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THE WEIGHT SPECTRUM OF CERTAIN

AFFINE GRASSMANN CODE

FERNANDO L. PIÑERO AND PRASANT SINGH

Abstract. We consider the linear code CA(2,m) associated to a special affine

part of the Grassmannian G2,m. This affine part is the complement of the

Schubert divisor of G2,m. In view of this, we show that there is a projection of

Grassmann code onto the affine Grassmann code and the projection is a linear

isomorphism. Using this isomorphism, we give a skew-symmetric matrix in

some standard block form corresponding to every codeword of CA(2,m). The

weight of a codeword is given in terms of the rank of some blocks of this form

and it is shown that the weight of every codeword is divisible by some power

of q. We also count the number of skew-symmetric matrices in the block form

to compute the weight spectrum of the affine Grassmann code CA(2,m).

1. Introduction

Let Fq be the finite field with q elements, ` and m are positive integers satisfying

` ≤ m. Let G`,m be the Grassmannian of all `-planes in Fmq , i.e.

G`,m = {W ⊆ Fmq : W is a subspace and dimW = `}.

The Grassmannian G`,m can be embedded into the projective space P(m
` )−1 via

the Plücker map and via this embedding, it is a closed algebraic subset of the

projective space P(m
` )−1. Every subset of a projective space naturally corresponds

to a linear code [18], therefore it is natural to study the code associated with the

GrassmannianG`,m. The linear code associated to the GrassmannianG`,m is known

as the Grassmann code and is denoted by C(`,m). The study of the Grassmann

code goes back to C.T. Ryan [[16],[17]] over F2 , and to Nogin [11] over any finite

field. Nogin [11] prove that the Grassmann code C(`,m) is an [n, k, d]q linear code

with parameters n, k and d are given by

(1) n =

[
m

`

]
q

, k =

(
m

`

)
and d = q`(m−`)

where
[
m
`

]
q

is the Gaussian binomial coefficient. In the case when ` = 2, codewords

of the Grassmann code C(2,m) are in one-to-one correspondence with the space

of skew-symmetric matrices of dimension m × m. Nogin [11] used the classifica-

tion of skew-symmetric matrices to give the weight spectrum of the Grassmann
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2 FERNANDO L. PIÑERO AND PRASANT SINGH

code C(2,m). In later work, Nogin [12] and Kaipa-Pillai [9] computed the weight

spectrum of the Grassmann codes C(3, 6) and C(3, 7) respectively. In general, the

weight spectrum of Grassmann codes is not known.

Let α = (α1, . . . , α`) ∈ Z` be an `-tuple of positive integers satisfying 1 ≤ α1 <

α2 < · · · < α` ≤ m and let Ai be the subspace of Fmq spanned by {e1, . . . , eαi
},

where ej is the jth canonical basis element of Fmq . The Schubert variety corre-

sponding to the sequence α is defined by

Ωα(`,m) = {W ∈ G`,m : dim(W ∩Ai) ≥ i for 1 ≤ i ≤ `}.

Since every W ∈ Ωα(`,m) is contained in A`, we may assume α` = m. Schubert va-

rieties are subvarieties of Graasmannian therefore, one may think them as a subset

of the projective space P(m
` )−1. Linear codes corresponding to Schubert varieties

are known as Schubert codes and are denoted by Cα(`,m). Ghorpade-Lachaud [4]

initiated the study of Schubert codes and gave an upper bound for the minimum

distance of these codes. They conjectured that the minimum distance of the Schu-

bert code Cα(`,m) is qδ(α), where δ(α) =
∑`
i=1(αi−i). This conjecture is known as

the Minimum Distance Conjecture or the MDC. The MDC was proved, first by H.

Chen [3] and Guerra-Vincenti [8] when ` = 2, then by Ghorpade-Tsfasman [7] for

the Schubert divisor and finally by Xiang [19] and [6] for general Schubert codes.

It is now well known that the Schubert code Cα(`,m) is an [nα, kα, dα] linear code

where

(2) nα =
∑
β≤α

qδ(β), kα = det
1≤i,j≤`

((
αj − j + 1

i− j + 1

))
and dα = qδ(α)

where by β = (β1, . . . , β`) ≤ α = (α1, . . . , α`) we mean βi ≤ αi for each 1 ≤ i ≤ `.

The weight spectrum of Schubert code is in general not known. Though an attempt

to understand the weight spectrum of Schubert code Cα(2,m) was made by the

authors [15] and a formula for the weight spectrum has been given. It was shown

that unlike Grassmann code C(2,m), the weight spectrum of the Schubert code

Cα(2,m) is given in terms of 2 parameters.

