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Maximal arcs and extended cyclic codes

Stefaan De Winter; Cunsheng Ding] and Vladimir D. Tonchev*

Abstract

It is proved that for every d > 2 such that d — 1 divides ¢ — 1, where g is a
power of 2, there exists a Denniston maximal arc A of degree d in PG(2, ¢), being
invariant under a cyclic linear group that fixes one point of A and acts regularly
on the set of the remaining points of A. Two alternative proofs are given, one ge-
ometric proof based on Abatangelo-Larato’s characterization of Denniston arcs,
and a second coding-theoretical proof based on cyclotomy and the link between
maximal arcs and two-weight codes.
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1 Introduction

Suppose that P is a projective plane of order ¢ = ds. A maximal ((sd —s+ 1)d,d)-
arc (or a maximal arc of degree d), is a set A of (sd — s+ 1)d points of P such that
every line of P is ether disjoint from A or meets A in exactly d points [3]], [19]]. The
collection of lines of P which have no points in common with A determines a maximal
((sd —d +1)s,s)-arc AL (called a dual arc) in the dual plane P-. A hyperoval is a
maximal arc of degree 2.

Maximal arcs of degree d with 1 < d < g do not exist in any Desarguesian plane
of odd order ¢ [3]], and are known to exist in every Desarguesian plane of even order
(Denniston [9]], Thas [23]], [24]; see also [7], [15], [16], [20]), as well as in some
non-Desarguesian planes of even order [[L1]], [12], [13l], [14], [18], [22], [23]], [24]].

In [1]] Abatangelo and Larato proved that a maximal arc A in PG(2,q), g even, is a
Denniston arc (that is, A can be obtained via Denniston’s construction [9]), if and only
if A is invariant under a linear collineation of PG(2,¢q), being a cyclic group of order
g+ 1. Collineation groups of maximal arcs in PG(2,2") are further studied in [17]].
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Abatangelo-Larato’s characterization of Denniston’s arcs implies, in particular,
that a regular hyperoval # in PG(2,2) is characterized by the property that # is
stabilized by a cyclic collineation group of order g + 1 that fixes one point of # and
acts regularly on the remaining g + 1 points of #. Consequently, the two-weight g-ary
code associated with # (cf. [6]), is an extended cyclic code.

The subject of this paper is a class of maximal arcs that generalize this property
of regular hyperovals. It is proved that for every d > 2 such that d — 1 divides ¢ — 1,
where ¢ is a power of 2, there exists a maximal arc A of degree d in PG(2,¢) that is
invariant under a cyclic linear group that fixes one point of A and acts regularly on the
set of the remaining points of A, hence, the two-weight code C associated with A is an
extended cyclic code. Two alternative proofs are given, one geometric proof based on
Abatangelo-Larato’s characterization of Denniston arcs, and a coding-theoretic proof
based on cyclotomy.

2 Maximal arcs with a cyclic automorphism group

Theorem 1. Let g = 28" and d = 2™, (m,k > 1). There exists a partition of AG(2,q)
into 3;_} maximal Denniston arcs of degree d sharing a unique point, and such that
there is a cyclic group G acting sharply transitively on the points of each of the arcs
distinct from the nucleus.

Proof. Assume x> + bx + 1 is an irreducible quadratic form over Fy, and let F;, [ €
F,U{es}, be the conic in PG(2,q) with equation x> + bxy +y* +1z> = 0. It is clear
that Fj, the point (0,0, 1) is the nucleus of each of the ¢ — 1 nondegenerate conics £,
I € F, and let F. be the line z = 0. We will partition the affine plane AG(2,q) =
PG(2,9)\ (z=0).

Let IF; be the unique subfield of order d of IF,. Let H be the additive group of [¥,,.
By Denniston’s construction of maximal arcs [9], it follows that A = UF;, [ € H, is a
maximal arc of degree d.

