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Abstract. We develop a framework for obtaining linear programming bounds for
spherical codes whose inner products belong to a prescribed subinterval [`, s] of [−1, 1).
An intricate relationship between Levenshtein-type upper bounds on cardinality of
codes with inner products in [`, s] and lower bounds on the potential energy (for ab-
solutely monotone interactions) for codes with inner products in [`, 1) (when the car-
dinality of the code is kept fixed) is revealed and explained. Thereby, we obtain a
new extension of Levenshtein bounds for such codes. The universality of our bounds
is exhibited by a unified derivation and their validity for a wide range of codes and
potential functions.
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1. Introduction

In the seminal paper of Cohn and Kumar [6], many classical maximal spherical codes
with applications to communications, such as the Korkin-Zolotarev kissing number con-
figuration on S7, the Leech lattice configuration in 24 dimensions, the 600-cell, etc., were
shown to be universally optimal in the sense that they have minimal potential energy
for a large class of potential interactions. The notion of universal optimality was further
developed for Hamming spaces in [8].

As important as these particular configurations are, it is of significant interest to study
bounds for codes of general cardinality. The theory of universal bounds for codes and
designs in polynomial metric spaces was laid out by Levenshtein in [14]. The interplay
between Levenshtein’s framework and universal lower bounds (ULB) on potential energy
of codes was established recently by the authors for Euclidean spaces in [4] and for
Hamming spaces in [5]. In this paper we further that interplay to codes with inner

Date: August 10, 2021.
† The research of these authors was supported, in part, by a Bulgarian NSF contract DN02/2-2016.

†† The research of this author was supported, in part, by a Simons Foundation grant no. 282207.
∗ The research of these authors was supported, in part, by the U. S. National Science Foundation under
grant DMS-1516400.

1

ar
X

iv
:1

80
1.

07
33

4v
1 

 [
m

at
h.

M
G

] 
 2

2 
Ja

n 
20

18



2 P. BOYVALENKOV, P. DRAGNEV, D. HARDIN, E. SAFF, AND M. STOYANOVA

products in a prescribed subinterval [`, s] of [−1, 1) and as a result derive an extension
of Levenshtein’s framework to this setting.

Let Sn−1 ⊂ Rn denote the (n − 1)-dimensional unit sphere. A nonempty finite set
C ⊂ Sn−1 is called a spherical code. For −1 ≤ ` < s < 1 denote by

C(`, s) := {C ⊂ Sn−1 : ` ≤ 〈x, y〉 ≤ s, x, y ∈ C, x 6= y},
the set of spherical codes with prescribed maximum diameter and minimum pairwise
distance, where 〈x, y〉 denotes the inner product of x and y. We establish upper bounds
on the quantity

A(n; [`, s]) := max{|C| : C ∈ C(`, s)},
which is a classical problem in coding theory.

Given a (potential) function h(t) : [−1, 1] → [0,+∞] and a code C ⊂ Sn−1, we define
the potential energy (also referred to as h-energy) of C as

E(C;h) :=
∑

x,y∈C,x6=y
h(〈x, y〉).

In what follows we shall consider potential functions h that are absolutely monotone,
namely h(k)(t) ≥ 0 for every k ≥ 0 and t ∈ [−1, 1). For such potentials we establish ULB
for the quantity

E(n,M, `;h) := inf{E(C;h) : C ∈ C(`, 1), |C| = M}.
As in [4], the use of linear programming reveals a strong connection between our ULB
on E(n,M, `;h) and our Levenshtein-type upper bounds on A(n; [`, s]).

Throughout, P
(n)
k (t), k = 0, 1, . . . , will denote the Gegenbauer polynomials [16] nor-

malized with Pk(1) = 1. We consider functions f(t) : [−1, 1]→ R,

f(t) =
∞∑
k=0

fkP
(n)
k (t), where f(1) =

∞∑
k=0

fk <∞.

The function f is called positive definite (strictly positive definite) if all coefficients fk
are non-negative (positive). Following Levenshtein’s notation we denote the class of all
positive definite (strictly positive definite) functions by the symbol F≥ (F>). When f is
a polynomial, the definition of F> does not include fk for k > deg(f) (since fk = 0 for
such k).

The Kabatiansky-Levenshtein [12] approach (see also [10]) is based on the inequality

(1) A(n; [`, s]) ≤ min
f∈Fn,`,s

f(1)/f0,

where

Fn,`,s := {f ∈ F≥ | f(t) ≤ 0, t ∈ [`, s], f0 > 0}.

Similarly, the Delsarte-Yudin approach (see [17]) uses the inequality

(2) E(n,M, `;h) ≥ max
g∈Gn,`;h

M(Mg0 − g(1)),
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where

Gn,`;h := {g ∈ F≥ | g(t) ≤ h(t), t ∈ [`, 1), g0 > 0}.

The determination of the right-hand sides of the bounds (1) and (2) over the respec-
tive classes defines two infinite linear programs. To determine his universal bounds on
A(n, s) := A(n; [−1, s]) Levenshtein [14] found explicitly the solution of the linear pro-
gram posed by (1) when restricted to Fn,−1,s ∩ Pm, where Pm denotes the class of real
polynomials of degree at most m.

In [4] the authors considered the linear program in (2) over Gn,−1;h ∩Pm and found its
solution as the Hermite interpolation polynomial of h(t) at the zeros of the Levenshtein
polynomial. This implies the ULB on E(n,M ;h) := E(n,M,−1;h). The interplay be-
tween the two optimal solutions is that the zeros of the Levenshtein polynomials serve
also as nodes of an important Radau or Lobato quadrature formulae.