Let `, `′ be two positive integers satisfying ` ≤ `′ and m = ` + `′. Let M`×`′ be

the collection of all `× `′ matrices over Fq. Note that M`×`′ can be thought of as

the affine subset of G`,m given by setting the Plücker coordinate corresponding to

the columns ` + 1, . . . ,m to be non zero. Let X = (Xij) be the ` × `′ matrix of

indeterminates Xij over Fq. Let FA(`,m) denote the Fq span of all i× i minors of

X for 0 ≤ i ≤ `, where by 0 minor we mean 1. As the set M`×`′ is an affine part

of the Grassmannian G`,m, the evaluation code obtained by evaluating functions

f ∈ FA(`,m) at the points of M`×`′ is known as the affine Grassmann code and

is denoted by CA(`,m). Affine Grassmann codes were introduced in [1] and it was

shown that the affine Grassmann code CA(`,m) is an [nA, kA, dA] code where
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(3) nA = q`(m−`), kA =

(
m

`

)
and dA = q`(m−2`)

`−1∏
i=0

(q` − qi).

The dual code CA(`,m)
⊥

of the affine Grassmann code CA(`,m) was studied

in [2] and classification of the minimum weight codewords of the affine Grassmann

code is also known. But the weight spectrum of this code is known in any but the

trivial cases.

In this article, we study the weight spectrum of the affine Grassmann code

CA(2,m). First, we discuss how the Grassmann code C(2,m), the Schubert code

Cα(2,m) associated to the Schubert divisor Ωα(2,m) and the affine Grassmann

code CA(2,m) are related. We use this to associate a skew-symmetric matrix in

some “block form” corresponding to each codeword of CA(2,m). This allows us

to determine the weight distribution. As a corollary, we obtain that the weight of

each codeword is divisible by qm−3 or qm−2.

2. The Grassmann Code C(2,m), The Schubert code Cα(2,m) and The

Affine Grassmann Code CA(2,m)

In this section, we consider the Grassmann code C(2,m) and show that every

codeword in C(2,m) can be written as the extension of a codeword in the affine

Grassmann code via a codeword in the Schubert code Cα(2,m) corresponding to

the Schubert divisor, i.e., the Schubert code corresponding to the sequence α =

(m− 2,m). In this way, we establish a projection of the Grassmann code C(2,m)

onto the affine Grassmann code CA(2,m). We will see that the projection is a

linear isomorphism of vector spaces. Throughout this article, by a skew-symmetric

matrix of size m (or dimension m×m) we mean, an m×m matrix A with diagonal

entries zero and A = −AT.

Letm be a positive integer, m ≥ 4 andG2,m be the corresponding Grassmannian.

For any W ∈ G2,m, let MW be a 2×m matrix whose rows forms a basis of W . Let

G2,m(A) = {M1, . . . ,M[m2 ]
q

}

be the set of 2×m matrices in some order, corresponding to distinct points of the

Grassmannian G2,m. Let X = (Xij) be the 2 × m matrix of indeterminates Xij

over Fq and [m] = {1, 2, . . . ,m}. For I ⊂ [m] with I = {i, j}, let detI(X) = X{i,j}

be the 2× 2 minor of X with respect to columns of X whose first column is labeled

by i and second column is labeled by j. Let F(2,m) be the vector space over Fq
spanned by all possible minors detI(X). Consider the evaluation map

(4) Ev : F(2,m)→ F
[m2 ]

q
q , f 7→ cf = (f(M1), . . . , f(M[m2 ]

q

)).

where f(Mi) is the evaluation of the function f on the matrix Mi. This is a linear,

injective map and the image of this map is the Grassmann code C(2,m). Note
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that a different set of choices of matrices Mi gives an equivalent code. As functions

on matrices, detI(X) is a linear and alternating function on I, every codeword of

C(2,m) corresponds to a unique skew-symmetric m×m matrix. More precisely, for

any codeword c ∈ C(2,m), there exists a unique f ∈ F(2,m) such that c = cf . Let

f =
∑

1≤i,j≤m
aij det{i,j}(X) be the corresponding function. Clearly, we have aii = 0

and aij = −aji for all 1 ≤ i, j ≤ m. If F = (aij) be the coefficient matrix then F

is a skew-symmetric matrix. This is the associated matrix. Also, for M ∈ G2,m(A)

we have f(M) = xFyT , where x and y are the first and the second rows of M

respectively. The matrix F is called as the standard form corresponding to the

codeword c. For any matrix A, we denote by r(A) the rank of the matrix A. We

know that the rank of a skew-symmetric matrix F is always even, therefore we set

2rF = r(F). In the following theorem, we state the result of Nogin [11] to calculate

the weight spectrum of the Grassmann code C(2,m).