We will show that A admits a cyclic group of automorphisms acting sharply transi-
tively on the points of the arc distinct from the nucleus. Consider the following group:

o+ap B O
G = B a0 |:aBeF,o’+aaB+B>=1,yeF;
0 0 vy

This group is the direct product of

ot+af B O
G| = B o 0 |:o,BeF, o> +aaB+p>=1,,
0 0 1



and

Gy =

S O =
S = O

0
0 |:yelFy
Y

By a result of Abatangelo and Larato [1]] Gy is a cyclic group of order g+ 1 acting
sharply transitively on the points of each of the conics F;, [ € F;. On the other hand it
is clear that G is a cyclic group of order d — 1 that acts transitively on the set of conics
F;, 1 € H\ {0}. It follows that G is a cyclic group of automorphisms acting sharply
transitively on the points of A distinct from the nucleus.

Next, let Hf = H\ {0}, H;,. o1 be the (multiplicative) cosets of H\ {0} in the

multiplicative group of ;. Set H; = H *U{0} for all i. We now make the following
two observations:

e H;is an additive subgroup of order d of the additive group of I, for all i €
{1 7d 1
e HiNH;= {0} foralli## j.

The first observation follows immediately from the fact that H is an additive sub-
group of [, whereas the second observation follows directly from the fact that H\ {0}
is a subgroup of the multiplicative subgroup of .

Forie{l,..., Z;_i} define A; to be the Denniston maximal arc UF;, [ € H;. One

easily concludes that the fl;_i maximal Denniston arcs A; partition the plane in the
desired way. ]

Theorem 2. Let A;, i=1,..., % be a set of maximal arcs of degree d sharing a
unique point P and partitioning the point set of AG(2,q). Furthermore assume that
there is a linear cyclic group L (of order (d — 1)(q+ 1)) acting sharply transitively on
the points of Aj, i =1,..., Zl;_i, distinct from P. Then the set of maximal arcs A; arises
as in Theorem[ll

Proof. We assume that AG(2, q) is the affine plane obtained by deleting the line z =0
from PG(2,q). Clearly A; is invariant under a linear group C < L of collineations of
PG(2,q) which is cyclic of order g + 1. It follows from [1]] that A} (and hence each of
the A;) is of Denniston type. Note that this group C of order g+ 1 stabilizes each of the
conics in the maximal arc A;. Hence we can assume that the plane is coordinatized in
such a way that A; is contained in the standard pencil with P = (0,0, 1). It follows that
the group C is the unique cyclic linear group of order ¢+ 1 stabilizing all conics in the
standard pencil, and hence is actually the group G| from the previous theorem. Let H
be the additive group associated with A;. Without loss of generality we may assume
that 1 € H. The stabilizer S in L of the line x = 0 clearly has order d — 1, is cyclic,
and fixes the points P = (0,0,1) and (0, 1,1). As the orbit of (0,1, 1) under S consists
of the points (0,4,1), h € H\ {0}, it follows that H is actually that additive group of
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the subfield F; C F,. Note that this implies that the action of S on all points of the
line x = 0 is known (the action of S on this line corresponds to multiplying the second
coordinate of (0,y, 1) by a non-zero element of [F;. Also, clearly all A; are isomorphic.

We next show that all A;, i > 1, are contained in the standard pencil. Clearly L
contains a unique cyclic subgroup C of order g+ 1. Assume that A; contains the points
(0,hi, 1), h; € H; for some subset H; C [F, on the line x = 0. Then, whenever £; # 0,
clearly the orbit of (0,4;,1) under C is a conic in the standard pencil, and belongs to
A;. It follows that A; consists of conics contained in the standard pencil.

Now let H; be the additive subgroup associated with the maximal arc A;, i > 1.
Clearly the set {(0,4;,1) : h; € H;} is stabilized by the subgroup S of L. It follows that
H; is a multiplicative coset of the additive subgroup H. It now easily follows that the
set of maximal arcs A; arises as in the previous theorem, and the group L is actually
the group G from Theorem [11 ]

3 A family of extended cyclic two-weight codes

It is known that the existence of a maximal ((sd —s+ 1)d,d)-arc in PG(2,q) is equiv-
alent to the existence of a linear projective two-weight code L over GF(q) of length
(sd — s+ 1)d and dimension 3, having nonzero weights w; = (sd — s)d and wy =
(sd —s+1)d [6]], [8]. If A is a maximal arc of degree d = 2™ in PG(2,2"") satisfying
the conditions of Theorem [Il the code L is an extended cyclic code. We will give a
coding-theoretical description of this code based on cyclotomy.

