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DENSE FAMILIES OF MODULAR CURVES, PRIME

NUMBERS AND UNIFORM SYMMETRIC TENSOR

RANK OF MULTIPLICATION IN CERTAIN FINITE

FIELDS

STÉPHANE BALLET AND ALEXEY ZYKIN

Abstract. We obtain new uniform bounds for the symmetric ten-
sor rank of multiplication in finite extensions of any finite field Fp

or Fp2 where p denotes a prime number ≥ 5. In this aim, we use the
symmetric Chudnovsky-type generalized algorithm applied on suf-
ficiently dense families of modular curves defined over Fp2 attaining
the Drinfeld–Vladuts bound and on the descent of these families
to the definition field Fp. These families are obtained thanks to
prime number density theorems of type Hoheisel, in particular a
result due to Dudek (2016).

1. Introduction

1.1. Notation. Let q = ps be a prime power, Fq be the finite field
with q elements and Fqn be the degree n extension of Fq. The mul-
tiplication of two elements of Fqn is an Fq-bilinear application from
Fqn × Fqn onto Fqn. It can be considered as an Fq-linear application
from the tensor product Fqn ⊗Fq

Fqn onto Fqn . Consequently it can
be also viewed as an element T of (Fqn ⊗Fq

Fqn)
⋆ ⊗Fq

Fqn, namely an
element of F ⋆

qn ⊗Fq
F

⋆
qn ⊗Fq

Fqn. More precisely, when T is written

(1) T =

r
∑

i=1

x⋆
i ⊗ y⋆i ⊗ ci,

where the r elements x⋆
i and the r elements y⋆i are in the dual F ⋆

qn of Fq

and the r elements ci are in Fqn, the following holds for any x, y ∈ Fqn:

x · y =

r
∑

i=1

x⋆
i (x)y

⋆
i (y)ci.
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Definition 1. The minimal number of summands in a decomposition
of the multiplication tensor T is called the rank of the tensor of the
multiplication in the extension field Fqn (or bilinear complexity of the
multiplication) and is denoted by µq(n):

µq(n) = min

{

r
∣

∣

∣
T =

r
∑

i=1

x⋆
i ⊗ y⋆i ⊗ ci

}

.

It is known that the tensor T can have a symmetric decomposition:

(2) T =

r
∑

i=1

x⋆
i ⊗ x⋆

i ⊗ ci.

Definition 2. The minimal number of summands in a symmetric de-
composition of the multiplication tensor T is called the symmetric ten-
sor rank of the multiplication (or the symmetric bilinear complexity of
the multiplication) and is denoted by µsym

q (n):

µsym
q (n) = min

{

r
∣

∣

∣
T =

r
∑

i=1

x⋆
i ⊗ x⋆

i ⊗ ci

}

.

From an asymptotical point of view, let us define the following

(3) M sym
q = lim sup

k→∞

µsym
q (k)

k
,

(4) msym
q = lim inf

k→∞

µsym
q (k)

k
.

Let F/Fq be a function field of genus g over the finite field Fq and
Nk(F ) be the number of places of degree k of F/Fq.

Let us define:

Nq(g) = max
{

N1(F ) |F is a function field over Fq of genus g
}

and

A(q) = lim sup
g→+∞

Nq(g)

g
.

We know that (Drinfeld–Vladuts bound):

A(q) ≤ q
1
2 − 1,

the bound being attained if q is a square.
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1.2. Known results. The original algorithm of D.V. and G.V. Chud-
novsky introduced in [10] is symmetric by definition and leads to the
two following results from [3], [8] and [7]:

Theorem 3. Let q be a prime power and let n > 1 be an integer. Let
F/Fq be an algebraic function field of genus g and Nk be the number of

places of degree k in F/Fq. If F/Fq is such that 2g + 1 ≤ q
n−1
2 (q

1
2 − 1)

then:

1) if N1 > 2n+ 2g − 2, then

µsym
q (n) ≤ 2n+ g − 1,

2) if N1 + 2N2 > 2n+ 2g − 2 and there exists a non-special divisor of
degree g − 1, then

µsym
q (n) ≤ 3n+ 2g.

