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Abstract. A classical recursive construction for mutually orthogonal latin squares (MOLS) is
shown to hold more generally for a class of permutation codes of length n and minimum distance
n − 1. When such codes of length p + 1 are included as ingredients, we obtain a general lower
bound M(n, n − 1) ≥ n1.0797 for large n, gaining a small improvement on the guarantee given
from MOLS.

1. Introduction

Let n be a positive integer. The Hamming distance between two permutations σ, τ ∈ Sn is the
number of non-fixed points of στ−1, or, equivalently, the number of disagreements when σ and τ are
written as words in single-line notation. For example, 1234 and 3241 are at distance three.

A permutation code PC(n, d) is a subset Γ of Sn such that the distance between any two distinct
elements of Γ is at least d. Language of classical coding theory is often used: elements of Γ are
words, n is the length of the code, and the parameter d is the minimum distance, although for our
purposes it is not important whether distance d is ever achieved. Permutation codes are also called
permutation arrays by some authors, where the words are written as rows of a |Γ| × n array.

The investigation of permutation codes essentially began with the articles [10, 12]. After a decade
or so of inactivity on the topic, permutation codes enjoyed a resurgence due to various applications.
See [7, 13, 20] for surveys of construction methods and for more on the coding applications.

For positive integers n ≥ d, we let M(n, d) denote the maximum size of a PC(n, d). It is easy to
see that M(n, 1) = M(n, 2) = n!, and that M(n, n) = n. The Johnson bound M(n, d) ≤ n!/(d− 1)!
holds. The alternating group An shows that M(n, 3) = n!/2. More generally, a sharply k-transitive
subgroup of Sn furnishes a permutation code PC(n, n−k+1) of (maximum possible) size n!/(n−k)!.
For instance, the Mathieu groups M11 and M12 are maximum PC(11, 7) and PC(12, 7), respectively.
On the other hand, determination of M(n, d) in the absence of any algebraic structure appears to be
a difficult problem. As an example, it is only presently known that 78 ≤ M(7, 5) ≤ 122; see [15, 19]
for details. A table of bounds on M(n, d) can be found in [20].

In [9], it was shown that the existence of r mutually orthogonal latin squares (MOLS) of order n
yields a permutation code PC(n, n − 1) of size rn. Although construction of MOLS is challenging
in general, the problem is at least well studied. Lower bounds on MOLS can be applied to the
permutation code setting, though it seems for small n not a prime power that M(n, n − 1) can be
much larger than the MOLS guarantee. For example, M(6, 5) = 18 despite the nonexistence of
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orthogonal latin squares of order six, and M(10, 9) ≥ 49, [16], when no triple of MOLS of order 10
is known. On the other hand, it is straightforward to see, [9], that M(n, n− 1) = n(n− 1) implies
existence of a full set of MOLS (equivalently a projective plane) of order n, so any nontrivial upper
bound on permutation codes would have major impact on design theory and finite geometry. This
connection is explored in more detail in [5]. Permutation codes are used in [17] for some recent
MOLS constructions.

Let N(n) denote the maximum number of MOLS of order n. Chowla, Erdős and Strauss showed
in [6] that N(n) tends to infinity with n. Wilson, [21], found a construction strong enough to
prove N(n) ≥ n1/17 for sufficiently large n. Subsequently, Beth, [4] tightened some number theory
in the argument to lift the exponent to 1/14.8. In terms of permutation codes, then, one has
M(n, n− 1) ≥ n1+1/14.8 for sufficiently large n.

Our main result in this note gives a small improvement to the exponent.

Theorem 1.1. M(n, n− 1) ≥ n1.0797 for sufficiently large n.

The proof is essentially constructive, although it requires, as does [4, 21], the selection of a ‘small’
integer avoiding several arithmetic progressions. This is guaranteed by the Buchstab sieve; see [14].
Apart from this number theory, our construction method generalizes a standard design-theoretic
construction for MOLS to permutation codes possessing a small amount of additional structure.
Some set up for our methodology is given in the next two sections, and the proof of Theorem 1.1
is given in Section 4 as a consequence of the somewhat stronger Theorem 4.3. We conclude with a
discussion of some possible next directions for this work.

2. Idempotent permutation codes and latin squares

Let [n] := {1, 2, . . . , n}. A fixed point of a permutation π : [n] → [n] is an element i ∈ [n] such
that π(i) = i. In single-line notation, this says symbol i is in position i. Of course, for the identity
permutation ι, every element is a fixed point.

A latin square L of order n is idempotent if the (i, i)-entry of L equals i for each i ∈ [n]. Extending
this definition, let us say that a permutation code is idempotent if each of its words has exactly one
fixed point. So, a maximum PC(n, n) is idempotent if and only if the ‘corresponding’ latin square
is idempotent.