In this paper we further develop the intricate connection between the maximum cardi-
nality and minimum energy problems, which is described in our main result Theorem 4.7.
For this purpose a central role is played by an `-modification of the so-called ‘strengthened
Krein condition’ introduced by Levenshtein (see Section 4).

The outline of the paper is as follows. In Section 2, we introduce certain signed mea-
sures and establish their positive definiteness up to an appropriate degree. Properties of
their associated orthogonal polynomials are also discussed. In Section 3, Levenshtein-type

polynomials f
(n,`,s)
2k (t) are constructed and corresponding quadrature formulas are de-

rived. These formulas are used in Section 4, together with linear programming techniques,
to derive the Levenshtein-type bounds on the cardinality of maximal codes A(n; [`, s])
and ULB-type (in the sense of [4]) energy bounds on E(n,M, `;h). In the last section
some special examples and numerical evidence of an `-strengthened Krein property are
presented.

2. Positive definite signed measures and associated orthogonal
polynomials

In this section we establish the positive definiteness up to certain degrees of the signed
measures that are used in the proof of our main result, Theorem 4.7.

We shall denote the measure of orthogonality of Gegenbauer polynomials as

(3) dµ(t) := γn(1− t2)
n−3
2 dt, t ∈ [−1, 1], γn :=

Γ(n2 )
√
πΓ(n−12 )

,

where γn is a normalizing constant that makes µ a probability measure.

Levenshtein used the adjacent (to Gegenbauer) polynomials

(4) P 1,0
k (t) := P

(n−1
2
,n−3

2
)

k (t)/P
(n−1

2
,n−3

2
)

k (1) = η1,0k tk + · · · , η1,0k > 0,

where P
(α,β)
k (t) denotes the classical Jacobi polynomial (the normalization is again chosen

so that P 1,0
k (1) = 1). The polynomials (4) are orthogonal with respect to the probability
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measure

(5) dχ(t) := (1− t)dµ(t).

They also satisfy the following three-term recurrence relation

(t− a1,0i )P 1,0
i (t) = b1,0i P 1,0

i+1(t) + c1,0i P 1,0
i−1(t), i = 1, 2, . . . ,

where

P 1,0
0 (t) = 1, P 1,0

1 (t) =
nt+ 1

n+ 1
,

b1,0i =
η1,0i
η1,0i+1

> 0, c1,0i =
r1,0i−1b

1,0
i−1

r1,0i
, a1,0i = 1− b1,0i − c

1,0
i ,

r1,0i :=

(∫ 1

−1

[
P 1,0
i (t)

]2
dχ(t)

)−1
=

(
n+ 2i− 1

n− 1

)2(n+ i− 2

i

)
.

Let t1,0i,1 < t1,0i,2 < · · · < t1,0i,i be the zeros of the polynomial P 1,0
i (t), which are known to

interlace with the zeros of P 1,0
i−1(t).

We next recall the definition of positive definite signed measures up to degree m (see
[6, Definition 3.4]).

Definition 2.1. A signed Borel measure ν on R for which all polynomials are integrable
is called positive definite up to degree m if for all real polynomials p 6≡ 0 of degree
at most m we have

∫
p(t)2dν(t) > 0.

Given ` and s such that ` < t1,0k,1 < t1,0k,k < s, we define the signed measures on [−1, 1]

(see (3) and (5))

dν`(t) := (t− `)dχ(t),(6)

dνs(t) := (s− t)dχ(t),(7)

dν`,s(t) := (t− `)(s− t)dχ(t),(8)

dµ`(t) := (t− `)dµ(t).(9)

The following lemma establishes the positive definiteness of these signed measures up to
certain degrees, which in turn allows us to define orthogonal polynomials with respect
to these signed measures. This equips us with the essential ingredients for modifying
Levenshtein’s framework.

Lemma 2.2. For given k > 1, let s and ` satisfy ` < t1,0k,1 < t1,0k,k < s. Then the measures

dν`(t), dνs(t), and dµ`(t) are positive definite up to degree k− 1 and the measure dν`,s(t)
is positive definite up to degree k − 2.

Proof. We first note that the system of k + 1 nodes

Mk+1 := {t1,0k,1 < t1,0k,2 < · · · < t1,0k,k < 1 := t1,0k,k+1}
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defines a positive Radau quadrature with respect to the measure µ that is exact for all
polynomials of degree at most 2k (see e.g. [9, pp. 102-105], [1, Theorem 2.4]), namely
the quadrature formula

(10) f0 :=

∫ 1

−1
f(t)dµ(t) = wk+1f(1) +

k∑
i=1

wif(t1,0k,i )

holds for all polynomials f of degree at most 2k, and the weights wi, i = 1, . . . , k + 1
are positive.

Let now q(t) be an arbitrary polynomial of degree at most k − 1. From (10) we have
that ∫ 1

−1
q2(t)dν`(t) =

∫ 1

−1
q2(t)(1− t)(t− `)dµ(t)

=
k∑
i=1

wiq
2(t1,0k,i )(1− t

1,0
k,i )(t

1,0
k,i − `) ≥ 0,

where equality may hold only if q(t1,0k,i ) = 0 for all i = 1, . . . , k, which would imply that

q(t) ≡ 0. Therefore the measure dν`(t) is positive definite up to degree k− 1 as asserted.

