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ON THE GEOMETRY OF FULL POINTS OF ABSTRACT

UNITALS

DÁVID MEZŐFI AND GÁBOR P. NAGY

Abstract. The concept of full points of abstract unitals has been introduced by
Korchmáros, Siciliano and Szőnyi as a tool for the study of projective embeddings
of abstract unitals. In this paper we give a more detailed description of the
combinatorial and geometric structure of the sets of full points in abstract unitals
of finite order.

1. Introduction

An abstract unital of order n is a 2-(n3 + 1, n + 1, 1) design. We say that an
abstract unital (X,B) is embedded in a projective plane Π if X consists of points
of Π and each block b ∈ B has the form X ∩ ℓ for some line ℓ of Π. For results on
projective embeddings of abstract unitals see [12] and the references therein.
Let U = (X,B) be an abstract unital of order n and fix two blocks b1, b2. Using

the terminology of [12], we say that P is a full point with respect to (b1, b2) if P 6∈
b1 ∪ b2 and for each Q ∈ b1, the block connecting P and Q intersects b2. In other
words, there is a well defined projection πb1,P,b2 from b1 to b2 with center P . We
denote by FU(b1, b2) the set of full points of U w.r.t. the blocks b1, b2. Clearly,
FU(b1, b2) = FU (b2, b1).
The structure of the paper is as follows. The main result of this paper is proved

in Section 3. It shows that for any abstract unital of order q, which is projectively
embedded in the Galois plane PG(2, q2), the set of full points of two disjoint blocks
are contained in a line. Moreover, the perspectivities of two disjoint blocks generate a
semi-regular cyclic permutation group. In Section 4, we extend the results of [12] by
giving a complete description on the structure of full points in the classical Hermitian
unitals. Section 5 gives an overview of computational results about full points in
abstract unitals of order 3 and 4, which belong to known classes [1, 6, 14, 13]. For
the computation we developed and used the GAP package UnitalSZ [16].

2. Combinatorial properties of the set of full points

2.1. Bounds on the number of full points. We start with an easy observation
on the number of full points of two blocks b1, b2 of U . The result seems to be rather
weak.
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Lemma 2.1. Let U = (X,B) be an abstract unital of order n ≥ 2. Then

|FU(b1, b2)| ≤

{
n2 − n if b1, b2 have a point in common,

n2 − 1 if b1, b2 are disjoint.

Proof. For a fixed point P ∈ b1 we define the set S ′

P as the union of the blocks
connecting P with Q ∈ b2 \ b1, and the set SP = S ′

P \ (b1 ∪ b2). Clearly,

|SP | =

{
n2 − n if b1, b2 have a point in common,

n2 − 1 if b1, b2 are disjoint.

As FU(b1, b2) ⊆ SP , the lemma follows. �

In most (but not all) known examples of abstract unitals, the set of full points is
contained in a block. This motivates the following definition.

Definition 2.2. Let U = (X,B) be an abstract unital and b1, b2 ∈ B disjoint blocks.

(i) The triple (U, b1, b2) is full point regular if the set of full points FU(b1, b2) ⊆ c
for some block c ∈ B such that b1 ∩ c = b2 ∩ c = ∅.

(ii) The abstract unital U is full point regular if for any two disjoint blocks b1, b2
the triple (U, b1, b2) is full point regular.

2.2. Full points and perspectivities. By definition, any full point P of the blocks
b1, b2 defines a bijective map πb1,P,b2 : b1 → b2; we call it the perspectivity with center
P .

Definition 2.3. Let b1, b2 be blocks of the abstract unital U . Define the group of
perspectivities of b1 as

Perspb2
(b1) = 〈πb1,P,b2πb2,Q,b1 | P,Q ∈ FU(b1, b2)〉.

It is easy to see that Perspb2
(b1) and Perspb1

(b2) are isomorphic permutation
groups, the former acting on b1 and the latter acting on b2. For different full points
Q,R, the perspectivities πb1,Q,b2 and πb1,R,b2 are different. This implies |Perspb2

(b1)| ≥
|FU(b1, b2)|. In particular, Perspb2

(b1) is nontrivial if |FU(b1, b2)| > 1. An important
case will be when Perspb2

(b1) is a cyclic semi-regular permutation group on b1.

2.3. Dual k-nets in abstract unitals. We will present examples of abstract uni-
tals when the set of full points w.r.t. the blocks b1, b2 form a third block b3. More
generally, we introduce the concept of an embedded dual k-net of an abstract unital.
An abstract k-net is a structure consisting of a set X of points and a set B of blocks,
which is partitioned into k disjoint families B1, . . . , Bk for which the following hold:
(1) every point is incident with exactly one block of every Bi, (i = 1, . . . , k); (2) two
lines of different families have exactly one point in common; (3) there exist 3 lines
belonging to 3 different Bi, and which are not incident with the same point. See
[3, 5] as reference on abstract k-nets.

Definition 2.4. Let U = (X,B) be an abstract unital of order n and k ≥ 3 and
integer. We say that the blocks b1, . . . , bk form an embedded dual k-net in U , if the
following hold for all 1 ≤ i < j ≤ k:

(i) bi ∩ bj = ∅.
(ii) For all P ∈ bi, Q ∈ bj, the block containing P,Q intersects all b1, . . . , bk in a

point.
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It is clear that for an embedded dual k-net b1, . . . , bk of U , b3∪· · ·∪bk ⊆ FU(b1, b2).
The converse needs some explanation.