Theorem 2.1. Let c ∈ C(2,m) be a codeword and F be the corresponding standard

form. The weight of the codeword c is given by

(5) wt(c) = q2(m−rF−1)
qr(F) − 1

q2 − 1
.

Furthermore, for any positive integers r, the number of codewords in C(2,m) of

weight q2(m−r−1)
q2r − 1

q2 − 1
is given by N(m, 2r), where

(6) N(m, 2r) = qr(r−1)

2r−1∏
i=0

(qm−i − 1)

r−1∏
i=0

(q2(r−i) − 1)

.

The number N(m, 2r) is the number of skew-symmetric matrices of size m and

rank 2r.

Fix α = (m−2,m) and let A1 be the m−2 dimensional subspace of Fmq spanned

by the first m − 2 canonical (standard) basis of Fmq . Let Ωα(2,m) be the corre-

sponding Schubert variety. For any W ∈ Ωα(2,m) choose a matrix MW whose

rows forms a basis of W and last two entries of the first row of MW are zero.

Let Ωα(2,m)(A) be the collection of such matrices corresponding to each point of

Ωα(2,m). Therefore, there is a choice of matrices in G2,m(A), such that we may

write

(7) G2,m(A) = Ωα(2,m)(A)
∐
A(2,m).

Also, the Schubert code Cα(2,m) is the image of the restriction of the evaluation

map defined in equation (4) to the set Ωα(2,m)(A). Thus, we may assume a

codeword c = cf ∈ C(2,m) can be written as a vector (cS |cA) where cS is the

evaluation of f on Ωα(2,m)(A) and cA is the evaluation of f on A(2,m). But the

evaluation of f on Ωα(2,m)Å is a codeword in Cα(2,m).
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Finally, let `′ = m − 2 and CA(2,m) be the corresponding affine Grassmann

code. We have the following embedding

M2,m−2 → G2,m(A), M 7→ (M|I2)

where I2 is the identity matrix of size 2. We may use this embedding to identify

M2,m−2 as a subset of G2,m(A). Moreover, equation (7) may be written as

(8) G2,m(A) = Ωα(2,m)(A)
∐

M2,m−2.

Furthermore, for any codeword c = cf ∈ C(2,m), the evaluation of f on Ωα(2,m)(A)

corresponds to a codeword in Cα(2,m) and the evaluation of f on M2,m−2 corre-

sponds to a codeword in CA(2,m). In particular, every codeword cG of the Grass-

mann code C(2,m) can be written uniquely as

(9) cG = (cS |cA) .

where cS is a codeword in the Schubert code Cα(2,m) and cA is a codeword in the

affine Grassmann code CA(2,m). This gives a projection of the Grassmann code

C(2,m) onto the affine Grassmann code CA(2,m). and the map is linear as well as

injective. On the other hand, both codes are of dimension
(
m
2

)
( see equations (1)

and (3)). This means, for every cA ∈ CA(2,m), there exist codewords cG ∈ C(2,m)

and cS ∈ Cα(2,m) such that cG = (cS |cA). This is the key idea of this article. In

the next lemma, we use equation (9) to get a skew symmetric matrix corresponding

to every codeword of CA(2,m).

Lemma 2.2. For every codeword cA ∈ CA(2,m) there exist a unique skew sym-

metric matrix F of size m such that

(10) wt(cA) = wt(F|C(2,m))− wt(F|Cα(2,m)),

where wt(F|C(2,m)) and wt(F|Cα(2,m)) denotes the weight of the codewords in

C(2,m) and Cα(2,m), associated to the restriction of F to the Grassmannian G2,m

and the Schubert divisor Ωα(2,m) respectively.

Proof. The proof of this lemma is trivial but this lemma is the heart of the article.

As we discussed, for a given codeword cA ∈ CA(2,m), there exist cG ∈ C(2,m) and

cS ∈ Cα(2,m) such that cG = (cS |cA). The codeword cG is unique. Consequently,

wt(cA) = wt(cG)− wt(cS). Let F be the skew-symmetric matrix corresponding to

the codeword cG and hence wt(cG) = wt(F|C(2,m)). In (9) we have seen that the

codeword cS is the restriction of the form F to the Schubert variety Ωα(2,m). This

completes the proof. �
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If the skew-symmetric matrix F is associated to a codeword cA ∈ CA(2,m), we

may write F as

(11) F =

(
A B

−BT D

)
,

where A and D are skew-symmetric matrices of size m− 2 and 2 respectively and

B is an (m− 2)× 2 matrix.