Similarly, for the measure dνs(t) and deg q ≤ k − 1 we have∫ 1

−1
q2(t)dνs(t) =

∫ 1

−1
q2(t)(1− t)(s− t)dµ(t)

=

k∑
i=1

wiq
2(t1,0k,i )(1− t

1,0
k,i )(s− t

1,0
k,i ) ≥ 0,

where again equality holds only for q(t) ≡ 0.

Next, if q(t) 6≡ 0 is of degree at most k − 2, then we utilize (10) again to derive that∫ 1

−1
q2(t)dν`,s(t) =

k∑
i=1

wiq
2(t1,0k,i )(1− t

1,0
k,i )(t

1,0
k,i − `)(s− t

1,0
k,i ) > 0.

Hence, dν`,s(t) is positive definite up to degree k − 2.

To verify the assertion about the measure dµ`(t) we employ a similar argument but
with a quadrature rule defined on the collection of k nodes

M̃k := {tk,1 < tk,2 < · · · < tk,k},

where tk,i are the zeros of the regular Gegenbauer polynomials P
(n)
k (t). We note that

from [14, Lemma 5.29, Eq. (72)] we have t1,0k,1 < tk,1. Using the associated Lagrange basis

polynomials L̃i, i = 1, 2, . . . , k, we define the weights vi :=
∫ 1
−1 L̃i(t)dµ(t), i = 1, 2, . . . , k.
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Then, as in the proof of Gaussian quadrature, one shows that the formula

f0 :=

∫ 1

−1
f(t)dµ(t) =

k∑
i=1

vif(tk,i)

is exact for polynomials of degree up to 2k − 1. Thus, for any polynomial q(t) of degree
less than or equal to k − 1, we have∫ 1

−1
q2(t)dµ`(t) =

∫ 1

−1
q2(t)(t− `)dµ(t)

=

k∑
i=1

viq
2(tk,i)(tk,i − `) ≥ 0,

with equality if and only if q(t) ≡ 0. This concludes the proof of the lemma. �

Applying Gram-Schmidt orthogonalization (see, for example, [6, Lemma 3.5]) one
derives the existence and uniqueness (for the so-chosen normalization) of the following
classes of orthogonal polynomials with respect to the signed measures (6)-(9).

Corollary 2.3. Let ` < t1,01,k < t1,0k,k < s. The following classes of orthogonal polynomials

are well-defined:

{P 0,`
j (t)}kj=0, orthogonal w.r.t. dµ`(t), P

0,`
j (1) = 1;

{P 1,`
j (t)}kj=0, orthogonal w.r.t. dν`(t), P

1,`
j (1) = 1;

{P 1,s
j (t)}kj=0, orthogonal w.r.t. dνs(t), P

1,s
j (1) = 1;

{P 1,`,s
j (t)}k−1j=0 , orthogonal w.r.t. dν`,s(t), P

1,`,s
j (1) = 1.

The polynomials in each class satisfy a three-term recurrence relation and their zeros
interlace.

Remark 2.4. We note that if t1,0k+1,1 < ` < t1,0k,1 is such that P 1,0
k+1(`)/P

1,0
k (`) = 1, then

P 1,`
k (1) = 0 and the normalization above fails. However, for our purposes we shall restrict

to values of ` such that P 1,0
k+1(`)/P

1,0
k (`) < 1.

Utilizing the Christoffel-Darboux formula (see, for example [16, Th. 3.2.2], [14, Eq.
(5.65)]) we are able to construct these polynomials explicitly. Let

T 1,0
i (x, y) :=

i∑
j=0

r1,0j P 1,0
j (x)P 1,0

j (y)

= r1,0i b1,0i
P 1,0
i+1(x)P 1,0

i (y)− P 1,0
i+1(y)P 1,0

i (x)

x− y
.

(11)

Note that in the limiting case x = y we use appropriate derivatives.
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Levenshtein [14] uses the Christoffel-Darboux formula to prove the interlacing proper-

ties tj+1,i < t1,0j,i < tj,i, i = 1, 2, . . . , j, of the zeros of P 1,0
j and the Gegenbauer polynomi-

als. Similarly, from the representation

P 1,`
j (t) =

(1− `)
(
P 1,0
j+1(t)− P

1,0
j (t)P 1,0

j+1(`)/P
1,0
j (`)

)
(t− `)

(
1− P 1,0

j+1(`)/P
1,0
j (`)

) ,

which is verified in the next theorem, we derive interlacing properties of the zeros of P 1,`
j

with respect to the zeros of P 1,0
i .

Theorem 2.5. Let ` and k be such that t1,0k+1,1 < ` < t1,0k,1 and P 1,0
k+1(`)/P

1,0
k (`) < 1. Then

all zeros {t1,`i,j }ij=1 of P 1,`
i (t) are in the interval [`, 1] and we have

(12) P 1,`
i (t) =

T 1,0
i (t, `)

T 1,0
i (1, `)

= η1,`i ti + · · · , i = 0, 1, . . . , k,

with all leading coefficients η1,`i > 0 and t1,`k,k < 1. Finally, the interlacing rules

t1,`i,j ∈ (t1,0i,j , t
1,0
i+1,j+1), i = 1, . . . , k − 1, j = 1, . . . , i;

t1,`k,j ∈ (t1,0k+1,j+1, t
1,0
k,j+1), j = 1, . . . , k − 1,

(13)

hold.