Lemma 2.5. Let U be an abstract unital of order n, k ≥ 3 an integer and b1, . . . , bk
blocks of U .

(i) If b3 ⊆ FU(b1, b2), then b1 and b2 are disjoint.
(ii) If b3 ⊆ FU(b1, b2), then b1 ⊆ FU(b2, b3) and b2 ⊆ FU (b1, b3).
(iii) If b3 ∪ b4 ⊆ FU(b1, b2), then b3 and b4 are disjoint.
(iv) The blocks b1, . . . , bk form an embedded dual k-net if and only if b3∪· · ·∪bk ⊆

FU(b1, b2).

Proof. (i) Assume that {Z} = b1∩b2 and b3 ⊆ FU(b1, b2). Clearly, b3 is disjoint from
b1∪b2. Fix an arbitrary point P ∈ b1\{Z}. Each point R ∈ b3 projects P to b2\{Z}.
Hence, there are points R1, R2 ∈ b3 such that πb1,R1,b2(P ) = πb1,R2,b2(P ). This means
that P ∈ b3, a contradiction. (ii) For any P1 ∈ b1, P3 ∈ b3, the block P1P3 intesects
b2. Now fix P1 and let P3 run through b3 in order to obtain the bijection πb3,P1,b2 .
Thus, P1 ∈ FU(b2, b3). Since this holds for all P1 ∈ b1, the claim follows. For (iii) it
suffices to show b1 ⊆ FU(b3, b4). Take P ∈ b1, Q ∈ b3 arbitrary points. From Q, P
projects to R ∈ b2 and using b2 ⊆ FU(b1, b4), P projects to S ∈ b4 from R. Hence,
Q projects to b4 from P .
The “only if” part of (iv) follows from the definition. Assume now b3 ∪ · · · ∪ bk ⊆

FU(b1, b2). By (i) and (iii), all blocks b1, . . . , bk are disjoint. For the indices 3 ≤ i <
j ≤ k, there is an injective map α | b1 × b2 → bi × bj mapping (P1, P2) 7→ (Pi, Pj)
with collinear quadruple P1, P2, Pi, Pj. Moreover α is bijective, hence any pair of
points (Pi, Pj) ∈ bi × bj determines a block b′ of U such that b′ ∩ bi = Pi, i = 1, 2.
The block joining P1 and P2 intersects any block bs ⊆ FU(b1, b2) in Ps for 3 ≤ s ≤ k,
therefore b1, . . . , bk form a dual k-net in U . �

2.4. Bounds on dual k-nets in abstract unitals. For embedded dual k-nets,
the trivial bound is k ≤ n+1. With some elementary counting, we can improve this
to k ≤ n− 1. This implies that an abstract unital of order 3 has no embedded dual
3-nets.

Proposition 2.6. Let U be an abstract unital of order n ≥ 3.

(i) If U has an embedded dual k-net {b1, . . . , bk}, then k ≤ n− 1.
(ii) For two blocks b1, b2, FU(b1, b2) cannot contain more than n− 3 blocks.

Proof. (i) Let us assume that k > n− 1 and let P = b1 ∪ b2 ∪ . . .∪ bk. Any block of
U intersects P in 0, 1, k or n + 1 points, the latter being the blocks bi themselves.
W.l.o.g. consider the disjoint blocks b1, b2. Any pair of points chosen from b1 and b2
determines the unique block in B which is a k-secant to P, therefore the number of
k-secants is (n+ 1)2. Then, fix an arbitrary block bi of the dual k-net and a point
P on the block bi. The number of 1-secant blocks on P is n2 − n − 2. Thus the
number 1-secant blocks to P is k (n + 1) (n2 − n− 2). Since |B| = n2 (n2 − n+ 1)
we have

k + (n+ 1)2 + k (n+ 1)
(
n2 − n− 2

)
≤ n2

(
n2 − n + 1

)
,

which gives n3 − 3n2 + n+ 1 ≤ 0 by k ≥ n ≥ 3, a contradiction.
(ii) If FU(b1, b2) contains the k − 2 blocks b3, . . . , bk, then {b1, . . . , bk} is an em-

bedded dual k-net in U by Lemma 2.5(iv). Hence, k − 2 ≤ n− 3 by (i). �
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2.5. Embedded dual 3-nets and latin squares. An embedded dual 3-net {b1, b2, b3}
determines a latin square L of order n+ 1 in the following way. Label the points of
b1, b2, b3 by the set {1, . . . , n + 1}:

bs = {Ps,1, . . . , Ps,n+1}, s = 1, 2, 3.

For i, j ∈ {1, . . . , n + 1}, let c be the block connecting P1,i and P2,j. Define s by
{P3,s} = b3∩ c and write s in row i and column j of L. Choosing a different labeling
for b1, b2, b3 results in an isotope latin square. By reordering the three blocks, one
gets conjugate or parastrophe latin squares. The set of all parastrophes of a latin
square L is also called the main class of L. Latin squares are naturally related to
(the multiplication tables of) finite quasigroups. See [9, Section 1.4] for more details
and further references on conjugacy and parastrophy of latin squares.
A property which, for each class C, either holds for all members of C or for no

member of C is said to be a class invariant. Properties of the underlying (dual)
3-nets are main class invariants of the corresponding coordinate latin square. In
particular, the groups of perspectivities can be defined for (dual) 3-nets and they
are useful examples of main class invariants. In the primal setting, perspectivities
of 3-nets have been presented in [3] and [5].
Let L be a latin square of order n. We say that L is group-based if it is a

parastrophe to the Cayley table of a group G of order n. As the group G only
depends on the main class of L, the following concept is well-defined.