Definition 2.3. Let cA ∈ CA(2,m) be a codeword and F be the corresponding

skew-symmetric matrix in the form written as in equation (11). The matrix F is

called the standard block form corresponding to the codeword cA.

For a skew-symmetric matrix F, we know that the evaluation of F at some point

W ∈ G2,m is given by xFyT , where x and y is a basis of W . From equations

(8) and (9), it is clear that if F is a skew-symmetric matrix corresponding to a

codeword cA ∈ CA(2,m) then

(12) cA = (xFyT)

where x, y ∈ Fmq runs over vectors of Fmq such that the last two columns of x, y

forms the 2×2 identity matrix. For the rest of the article, if F is a skew-symmetric

matrix in the standard block form as in equation (11), then the corresponding

codeword of affine Grassmann code is given by equation (12). Therefore, if we write

xFyT, the evaluation of F as a codeword in CA(2,m) we always mean x and y are

vectors in Fmq such that x = (x1, . . . , xm−2, 1, 0) and y = (y1, . . . , ym−2, 0, 1). Also,

if F is a skew-symmetric matrix in the standard block form, we fix the following

notation

r(A|B) = rank((A|B)).

Since each skew symmetric matrix corresponds to a codeword in the Grassmann

code C(2,m) as well as in the affine Grassmann code CA(2,m), therefore, if F

is a skew-symmetric matrix we use the notations cG(F) and cA(F) to denote the

corresponding codeword in the Grassmann code and in the affine Grassmann code

respectively.

3. Weight Spectrum of Affine Grassmann Code CA(2,m)

In the last section, we saw how we can get a skew-symmetric matrix to each

codeword of CA(2,m) written in some standard block form. In this part of the

article, we will see that the weight of a codeword can be given in terms of the rank

r(A) where A is the upper (m − 2) × (m − 2) block of the standard block form.

We use the rank of these block matrices to give a formula for the weight spectrum

of this code. But first, recall that the weight spectrum of an [n, k]q linear code

C is a sequence (A0, . . . , An) of positive integers where Ai denotes the number of
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codewords in C of weight i. The weight enumerator polynomial of a code is defined

and denoted by

WC(X) =

n∑
i=0

AiX
i.

In the next table, the weight enumerator polynomial of the affine Grassmann code

CA(2,m) for some small values of m and q are listed. We used SAGEMATH to

compute it.

3.1. Weight Enumerator Polynomial of Some affine Grassmann codes

Codes.

q m weight enumerator

2 4 X16 + 16X10 + 30X8 + 16X6 + 1

2 5 X64 + 112X40 + 798X32 + 112X24 + 1

2 6 X256 + 560X160 + 7168X136 + 17310X128 + 7168X120 + 560X96 + 1

3 4 2X81 + 324X57 + 240X54 + 162X48 + 1

3 5 2X729 + 4212X513 + 52728X486 + 2106X432 + 1

4 4 3X256 + 2304X196 + 1020X192 + 768X180 + 1

4 5 3X4096 + 48384X3136 + 984060X3072 + 16128X2880 + 1

5 4 4X625 + 10000X505 + 3120X500 + 2500X480 + 1

5 5 4X15625 + 310000X12625 + 9378120X12500 + 77500X12000 + 1

After finding the formula for the weight spectrum of CA(2,m) we will compare

some of the values given in this table. We would like to get some canonical form

corresponding to each standard block form and to do so we recall the following well

known result from [10] on the classification of skew-symmetric matrices.

Proposition 3.1. Let A be a skew-symmetric matrix of size m and r(A) = 2rA.

Then there exists a nonsingular matrix C such that

CACT =

 0 IrA 0

−IrA 0 0

0 0 0


where CACT is an m ×m matrix in the block from and the matrices in the first

or second row have rA rows, the matrices in the third row have m − 2rA rows.

Likewise, the matrices in the first or second column have rA columns, the matrices

in the third column have m− 2rA columns. The matrix IrA is the rA× rA identity

matrix.

Let F a skew symmetric matrix written in the standard block form as in (11) and

cG(F) and cA(F) be the corresponding codewords in the Grassmann code C(2,m)

and the affine Grassmann code CA(2,m). We know that the weight of the cG(F)

depends on the rank of F. Therefore, we would like to understand the weight of
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cA(F) in terms of the rank of matrices F, A and B. To do so we would first give

another standard form corresponding to a skew-symmetric matrix F.