Theorem 4. Let q be a power of a prime p and let n be an integer.
Then the symmetric tensor rank µsym

q (n) of multiplication in any finite
field Fqn is linear with respect to the extension degree; more precisely,
there exists a constant Cq such that for any integer n > 1,

µsym
q (n) ≤ Cqn.

From different versions of symmetric algorithms of Chudnovsky type
applied to good towers of algebraic function fields of type Garcia–
Stichtenoth attaining the Drinfeld–Vladuts bounds of order one, two
or four, different authors have obtained uniform bounds for the tensor
rank of multiplication, namely general expressions for Cq, such as the
following best currently published estimates:

Theorem 5. Let q = pr be a power of a prime p and let n be an integer
> 1. Then:

(i) If q = 2, then µsym
q (n) ≤ 15.46n (cf. [6, Corollary 29] and [9])

(ii) If q = 3, then µsym
q (n) ≤ 7.732n (cf. [6, Corollary 29] and [9])

(iii) If q ≥ 4, then µsym
q (n) ≤ 3

(

1 +
4
3
p

q − 3 + 2(p− 1) q

q+1

)

n (cf. [7])

(iv) If p ≥ 5, then µsym
p (n) ≤ 3

(

1 +
8

3p− 5

)

n (cf. [7])

(v) If q ≥ 4, then µsym
q2

(n) ≤ 2

(

1 +
p

q − 3 + (p− 1) q

q+1

)

n (cf. [1]

and [7])

(vi) If p ≥ 5, then µsym
p2

(n) ≤ 2

(

1 +
2

p− 33
16

)

n (cf. [7])
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1.3. New results. The main goal of the paper is to improve the up-
per bounds for µsym

q (n) from the previous theorem for the assertions
concerning the extensions of finite fields Fp2 and Fp where p is a prime
number. Note that one of main ideas used in this paper was introduced
in [4] by the first author thanks to the use of the Chebyshev Theorem
(or also called the Bertrand Postulat) to bound the gaps between prime
numbers in order to construct families of modular curves as dense as
possible. Later, motivated by [4], the approach of using such bounds on
gaps between prime numbers (e.g. Baker-Harman-Pintz) was also used
in the preprint [12] in order to improve the upper bounds of µsym

p2
(n)

where p is a prime number. In our paper, we improve all the known
uniform upper bounds for µsym

p2
(n) and µsym

p (n) for p ≥ 5.

2. New upper bounds

In this section, we give new better upper bounds for the symmetric
tensor rank of multiplication in certain extensions of finite fields Fp2

and Fp. In order to do that, we construct suitable families of modular
curves defined over Fp2 and Fp.

Theorem 6. Let lk be the k-th prime number. Then there exists a real
number α < 1 such that the difference between two consecutive prime
numbers lk and lk+1 satisfies

lk+1 − lk ≤ lαk

for any prime lk ≥ xα.
In particular, one can take α = 21

40
with the value of xα that can in

principle be determined effectively, or α = 2
3

with xα = exp(exp(33.3)).

Proof. It is known that for all x > xα, the interval [x − xα, x] with
α = 21

40
contains prime numbers by a result of Baker, Harman and

Pintz [2, Theorem 1]. Moreover, the value of xα can in principle be
determined, according to the authors. However, to our knowledge, this
computation has not been realized yet.

For a bigger α = 2
3
, Dudek obtained recently in [11] an explicit bound

xα ≥ exp(exp(33.3)).
� �

2.1. The case of the quadratic extensions of prime fields.

Proposition 7. Let p ≥ 5 be a prime number, and let xα be the con-
stant from Theorem 6.

(1) If p 6= 11, then for any integer n ≥
p− 3

2
xα +

p+ 1

2
we have
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µsym
p2

(n) ≤ 2

(

1 +
1 + ǫp(n)

p− 3

)

n−
(1 + ǫp(n))(p+ 1)

p− 3
− 1,

where ǫp(n) =

(

2n

p− 3

)α−1

.