Definition 2.7. Let B = {b1, b2, b3} be an embedded dual 3-net of the abstract unital
U . We say that B is cyclic, if the corresponding latin square is a parastrophe of the
Cayley table of the cyclic group of order n+ 1, where n is the order of U .

Proposition 2.8. Let U be an abstract unital of order n and B = {b1, b2, b3} be an
embedded dual 3-net of U . The following are equivalent:

(i) B is cyclic.
(ii) Perspbi

(bj) is the cyclic group of order n+ 1 for all 1 ≤ i, j ≤ 3, i 6= j.

Proof. Let L be the latin square associated to B. By [3, Proposition 1.2], (ii) implies
that the rows of L are elements of the cyclic group of order n, hence L is cyclic and
(i) holds. Conversely, assume that B is labeled in such a way that the the coordinate
latin square L is the Cayley table of the cyclic group. Then [3, Theorem 6.1] implies
(ii). �

3. Full point regularity of embedded unitals

The questions on the embeddings of abstract unitals in projective planes are
long studied problems, with special focus on the embeddings of abstract unitals of
order q in the desarguesian plane PG(2, q2). Korchmáros, Siciliano and Szőnyi [12]
developed the method of full points for the embedding problem. The main tool is
the group of perspectivities of unital blocks. We notice that while the permutation
group Perspb2

(b1) depends only on the abstract unital structure of U = (X,B), we
may be able compute it more easily when a projective embedding of U is given.
Although the definition of the group of perspectivities works for intersecting blocks

b1, b2, in the sequel, we will only deal with the case when b1, b2 are disjoint. The
next definition gives a stronger version of the full point regular property, using the
structure of the group of perspectivities.
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Definition 3.1. Let U = (X,B) be an abstract unital and b1, b2 ∈ B disjoint blocks.

(i) If (U, b1, b2) is a full point regular triple and Perspb2
(b1) is a cyclic semi-

regular permutation group of b1, then (U, b1, b2) is said to be strongly full
point regular.

(ii) The abstract unital U is strongly full point regular if for any two disjoint
blocks b1, b2 the triple (U, b1, b2) is strongly full point regular.

Notice that U is strongly full point regular if it has no full points at all. The next
two lemmas deal with elementary properties of the groups of affinities of projective
lines in PG(2, q2), where q is a power of the prime p.

Lemma 3.2. Let p be a prime.

(i) Let g be an element of the affine linear group AGL(1, pf) such that o(g) |
pf − 1. Then g has a unique fixed point v ∈ Fpf and permutes Fpf in orbits
of length o(g).

(ii) Let S be a subgroup of AGL(1, pf) such that p ∤ |S|. Then, S is cyclic and
|S| divides pf − 1. Moreover, S has a unique fixed point in Fpf . �

Lemma 3.3. Let ℓ1, ℓ2 be two lines of PG(2, q2) and P,Q be two points off ℓ1 ∪ ℓ2.
Write Z = ℓ1 ∩ ℓ2 and Vi = ℓi ∩ PQ, i = 1, 2. The perspectivity πℓ1,P,ℓ2πℓ2,Q,ℓ1 fixes
Z and V1 and permutes ℓ1 \ {Z, V1} in orbits of equal lengths.

Proof. Elementary. �

Let S be any set of n + 1 points in the projective plane Π of order n. A nucleus
of S is a point P such that each line of Π through P intersects S in a unique point.
It follows that P 6∈ S. We denote by N (S) the set of all nuclei of S.
Let U = (X,B) be a unital of order q embedded in PG(2, q2) and let b1, b2 ∈ B

be two (not necessarily disjoint) blocks of U . Denote the lines containing the blocks
b1 and b2 by ℓ1 and ℓ2 respectively. Using the notations in [10] let B = b1 ∪ (ℓ2 \ b2):
the set B consists of q2 + 1 non collinear points, it is contained in the union of the
lines ℓ1 and ℓ2. Note that Z = ℓ1 ∩ ℓ2 belongs to B. Let N (B) denote the set of all
nuclei of B. Clearly, if P is a full point w.r.t. to the blocks b1, b2 then P is a nucleus
of B, hence FU(b1, b2) ⊆ N (B).
The next lemma formulates [10, Propositions 2 and 3] in our setting.

Lemma 3.4. Let U = (X,B) be a unital of order q embedded in PG(2, q2) and let
b1, b2 ∈ B be two blocks of U . Denote the lines containing the blocks b1 and b2 by
ℓ1 and ℓ2 respectively. Write Z = ℓ1 ∩ ℓ2 and B = b1 ∪ (ℓ2 \ b2). Define the set
Γ1 = {πℓ1,P,ℓ2πℓ2,Q,ℓ1 | P,Q ∈ N (B)} where N (B) denotes the set of all nuclei of B.
Then the following hold:

(i) Γ1 leaves b1 invariant.
(ii) Γ1 is a group of affinities of the affine line ℓ1 \ {Z}. �

Define the integer r by q2 = pr. The order of the group Γ1 is tph, where p ∤ t,
and Γ1 is isomorphic to some group Γ = AB of affinities where B is an additive
subgroup of order ph of GF(q2) and A is a multiplicative subgroup of order t of
GF(q2) such that t | pgcd(r,h) − 1. Let m =

(
pr−h − 1

)
/t and let B1 ∪O1 ∪ . . . ∪Om

be the partition of ℓ1 \ {Z} into Γ1-orbits. We have by [10, Section 2] that B1 has
length ph and for each i = 1, 2, . . . , m the orbit Oi has length tph.
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Let Bi = ℓi ∩ B for i = 1, 2 and let B̂1 = B1 \ {Z}, then B̂1 is the union of Γ1-

orbits. It follows that the size of B̂1 must be divisible by ph, and we must distinguish
between two cases:

(1) If the blocks b1 and b2 are disjoint, it means b1 = B1 = B̂1, hence ph | q + 1.
It is possible only for h = 0, thus the group B is trivial.