Lemma 3.2. Let F be a skew-symmetric block form of size m given by

F =

(
A B

−BT D

)
where A and D are skew-symmetric matrices of size m− 2 and 2 respectively and

B is an m− 2× 2 matrix. Then there exists a nonsingular matrix Cm such that

(13) CmFCT
m =


0 IrA 0 0

−IrA 0 0 0

0 0 0 f

−0 −0 −fT D


where CmACT

m is an m×m block matrix such that the matrices in first or second

row have rA rows, the matrices in the third row have m − 2rA − 2 rows and the

matrices in the fourth row have 2 rows. Likewise, the matrices in the first or

second column have rA columns, the matrices in the third column have m−2rA−2

columns and the matrices in the fourth column have 2 columns. The matrix IrA is

the rA × rA identity matrix. The matrices 0 are zero matrices of the appropriate

size. The matrix f is a generic matrix of the corresponding dimensions.

Proof. The proof of this lemma is easy. Using Proposition 3.1 we get a nonsingular

matrix C of size m− 2 such that CACT has the following block form

CACT =

 0 IrA 0

−IrA 0 0

0 0 0

 .

The matrix CACT has the required form for the upper m− 2×m− 2 principal

minor of the matrix in equation (13) of the lemma. Define a new matrix Pm =(
C 0

0 I2

)
where I2 is the 2×2 identity matrix. Then Pm is a nonsingular matrix

of size m and we have

PmFPT
m =

(
C 0

0 I2

)
F

(
CT 0

0 I2

)
=

(
CACT CB

−BCT D

)
and we may rewrite CB such that

(
CACT CB

−BCT D

)
=


0 IrA 0 d

−IrA 0 0 e

0 0 0 f

−dT −eT −fT D

 .
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Define Qm to be the following nonsingular matrix

Qm =


IrA 0 0 0

0 IrA 0 0

0 0 Im−2−2rA 0

−eT −dT 0 I2

 .

If we take Cm = QmPm, then the matrix CmFCT
m has the required form as in

equation (13). �

For any f ∈ FA(2,m), let cf ∈ CA(2,m) denote the corresponding codeword.

Recall that X is the 2 ×m matrix of indeterminates Xij and X{i,j} is the minor

of X corresponding to the columns i and j. Also, if F is a skew-symmetric matrix

of size m, then f = X1FX2
T ∈ FA(2,m) is the function such that cA(F) = cf ,

where X1 = (X11, . . . , X1m−2, 1, 0) and X2 = (X21, . . . , X2m−2, 0, 1). In the next

lemma we give a canonical function f ∈ FA(2,m) corresponding to each codeword

cA ∈ CA(2,m) such that wt(cf ) = wt(cA). More precisely,

Lemma 3.3. For every codeword cA ∈ CA(2,m) there exist some f ∈ FA(2,m)

such that wt(cA) = wt(cf ) and

f =

r∑
i=1

X{i,r+i} +
∑
i,j>2r

fijX{i,j} + c,

where 0 ≤ r ≤ m−2
2 is an integer and c is a constant.

Proof. Let F be the standard block form corresponding to the codeword cA. Let

Cm be the nonsingular matrix such that CmFCT
m takes the form as in equation

(13). Let f = X1FX2
T ∈ FA(2,m) be the function corresponding to the skew-

symmetric matrix CmFCT
m. Clearly, f is in the required form with 2r = r(A) and

the weight of these two codewords cA and cf are same.

�

The benefit of Lemma 3.3 is that corresponding to every codeword cA ∈ CA(2,m)

we can get a function f ∈ FA(2,m) that can be written as the sum of r disjoint

2× 2 minors, many disjoint 1× 1 minors and a constant.

Lemma 3.4. Let 0 ≤ 2r ≤ m−2 be an even number. There are (q2r−1)(q2r−q2r−1)

vector pairs x,y ∈ F2r
q such that x

(
0 Ir

−Ir 0

)
yT 6= 0

Proof. The proof is a simple consequence of equation (5) in Theorem 2.1. �

Lemma 3.5. Let f =
r∑
i=1

X{i,r+i} ∈ FA(2,m) and cf ∈ CA(2,m) be the corre-

sponding codeword. Then wt(cf ) = (q2r − 1)(q2r − q2r−1)q2(m−2−2r)
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Proof. Note that wt(cf ) is the number of 2×m matrices with rows x, y ∈ Fmq such

that the last two entries of x and y gives the identity matrix and xFyT 6= 0 where

F =

(
0 Ir

−Ir 0

)
.

Now the result follows from the above lemma. �

Next, we determine the weight of a codeword cg ∈ CA(2,m) that is the evaluation

of a function g ∈ FA(2,m) which is the sum of some disjoint 2×2 minors and 1×1

minors.

Lemma 3.6. Let f =
r∑
i=1

X{i,r+i} ∈ FA(2,m) and h =
∑
j>2r

h1,jX1,j + h2,jX2,j be

a nonzero function. Then f + h ∈ FA(2,m) and wt(cf+h) = q2(m−2)−1(q − 1).

