∪ Y | ≤ n3 + 1− x

n2(n2+1)
2

.

From this the upper bound in (4) follows immediately.

3.2 Lower bound

The lower bound in Theorem 1.1 will be proved by bounding |N(S)| from below for

an arbitrary S ⊆ V with 1 ≤ |S| ≤ |V |
2 . Let X = S ∩ P and Y = S ∩ B, and let x,

y, x′, and y′ be defined as in (14). Then |S| = x + y and |N(S)| = x′ + y′. Since

|S| ≤ |V |
2 , we have x+ y ≤ n2(n2+1)

2 . Setting m = 1 in Corollary 2.2, we obtain

y + y′ ≥ x(2n2 + 1− x)

2
;

y + y′ ≥ n4x

n2 − 1 + x
;

x+ x′ ≥ n2(n+ 1)y

n2(n− 1) + y
;

y′ ≥ 4x(n3 + 1− x− x′)

(n+ 1)2
.

Define

f(x, y) =
4x

(n+ 1)2
(n3 + 1) +

(

1− 4x

(n+ 1)2

)

n2(n+ 1)y

n2(n− 1) + y
− x.

It is readily seen that f(x, y) is linear in x for a fixed y, and monotonic in y for a
fixed x.

Lemma 3.1. If either

x ≤ (n+ 1)2

4
and

f(x, y)

x+ y
≥ 2(n3 + 1− ⌊c(n)⌋)

n4 + n2
, (15)
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or

x >
(n+ 1)2

4
and x−

(

1− (n+ 1)2

4x

)

y′ < ⌊c(n)⌋+ 1, (16)

then
x′ + y′

x+ y
≥ 2(n3 + 1− ⌊c(n)⌋)

n2(n2 + 1)
. (17)

Proof If (15) holds, then

x′ + y′ =

(

4x

(n+ 1)2
x′ + y′

)

+

(

1− 4x

(n+ 1)2

)

x′

≥ 4x

(n+ 1)2
(

n3 + 1− x
)

+

(

1− 4x

(n+ 1)2

)(

n2(n+ 1)y

n2(n− 1) + y
− x

)

= f(x, y),

which together with (15) implies (17).
On the other hand, if (16) holds, then

x′ + y′ =

(

x′ +
(n+ 1)2

4x
y′
)

+

(

1− (n + 1)2

4x

)

y′

≥ n3 + 1− x+

(

1− (n+ 1)2

4x

)

y′

> n3 − ⌊c(n)⌋.

Thus, x′+ y′ ≥ n3+1−⌊c(n)⌋, which together with x+ y ≤ n2(n2+1)
2 yields (17). ✷

Now we are ready to prove the lower bound in Theorem 1.1. Let us begin with

the case when n = 2. In this case we have x + y ≤ n2(n2+1)
2 = 10. Moreover,

condition (15) is reduced to

x ≤ 2 and
f(x, y)

x+ y
≥ 7

10
,

and condition (16) is reduced to

x ≥ 3 and x−
(

1− 9

4x

)

y′ < 3.

By Lemma 3.1 it suffices to verify that one of these conditions holds. In fact, if x = 0,

then f(x,y)
x+y

= 12
4+y

> 7
10 . If x = 1, then y ≤ 9, so that f(x,y)

x+y
= 29y+36

3y2+15y+12
> 7

10 . If

x = 2, then x′+y′ ≥ 4x
9 x′+y′ ≥ 4x

9 (9−x) > 6, so that x′+y′

x+y
≥ 7

10 . Finally, if x ≥ 3,

then

x−
(

1− 9

4x

)

y′ = x−
(

1− 9

4x

)

(

x+ (y + y′)− (x+ y)
)

≤ x−
(

1− 9

4x

)(

x+
16x

3 + x
− 10

)

=
84

3 + x
− 45

2x
− 15

4

< 3.
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Therefore, the lower bound in (4) holds when n = 2.

In the rest of this section we assume that n ≥ 3. Then 8n2 + 9 ≤ (3n)2 and
hence

c(n) ≥ n2 − 3

2
(n − 1) ≥ n(n+ 1)

2
≥ (n+ 1)2

4
.

We consider the following five cases one by one. In each case we show that either
(15) or (16) is satisfied and so the lower bound in (4) follows immediately from

Lemma 3.1 and the arbitrariness of S ⊆ V with 1 ≤ |S| ≤ |V |
2 .

Case 1: x ≤ (n+1)2

4 and y ≤ n4−n3+n2

2 .