(2) Otherwise b1 ∩ b2 = {Z}, meaning b1 = B1 = B̂1 ∪ {Z}, hence the size of B̂1

is q. In this case q = aph + btph, where b ∈ {0, 1, . . . , m} and a = 1 or 0,

depending on whether B1 ⊆ B̂1 or not. If a = 0, then q = btph, and as p ∤ t
we have t = 1, therefore the group A is trivial.

Lemma 3.5. Let U = (X,B) be a unital of order q embedded in PG(2, q2) and let
b1, b2 ∈ B be two disjoint blocks of U . Denote the lines containing the blocks b1
and b2 by ℓ1 and ℓ2 respectively. Write Z = ℓ1 ∩ ℓ2 and B = b1 ∪ (ℓ2 \ b2). Define
the group Γ1 generated by the perspectivities πℓ1,P,ℓ2πℓ2,Q,ℓ1 with P,Q ∈ N (B) where
N (B) denotes the set of all nuclei of B. Then the following hold:

(i) p ∤ |Γ1|.
(ii) Γ1 is cyclic and |Γ1| | q2 − 1.
(iii) Γ1 has a unique fixed point V1 6∈ b1 ∪ {Z}.
(iv) The set of full points FU(b1, b2) is contained in a line m through V1 but Z.

Proof. Assume that Γ1 has an element γ of order p. Since b1 is Γ1-invariant, γ has
a fixed point in b1, different from Z as Z 6∈ b1. However, affinities with two fixed
points have order dividing q2 − 1. This proves (i).
Together with Lemmas 3.2 and 3.3, (i) implies (ii) and (iii). Notice that Lemma

3.2(i) is needed to show that V1 6∈ b1.
Since B is trivial, the set of nuclei N (B) is contained in a line m such that Z 6∈ m

(cf. [10, p. 67]). In particular FU(b1, b2) is contained in m as FU(b1, b2) ⊆ N (B).
Furthermore, by Lemma 3.3, for any P,Q ∈ N (B) the line PQ contains V1, hence
V1 ∈ m. This proves (iv). �

We can now state and prove the main theorem of this section.

Theorem 3.6. If the unital U of order q is embedded in PG(2, q2) then it is strongly
full point regular.

Proof. Let us assume that U is embedded in PG(2, q2). Let b1, b2 be two disjoint
blocks of U . If |FU(b1, b2)| ≤ 1 then we have nothing to prove. Otherwise, by
Lemma 3.5 FU(b1, b2) is contained in a block c, which is disjoint to b1 and b2. Fur-
thermore, Perspb2

(b1) is cyclic, its order divides q
2−1 and b1 decomposes into orbits

of equal lengths. This means that (U, b1, b2) is a strongly full point regular triple. �

4. Full points of the Hermitian unital

For a prime power q, let ρ be a Hermitian polarity of PG(2, q2). Two points P,Q
are said to be conjugate if P ∈ Qρ. Similarly, the lines ℓ,m are conjugate if ℓρ ∈ m.
Let R+ be the set of pairs (ℓ,m), where ℓ,m are conjugate lines to each other but
not self-conjugate. The projective unitary group PGU(3, q) acts transitively on R+.
Given two conjugate lines ℓ1, ℓ2, one constructs ℓ3 = (ℓ1 ∩ ℓ2)

ρ, conjugate to both
ℓ1 and ℓ2. We say that ℓ1, ℓ2, ℓ3 form a polar triangle. The projective unitary group
PGU(3, q) acts transitively on the set of polar triangles. Consider the set X of self-
conjugate points of ρ; |X| = q3 + 1. The line ℓ intersects X in 1 or q + 1 points,
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depending on if ℓ is self-conjugate or not. Let ℓ be a non self-conjugate line and m
be a line connecting ℓρ and a point P ∈ X∩ℓ. Since ℓρ ∈ P ρ, we have m = P ρ which
must be a self-conjugate line. This means that (ℓ, ℓ′) ∈ R+ implies that ℓ ∩ ℓ′ 6∈ X .
It follows that any non self-conjugate line ℓ is contained in exactly q(q− 1)/2 polar
triangles. For further details and background, see [8, Section 7.3]
The abstract Hermitian unitalH(q) is constructed from the setX of self-conjugate

points of ρ. The subsets cut out by the (q + 1)-secants (not self-conjugate lines)
form the set B of blocks of H(q). Notice that we consider H(q) as an abstract
unital, having a natural embedding in PG(2, q2). The following proposition gives a
characterization of the conjugate relation in terms of the abstract unital H(q) for q
even.

Proposition 4.1. Let q be even, let ρ be a Hermitian polarity of PG(2, q2) and let
X be the set of self-conjugate points of ρ. Let ℓ1, ℓ2 be not self-conjugate lines and
define the blocks bi = ℓi ∩X of H(q), i = 1, 2. Then the following hold:

(i) If ℓ1, ℓ2 are conjugate, then FH(q)(b1, b2) = b3, where b3 = ℓ3 ∩ X with ℓ3 =
(ℓ1 ∩ ℓ2)

ρ. In other words, the blocks contained in a polar triangle form an
embedded dual 3-net of H(q).