(2) For p = 11 and n ≥ (p− 3)xα + p− 1 = 8xα + 10 we have

µsym
p2

(n) ≤ 2

(

1 +
1 + ǫp(n)

p− 3

)

n−
2(1 + ǫp(n))(p− 1)

p− 3
,

where ǫp(n) =

(

n

p− 3

)α−1

.

(3) Asymptotically the following inequality holds for any p ≥ 5:

M sym
p2

≤ 2

(

1 +
1

p− 3

)

.

Proof. First, let us consider the characteristic p such that p 6= 11. Then
it is known ([15, Corollary 4.1.21] and [14, proof of Theorem 3.9]) that
the modular curve Xk = X0(11lk), where lk is the k-th prime number,
is of genus gk = lk and satisfies N1(Xk(Fp2)) ≥ (p− 1)(gk + 1), where
N1(Xk(Fp2)) denotes the number of rational points over Fp2 of the curve
Xk. Let us consider an integer n > 1. Then there exist two consecutive
prime numbers lk and lk+1 such that

(5) (p− 1)(lk+1 + 1) > 2n + 2lk+1 − 2

and

(6) (p− 1)(lk + 1) ≤ 2n+ 2lk − 2

(here we use the fact that p ≥ 5). Let us consider the algebraic function
field Fk+1/Fp2 associated to the curve Xk+1 of genus lk+1 defined over
Fp2. Denoting by Ni(Fk/Fp2) the number of places of degree i of Fk/Fp2,
we get

N1(Fk+1/Fp2) ≥ (p− 1)(lk+1 + 1) > 2n+ 2lk+1 − 2.

We also know that lk+1− lk ≤ lαk , when lk ≥ xα by Theorem 6. Thus
lk+1 ≤ (1 + ǫ(lk))lk, with ǫ(lk) = lα−1

k .

It is easy to check that the inequality 2g + 1 ≤ q
n−1
2 (q

1
2 − 1) of

Theorem 3 holds for any prime power q ≥ 5. Indeed, it is enough to
verify that

qlk
p−3
4

+ p−1
4 (q

1
2 − 1) ≥ 2(1 + ǫ(lk))lk + 1,

which is true since

qx
p−3
4

+ p−1
4 (q

1
2 − 1)− 4x− 1 ≥ 0
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for any x ≥ 0.
Thus, for any integer n ≥ p−3

2
xα + p+1

2
the function field Fk+1/Fp2

satisfies Theorem 3, so

µsym
p2

(n) ≤ 2n + lk+1 − 1 ≤ 2n+ (1 + ǫ(lk))lk − 1,

with lk ≤
2n
p−3

− p+1
p−3

by (6).

Let us remark that, as lk ≤ 2n
p−3

, ǫ(lk) ≤ ǫp(n) = ( 2n
p−3

)α−1, which

gives the first inequality.
Now, let us consider the characteristic p = 11. Take the modular

curve Xk = X0(23lk), where lk is the k-th prime number. By [15,
Proposition 4.1.20], we easily compute that the genus of Xk is gk =
2lk +1. It is also known that the curve Xk has good reduction modulo
p outside 23 and lk. Moreover, by using [15, Proof of Theorem 4.1.52],
we obtain that the number of Fp2-rational points over of the reduction
Xk/p modulo p satisfies

N1(Xk(Fp2)) ≥
µN(p− 1)/12

deg λN

≥ 2(p− 1)(lk + 1)

in the notation of loc. cit.
Let us take an integer n > 1. There exist two consecutive prime

numbers lk and lk+1 such that

2(p− 1)(lk+1 + 1) > 2n+ 2(2lk+1 + 1)− 2

and

2(p− 1)(lk + 1) ≤ 2n+ 2(2lk + 1)− 2,

i.e.

(7) (p− 1)(lk+1 + 1) > n+ 2lk+1

and

(8) (p− 1)(lk + 1) ≤ n + 2lk.