Proof. Note that h is a nonzero linear map F2(m−2−2r)
q −→ Fq. Therefore it assumes

each value exactly q2(m−2−2r)−1 times. Also, any M ∈ M2,m−2 can be written as

(M1|M2) such that M1 is a 2× 2r matrix, M2 is a 2×m− 2− 2r matrix and f +

h(M) = f(M1) + h(M2). Therefore f + h(M) 6= 0 iff f(M1) 6= −h(M2). For each

M1 there are exactly q2(m−2−2r)−1(q−1) matrices M2 such that f(M1) 6= −h(M2),

or in other words f + h(M) 6= 0. But there are q4r matrices M1. Therefore, we

get q2(m−2)−1(q − 1) matrices M ∈ M2,m−2 such that f + h(M) 6= 0. Hence

wt cf+h = q2(m−2)−1(q − 1).

�

Lemma 3.7. Let f =
r∑
i=1

X{i,r+i} ∈ FA(2,m) and λ 6= 0 be an element of Fq.

Then wt(cf+λ) = q2(m−2−2r)(q4r − q4r−1 + q2r−1).

Proof. First, we shall prove that the evaluation of f assumes each nonzero value for

exactly (q2r − 1)q2r−1 many pairs x, y ∈ F2r
q . Let c ∈ Fq be non zero and F be the

skew-symmetric matrix associated to f . Then the evaluation of f on M ∈M2,m−2

is given by xFyT 6= 0 where

F =

(
0 Ir

−Ir 0

)
with x and y are rows of M. For any nonzero x ∈ F2r

q , the partial evaluation x

is a nonzero linear map xF : F2r
q −→ Fq. Clearly, for any such x, there are q2r−1

y ∈ F2r
q such that xFyT = c.

Now, the number of pairs x, y ∈ Fm−2q such that the evaluation of f+λ onto ma-

trices M having rows x, y is zero, can be given by (q2r−1)q2r−1q2(m−2r−2). Conse-

quently, the weight of the codeword cf+λ is given by q2(m−2)−(q2r−1)q2r−1q2(m−2r−2)

which is the desired number.

�
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This is a good time to determine the weight distribution of the affine Grass-

mann code CA(2,m). To do so, recall that corresponding to every codeword

cA ∈ CA(2,m) we can get a skew-symmetric form F, where

F =

(
A B

−BT D

)

and the codeword cA is given by equation (12). In the next theorem, we determine

the weight of a given codeword cA ∈ CA(2,m) depending on the rank of the matrices

A, (A|B) and D.

Theorem 3.8. Let cA ∈ CA(2,m) be a codeword and F written as above, be the

skew-symmetric matrix in the block form corresponding to this codeword. We have

the following.

(a) If r(A) = r((A|B)) = r(F), then wt(cA) = (q2rA − 1)(q − 1)q2(m−2−rA)−1.

(b) If r(A) = r((A|B)) and r(F) = r(A) + 2, then

wt(cA) = (q2rA+1 − q2rA + 1)q2(m−2−rA)−1.

(c) If r(A) 6= r((A|B)) then wt(cA) = q2(m−2)−1(q − 1)

Proof. By Lemma 3.3 we know that, corresponding to the codeword cA we can

associate a codeword cf ∈ CA(2,m) such that wt(cA) = wt(cf ) and the skew-

symmetric matrix corresponding to cf is given by

CmFCT
m =


0 IrA 0 0

−IrA 0 0 0

0 0 0 f

−0 −0 −fT D

 .

(a) In this case, we must have f = 0 and D = 0. Therefore the corresponding

function g in this case look like f =
rA∑
i=1

X{i,rA+i} ∈ FA(2,m). The result

now follows by Lemma 3.5.

(b) In this case, we must have f = 0 and D 6= 0. Since D is a nonzero skew-

symmetric matrix, it must be given by D =

(
0 λ

−λ 0

)
where λ 6= 0. The

corresponding function f , is given by f =
rA∑
i=1

X{i,rA+i} + λ2 ∈ FA(2,m).

The result now follows by Lemma 3.7.

(c) Finally, in this case, we get f 6= 0. After applying the rows and the columns

operations that affects only the last two block rows and columns of the
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matrix CmFCT
m we can get another skew-symmetric matrix

0 IrA 0 0

−IrA 0 0 0

0 0 0 f

−0 −0 −fT 0


such that the corresponding codeword cg has the same weight as the code-

word cf and hence the same weight as the codeword cA. In this case the

function g ∈ FA(2,m) is g =
rA∑
i=1

X{i,rA+i}+
∑

j>2rA

h1,jX1,j+h2,jX2,j . Now

the weight of cg can be given by Lemma 3.6. This completes the proof of

the theorem.