Let m and k be positive integers. Define

g=2" d=2" n=(q+1)(d—1),N=(qg—1)/(d-1), r=4* (1)
By definition,
r—1 g-1 k—1 k=2
N = S N — om 2],
p T QM M A 2

It is straightforward to see that ord,(q) = 2. Let o be a generator of GF(r)*. Put
B = o. Then the order of B is n. Let Tr(-) denote the trace function from GF(r) to

GF("I?})l'e irreducible cyclic code of length n over GF(g) is defined by
Clg2n) = {€a 1 a € GF(r)}, 2)
where
¢ = (Tr(ap’), Tr(aB'), Tr(aB?), -, Tr(aB" ™). 3)

The complete weight distribution of some irreducible cyclic codes was determined
in [4]. However, the results in [4] do not apply to the cyclic code (45 ) of @), as our
g is usually not a prime. The weight distribution of ((, ,) is given in the following
theorem.



Theorem 3. The code Cy» ) of @) has parameters [n,2,n —d + 1] and has weight
enumerator

1+ (¢> —1)z47 Ve,
Further, the dual distance of Ciy n) equals 3 ifm =1, and 2 if m > 1.

Proof. Since q is even, ged(g+ 1,4 — 1) = 1. It then follows that

r—1 g—1
d N | =gcd I,——) =1
ge <q—17 ) gc <C]+ ’d—l)

The desired conclusions regarding the dimension and weight enumerator of C, 5 )
then follow from Theorem 15 in [[10].

We now prove the conclusions on the minimum distance of the dual code of (5 ).
To this end, we define a linear code of length g + 1 over GF(g) by

Fg24+1) = {€a:a € GE(r)}, )

where
eq = (Tr(ap"), Tr(aB'), Tr(aB?), -, Tr(ap?)). (5)
Each code ¢, in (2 ) is related to the codeword e, in E, 5 44 1) as follows:
o = eg||plt Ve, ||Blat 2, || -- ||plat D@ 2e,, (6)
where || denotes the concatenation of vectors. It is easy to prove
(BltVi:ie{0,1,---,d —2}} = GF(d)* C GF(q)".

It then follows that £, 5 ;1) has the same dimension as ;> ,). Consequently, the

dimension of £, 5 ;1) is 2, and the dual code Z(é.z. g+1)

follows from the Singleton bound that the minimum distance d f of £

has dimension g — 1. It then

1
(9,2,q+1

3. Obviously, dé = 1. Suppose that dé = 2. Then there are an element u € GF(g)*
and two integers i, j with 0 < i < j < g such that Tr(a(B’ —up’)) = 0 for all a € GF(r).
It then follows that B/(1 —up/~') = 0. As a result, B/~ = = DU-D/(d=1) — =1 ¢
GF(g)*, which is impossible, as 0 < j—i < g and ged(¢+1,(¢—1)/(d—1)) = 1.
Hence, di = 3. Since Eé.z.q+1) isa[g+1,q—1,3]MDS code, E(; 5 4+1)is [+1,2,4]
MDS code. When m = 1, we have d = 2 and hence Clg2.n) = Eg2,4+1)- Consequently,
the dual distance of (> ,) is 3 when m = 1. When m > 1, we have d — 1 > 1. In this

case, by (@) Cé;’z’n) has the following codeword

) 1s at most

(Bq+1707170707'” 7070>7

which has Hamming weight 2, where 0 is the zero vector of length g. Hence, C(Jc}.Z.n)
has minimum distance 2 if m > 1. This completes the proof. (|
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The code (>, is a one-weight code over GF(g). We need to study the augmented
code of Ciy2)- Let Z(a,b) denote the number of solutions x € GF(r) of the equation

Tr, g (ax") = ax" +a®x" = b, (7)
where a € GF(r) and b € GF(gq).
Lemma 4. Let a € GF(r)* and b € GF(q). Then

[ d=1N+1 ifb=0,
Z(“’b>_{ dN or 0 if b € GF(q)*.

2 .
Proof. Let oube a fixed primitive element of GF(g?) as before. Define Ci(N’q L (aV)
fori=0,1,...,N — 1, where (o) denotes the subgroup of GF(¢?)* generated by V.