Let us consider the algebraic function field Fk+1/Fp2 associated to the
curve Xk+1 of genus gk+1 = 2lk+1 + 1 defined over Fp2. We have

N1(Fk+1/Fp2) ≥ 2(p− 1)(lk+1 + 1) > 2n+ 4lk+1.

As before lk+1 ≤ (1 + ǫ(lk))lk, with ǫ(lk) = lα−1
k .

It is also easy to check that the inequality 2g + 1 ≤ q
n−1
2 (q

1
2 − 1) of

Theorem 3 holds when q is a power of 11, which follows from the fact
that

114lk+
9
2 (11

1
2 − 1) ≥ 8lk + 3.
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Thus, for any integer n ≥ (p − 3)xα + p − 1, the algebraic function
field Fk+1/Fp2 satisfies Theorem 3, so

µsym
p2

(n) ≤ 2n+ 2lk+1 ≤ 2n + 2(1 + ǫ(lk))lk

with lk ≤
n

p−3
− p−1

p−3
by (8).

We remark that as lk ≤ n
p−3

, ǫ(lk) ≤ ǫp(n) = ( n
p−3

)α−1, which gives
the second inequality of the proposition.

Finally, when n → +∞, the prime numbers lk → +∞, thus both for
p 6= 11 and p = 11 the corresponding ǫp(n) → 0. So in the two cases
we obtain

Msym

p2
≤ 2

(

1 +
1

p− 3

)

.

� �

Remark 8. It is easy to see that the bounds obtained in Proposition 7
are generally better than the published best known bounds (v) and (vi)
recalled in Theorem 5. Indeed, it is sufficient to consider the asymptotic
bounds which are deduced from them and to see that for any prime p ≥ 5
we have 1

p−3
< p

p−3+(p−1) p

p+1
and 1

p−3
< 2

p− 33
16

respectively.

Remark 9. Note that the bounds obtained in [12, Corollary 28] also
concern the symmetric tensor rank of multiplication in the finite fields
even if it is not mentioned. Indeed, the distinction between µsym

q (n) and
µq(n) was exploited only from [13]. So, we can compare our proposition
7 with Corollary 8 there. Firstly, note that the bounds in [12, Corollary
28] are only valid for p ≥ 7. Moreover, the only bound which is best than
our bounds is the asymptotic bound [12, Corollary 28, Bound (vi)] given
for an unknown sufficiently large n, contrary to our uniform bound with
α = 2

3
for n ≥ exp(exp(33.3)).

2.2. The case of prime fields.

Proposition 10. Let p ≥ 5 be a prime number, let xα be defined as in
Lemma 6, and ǫp(n) as in Proposition 7.

(1) If p 6= 11, then for any integer n ≥
p− 3

2
xα +

p+ 1

2
we have

µsym
p (n) ≤ 3

(

1 +
4
3
(1 + ǫp(n))

p− 3

)

n−
2(1 + ǫp(n))(p+ 1)

p− 3
.

(2) For p = 11 and n ≥ (p− 3)xα + p− 1 = 8xα + 10 we have

µsym
p (n) ≤ 3

(

1 +
4
3
(1 + ǫp(n))

p− 3

)

n−
4(1 + ǫp(n))(p− 1)

p− 3
+ 1.
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(3) Asymptotically the following inequality holds for any p ≥ 5:

M sym
p ≤ 3

(

1 +
4
3

p− 3

)

.

Proof. It suffices to consider the same families of curves as in the proof
of Proposition 7.

When p 6= 11 we take Xk = X0(11lk), where lk is the k-th prime
number. These curves are defined over Fp, hence, we can consider
the associated algebraic function fields Fk/Fp defined over Fp and we
have N1(Fk/Fp2) = N1(Fk/Fp) + 2N2(Fk/Fp) ≥ (p − 1)(lk + 1), since
Fk/Fp2 = Fk/Fp⊗Fp

Fp2 for any k. Note that the genus of the algebraic
function fields Fk/Fp is also gk = lk, since the genus is preserved under
descent.