Remark 2.6. As the proof below shows the condition P 1,0
k+1(`)/P

1,0
k (`) < 1 is equivalent

with t1,`k,k < 1. In general, the orthogonal polynomial P 1,`
k (t) is well defined for all t1,0k+1,1 <

` < t1,0k,1, but its largest root leaves the interval [−1, 1] and the leading coefficient becomes
negative.

Proof. For any polynomial p(t) of degree less than i we have∫ 1

−1
T 1,0
i (t, `)p(t) dν`(t)

= r1,0i b1,0i

∫ 1

−1

(
P 1,0
i+1(t)P

1,0
i (`)− P 1,0

i+1(`)P
1,0
i (t)

)
p(t) dχ(t) = 0,

and (12) follows from the positive definiteness of the measure dν`(t) and the uniqueness
of the Gram-Schmidt orthogonalization process.

We next focus on the location of the zeros of P 1,`
i (t). From (11) and (12) they are

solutions of the equation

(14)
P 1,0
i+1(t)

P 1,0
i (t)

=
P 1,0
i+1(`)

P 1,0
i (`)

.
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For all i < k the zeros of P 1,0
i+1(t) and P 1,0

i (t) are interlaced and contained in [t1,0k,1, t
1,0
k,k].

Observe that signP 1,0
i (`) = (−1)i, so P 1,0

i+1(`)/P
1,0
i (`) < 0. The function P 1,0

i+1(t)/P
1,0
i (t)

has simple poles at t1,0i,j , j = 1, . . . , i, and simple zeros at t1,0i+1,j , j = 1, . . . , i+1; therefore,

there is at least one solution t1,`i,j of (14) on every subinterval (t1,0i,j , t
1,0
i+1,j+1), j = 1, . . . , i,

which accounts for all zeros of P 1,`
i (t).

When i = k we note first that P 1,0
k+1(`)/P

1,0
k (`) > 0. Moreover, ` is contained in the

interval (t1,0k+1,1, t
1,0
k ), so we can account similarly for only the first k−1 solutions of (14),

namely

t1,`k,j ∈ (t1,0k+1,j+1, t
1,0
k,j+1), j = 1, . . . , k − 1.

This establishes the interlacing properties (13). To account for the last zero of P 1,`
k (t) we

utilize the fact that P 1,0
k+1(t)/P

1,0
k (t) > 0 for t ∈ (t1,0k+1,k+1,∞). As limt→∞ P

1,0
k+1(t)/P

1,0
k (t) =

∞, we have one more solution t1,0k,k of (14).

Since P 1,0
k+1(`)/P

1,0
k (`) < 1, we conclude that t1,0k,k < 1 because P 1,0

k+1(1)/P 1,0
k (1) = 1.

Comparison of coefficients in (12) yields η1,`k > 0. �

3. Construction of the Levenshtein-type polynomials

Given some ` > −1, we choose k = k(`) to be the largest k such that the condition

` < t1,01,k is satisfied.

We first construct the polynomials P 1,`,s
i (t) utilizing the system {P 1,`

i (t)}ki=0 from the
previous section. The positive definiteness of the measure dν`(t) implies that

r1,`i :=

(∫ 1

−1

(
P 1,`
i (t)

)2
dν`(t)

)−1
> 0, i = 0, 1, . . . , k − 1.

The three-term recurrence relation from Corollary 2.3 can be written as

(t− a1,`i )P 1,`
i (t) = b1,`i P 1,`

i+1(t) + c1,`i P 1,`
i−1(t), i = 1, 2, . . . , k − 1,

where

P 1,`
0 (t) = 1, P 1,`

1 (t) =
(n`+ 1)t+ `+ 1

(n+ 1)`+ 2
,

b1,`i =
η1,`i+1

η1,`i
> 0, c1,`i =

r1,`i−1b
1,`
i−1

b1,`i
> 0, a1,`i = 1− b1,`i − c

1,`
i .

By Corollary 2.3 we have that the zeros of {P 1,`
i (t)} interlace; i.e.

t1,`j,i < t1,`j−1,i < t1,`j,i+1, i = 1, 2, . . . , j − 1.
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We next consider the Christoffel-Darboux kernel (depending on `) associated with the

polynomials {P 1,`
j }kj=0:

Ri(x, y; `) :=

i∑
j=0

r1,`j P 1,`
j (x)P 1,`

j (y)(15)

= r1,`i b1,`i
P 1,`
i+1(x)P 1,`

i (y)− P 1,`
i+1(y)P 1,`

i (x)

x− y
, 0 ≤ i ≤ k − 1.(16)

Given t1,0k,k ≤ s ≤ min{1, t1,`k,k}, we define

P 1,`,s
k−1 (t) :=

Rk−1(t, s; `)

Rk−1(1, s; `)

=
1− s

1− P 1,`
k (s)/P 1,`

k−1(s)

P 1,`
k (t)− P 1,`

k−1(t)P
1,`
k (s)/P 1,`

k−1(s)

t− s
.(17)

We now define the Levenshtein-type polynomial

(18) f
(n,`,s)
2k (t) := (t− `)(t− s)

(
P 1,`,s
k−1 (t)

)2
,

and proceed with an investigation its properties.