(ii) If ℓ1, ℓ2 are not conjugate then either b1 ∩ b2 6= ∅, or |FH(q)(b1, b2)| = 1.

Proof. (i) Up to projective equivalence, we can assume that the matrix of ρ is the
identity. Since the unitary group PGU(3, q) acts transitively on R+, we can assume
ℓ1 : X1 = 0 and ℓ2 : X2 = 0. Then, ℓ1 ∩ ℓ2 = (0, 0, 1) and ℓ3 : X3 = 0. Let ε be a
(q+1)th root of unity in Fq2. The elements of bs = ℓs∩X , s = 1, 2, 3, have the form

Ai = (0, 1, εi), Bj = (εj, 0, 1), Ck = (1, εk, 0),

respectively, with i, j, k = 0, 1, . . . , q. Since the points Ai, Bj, Ck are collinear if
and only if εi+j+k = 1, we see that Ai projects from Ck to B−i−k. In particular,
b3 ⊆ FH(q)(b1, b2), and equality holds by Theorem 3.6.
(ii) The case when ℓ1, ℓ2 are not conjugate and b1 ∩ b2 = ∅ was elaborated in [12,

Section 2.2]. �

Remark 4.2. Proposition 4.1 shows that for q even, H(q) has embedded dual 3-
nets. More precisely, any block of H(q) is contained in q(q − 1)/2 polar triangles.
The group of automorphisms of H(q) acts transitively on the set of embedded dual
3-nets.

Let ρ0 be a Hermitian polarity of the projective line PG(1, q2). The set of self-
conjugate points of ρ0 forms a subline PG(1, q), cf. [8, Lemma 6.2]. Let ℓ be a line
of PG(2, q2). A Baer subline of ℓ is subset of size q + 1, consisting of self-conjugate
points of some Hermitian polarity ρ of PG(2, q2). Equivalently, a Baer subline S is
isomorphic to PG(1, q), and S = ℓ ∩ Π for some line ℓ and a Baer subplane Π.

Proposition 4.3. Let U = (X,B) be an abstract unital of order q, embedded in
PG(2, q2). Let b1, b2, b3 form an embedded dual 3-net. Then b1, b2, b3 are Baer sub-
lines.

Proof. Let ℓ be the projective line containing b1. By Theorem 3.6, C = Perspb2
(b1) is

a cyclic subgroup of order q+1, preserving b1. Since C is obtained using projections
in PG(2, q2), it is a subgroup of the projectivity group of ℓ. By the arguments of
[12, Section 3] one shows that b1 is a Baer subline of ℓ. �
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Remark 4.4. Let q be even, and consider an arbitrary embedding of the Hermitian
unital H(q) in PG(2, q2). By Remark 4.2 and Proposition 4.3, all blocks correspond
to Baer sublines of PG(2, q2). Using the characterization of Hermitian curves from
[7, 15], this observation gives a simple proof of the main theorem in [12] in the even
q case.

5. Full points and dual 3-nets of known small unitals

In this section we present computational results on the structure of full points
of known small unitals. More precisely, we study the following classes of abstract
unitals of order at most 6:

Class BBT: 909 unitals of order 3 by Betten, Betten and Tonchev [6],
Class KRC: 4466 unitals of order 3 with nontrivial automorphism groups by

Krčadinac [13],
Class KNP: 1777 unitals of order 4 by Krčadinac, Nakić and Pavčević [14],
Class BB: two cyclic unitals of order 4 and 6 by Bagchi and Bagchi [1].

Notice that KRC contains all abstract unitals of order 3 with a nontrivial auto-
morphism group. As mentioned in [13], 722 of the BBT unitals appear in KRC.
Moreover, the cyclic BB unital of order 4 is contained in KNP. The BB unital of
order 6 has no full points, therefore we omit the BB class from the tables of this
section. We access the libraries of small unitals and carry out the computations
using the GAP4 package UnitalSZ [16].

5.1. The number of full points and the structure of the group of perspec-

tivities. We only consider disjoint pairs of blocks admitting at least two full points
as for only one full point the perspectivitiy group is trivial. In Tables 1, 2 and
3 we summarize the existing number of full points, the structure of the group of
perspectivities and the number of unitals with such pairs for each library (BBT,
KRC, KNP).

Table 1. BBT unitals of order 3

Full points Group of perspectivities Unitals

2 C2 477
2 C3 94
2 C4 290

Table 2. KRC unitals of order 3

Full points Group of perspectivities Unitals

2 C2 1015
2 C3 379
2 C4 897
3 S4 6
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Table 3. KNP unitals of order 4

Full points Group of perspectivities Unitals

2 C2 93
2 C4 71
2 C5 107
2 C6 5
3 A5 2
3 C2 × C2 1
3 C4 32
3 C5 30
3 S5 3
4 C5 8
5 C5 165
6 C5 ⋊ C4 72
6 D10 53

5.2. The structure of the full points. The structure of the full points is only
interesting when there is at least 3 of them, hence the BBT unitals are out of our
scope. Even the case of 3 full points is simple: they are either contained in a block
or not. As KRC unitals admit at most 3 full points, we are only interested in the
KNP unitals.
The computation in [16] showed that if there are 4 or 5 full points (in the case of

disjoint blocks) then either the whole set of full points is contained in a single block,
or no three points are collinear. Similarly in the case of 6 full points either 5 of the
full points form a block or no 3 of them are collinear. Now by “collinear” we mean
that the points form a subset of some block of the unital.