The cosets Cl.(N’qz) are called the cyclotomic classes of order N in GF(g?). When b = 0,
it follows from Theorem [3| that Z(a,b) = (d — 1)N + 1. Below we give a geometric
proof of the conclusion of the second part.

We first recall the following natural model for AG(2,q). The points of AG(2,q)
are the elements GF(g?), with 0 naturally corresponding to the point (0,0). Let
GF(q) = {0,B1,B2,...,B4—1}. The lines of AG(2,q) through (0,0) are of the form
{0,0/By, 0B, ..., 0'By—1} fori=0,g—1,2(¢—1),...,q(g—1). The rest of the lines
of AG(2,q) are translates of these ¢ + 1 lines. In this model, multiplication by a non-
zero element of GF(g?) acts as a linear automorphism of AG(2,q) fixing (0,0) and
acting fix point free on the other points. Hence C = {1,004 ! o241, . oala-D}
is a cyclic group of order ¢+ 1 acting on AG(2,q). From [I]], we know that all
cyclic subgroups of order ¢ + 1 of PGL(3,¢q) are conjugate. Hence it follows that
the orbits of C on AG(2,q) must consist of a unique fixed point (namely (0,0)) and
q — 1 orbits of size g+ 1, each of which is a conic. Now the multiplicative subgroup
H = {v1,v2,...,V4_1} of GF(g?) acts as a group of homologies with center (0,0) on
AG(2,q). It follows that C acts as the group G| and H as the group G, from Theorem
[Il Hence the orbit of the point “1” under the cyclic group < C,H >, together with the

2
point “0”, is a maximal arc of degree d. On the other hand < C,H >= C(gN’q ). The
desired conclusion then follows. 0J

Define
Clgam = {€a+bl:a e GF(r), b e GF(q)}, (8)

where 1 denotes the all-1 vector in GF(g)". By definition, Z’(%z?n) is the augmented
code of Cy 2 )

Theorem S. The cyclic code Z'(q’z’n) has length n, dimension 3 and only the following
nonzero weights:
n—d,n—d+1, n.

The dual distance of Ciya ) is 4 ifm =1, and 3 if m > 1.
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Proof. By definition, every codeword in Z“(%z?n) is given by ¢, + b1, where a € GF(r)
and b € GF(q). By Theorem 3] the codeword ¢, + b1 is the zero codeword if and only
if (a,b) = (0,0). Consequently, the dimension of E(q%n) is 3.

When a = 0 and b # 0, the codeword ¢, + b1 has weight n. When a # 0 and b = 0,
by Theorem [3] the codeword ¢, + b1 has weight n —d + 1. When a # 0 and b # 0,
by Lemma [ the weight of the codeword ¢, + b1 is either n or n — d, depending on
Z(a,b) =0or Z(a,b) =dN.

The proof of the conclusions on the dual distance of Z’(%zm is left to the reader. [

Let aq,Zm) denote the extended code of Z’(%z?n). The next theorem gives the pa-
rameters of this extended code.

Theorem 6. Let mk > 1, and let z(%zm) be a linear code over GF(q) with parame-
ters [n+1,3, n+1-— d] and nonzero weights n+ 1 —d and n+ 1. Then the weight

enumerator of E(q,Z,n) is given by

AZ) =1+ (4° - 1;(”“‘ 1)Zn+lfd+ (> —1)d— (Z'Z_ 1)(n+ 1)Zn+l'

Furthermore, the dual distance of the code is 3 when m > 1 and 4 when m = 1.

€))

Proof. By definition, every codeword of a%m is given by
(cqa+b1,0),

where ¢ denotes the extended coordinate of the codeword. Note that Z?;Ol B =0. We
have
¢c=nb=0>b.

When a # 0 and b = 0, by Theorem [3]
wt((c, +b1,¢)) =wt(c,+b1)=n+1—d.
When a # 0 and b # 0, by the proof of Theorem [3]

wt((ca+b1,2)) :{ n—d+1 ifZ(a,b)=dN,

n+1 if Z(a,b) = 0.