Since f(x, y) is linear in x, we have

f(x, y)

x+ y
≥ min







f(0, y)

y
,
f
(

(n+1)2

4 , y
)

(n+1)2

4 + y







= min

{

n2(n+ 1)

n2(n− 1) + y
,
n3 + 1− (n+1)2

4
(n+1)2

4 + y

}

≥ min

{

2(n + 1)

n2 + n− 1
,

(n+ 1)(4n2 − 5n + 3)

(n+ 1)2 + 2(n4 − n3 + n2)

}

≥ 2

n

≥ 2
(

n3 + 1− ⌊c(n)⌋
)

n2(n2 + 1)
.

Hence condition (15) is satisfied.

Case 2: x ≤ (n+1)2

4 and y > n4−n3+n2

2 .

Since f(x, y) increases with y, we have

f(x, y) ≥ f

(

x,
n4 − n3 + n2

2

)

=
4x

(n+ 1)2
(n3 + 1) +

(

1− 4x

(n+ 1)2

)

n2(n3 + 1)

n2 + n− 1
− x

=

(

4(n3 + 1)

(n+ 1)2
− 4n2(n3 + 1)

(n+ 1)2(n2 + n− 1)
− 1

)

x+
n2(n3 + 1)

n2 + n− 1

=

(

4(n3 + 1)(n − 1)

(n + 1)2(n2 + n− 1)
− 1

)

x+
n2(n3 + 1)

n2 + n− 1
.

Since n ≥ 3, one can verify that the coefficient of x in the last line is positive. Hence

f(x, y) ≥ n2(n3 + 1)

n2 + n− 1
≥ n3 + 1− ⌊c(n)⌋.

This together with x+ y ≤ n2(n2+1)
2 yields

f(x, y)

x+ y
≥ 2

(

n3 + 1− ⌊c(n)⌋
)

n2(n2 + 1)
.
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That is, condition (15) is satisfied.

Case 3:
(n+1)2

4 < x ≤ c(n).

Then

x−
(

1− (n+ 1)2

4x

)

y′ ≤ x ≤ c(n) < ⌊c(n)⌋+ 1

and so condition (16) is satisfied.

Case 4: c(n) < x ≤ n2.

Since g is concave and c(n) ≥ n(n+1)
2 , we have

g(x)− g(c(n))

x− c(n)
≥ g(n2)− g(c(n))

n2 − c(n)

=
1

1− c(n)
n2

≥ 1

1− (n+1)2

4c(n)

≥ 1

1− (n+1)2

4x

.

On the other hand,

y′ ≥ x(2n2 + 1− x)

2
− y

≥ x(2n2 + 1− x)

2
+ x− n4 + n2

2

= g(x) − g(c(n)).

So

x−
(

1− (n+ 1)2

4x

)

y′ ≤ x− (x− c(n)) = c(n) < ⌊c(n)⌋+ 1

and (16) is satisfied.

Case 5: x > n2.
Let

h(z) = z −
(

1− (n+ 1)2

4z

)(

n4z

n2 − 1 + z
+ z − n4 + n2

2

)

.

Then

x−
(

1− (n+ 1)2

4x

)

y′ ≤ h(x).

Thus, to show that (16) is satisfied, it suffices to prove h(x) ≤ c(n). We achieve

this by showing that h(n2) ≤ c(n) and that the function h(z) is decreasing with z.
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To justify the first claim, we notice that (3n2 − 1)(3n+1) ≥ 12(2n2 − 1). Hence

h(n2) =

(

1− (n + 1)2

4n2

)(

n6

2n2 − 1
+ n2 − n4 + n2

2

)

= n2 − (3n2 − 1)(3n + 1)(n − 1)

8(2n2 − 1)

= n2 − 3n2 − 1

2n2 − 1

3n+ 1

8
(n− 1)

≤ n2 − 3

2
(n− 1)

≤ c(n).

To prove the second claim, we take the derivative

dh

dz
= 1− (n+ 1)2

4z2

(

n4z

n2 − 1 + z
+ z − n4 + n2

2

)

−
(

1− (n+ 1)2

4z

)(

n4(n2 − 1)

(n2 − 1 + z)2
+ 1

)

=
n2(n + 1)

8

(

(n2 + 1)(n + 1)

z2
− 2n2(5n− 3)

(n2 − 1 + z)2

)

.

It can be easily verified that n2(5n− 3) ≥ 2(n2 + 1)(n + 1). Thus

2n2(5n− 3)

(n2 + 1)(n+ 1)
≥ 4 ≥

(

n2 − 1

z
+ 1

)2

and therefore dh
dz

≤ 0. So h(z) is decreasing with z.