5.3. Unitals with large full point sets. Let us denote by Ω the subset of unitals
with at least one large full point set, that is, |FU(b1, b2)| ≥ 3 for a pair (b1, b2) of
disjoint blocks. We have seen that Ω is the empty set for BBT unitals. By Table
2, |Ω| = 6 for KRC unitals. Hence, the interesting case is the KNP library, where
the size of Ω is 206. In Table 4 we present the number of KNP unitals with some
restrictions on the structure of full points. Clearly A ⊆ B, C ⊆ B and Ω = B ∪B.

Table 4. KNP unitals with large full point sets

set property cardinality

Ω at least one large full point set 206
A all large full point sets form a block 74
B all large full point sets are contained in a block 80
B some large full point sets are not contained a block 126
C no large full point set is contained in a block 1

5.4. Full point regularity. In Table 5 one sees how many of the unitals of the
different libraries are full point regular (FPR) and strongly full point regular (SFPR).
In fact, if a unital is not strongly full point regular then is not embeddable into
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PG(2, q2). Hence 94 BBT unitals, 385 KRC unitals and 195 KNP unitals are
definitely not embeddable into PG(2, q2). Notice that [2] proves a much stronger
result, where the authors show that there are just two orbits of unitals in PG(2, 16),
containing the Hermitian unitals and Buekenhout–Metz unitals, respectively.

Table 5. Full point regularity

Library Unitals FPR SFPR

BBT 909 815 815
KRC 4466 4081 4081
KNP 1777 1586 1582

5.5. Embedded dual 3-nets. By Proposition 2.6(ii), one can find embedded dual
3-nets only among the KNP unitals. The computation shows us that the latin
squares constructed from the dual 3-nets are always of cyclic type, namely, any
embedded dual 3-net is cyclic in the KNP library. However, we constructed a new
unital of order 4 with a non-cyclic embedded dual 3-net, cf. Appendix A.
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Appendix A. Unital of order 4 with non-cyclic embedded dual 3-net

LoadPackage ( ”UnitalSZ” ) ;

b l s := [ [ 1 , 2 , 5 5 , 64 , 65 ] , [ 1 , 3 , 3 2 , 46 , 63 ] , [ 1 , 4 , 7 , 3 4 , 45 ] , [ 1 , 5 , 1 1 , 31 , 44 ] ,

[ 1 , 6 , 1 2 , 19 , 54 ] , [ 1 , 8 , 3 8 , 47 , 50 ] , [ 1 , 9 , 2 4 , 27 , 40 ] , [ 1 , 1 0 , 20 , 48 , 53 ] ,

[ 1 , 1 3 , 17 , 49 , 57 ] , [ 1 , 1 4 , 15 , 16 , 29 ] , [ 1 , 1 8 , 33 , 43 , 58 ] , [ 1 , 2 1 , 23 , 25 , 37 ] ,

[ 1 , 2 2 , 51 , 56 , 60 ] , [ 1 , 2 6 , 30 , 39 , 52 ] , [ 1 , 2 8 , 36 , 41 , 62 ] , [ 1 , 3 5 , 42 , 59 , 61 ] ,

[ 2 , 3 , 6 , 3 0 , 58 ] , [ 2 , 4 , 1 4 , 54 , 60 ] , [ 2 , 5 , 2 9 , 46 , 47 ] , [ 2 , 7 , 1 3 , 48 , 59 ] ,

[ 2 , 8 , 3 4 , 37 , 40 ] , [ 2 , 9 , 1 0 , 18 , 31 ] , [ 2 , 1 1 , 19 , 32 , 52 ] , [ 2 , 1 2 , 20 , 50 , 57 ] ,

[ 2 , 1 5 , 21 , 43 , 62 ] , [ 2 , 1 6 , 23 , 27 , 28 ] , [ 2 , 1 7 , 33 , 45 , 61 ] , [ 2 , 2 2 , 24 , 25 , 26 ] ,

[ 2 , 3 5 , 38 , 39 , 41 ] , [ 2 , 3 6 , 49 , 53 , 56 ] , [ 2 , 4 2 , 44 , 51 , 63 ] , [ 3 , 4 , 1 9 , 23 , 33 ] ,

[ 3 , 5 , 1 0 , 39 , 59 ] , [ 3 , 7 , 2 2 , 49 , 52 ] , [ 3 , 8 , 1 4 , 48 , 65 ] , [ 3 , 9 , 2 5 , 29 , 60 ] ,

[ 3 , 1 1 , 15 , 20 , 34 ] , [ 3 , 1 2 , 13 , 16 , 61 ] , [ 3 , 1 7 , 24 , 28 , 44 ] , [ 3 , 1 8 , 47 , 53 , 57 ] ,

[ 3 , 2 1 , 36 , 40 , 42 ] , [ 3 , 2 6 , 37 , 38 , 43 ] , [ 3 , 2 7 , 35 , 56 , 64 ] , [ 3 , 3 1 , 45 , 55 , 62 ] ,

[ 3 , 4 1 , 50 , 51 , 54 ] , [ 4 , 5 , 4 1 , 52 , 53 ] , [ 4 , 6 , 2 6 , 31 , 47 ] , [ 4 , 8 , 1 6 , 36 , 57 ] ,

[ 4 , 9 , 5 6 , 58 , 59 ] , [ 4 , 1 0 , 28 , 46 , 65 ] , [ 4 , 1 1 , 21 , 50 , 64 ] , [ 4 , 1 2 , 35 , 44 , 62 ] ,