�

The following corollary says that the weight of every codeword in CA(2,m) is

divisible by some power of q.

Corollary 3.9. Let cA ∈ CA(2,m) be a codeword.

(a) If m is even, then qm−3|wt(cA).

(b) If m is odd, then qm−2|wt(cA).

Proof. Note that the wt(cA) is either (q2r − 1)(q− 1)q2(m−2−r)−1 or (q2r+1− q2r +

1)q2(m−2−r)−1 or q2(m−2)−1(q− 1) for some even number 0 ≤ 2r ≤ m− 2. In either

case, the weight of cA is divisible by q2(m−2−r)−1 and the power is minimal when r

is maximal. Now if m is even then 2r = m − 2 gives the minimal power and if m

is odd then 2r = m− 3 gives the minimal power.

�

Remark 3.10. For every even number 0 ≤ 2r ≤ m−2, there are codewords of weights

(q2r− 1)(q− 1)q2(m−2−r)−1, (q2r+1− q2r + 1)q2(m−2−r)−1 or q2(m−2)−1(q− 1). It is

not hard to construct a codeword of these weights. All we have to do is to choose a

skew-symmetric matrix A of sizem−2 and rank 2r. Now choose anym−2×2 matrix

B such that the columns of B are contained in the column space of A. Choose

any skew symmetric matrix D of size 2. Then the codeword cA(F) ∈ CA(2,m)

associated with the form

F =

(
A B

−BT D

)
has weight either (q2r − 1)(q − 1)q2(m−2−r)−1 or (q2r+1 − q2r + 1)q2(m−2−r)−1 de-

pending on whether D is the zero or a non zero matrix. On the other hand if we

choose B such that the columns of B are not in the column space of A, then for

any choice of D, the codeword associated to the form F has weight q2(m−2)−1(q−1)

where

F =

(
A B

−BT D

)
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Finally, we are ready to give the weight spectrum of the affine Grassmann code

CA(2,m). Recall that, for any non-negative, even integer 2r ≤ m, N(m, 2r) denotes

the number of skew-symmetric matrices of size m and rank 2r, where

N(m, 2r) = qr(r−1)

2r−1∏
i=0

(qm−i − 1)

r−1∏
i=0

(q2(r−i) − 1)

.

For the next theorem, we fix 0 ≤ 2r ≤ m− 2.

Theorem 3.11. There are Ai codewords in CA(2,m) of weight i, where for every

0 ≤ 2r ≤ m− 2,

(a) Ai = N(m− 2, 2r)q4r when i = (q2r − 1)(q − 1)q2(m−2−r)−1

(b) Ai = N(m− 2, 2r)q4r(q − 1) when i = (q2r+1 − q2r + 1)q2(m−2−r)−1.

(c) Ai =
∑

0≤2r≤m−2
N(m− 2, 2r)q(q2(m−2) − q4r) when i = q2(m−2)−1(q − 1).

(d) Ai = 0 in all other cases.

Proof. Every codeword cA ∈ CA(2,m) correspond to a skew-symmetric matrix F,

where

F =

(
A B

−BT D

)
.

The weight of the codeword depends on the matrices A, B and D. We have seen

that if r(A) = r(A|B), i.e., the columns of B is contained in the column space of

A then the weight of the corresponding codeword is (q2r − 1)(q − 1)q2(m−2−r)−1

or (q2r+1 − q2r + 1)q2(m−2−r)−1 depending on whether D is zero or nonzero. In all

other cases i.e. when r(A) 6= r(A|B), the weight of the corresponding codeword is

q2(m−2)−1(q−1). Therefore, to complete the proof we need only to count how many

matrices F satisfy these conditions. The weight of the codeword cA is (q2r+1 −
q2r + 1)q2(m−2−r)−1 iff the standard representation block form of corresponding

skew symmetric matrix F has D = 0 and 2r = r(A) = r(A|B). The number of

choices for A, in this case, is N(m− 2, 2r) and for every such choice of A, we have

exactly q4r choices of B satisfying r(A) = r(A|B) as r(A) = 2r. Therefore there are

N(m−2, 2r)q4r many codewords in CA(2,m) of weight (q2r−1)(q−1)q2(m−2−r)−1.

However, the weight of the codeword cA is (q2r+1 − q2r + 1)q2(m−2−r)−1 if and

only if the standard representation of the corresponding skew symmetric matrix F

satisfies D 6= 0 and 2r = r(A) = r(A|B). Since D is a nonzero skew-symmetric

matrix of size 2, there are exacly (q − 1) choices of D. Hence we get N(m −
2, 2r)q4r(q − 1) codewords in CA(2,m) of weight (q2r+1 − q2r + 1)q2(m−2−r)−1.