We are particularly interested in idempotent PC(n, n− 1) in which every symbol is a fixed point of
the same number, say r, of words; these we call r-regular and denote by r-IPC(n, n−1). Permutation
codes with extra ‘distributional’ properties have been investigated before. For example, ‘k-uniform’
permutation arrays are introduced in [10], while ‘r-balanced’ and ‘r-separable’ permutation arrays
are considered in [11]. However, our definition is seemingly new, or at least not obviously related to
these other conditions.

If there exists an IPC(n, n−1), say ∆, then ∆∪{ι} is also a PC(n, n−1). Consequently,M(n, n−1) ≥
rn+ 1 when there exists an r-IPC(n, n− 1). It follows that r ≤ n− 2 is an upper bound on r.

On the other hand, if Γ is a PC(n, n− 1) containing ι, then the words of ∆ at distance exactly n− 1
from ι form an idempotent IPC(n, n− 1). Concerning the r-regular condition, whether ι ∈ Γ or not,
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we may find an r-IPC(n, n− 1) with

(2.1) r = max
σ∈Γ

min
i∈[n]

|{τ ∈ Γ \ {σ} : τ(i) = σ(i)}|.

In more detail, if σ achieves the maximum in (2.1), then for each i = 1, . . . , n we choose exactly r
elements τ ∈ Γ which agree with σ in position i. After relabelling each occurrence of σ(i) to i, we
have the desired r-idempotent PC(n, n− 1).

A question in its own right is whether there exists an r-IPC(n, n− 1) for r = ⌊ 1
n (M(n, n− 1)− 1)⌋.

However, relatively little is known about maximum permutation code sizes. Indeed, the exact value
of M(n, n− 1) is known only for n = q, a prime power, (M(q, q − 1) = q(q − 1), [12]) and for n = 6
(M(6, 5) = 18, [18]).

Example 2.1. A 2-IPC(6, 5):

1 3 5 6 2 4 1 4 6 2 3 5
6 2 4 5 3 1 5 2 1 3 6 4
5 6 3 1 4 2 4 5 3 2 6 1
2 5 6 4 1 3 3 6 1 4 2 5
3 1 4 6 5 2 6 4 2 1 5 3
4 3 2 5 1 6 2 1 5 3 4 6

Example 2.2. A 3-IPC(10, 9) (symbol ‘0’ is used for ‘10’):

1 8 6 2 9 5 4 0 3 7 1 5 0 9 7 4 3 6 2 8 1 3 8 0 6 9 5 2 7 4
8 2 1 9 6 7 0 4 5 3 3 2 5 6 9 8 1 7 0 4 9 2 8 7 4 1 3 0 6 5
5 9 3 2 7 8 0 1 4 6 8 7 3 5 2 0 4 9 6 1 9 4 3 1 6 2 8 5 0 7
9 7 1 4 0 3 5 6 8 2 6 3 2 4 1 0 9 7 5 8 0 8 9 4 3 1 2 5 7 6
0 3 6 7 5 2 1 4 8 9 3 8 4 0 5 7 9 1 6 2 7 9 2 8 5 4 6 3 0 1
9 8 7 5 1 6 0 3 2 4 8 9 4 1 0 6 2 7 3 5 5 1 0 3 9 6 8 4 7 2
3 0 9 8 1 2 7 6 4 5 5 4 6 0 8 1 7 9 2 3 8 6 0 2 4 3 7 5 1 9
2 6 7 1 9 0 5 8 4 3 4 1 9 0 2 3 6 8 5 7 7 0 1 3 4 5 9 8 2 6
0 7 4 6 1 5 8 2 9 3 2 1 6 8 0 7 3 5 9 4 4 5 7 3 6 8 2 0 9 1
6 5 1 7 2 9 8 3 4 0 4 6 5 8 7 1 9 2 3 0 2 4 8 9 3 5 6 7 1 0

The connection with MOLS is important in the sequel. The following result is essentially the
construction from MOLS to PC(n, n− 1) in [9], except that here we track the idempotent condition.

Theorem 2.3. If there exist r mutually orthogonal idempotent latin squares of order n, then there

exists an r-IPC(n, n− 1).

Proof. Suppose L1, . . . , Lr are the hypothesized latin squares, each on the set of symbols [n]. For
each i ∈ [n] and j ∈ [r], define the permutation πi,j ∈ Sn by πi,j(x) = y if and only if the (x, y)-entry
of Lj is i. Let Γ = {πi,j : i ∈ [n], j ∈ [r]}. Consider distinct permutations πi,j and πh,k in Γ. They
have no agreements if j = k, by the latin property, and they have exactly one agreement if j 6= k
by the orthogonality of squares Lj and Lk. So Γ is a PC(n, n − 1). Moreover, since each Lj is an
idempotent latin square, the permutation πi,j has only the fixed point i. It follows that Γ is in fact
an r-IPC(n, n− 1). �

We remark that the maximum number of mutually orthogonal idempotent latin squares of order n
is either N(n) or N(n)− 1, since we may permute rows and columns of one square so that its main
diagonal is a constant, and then permute symbols of the other squares. That is, our idempotent
condition is negligible as far as the rate of growth of r in terms of n is concerned.
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Corollary 2.4. For prime powers q, there exists a (q − 2)-IPC(q, q − 1).

