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CODES CORRECTING RESTRICTED ERRORS
IGOR E. SHPARLINSKI AND ARNE WINTERHOF

ABSTRACT. We study the largest possible length B of (B — 1)-
dimensional linear codes over F, which can correct up to ¢ errors
taken from a restricted set A C IF;. Such codes can be applied to
multilevel flash memories.

Moreover, in the case that ¢ = p is a prime and the errors are
limited by a constant we show that often the primitive £th roots of
unity, where £ is a prime divisor of p — 1, define good such codes.

1. INTRODUCTION

Let F, be the finite field of ¢ elements, A be a nonempty subset of
Fy =T, \ {0} and ¢ be a positive integer. We call a subset B # () of
I} of size B = #B a (t, A, q)-packing set if for any x € F, there is at
most one solution

a = (ab)beg c (.A U {0})3

Zabb:x

with Hamming-weight w(a) < ¢, that is, a has at most ¢ nonzero
coordinates.

We can use the elements of B to define a (B — 1)-dimensional linear
code C of length B with the one line parity check matrix H = (b)pep:

C= {(Cb)beB quB : Zcbb:()}.

beB
Using nearest neighbor decoding without further knowledge about the
errors such a code of minimum weight at most 2 (by the Singleton
bound) cannot correct any error, see for example [5,16-18]. However,
if we assume that all occurring errors a are elements of A, we can
correct up to t errors. More precisely, the syndromes

SB(a) = Z abb

beB

to the equation in [Fy
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of any error a = (a3)pes € (AU{0})® of Hamming weight at most ¢ are
all distinct and we can determine the unique error a from a syndrome
table since Sg(c + a) = Sg(a) for every code word ¢ € C uniquely
determines a. Note that the information rate (B —1)/B of these codes
improves with the size B of B and we are interested in (¢, A, ¢)-packing
sets of large size.

A particularly interesting case is

(1.1) A={1,2,...,A} and ¢ =pisa prime,

that is, we can correct all errors of limited magnitude A\, where A is
a positive integer. Such codes have been first proposed in [2] which
in turn is based on [20]. They are used for multilevel flash memories,
see [8,15,21].

In Section 2 we present an upper bound on the size of any (¢, A, q)-
packing set B with any nonempty set A C [y, which is a simple gener-
alization of the upper bound of [15] for the special case (1.1). We also
provide examples of sets A for which this bound is tight.

In Section 3 we prove a lower bound on the size of any mazimal
(t, A, q)-packing set B, that is, for all u € F}, \ B the set BU {u} is not
a (t, A, q)-packing set. Note that this does not imply that there is no
(t, A, q)-packing set of larger size than B (but such larger sets cannot
contain B).

In Section 4 we consider the case (1.1) again and give a probabilistic
construction for a dense sequence of reasonably large (t, A, ¢)-packing
sets. This construction is based on some properties of cyclotomic poly-
nomials and resultants.

Unfortunately there is no efficient decoding procedure for the codes
based on packing sets. In the case of the sets (1.1) it may be possible
to employ some geometry of numbers algorithms, for example for the
shortest vector problem (in the L.,-norm). However no precise results
or algorithms seem to be known.

One can also consider generalisations with several sets By, ..., Bi C
[F, of the same cardinality B, for which the vectors of syndromes

(Ss(@), ..., Sp,(a)),  a€(AU{0})”,

are pairwise distinct. The counting arguments of Sections 2 and 3
extend to this case without any difficulties, however we do not see how
to generalise the construction of Section 4.
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2. AN UPPER BOUND

Now we present an upper bound on the size of any (¢, A, ¢)-packing
set which can be essentially found in [15]. We include its proof for the
convenience of the reader.

Theorem 2.1. Let A be a subset of F; of cardinality A > 1 and let B
be any (t, A, q)-packing set of cardinality B. Then we have

t
>(F)a<a
i=0 \J

Proof. Note that the number of possible errors a € (A U {0})® of
Hamming weight at most ¢ is

‘(B
(2.1) Af:}j(,)m,
=0 \J
which equals the number
N =+#{Sz(a) : a€ (AU{0})"}
of corresponding syndromes Si(a), which are pairwise distinct since B

is a (t,.A, q)-packing set. Using the trivial bound M = N < g we derive
the desired bound. O

Remark 2.2. It is easy to see that

t t
2 ()= () (5
, J t t
7=0
Hence, Theorem 2.1 implies the bound

1/t
(2.2) B<t(%r+1).

Example 2.3. Take A =T, ¢ = p? and choose B to be a basis of F,
over IF,. Then each element = € IF, has a unique representation

x:Zabb, ap € AU{0}.
beBs

The number of such elements with at most ¢t nonzero coefficients ay,
where 1 <t < B, is given by M as in (2.1). Thus, since B is a basis of
F, over I, for t = B we have

¢ B
B ) B )

S (Maw=y (D= =

=0\ =0\

and the bound of Theorem 2.1 is attained.
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Example 2.4. Take ¢ = p a prime and A = {1,2,...,\}. Set
L— | _ler |
log(A+1)

B={A+1):i=0,...,L—1}
is a (¢, A, p)-packing set for any t with 2 < ¢ < L since the (A + 1)-
adic representation of any integer is unique and the largest exponent @
is chosen such that there is no modulo p reduction. For t = L the
bound (2.2) is attained up to a multiplicative constant. This is essen-
tially mentioned in [15].