Given an integer n > 1, there exist two consecutive prime numbers
lk and lk+1 such that

(9) (p− 1)(lk+1 + 1) > 2n + 2lk+1 − 2

and

(10) (p− 1)(lk + 1) ≤ 2n+ 2lk − 2.

Let us consider the algebraic function field Fk+1/Fp associated to the
curve Xk+1 of genus lk+1 defined over Fp. We get

N1(Fk+1/Fp) + 2N2(Fk+1/Fp) ≥ (p− 1)(lk+1 + 1) > 2n+ 2lk+1 − 2.

As before lk+1 ≤ (1+ǫ(lk))lk, with ǫ(lk) = lα−1
k , and from the proof of

the previous proposition we know that the inequality 2g+1 ≤ q
n−1
2 (q

1
2−

1) of Theorem 3 holds. Consequently, for any integer n ≥ p−3
2
xα+

p+1
2

,
the algebraic function field Fk+1/Fp satisfies Theorem 3, 2) since by
[5, Theorem 11 (i)] there always exists a non-special divisor of degree
gk+1 − 1 for p ≥ 5. So

µsym
p (n) ≤ 3n+ 2lk+1 ≤ 3n + 2(1 + ǫ(lk))lk

with lk ≤
2n
p−3

− p+1
p−3

by (10). As before, ǫ(lk) ≤ ǫp(n) = ( 2n
p−3

)α−1.

When p = 11 we use once again the family of curves Xk = X0(23lk).
They are defined over Fp, hence we can consider the associated algebraic
function fields Fk/Fp over Fp and we have N1(Fk/Fp2) = N1(Fk/Fp) +
2N2(Fk/Fp) ≥ (p−1)(lk+1). The genus of the algebraic function fields
Fk/Fp defined over Fp is also gk = 2lk + 1 since the genus is preserved
under descent.

Given an integer n > 1, there exist two consecutive prime numbers
lk and lk+1 such that

2(p− 1)(lk+1 + 1) > 2n+ 2(2lk+1 + 1)− 2
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and

2(p− 1)(lk + 1) ≤ 2n+ 2(2lk + 1)− 2,

i.e.

(11) (p− 1)(lk+1 + 1) > n+ 2lk+1

and

(12) (p− 1)(lk + 1) ≤ n + 2lk.

Let us consider the algebraic function field Fk+1/Fp associated to the
curve Xk+1 of genus gk+1 = 2lk+1 + 1 defined over Fp. We get

N1(Fk+1/Fp)+2N2(Fk+1/Fp) ≥ 2(p−1)(lk+1+1) > 2n+2(2lk+1+1)−2.

As above lk+1 ≤ (1 + ǫ(lk))lk, with ǫ(lk) = lα−1
k , and the inequality

2g+1 ≤ q
n−1
2 (q

1
2 −1) of Theorem 3 holds. Consequently, for any integer

n ≥ (p − 3)xα + p − 1, the algebraic function field Fk+1/Fp satisfies
Theorem 3, 2) since, as before, there exists a non-special divisor of
degree gk+1 − 1 by [5, Theorem 11 (i)]. So,

µsym
p (n) ≤ 3n+ 2gk+1 ≤ 3n+ 2(2lk+1 + 1) ≤ 3n+ 2(1 + ǫ)lk

with lk ≤ n
p−3

− p−1
p−3

by (12). We can also bound ǫ(lk) ≤ ǫp(n) =

( n
p−3

)α−1.
Finally, when n → +∞, the prime numbers lk → +∞, thus both for

p 6= 11 and p = 11, ǫp(n) → 0. So we obtain Msym
p ≤ 3

(

1 +
4
3

p−3

)

. �

�

Remark 11. It is easy to see that the bounds obtained in Proposition
10 are generally better than the best known bounds (iii) and (iv) recalled
in Theorem 5. Indeed, it is sufficient to consider the asymptotic bounds
which are deduced from them and to see that for any prime p ≥ 5 we

have
4
3

p−3
<

4
3
p

p−3+ 2(p−1)p
p+1

and
4
3

p−3
< 8

3p−5
respectively.
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