Theorem 3.1. Let n, `, s and k be such that t1,0k+1,1 < ` < t1,0k,1, P 1,0
k+1(`)/P

1,0
k (`) < 1,

t1,0k,k ≤ s ≤ t1,`k,k, and P 1,`
k (s)/P 1,`

k−1(s) > P 1,`
k (`)/P 1,`

k−1(`). Then the polynomial P 1,`,s
k−1 (t)

has k − 1 simple zeros β1 < β2 < · · · < βk−1 such that β1 ∈ (`, t1,`k−1,1) and βi+1 ∈
(t1,`k−1,i, t

1,`
k−1,i+1), i = 1, 2, . . . , k − 2.

Proof. The proof is similar to that of Theorem 2.5. It follows from (17) that the roots
of the equation

P 1,`
k (t)

P 1,`
k−1(t)

=
P 1,`
k (s)

P 1,`
k−1(s)

are s and the zeros of P 1,`,s
k−1 (t), say β1 < β2 < · · · < βk−1.

The function P 1,`
k (t)/P 1,`

k−1(t) has k−1 simple poles at the zeros t1,`k−1,i, i = 1, 2, . . . , k−1,

of P 1,`
k−1(t). Therefore, there is a zero of P 1,`,s

k−1 (t) in each interval (t1,`k−1,i, t
1,`
k−1,i+1), i =

1, 2, . . . , k − 2, which accounts for k − 2 zeros.

Since P 1,`
k (s)/P 1,`

k−1(s) < 0 and the function P 1,`
k (t)/P 1,`

k−1(t) increases from −∞ to 1 for

t ∈ (t1,`k−1,k−1, 1], we have the root s in this interval. Finally, in the interval [−∞, t1,`k−1,1),

the function
P 1,`
k (t)

P 1,`
k−1(t)

increases from −∞ to +∞ and the condition P 1,`
k (s)/P 1,`

k−1(s) >

P 1,`
k (`)/P 1,`

k−1(`) implies that the smallest zero β1 of P 1,`,s
k−1 (t) lies in the interval (`, t1,`k−1,1).

�
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The next theorem is an analog of Theorem 5.39 from [14]. It involves the zeros of

f
(n,`,s)
2k (t) to form a right end-point Radau quadrature formula with positive weights.

Theorem 3.2. Let β1 < β2 < · · · < βk−1 be the zeros of the polynomial P 1,`,s
k−1 (t). Then

the Radau quadrature formula

f0 =

∫ 1

−1
f(t)(1− t2)

n−3
2 dt

= ρ0f(`) +

k−1∑
i=1

ρif(βi) + ρkf(s) + ρk+1f(1) =: QF (f)

(19)

is exact for all polynomials of degree at most 2k and has positive weights ρi > 0, i =
0, 1, . . . , k + 1.

Proof. Let us denote with Li(t), i = 0, 1, . . . , k + 1, the Lagrange basic polynomials
generated by the nodes β0 := ` < β1 < · · · < βk−1 < βk := s < 1 =: βk+1. Defining

ρi :=
∫ 1
−1 Li(t)dµ(t), i = 0, 1, . . . , k + 1, we observe that (19) is exact for the Lagrange

basis and hence for all polynomials of degree k + 1.

We write any polynomial f(t) of degree at most 2k as

f(t) = q(t)(t− `)(t− s)(1− t)P 1,`,s
k−1 (t) + g(t),

where q(t) is of degree at most k − 2 and g(t) is of degree at most k + 1. Then the

orthogonality of P 1,`,s
k−1 (t) to all polynomials of degree at most k − 2 with respect to

the measure dν`,s(t) = (t − `)(s − t)dχ(t) and the fact that QF (f) = QF (g) show the
exactness of the quadratic formula for polynomials up to degree 2k, namely∫ 1

−1
f(t)dµ(t) =

∫ 1

−1
g(t)dµ(t) = QF (g) = QF (f).

We next show the positivity of the weights ρi, i = 0, . . . , k. Substituting in (19) the

polynomial f(t) = (s− t)(1− t)
(
P 1,`,s
k−1 (t)

)2
of degree 2k, we obtain

ρ0(s− `)(1− `)
(
P 1,`,s
k−1 (`)

)2
= f0 =

∫ 1

−1
(s− t)(1− t)

(
P 1,`,s
k−1 (t)

)2
dµ(t)

=

∫ 1

−1

(
P 1,`,s
k−1 (t)

)2
dνs(t) > 0,

from which we derive ρ0 > 0.

To derive that ρi > 0 for i = 1, 2, . . . , k − 1, we substitute

f(t) = (1− t)(t− `)(s− t)u2k−1,i(t)
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in (19), where uk−1,i(t) = P 1,`,s
k−1 (t)/(t− βi). Then clearly

ρi(1− βi)(s− βi)(βi − `)u2k−1,i(βi) = f0 =

∫ 1

−1
u2k−1,i(t) dν`,s(t) > 0.

Similarly, utilizing the polynomial f(t) = (1 − t)(t − `)
(
P 1,`,s
k−1 (t)

)2
of degree 2k and

the positive definiteness of the measure dν`(t) up to degree k − 1 we show that ρk > 0.

Finally, we compute the weight ρk+1 and show that it is positive. In this case we use

f(t) = f
(n,`,s)
2k (t) in (19) and easily find that

ρk+1 =
f0
f(1)

=
f
(n,`,s)
2k,0

f
(n,`,s)
2k (1)

=
f
(n,`,s)
2k,0

(1− s)(1− `)
.