Then the set

3. A LOWER BOUND

In this section we prove a lower bound on the size of any maximal
(t,.A, q)-packing set.

Theorem 3.1. Let A be a subset of F, of size A > 1 and B be any
mazximal (t, A, q)-packing set of size B. Then we have

t t
B+1 B
§ Ah§ A L+ B+1>g.
h( h ) kzl(k—l) =1

Proof. Assume B is a maximal (¢, A, p)-packing set and u ¢ B. Then
for any u € F; \ B the set BU {u} is not a (¢, A, p)-packing set and

thus we have
Z aLbb + a1,,U = Z a27bb + a2, U
beB beB

for some

a, = (ayp)vepuguy € (AU{0}H)PH, v=1,2,

of Hamming weight at most ¢.
In particular, by the definition of a (¢, .4, q¢)-packing set, we have
a1, 7 Az, and may assume ag, 7 0. Therefore

u = (aru — 2u) " Y (a1 — azp)b.

beB
We fix some h and k with 0 < h < ¢ and 1 < k < t¢. Further we assume

w(a;) =h and  w(ay) = k.

B+1\ B &
( b )A and (k‘—l)A

There are
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choices for a; and a,, respectively. Hence the number ¢ — B — 1 of
u € F; \ B is bounded by

t t
ZB+1 hy B\ .
h=0 k=1

and the result follows. O
Remark 3.2. For t = 1 we get the more precise bound
q—1 q—1
B> >
T HAJA) T A
where A/A = {ab™! : a,b € A} denotes the ratio set of A, see [7,
Proposition 2.4] or [19]. Furthermore, in [19], an example is given

which attains this lower bound up to a multiplicative constant. We
recall this construction for the convenience of the reader: Let g € F

be an element of order k > 2, put d = [\/ﬂ > 2 and choose

_ 2
A: {g7927"’7gd792d7"'7g(d 1)d7gd }’

Note that #A < 2d — 1 and A/A is the subgroup of F} of order k
generated by g. Now suppose that B is any (1, .4, q)-packing set, that
is,

(3.1)

A/ANB/B = {1}.
Then B cannot contain more than one element from each coset of A/A
and thus
B<(¢—1)/k=0 (q/A2) .
Corollary 3.3. Let A be a subset of F}, of size A and B be any mazimal
(t, A, q)-packing set of size B. Then we have

(a/(54)
A

Proof. By (3.1) we may assume that ¢ > 2 and since otherwise the
result is trivial we may assume ¢ > 11 and thus by Theorem 3.1 we
have AB > 2. Now, from Theorem 3.1 and the elementary inequalities

i (B; 1) Al < i(A(B + 1)

h=0 h=0

B>

A(B+ 1) —1
! 1(4(B+)1))_1 <2(AB+1)),
t t
B ) k 1 k (AB>t_1 t pt—1
AP < =N (AB)F = A ——— <24'B",
ot (k—l B &~ AB —1
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we derive g—B—1 < 4A*(B+1)?~! and the desired bound follows. [

Remark 3.4. Note that if, for instance, A < (¢/6)"/?" then the first
term in the lower bound of Corollary 3.3 dominates and it becomes of
order of magnitude ¢/ 4-2t/(2t=1),

4. A PROBABILISTIC CONSTRUCTION

Now we consider the special case (1.1) and present a probabilistic
construction, which for every A, ¢ and a sufficiently large positive @,
produces a prime p € [Q,2Q)] and a (¢,.A, p)-packing set B of large
cardinality.

We describe our construction first.

Algorithm 4.1. Given arbitrary positive integers \ and sufficiently

large positive integers K < Q/2:

Step 1. Choose a random integer k € [K + 1, K + K/log K| and test k
for primality. Repeat this step until a prime { = k is found.

Step 2. Choose a random factored integer m € [M,2M]|, where M =
(Q—1)/¢, and test m€ + 1 for primality. Repeat this step until
a prime p =ml + 1 is found.

Step 3. Choose a random element a € F; and using the knowledge of
the factorisation of p—1 test it for being a primitive root of ).
Repeat this step until a primitive root g € Fy is found.

Step 4. Return by = g®~1/¢.

Theorem 4.2. Assuming that
(4.1) N(4K)* 2 log(t)) = o(Q),

Algorithm 4.1 runs in expected polynomial in log Q) time and with proba-
bility 1+0(1) returns by € ), for which the set By = {bo, b, . . . , bitY C
s with £ = (14-0(1)) K is a (t, A, p)-packing set, where A is as in (1.1).