In summary, in each case above either (15) or (16) holds for any S ⊆ V with

1 ≤ |S| ≤ |V |
2 . Thus, by Lemma 3.1, we obtain the lower bound in (4).

This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.6

In this section we assume that U = (P,B) is a unital of order n and G its non-
incidence graph GU . Denote the vertex set of G by V = P ∪ B.

We first prove that the right-hand side of (5) is an upper bound for i(G). Con-
sider the case n = 2. Pick any point vertex p ∈ P . There are exactly eight blocks
incident with this point. Let S ⊆ V consist of this point p, the eight blocks incident
to it, and one other block. Then |S| = 10 and |N(S)| ≤ 8 since N(S) ⊆ P \ {p}.
Hence i(G) ≤ |N(S)|

|S| ≤ 4
5 . Now assume that n ≥ 3. Let S be any subset of B of size

n4+n2

2 . Then |N(S)| ≤ n3 + 1 as N(S) ⊆ P . Therefore, i(G) ≤ |N(S)|
|S| ≤ 2(n3+1)

n4+n2 .

Next we prove that the right-hand side of (5) is also a lower bound for i(G). Let

S be an arbitrary subset of V with 1 ≤ |S| ≤ |V |
2 , and let X = S∩P and Y = S∩B.

Let x, y, x′, and y′ be defined as in (14). In view of (1), the parameters of U are

(v, b, r, k, λ) = (n3 + 1, n4 − n3 + n2, n4 − n3, n3 − n, n4 − n3 − n2 + 1).
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Consider the case n = 2 first, for which the parameters of U are (v, b, r, k, λ) =
(9, 12, 8, 6, 5). In this case we have x+y ≤ 10, and the second and third inequalities

of Corollary 2.2 reduce to y+ y′ ≥ 64x
3+5x and x+ x′ ≥ 48y

4+5y respectively. In order to

prove i(G) ≥ 4
5 , it suffices to show that x′+y′

x+y
≥ 1 or x′ + y′ ≥ 8. We split this into

four cases:

(a) If x ≤ 1 and y ≤ 4, then y + y′ ≥ 64x
3+5x ≥ 2x and x+ x′ ≥ 48y

4+5y ≥ 2y so that

x′+y′

x+y
= (x+x′)+(y+y′)

x+y
− 1 ≥ 1.

(b) If x ≤ 1 and y ≥ 5, then x+x′ ≥ 240
29 > 8. Since x+x′ is an integer, it follows

that x+ x′ ≥ 9 and thus x′ ≥ 8.

(c) If x ≥ 2 and y ≤ 1, then y + y′ ≥ 128
13 > 10. This implies that y + y′ ≥ 11,

from which it follows that y′ ≥ 10.

(d) Finally, if x ≥ 2 and y ≥ 2, then we still have y + y′ ≥ 11 from before.

Additionally, we also have x+x′ ≥ 96
14 > 6, from which it follows that x+x′ ≥ 7

and thus x′ + y′ = (x+ x′) + (y + y′)− (x+ y) ≥ 8.

Now assume that n ≥ 3. Since 2(n3+1)
n2(n2+1)

< 1 and x + y ≤ n2(n2+1)
2 , in order to

prove i(G) ≥ 2(n3+1)
n2(n2+1)

, it suffices to prove that x′+y′

x+y
≥ 1 or x′ + y′ ≥ n3 + 1. This

is proved as follows, again using the second and third inequalities of Corollary 2.2.

(a) If y = 0, then x′+y′

x+y
≥ y+y′

x
≥ r2

r+λ(x−1) ≥ r2

r+λ(v−1) =
r
k
≥ 1.

(b) If x = 0 and y ≤ n2, then x′+y′

x+y
≥ x+x′

y
≥ rk

r2−λ(b−y) ≥ rk
r2−λ(b−n2) = n ≥ 1.

(c) If x = 0 and y > n2, then x + x′ ≥ rky
r2−λ(b−y) ≥

(

rk
r2−λ(b−n2)

)

y = ny > n3.

Since x′ is an integer, it follows that x′ = n3 + 1.

(d) If x ≥ 1 and y ≥ 1, then y + y′ ≥ r and x+ x′ ≥ k, so that

x′ + y′ = (x+ x′) + (y + y′)− (x+ y) ≥ n4 − n− n4 + n2

2
≥ n3 + 1.

This completes the proof of Theorem 1.6.
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