Computing f0 = f
(n,`,s)
2k,0 using (17) (recall that P 1,`,s

k−1 (1) = 1) we get

f0 =

∫ 1

−1
(t− `)(s− t)(1− t)P 1,`,s

k−1 (t)
P 1,`,s
k−1 (t)− P 1,`,s

k−1 (1)

t− 1
dµ(t)

+

∫ 1

−1
(t− `)(t− s)P 1,`,s

k−1 (t)dµ(t)

=
1− s

1− P 1,`
k (s)/P 1,`

k−1(s)

∫ 1

−1
(t− `)

(
P 1,`
k (t)−

P 1,`
k (s)

P 1,`
k−1(s)

P 1,`
k−1(t)

)
dµ(t).

(20)

By Lemma 4.4 and the fact that −P 1,`
k (s)/P 1,`

k−1(s) > 0 we have that the integrand in
(20) is positive definite and in particular its zero-th coefficient (which is the integral in
(20)) is positive. This proves the theorem. �

For any fixed −1 < ` < t1,01,k and t1,0k,k < s < t1,`k,k the Levenshtein-type bound is defined

to be

L2k(n; [`, s]) :=
1

ρk+1
=
fn,`,s2k (1)

f0
=

(1− `)(1− s)
f0

.

4. Bounding cardinalities and energies

In the proof of the positive definiteness of his polynomials Levenshtein uses what he
called the strengthened Krein condition

(t+ 1)P 1,1
i (t)P 1,1

j (t) ∈ F>
(see [14, (3.88) and (3.92)]). We need a following modification.

Definition 4.1. We say that the polynomials {P 1,`
i (t)}ki=0 satisfy `-strengthened Krein

condition if

(21) (t− `)P 1,`
i (t)P 1,`

j (t) ∈ F>
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for every i, j ∈ {0, 1, . . . , k} except for i = j = k.

The strengthened Krein condition holds true for every i and j by a classical result of
Gasper [11]. However, the `-strengthened Krein condition is not true for every `, and for
fixed `, is not true for every k.

For fixed n and k, denote

`(n, k) := sup{` ∈ [−1, 0] : `-strengthened Krein condition holds true}.

Our computations ensure strong evidence that the following conjecture is true.

Conjecture 4.2. For fixed n and k the condition (21) holds true for every ` ∈ [−1, `(n, k)].

Remark 4.3. The Christoffel-Darboux formula

(t− `)P 1,`
k (t) =

(1− `)
(
P 1,0
k+1(t)− P

1,0
k (t)P 1,0

k+1(`)/P
1,0
k (`)

)
1− P 1,0

k+1(`)/P
1,0
k (`)

yields easily that the inequality P 1,0
k+1(`)/P

1,0
k (`) < 1 is a necessary condition for the `-

strengthened condition to hold. Therefore, we assume from now on that it holds (see the
hypothesis of Theorems 2.5 and 3.1).

Our computations suggest also that `(n, k) is always less (but not much less!) than

t1,0k,1 and the smallest root of the equation P 1,0
k+1(t)/P

1,0
k (t) = 1. Hence the `-strengthened

Krein condition is stronger than the conditions imposed so far. This corresponds to the
Levenshtein’s theory, where the strengthened Krein condition appears to be the most
significant obstacle.

The following Lemma demonstrates the reasonableness of Conjecture 4.2.

Lemma 4.4. The polynomials {(t − `)P 1,`
i (t)}k−1i=0 are strictly positive definite provided

that −1 ≤ ` < t1,0k,1.

Proof. From the definition (11) of the kernels T 1,0
i (x, y) and (12) we have that

(t− `)P 1,`
i (t) =

(1− `)(P 1,0
i+1(t)P

1,0
i (`)− P 1,0

i (t)P 1,0
i+1(`))

P 1,0
i+1(1)P 1,0

i (`)− P 1,0
i (1)P 1,0

i+1(`)

=
1− `

1− P 1,0
i+1(`)/P

1,0
i (`)

(
P 1,0
i+1(t)−

P 1,0
i+1(`)

P 1,0
i (`)

P 1,0
i (t)

)
Since the zeros of {P 1,0

i (t)} interlace we have that for all i ≤ k the zeros of P 1,0
i (t) lie

in the interval [t1,0k,1, t
1,0
k,k] we have that P 1,0

i+1(`)/P
1,0
i (`) < 0 for all i ≤ k − 1. Indeed, the

numerator and denominator polynomials have different signs on (−∞, t1,0k,1). Since P 1,0
i (t)

are strictly positive definite (see [14, Eq. (3.91)]), we conclude the proof of the Lemma.
�
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Lemma 4.5. The polynomials (t−`)(t−s)P 1,`,s
k−1 (t) and (t−`)P 1,`,s

k−1 (t) are strictly positive
definite.

Proof. The interlacing property of {P 1,`
i } implies that

P 1,`
k (s)

P 1,`
k−1(s)

< 0. Applying Lemma

4.4 one concludes that (t−`)(t−s)P 1,`,s
k−1 (t) is positive definite. Furthermore, as P 1,`

j (s) > 0

and (t− `)P 1,`
j (t) is strictly positive definite for j = 0, 1, . . . , k − 1, we derive using (15)

that (t− `)P 1,`,s
k−1 (t) is also strictly positive definite. �

In our main result we use the `-strengthened Krein condition relying on the following
observation. For fixed n, k, and `, we check numerically whether (21) is satisfied for
every pair (i, j), i, j ∈ {0, 1, . . . , k}, except for i = j = k. This is done for every ` =
−1+mε, ε = 10−3 (of course, doing the step ε smaller is only a matter of computations),
m = 1, 2, . . ., until (21) holds true. In practice, when one needs to compute bounds in
the class C(`, s), he can consider instead C(`0, s), where `0 < ` is the largest for which
the `-strengthened Krein condition holds true.