Finally, the weight of a codeword is q2(m−2)−1(q − 1) iff r(A|B) 6= r(A). In

this case, for every 0 ≤ 2r ≤ m − 2 we get N(m − 2, 2r) choices of A. For any

such choice of a skew-symmetric matrix A of rank 2r and size m − 2, there are

exactly (q2(m−2) − q4r) choices of B satisfying r(A|B) 6= r(A) and q choices of D.
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Therefore, we get
∑

0≤2r≤m−2
N(m−2, 2r)q(q2(m−2)−q4r) many codewords of weight

q2(m−2)−1(q − 1). This completes the proof of the theorem.

�

Remark 3.12. A formula for the weight spectrum of the affine Grassmann code

CA(2,m) has been given. Now we show that the sum of all values of Ai given in

Theorem 3.11 for different values of r is q
m(m−1)

2 = |CA(2,m)| which is expected.

First, assume that m is even and m = 2k + 2 for some k ∈ N Then by equation

(3), we get |CA(2,m)| = q
(2k+2)(2k+1)

2 . Also, in this case, m − 2 = 2k and possible

values of r are 0, 1, . . . , k. Therefore, If we add all values of Ai given in all three

cases of Theorem 3.11, we get

k∑
r=0

N(2k, 2r)q4r +

k∑
r=0

N(2k, 2r)q4r(q − 1) +

k∑
r=0

N(2k, 2r)q(q4k − q4r)

= N(2k, 0)q4k+1 +N(2k, 2)q4k+1 . . .+N(2k, 2k)q4k+1

= (N(2k, 0) +N(2k, 2) + . . .+N(2k, 2k)) q4k+1,

where N(2k, 2r) denotes the number of skew-symmetric matrix of size 2k of rank

2r. Since any skew-symmetric matrix of size 2k can have rank any even number

between 0 and 2k, therefore the sum of the numbers in the bracket is the number

of skew-symmetric matrices of size 2k. Consequently, we get

k∑
r=0

N(2k, 2r)q4r +

k∑
r=0

N(2k, 2r)q4r(q − 1) +

k∑
r=0

N(2k, 2r)q(q4k − q4r)

= qk(2k−1)q4k+1

= q
(2k+1)(k+1)

2

and this is the number of codewords in CA(2,m).

Computation of the case when m is odd is quite similar. For example, if m is

odd, we may assume m = 2k + 3 fr some k ∈ N. In this case m − 2 = 2k + 1 and

all possible values of r in this case are also 0, 2, . . . , 2k. Rest of the computation is

exactly same as in the previous case, where m is even.

In the next example we compute the weight enumerator polynomial of CA(2,m)

for some small values of m over any field and compare it with the Table 3.1

Example 3.13. We compute the weight spectrum of the affine Grassmann code

CA(2,m) when m = 4, 5 In both these cases we have only two possibilities of 2r

namely, 2r = 0, 2.

If m = 4, then using Theorem 3.11 we find there are 1 codeword of weight 0,

(q − 1) codewords of weight q4, (q − 1)q4 codewords of weight (q2 − 1)(q − 1)q,

(q−1)q4(q−1) codewords of weight (q3−q2 +1)q and q(q4−1)codewords of weight
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q3(q − 1). The weight enumerator polynomial of this code is given by

WCA(2,4)(X) = q(q4 − 1)Xq3(q−1) + (q − 1)2q4Xq(q3−q2+1) + 1

+(q − 1)Xq4 + (q − 1)q4Xq(q2−1)(q−1).

It is easy to see this polynomial matches with the weight enumerator polynomials

given in Table 3.1.

Similarly, in the case when m = 5, we get 1 codeword of weight 0, (q − 1)

codewords of weight q6, (q3 − 1)q4 codewords of weight (q2 − 1)(q − 1)q3, (q3 −
1)q4(q − 1) codewords of weight (q3 − q2 + 1)q3 and q(q6 − 1) + (q3 − 1)q(q6 − q4)

codewords of weight q5(q − 1). In this case the weight enumerator polynomial of

the code CA(2, 5) is given by

WCA(2,5)(X) = (q(q6 − 1) + q5(q2 − 1)(q3 − 1))Xq5(q−1) + 1 + (q − 1)Xq6

+q4(q3 − 1)(q − 1)Xq3(q3−q2+1) + (q3 − 1)q4Xq3(q2−1)(q−1).

One may compare this too with the weight enumerator polynomial given in Table

3.1.
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