Proof. We first analyse the complexity of Algorithm 4.1 and then show
that it is correct with an overwhelming probability.

Running time. It follows easily from the classical prime number theo-
rem that intervals of the form [K + 1, K + K/log K| contain a set £
of
K

4.2 L=(1 1)———

(12) (14 0(0)

primes, see [13, Theorem 10.5] and the follow-up discussion, which is
sufficient for our purpose. In fact the currently strongest result of
Baker, Harman and Pintz [4] allows to use k € [K + 1, K + K| for
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any fixed o > 21/40 = 0.525, but this does not affect our main result.
Combining this with the deterministic polynomial time primality test
of Agrawal, Kayal and Saxena [1] (or with any polynomial time proba-
bilistic test, see [12]) we conclude that Step 1 returns a desired prime ¢
in polynomial time.

To generate factored integers in the interval [M, 2M] uniformly at
random, we use the polynomial time algorithm of Kalai [14] which
simplified the previous algorithm of Bach [3]. After this we again apply
one of the above primality tests to mf¢ 4+ 1. We now need to estimate
the expected number of such choices before we find a prime

p=4{m+1.

Let, as usual, 7(z, k,a) denote the number of primes p < z in the
arithmetic progression p = a (mod k).

We now recall that since ¢t > 1 then by (4.1) we have K = O(Q'/?).
Thus by the celebrated Bombieri-Vinogradov theorem, see [13, Theo-
rem 17.1], with the summation extended only over the primes from the
set L, we immediately derive the following bound

Q
4.3 m(2Q,0,1) —m(Q, ¢, 1) >
(13) QLD = (@01 > 5E
for all but at most O (L/log @) primes ¢ € L.

Since the primes ¢ are generated uniformly at random we see that in
expected polynomial time Step 2 outputs the desired prime p.

Since ¢ is prime and the prime number factorisation of m is known,
one can test whether a € F} is a primitive root of F; in deterministic
polynomial time. Recall that the density of primitive roots in Fy is
high enough, namely, it is

po-1) 1
p—1 — loglogp
for an absolute constant ¢ > 0, which easily follows from Mertens’
formula, see [13, Equation (2.16)]. We now immediately conclude that

Step 3 outputs a primitive root of ) in expected polynomial time.
The complexity analysis of Step 4 is trivial.

Correctness. Take By = {bo, b3,...,b5 '} CF;. If
(4.4) > ab#£0
beBy

for all a = (ap)pes, € {—\, —A+1,..., A}t with 1 <w(a) < 2¢, then
By is a (t, A, p)-packing set.
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Let ®,(X) € Z[X] be the (th cyclotomic polynomial which com-
pletely splits over ), that is, By is exactly its set of zeros.

If (4.4) fails, then there is a nonzero polynomial with at most 2¢
nonzero coefficients a; € {—A\,..., A} of the form

(4.5) f(X)= i a; X" € F,[X]

of degree at most ¢ — 2 which vanishes at some b € By. The resultant
Ry of f(X) and ®y(X) is

Ry= [ 1)
& By(6)=0

where the product is taken over all complex primitive /th roots of
unity &, see, for example, [6, Theorem 1], and vanishes modulo p:

(4.6) Ry =0 (mod p).
Consider the set of
2 1
4. N = 2)0)F < 2(20\)%
(@7) > ("7 e <zen

i=1
different polynomials of the form (4.5) with at most 2¢ nonzero coef-
ficients a; € {—A,...,A}. Since ®,(X) is irreducible over Q and for
any f(X) of the form (4.5) we have deg(f) < ¢ —2 < deg(®y), the N
resultants Ry do not vanish over Q and their size |Ry| is bounded by

Rel= [ £ <@
& P()=0
So each Ry has at most
(4.8) O (log | Ry[) = O (£log(tA))

prime divisors. Hence, from (4.7) and (4.8) we see that the set S of
primes p that satisfy (4.6) for at least one of the resultants R; is of
cardinality

(4.9) S =0 (N*(20)* " 1og(tN)) .

On the other hand, we see from (4.2) and (4.3) that Algorithm 4.1
produces integers m uniformly at random from a set of cardinality

(4.10) M +0(1) = Q/t + O(1).

Comparing (4.9) with (4.10) we see that under the condition (4.1)
we have S = o(M) which concludes the proof. O
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Remark 4.3. Note that a subgroup B of I, of order £ is a (1,4, p)-
packing set whenever A contains at most one element from each coset of
B. For example, if ¢ = (p—1)/2, that is, B is the subgroup of quadratic
residues modulo p, then B is a (1, {1, 2}, p)-packing set whenever p =
+3 mod 8, that is, whenever 2 is a quadratic nonresidue modulo p.
Furthermore, for ¢ > 2, recent advances towards the Waring problem
in F,, see, for example, [9-11], imply rather severe restrictions on the
order ¢ of a subgroup B of F;, for which B can be a (¢, {1}, p)-packing
set.
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