The next assertion is the analog of Theorem 5.42 of [14]. It uses a seemingly weaker1

version of the `-strengthened Krein condition.

Theorem 4.6. Let n, k, and ` be such that the polynomials (t − `)P 1,`
i (t)P 1,`

j (t) are

positive definite for i ∈ {k, k − 1} and every j ≤ k − 1. Let t1,0k,k ≤ s ≤ t1,`k,k and

P 1,`
k (s)/P 1,`

k−1(s) > P 1,`
k (`)/P 1,`

k−1(`). Then the Levenshtein-type polynomial f
(n,`,s)
2k (t) is

positive definite.

Proof. It follows from the definition (17) that the Levenshtein-type polynomial can be
represented as follows

(22) f
(n,`,s)
2k (t) = c(t− `)

(
P 1,`
k (t) + c1P

1,`
k−1(t)

) k−1∑
i=0

r1,`i P 1,`
i (t)P 1,`

i (s),

where c = (1 − s)/(1 + c1)Rk−1(1, `, s) > 0 and c1 = −P 1,`
k (s)/P 1,`

k−1(s) > 0 under the

assumptions for ` and s. Since P 1,`
i (s) > 0 for 0 ≤ i ≤ k − 1, the polynomial f

(n,`,s)
2k (t)

becomes positive linear combination of terms like (t−`)P 1,`
i (t)P 1,`

j (t), where i ∈ {k, k−1}
and j ≤ k − 1. �

The main result in this paper is the following.

Theorem 4.7. Assume that ` ∈ [−1, t1,0k,1) and s ∈ (t1,0k,k, t
1,`
k,k) and that the `-strengthened

Krein condition holds true. Then

(23) A(n; [`, s]) ≤
f
(n,`,s)
2k (1)

f0
=

1

ρk+1
.

1In fact, we suspect that both conditions are equivalent.
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Furthermore, for h being an absolutely monotone function, and for M determined by

f
(n,`,s)
2k (1) = Mf0, the Hermite interpolant2

g(t) = H((t− s)f (n,`,s)2k (t);h)

belongs to Gn,`;h, and, therefore,

(24) E(n,M, `;h) ≥M(Mg0 − g(1)) = M2
k∑
i=0

ρih(βi).

Proof. We first verify the positive definiteness of the polynomials f
(n,`,s)
2k (t) and g(t).

We have f
(n,`,s)
2k (t) ∈ F> by Theorem 4.6.

Denote by t1 ≤ t2 ≤ · · · ≤ t2k the zeros of f
(n,`,s)
2k (t) counting multiplicity. Observe,

that t1 = `, t2i = t2i+1 = βi, i = 1, . . . , k − 1, and t2k = s. It follows from [7, Lemma 10]
that the polynomial

g(t) := H((t− s)f (n,`,s)2k (t);h)

is a linear combination with nonnegative coefficients of the partial products

m∏
j=1

(t− tj), m = 1, 2, . . . , 2k.

Since t2i, i = 1, . . . , k, are the roots of P 1,`
k (t) + αP 1,`

k−1(t) (see (17)) it follows from [6,

Theorem 3.1] that the partial products
∏m
j=1(t − t2j), m = 1, . . . , k − 1, have positive

coefficients when expanded in terms of the polynomials P 1,`
i (t). Then g(t) is a linear

combination with positive coefficients of terms (t − `)P 1,`
i (t)P 1,`

j (t) and the last partial

product which is in fact f
(n,`,s)
2k (t). Now the positive definiteness of g(t) follows from the

validity of the `-strengthened Krein condition and Theorem 4.6.

The bounds (23) and (24) now hold true since f
(n,`,s)
2k (t) ≤ 0 for every t ∈ [`, s] (see

(18)) and g(t) ≤ h(t) for every t ∈ [`, 1) by [7, Lemma 9].

The expressions of the bounds via the weights ρi and the nodes βi follow from Theorem
3.2. �

5. Examples and numerical results

5.1. On the `-strengthened Krein condition. In the table below we present our
computations of the value of `(n, k), the maximum ` for fixed n and k, such that the
`-strengthened Krein condition is true.

2The notation g = H(f ;h) is taken from [6]; it signifies that g is the Hermite interpolant to the
function h at the zeros (taken with their multiplicity) of f .



ON SPHERICAL CODES WITH INNER PRODUCTS IN A PRESCRIBED INTERVAL 15

Table. Conjectured values of `(n, k) for 3 ≤ n, k ≤ 10. The rows after the
corresponding `(n, k) show the value of the smallest root of the equation

P 1,0
k+1(t)/P

1,0
k (t) = 1. The real numbers are truncated after the third digit.

k 10 9 8 7 6 5 4 3 2 1
`(3, k) −.979 −.974 −.969 −.962 −.951 −.936 −.912 −.870 −.787 −.577

−.978 −.973 −.967 −.959 −.948 −.930 −.902 −.854 −.754 −.500
`(4, k) −.967 −.961 −.953 −.942 −.927 −.906 −.874 −.821 −.723 −.499