[ 4 , 1 3 , 30 , 32 , 51 ] , [ 4 , 1 5 , 37 , 39 , 61 ] , [ 4 , 1 7 , 18 , 20 , 25 ] , [ 4 , 2 2 , 27 , 38 , 48 ] ,

[ 4 , 2 4 , 42 , 49 , 55 ] , [ 4 , 2 9 , 40 , 43 , 63 ] , [ 5 , 6 , 7 , 3 2 , 37 ] , [ 5 , 8 , 4 2 , 54 , 58 ] ,

[ 5 , 9 , 1 2 , 17 , 51 ] , [ 5 , 1 3 , 27 , 36 , 63 ] , [ 5 , 1 4 , 22 , 61 , 62 ] , [ 5 , 1 5 , 25 , 40 , 49 ] ,

[ 5 , 1 6 , 19 , 20 , 26 ] , [ 5 , 1 8 , 21 , 28 , 38 ] , [ 5 , 2 3 , 30 , 55 , 60 ] , [ 5 , 2 4 , 33 , 48 , 64 ] ,

[ 5 , 3 4 , 35 , 57 , 65 ] , [ 5 , 4 3 , 45 , 50 , 56 ] , [ 6 , 8 , 5 6 , 62 , 63 ] , [ 6 , 9 , 2 1 , 61 , 65 ] ,

[ 6 , 1 0 , 14 , 40 , 41 ] , [ 6 , 1 1 , 25 , 43 , 51 ] , [ 6 , 1 3 , 38 , 44 , 55 ] , [ 6 , 1 5 , 42 , 46 , 57 ] ,

[ 6 , 1 6 , 22 , 34 , 64 ] , [ 6 , 1 7 , 23 , 36 , 52 ] , [ 6 , 1 8 , 48 , 49 , 60 ] , [ 6 , 2 0 , 28 , 45 , 59 ] ,

[ 6 , 2 4 , 35 , 50 , 53 ] , [ 6 , 2 7 , 29 , 33 , 39 ] , [ 7 , 8 , 2 0 , 24 , 51 ] , [ 7 , 9 , 4 1 , 63 , 64 ] ,

[ 7 , 1 0 , 11 , 42 , 60 ] , [ 7 , 1 2 , 15 , 55 , 56 ] , [ 7 , 1 4 , 23 , 26 , 35 ] , [ 7 , 1 6 , 44 , 46 , 53 ] ,

[ 7 , 1 7 , 29 , 38 , 62 ] , [ 7 , 1 8 , 19 , 39 , 50 ] , [ 7 , 2 1 , 27 , 31 , 57 ] , [ 7 , 2 5 , 47 , 58 , 65 ] ,

[ 7 , 2 8 , 30 , 33 , 40 ] , [ 7 , 3 6 , 43 , 54 , 61 ] , [ 8 , 9 , 1 1 , 13 , 46 ] , [ 8 , 1 0 , 12 , 45 , 52 ] ,

[ 8 , 1 5 , 18 , 27 , 59 ] , [ 8 , 1 7 , 21 , 35 , 60 ] , [ 8 , 1 9 , 43 , 49 , 64 ] , [ 8 , 2 2 , 29 , 30 , 53 ] ,

[ 8 , 2 3 , 32 , 39 , 44 ] , [ 8 , 2 5 , 31 , 33 , 41 ] , [ 8 , 2 6 , 28 , 55 , 61 ] , [ 9 , 1 4 , 52 , 55 , 57 ] ,

[ 9 , 1 5 , 19 , 28 , 53 ] , [ 9 , 1 6 , 35 , 43 , 47 ] , [ 9 , 2 0 , 22 , 36 , 39 ] , [ 9 , 2 3 , 48 , 50 , 62 ] ,

[ 9 , 2 6 , 32 , 33 , 42 ] , [ 9 , 3 0 , 34 , 38 , 54 ] , [ 9 , 3 7 , 44 , 45 , 49 ] , [ 1 0 , 13 , 23 , 34 , 43 ] ,

[ 1 0 , 15 , 17 , 30 , 64 ] , [ 1 0 , 16 , 21 , 32 , 56 ] , [ 1 0 , 19 , 25 , 35 , 55 ] , [ 1 0 , 22 , 33 , 54 , 57 ] ,

[ 1 0 , 24 , 36 , 37 , 47 ] , [ 1 0 , 26 , 27 , 51 , 62 ] , [ 1 0 , 29 , 44 , 50 , 61 ] , [ 1 0 , 38 , 49 , 58 , 63 ] ,

[ 1 1 , 12 , 33 , 38 , 59 ] , [ 1 1 , 14 , 39 , 47 , 56 ] , [ 1 1 , 16 , 18 , 54 , 62 ] , [ 1 1 , 17 , 22 , 41 , 65 ] ,

[ 1 1 , 23 , 24 , 29 , 57 ] , [ 1 1 , 26 , 36 , 45 , 48 ] , [ 1 1 , 27 , 30 , 49 , 61 ] , [ 1 1 , 28 , 35 , 37 , 63 ] ,

[ 1 1 , 40 , 53 , 55 , 58 ] , [ 1 2 , 14 , 24 , 30 , 43 ] , [ 1 2 , 18 , 23 , 42 , 65 ] , [ 1 2 , 21 , 26 , 41 , 49 ] ,

[ 1 2 , 22 , 28 , 32 , 47 ] , [ 1 2 , 25 , 34 , 48 , 63 ] , [ 1 2 , 27 , 37 , 53 , 60 ] , [ 1 2 , 29 , 31 , 36 , 58 ] ,