When a =0 and b # 0, it is obvious that wt((¢, +51,¢)) = n+ 1. We then deduce that

C(¢,2,n) has only nonzero weights n+1—d and n+ 1. By Theorem Bl the minimum
:J— —~
distance of C, ) is either 3 or 4. The weight enumerator of C(, ) is obtained by

solvingi the first two Pless power moments (see also [6]). B

We now prove the conclusions on the dual distance of Z'(%ZJ,). For simplicity, we
put

L (q2—1>(n+1)zn+1fd L (> —1)d—(q¢*—1)(n+1)
B d T d '




By (9), the weight enumerator of ?(%27") isA(z) = 1 +uz"1=9 4 vz It then follows
=1
from the MacWilliam Identity that the weight enumerator A~ (z) of C (¢.2,n) 18 given by

TAN(z) = (1+(q—1>z>n+1A<ﬁ)

= (14 (g— D))" +u(l =21+ (g = D) +v(1=2)"'(10)

We have
(1+(g-1)2)"" =’E; (”f 1)(q— Dk (n
and
v(1—z)"! :’2 (";L 1) (—1)ive. (12)

It is straightforward to prove that

n+1 o ' '
u(1—2)"" 1+ (g 1)2)" = i ( y <n+1 d) <d.)(—1)’(q—1)f> uz'. (13)

(=0 \i+j=¢ J

Combining (10), (IT)), (I2) and (13), we obtain that

ot = ("7 im0+

(") (e () () v 1w

n+D[(g—1)—v]+[d(g—1)—(n+1—d)]u
= 0.

Combining (1Q), (IT), (I2) and (13) again, we get that

FAY = (nzl)[(q—1)2+v]+(n+é_d><§)(—1>°(q—1)2u+
(") (e (M (O -

= ("3
|
0

(Z)(q—l)z—(n+1—d>d(‘1‘1)+ (H;_d)] )



Combining (I0), (1)), (I2) and (I3) the third time, we arrive at

A R [

(") () - (M) (5) 0t a1 e
(")) e () () e 1w

[N

(3) o= () Q)]s
(727 o= e

It then follows that
64°Ay = ¢°d® —4¢%d* +5¢°d —2¢° + P d® —3¢°d* +2¢°d —
G+ 4 P =50 d + 24" — PdP +353d% - 2434
= (d=2)(d—1)g*(q"—1)(gd —q+d).
Thus,

d—2)(d—-1)(g*>—1)(qgd —q+d
pp_ =D D( = 1)(gd—q+d) i
6
When m > 1, we have d > 3. In this case, by (14) we have A3L >0. Whenm =1,
by (I4) we have A+ = 0. As a result, the dual distance is at least 4 when m = 1. On
the other hand, the Singleton bound tells us that the dual distance is at most 4 when

m = 1. Whence, the dual distance must be 4 when m = 1.

Thus, in all cases, the extended code E(q&n) is projective, hence is associated with
a maximal (n+ 1,d)-arc in PG(2,q).
O

Theorem 7. If mk > 1, the supports of the codewords with weight n+1 —d in z(%zm)
form a 2-design D with parameters

2—(n+1,n+1—d, <"+1_d)(”_d)).

d(d—1)

Proof. The supports of the codewords of weight n+ 1 —d in z(q,Z,n) form a 2-design
by the Assmus-Mattson theorem [2] Since n+ 1 —d is the minimum distance of the
code, the total number of blocks in the design is given by

(@ —Dr+1) (g+1)(n+1)

(g—1)d d




As a result,
(n+1—d)(n—d)

A= d(d—1)

0

Remark 8. We note thatif M is a 3 x (n+ 1) generator matrix of the two-weight code

C(¢,2.n) from Theorem[7] the columns of M label the points of a maximal (n+ 1, d)-arc
A in PG(2,q), and the complementary design D of the 2-design D from Theorem [7] is
a Steiner 2-(n+ 1,d, 1) design having as blocks the nonempty intersections of A with
the lines of PG(2,q).

L

Theorem 9. If m > 1, the supports of the codewords with weight 3 in z(quvn

2-design with parameters

) form a

2—(n+1,3,d-2).
=1
Proof. Let m > 1. By Theorem[@d the code C (¢,2,n) has minimum distance 3. It follows

from the Assmus-Mattson theorem that the supports of the codewords of weight 3 in
=1
C(g,2,n) form a 2-design. We then deduce from @) that the number of blocks in this

design is
po_ (d=2)n(n+1)
— c ,
Consequently, A~ = d — 2. O
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