−.965 −.958 −.950 −.938 −.922 −.897 −.860 −.796 −.676 −.400
`(5, k) −.955 −.947 −.936 −.923 −.905 −.879 −.840 −.779 −.672 −.447

−.952 −.944 −.932 −.917 −.896 −.866 −.821 −.748 −.615 −.333
`(6, k) −.942 −.933 −.921 −.904 −.883 −.853 −.810 −.744 −.631 −.408

−.939 −.929 −.915 −.897 −.872 −.838 −.787 −.706 −.566 −.285
`(7, k) −.930 −.919 −.905 −.887 −.863 −.830 −.783 −.712 −.597 −.377

−.926 −.914 −.898 −.878 −.850 −.811 −.755 −.670 −.526 −.250
`(8, k) −.918 −.906 −.890 −.870 −.843 −.808 −.758 −.685 −.568 −.353

−.914 −.900 −.882 −.859 −.828 −.787 −.727 −.638 −.492 −.222
`(9, k) −.907 −.893 −.876 −.854 −.825 −.788 −.736 −.660 −.543 −.333

−.901 −.886 −.866 −.841 −.808 −.764 −.702 −.610 −.463 −.200
`(10, k) −.895 −.880 −.862 −.838 −.808 −.769 −.715 −.638 −.520 −.316

−.889 −.872 −.851 −.824 −.789 −.743 −.678 −.585 −.439 −.181

5.2. System of bounds for fixed n and `. We present here as example the system
of bounds for A(n; [`, s]), where n = 4 and ` = −0.95 are fixed and s is varying. Ac-
cording to the above table, the `-strengthened Krein conditions holds true for k ≤ 7 and
corresponding bounds

A(4; [−0.95, s]) ≤ L2k(4; [−0.95, s]) = 1/ρk+1, k = 1, 2, . . . , 7,

hold true.

On the figure below we show the first four bounds

L2k(4; [−0.95, s]), k = 1, 2, 3, 4,

together with the Levenshtein odd degree bounds L2u−1(4, s), u = 1, 2, 3, 4. The sub-
scripts are missed for short. The behaviour of the bounds is as follows. For s ∈
[−0.95, t1,01 ], t1,01 = −1/4, the Levenshtein bound L1(4, s) is better, then for s ∈ [t1,01 , 0.0175]

our bound L2(4; [−0.95, s]) = 1/ρ2 is better, for s ∈ [−0.0175, t1,02 ], t1,02 ≈ 0.27429, the

Levenshtein bound L3(4, s) is better, then for s ∈ [t1,02 , 0.4195] our bound L4(4; [−0.95, s]) =
1/ρ4 is better, etc. This is the typical situation for all reasonable values of n and ` we
have checked.
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5.3. Bounds for E(n,M, `;h). We use the system of bounds from Section 5.2 to derive
our ULB-like bounds for E(n,M, `;h). Given n, `, and M we consecutively construct the

polynomials fn,`,s2k (t) and their bounds as above until we reach the maximum k such that

fn,`,s2k (t) ∈ F> and the equality

fn,`,s2k (1) = Mf0

holds. Then, as Theorem 4.7 states, we construct the interpolant

g(t) = H((t− s)f (n,`,s)2k (t);h)

and compute the bound

E(n,M, `;h) ≥M(Mg0 − g(1)) = M2
k∑
i=0

ρih(βi).

5.4. System of bounds for fixed ` and s. For the case k = 2, the Levenshtein
polynomial (18) is given by

f
(n,`,s)
4 (t) := (t− `)(t− s)

(
P 1,`,s
1 (t)

)2
,



ON SPHERICAL CODES WITH INNER PRODUCTS IN A PRESCRIBED INTERVAL 17

where the zero of P 1,`,s
1 (t) is α = − 3+(n+2)(`s+`+s)

(n+2)(n`s+`+s+1) . Thus, from Theorem 4.7 we obtain

(25) A(n; [`, s]) ≤ f
(n,`,s)
4 (1)

f0
=
n(1− `)(1− s)[3 + (n+ 2)(n`s+ `s+ 2`+ 2s+ 1)]

(n+ 2)[n`2s2 − (`− s)2]− 6`s+ 3

subject to

`+ s+ 2α ≤ 0,

α2 + 2(`+ s)α+ `s+
6

n+ 4
≥ 0,

(`+ s)α2 + 2α(`s+
3

n+ 2
) +

3(`+ s)

n+ 2
≤ 0.

The bound (25) is attained by codes of parameters

(n,M, s) =

(
3m2 − 5,

m4(3m2 − 5)

2
,

1

m+ 1

)
,

known only for m = 2 (here ` = −1) and 3 (here ` = −1/4). Such codes are derived from
corresponding tight spherical 7-designs in dimensions 3m2 − 4 (see [10]).

Let n, M , and ` be such that k = 2 be the maximal value of k such that fn,`,s2k (1) =

Mf0 holds true and the above f
(n,`,s)
4 (t) is positive definite (this fixes s as well). Then,

according to Theorem 4.7, the h-energy (for any absolutely monotone h) bound (24) is
given by the polynomial g4(t) ∈ Gn,`;h of degree 4 which interpolates h by

g4(`) = h(`), g4(α) = h(α), g′4(α) = h′(α), g4(s) = h(s), g′4(s) = h′(s).

In right ranges for ` and s both bounds are optimal in the sense that they can not be
improved by using linear programming with polynomials of degree at most 4.

Acknowledgement. The authors thank Konstantin Delchev, Tom Hanson, and
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