[ 1 2 , 39 , 40 , 46 , 64 ] , [ 1 3 , 14 , 21 , 33 , 53 ] , [ 1 3 , 15 , 41 , 45 , 47 ] , [ 1 3 , 18 , 26 , 29 , 64 ] ,

[ 1 3 , 19 , 24 , 31 , 56 ] , [ 1 3 , 20 , 35 , 52 , 58 ] , [ 1 3 , 22 , 37 , 42 , 50 ] , [ 1 3 , 25 , 28 , 39 , 54 ] ,

[ 1 3 , 40 , 60 , 62 , 65 ] , [ 1 4 , 17 , 19 , 59 , 63 ] , [ 1 4 , 18 , 37 , 46 , 51 ] , [ 1 4 , 20 , 31 , 38 , 42 ] ,

[ 1 4 , 25 , 36 , 44 , 64 ] , [ 1 4 , 27 , 32 , 45 , 58 ] , [ 1 4 , 28 , 34 , 49 , 50 ] , [ 1 5 , 22 , 23 , 31 , 63 ] ,

[ 1 5 , 24 , 32 , 38 , 65 ] , [ 1 5 , 26 , 50 , 58 , 60 ] , [ 1 5 , 33 , 35 , 36 , 51 ] , [ 1 5 , 44 , 48 , 52 , 54 ] ,

[ 1 6 , 17 , 37 , 48 , 58 ] , [ 1 6 , 24 , 41 , 59 , 60 ] , [ 1 6 , 25 , 30 , 42 , 45 ] , [ 1 6 , 31 , 39 , 49 , 65 ] ,

[ 1 6 , 33 , 50 , 55 , 63 ] , [ 1 6 , 38 , 40 , 51 , 52 ] , [ 1 7 , 26 , 34 , 46 , 56 ] , [ 1 7 , 27 , 47 , 54 , 55 ] ,

[ 1 7 , 31 , 32 , 40 , 50 ] , [ 1 7 , 39 , 42 , 43 , 53 ] , [ 1 8 , 22 , 35 , 40 , 45 ] , [ 1 8 , 24 , 52 , 61 , 63 ] ,

[ 1 8 , 30 , 41 , 44 , 56 ] , [ 1 8 , 32 , 34 , 36 , 55 ] , [ 1 9 , 21 , 22 , 44 , 58 ] , [ 1 9 , 27 , 34 , 41 , 42 ] ,

[ 1 9 , 29 , 45 , 51 , 65 ] , [ 1 9 , 30 , 37 , 57 , 62 ] , [ 1 9 , 36 , 38 , 46 , 60 ] , [ 1 9 , 40 , 47 , 48 , 61 ] ,

[ 2 0 , 21 , 30 , 47 , 63 ] , [ 2 0 , 23 , 40 , 54 , 56 ] , [ 2 0 , 27 , 43 , 44 , 65 ] , [ 2 0 , 29 , 37 , 41 , 55 ] ,

[ 2 0 , 32 , 60 , 61 , 64 ] , [ 2 0 , 33 , 46 , 49 , 62 ] , [ 2 1 , 24 , 45 , 46 , 54 ] , [ 2 1 , 29 , 34 , 52 , 59 ] ,

[ 2 1 , 39 , 48 , 51 , 55 ] , [ 2 2 , 43 , 46 , 55 , 59 ] , [ 2 3 , 38 , 45 , 53 , 64 ] , [ 2 3 , 41 , 46 , 58 , 61 ] ,

[ 2 3 , 47 , 49 , 51 , 59 ] , [ 2 4 , 34 , 39 , 58 , 62 ] , [ 2 5 , 27 , 46 , 50 , 52 ] , [ 2 5 , 32 , 53 , 59 , 62 ] ,

[ 2 5 , 38 , 56 , 57 , 61 ] , [ 2 6 , 40 , 44 , 57 , 59 ] , [ 2 6 , 53 , 54 , 63 , 65 ] , [ 2 8 , 29 , 42 , 48 , 56 ] ,

[ 2 8 , 31 , 43 , 52 , 60 ] , [ 2 8 , 51 , 57 , 58 , 64 ] , [ 2 9 , 32 , 35 , 49 , 54 ] , [ 3 0 , 31 , 35 , 46 , 48 ] ,

[ 3 0 , 36 , 50 , 59 , 65 ] , [ 3 1 , 34 , 51 , 53 , 61 ] , [ 3 1 , 37 , 54 , 59 , 64 ] , [ 3 2 , 41 , 43 , 48 , 57 ] ,

[ 3 3 , 34 , 44 , 47 , 60 ] , [ 3 3 , 37 , 52 , 56 , 65 ] , [ 3 9 , 45 , 57 , 60 , 63 ] , [ 4 2 , 47 , 52 , 62 , 64 ]
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] ; ;

u:=AbstractUnita lByDes ignBlocks ( b l s ) ;

t :=BlocksOfUnita l (u ) { [ 1 , 3 3 , 2 0 0 ] } ;

S t r u c tu r eDes c r ip t i on ( Perspect iv i tyGroupOfUni ta l sB locks (u , t [ 1 ] , t [ 2 ] , t [ 3 ] ) ) ;

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged,

Hungary

E-mail address : mezofi@math.u-szeged.hu

Department of Algebra, Budapest University of Technology and Economics,

Egry József utca 1, H-1111 Budapest, Hungary

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged,
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E-mail address : nagyg@math.bme.hu
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