MacNeish’s bound for MOLS is an application of the standard product construction for MOLS with
prime-power ingredients.

Theorem 2.5 (MacNeish’s bound; see [6, 8, 21]). If n = q1 . . . qt is factored as a product of powers

of distinct primes, then N(n) ≥ q − 1, where q = min{qi : i = 1, . . . , t}.

From Corollary 2.4, we immediately have a similar result for idempotent permutation codes.

Theorem 2.6. If n = q1 . . . qt is factored as a product of powers of distinct primes, then there

exists a (q − 2)-IPC(n, n− 1) where q = min{qi : i = 1, . . . , t}.

Finally, it is worth briefly considering a ‘reverse’ of the MOLS construction for PC(n, n−1). Suppose
a PC(n, n− 1), say Γ, is partitioned into PC(n, n), say Γ1, . . . ,Γr. We define r partial latin squares
as linear combinations of permutation matrices for Γi with symbolic coefficients. Since two distinct
words of the code have at most one agreement, overlaying any two of the r partial latin squares leads
to distinct ordered pairs of symbols over the common non-blank cells. We merely offer an example,
but remark that this viewpoint is helpful for our recursive construction to follow.

Example 2.7. The 2-IPC(6, 5) of Example 2.1 admits a partition into three disjoint PC(6, 6); this
can be seen by reading the array four rows at a time. Each of these sub-arrays is converted into a
partial latin square of order six, where a permutation π having fixed point i fills all cells of the form
(x, π(x)) in its square with symbol i.

1 4 3 2
2 1 4 3

3 2 1 4
3 4 2 1
4 1 2 3
2 3 4 1

1 5 6 2
5 2 6 1
2 6 5 1

1 2 6 5
6 1 5 2

5 2 1 6

6 4 3 5
6 5 3 4
4 5 3 6
5 3 6 4

4 6 5 3
3 5 4 6

3. A recursive construction using block designs

In this section, we observe that idempotent permutation codes can be combined to produce larger
such codes. Since the resultant code must preserve at most one agreement between different words,
we are naturally led to consider block designs to align the ingredient codes.

A pairwise balanced design PBD(n,K) is a pair (V,B), where V is a set of size n, B is a family of
subsets of V with sizes in K, and such that every pair of distinct elements of V belongs to exactly
one set in B. The sets in B are called blocks. Thinking of a PBD as a special type of hypergraph,
we refer the elements of V as vertices or points.

The following construction is inspired from a similar one for MOLS; see [8, Theorem 3.1].

Theorem 3.1. If there exists a PBD(n,K) and, for every k ∈ K, there exists an r-IPC(k, k − 1),
then there exists an r-IPC(n, n− 1).
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Proof. Let ([n],B) be a PBD(n,K). For each block B ∈ B, take a copy of an r-IPC(|B|, |B|−1) on
the symbols of B. Its permutations are, say, πB

i,j : B → B, for i ∈ B, j = 1, . . . , r, where πB
i,j(i) = i

is the unique fixed point for πB
i,j .

Let i ∈ [n] and put Bi := {B \ {i} : B ∈ B, i ∈ B}. Since B is the block set of a PBD, we have that
Bi is a partition of [n] \ {i}. For j = 1, . . . , r, define a permutation πi,j : [n] → [n] by

πi,j(x) =

{

i if x = i,

πB
i,j(x) if x 6= i, where x ∈ B ∈ Bi.

We claim that {πi,j : i ∈ [n], j ∈ [r]} is an r-IPC(n, n − 1) such that, for each i, the subset
{πi,j : j ∈ [r]} has precisely the fixed point i. First, each πi,j is a permutation. That ([n],B) is a
PBD ensures that πi,j is well-defined and bijective. In particular, if a ∈ [n], a 6= i, we have {i, a}
contained in a unique block, say A ∈ B.

It remains to check the minimum distance. Consider πi,j and πi,j′ for j 6= j′. They agree on i, but
suppose for contradiction that they agree also on h 6= i. Let B be the unique block of Bi containing
h. By construction, we must have πB

i,j agreeing with πB
i,j′ at h, and this is a contradiction to the

minimum distance being |B| − 1 within this component code.

Now, consider πi,j and πi′,j′ for i 6= i′. Suppose they agree at distinct positions h and l. Say
πi,j(h) = πi′,j′(h) = a and πi,j(l) = πi′,j′(l) = b. Then {i, i′, h, a} and {i, i′, l, b} are in the same
block. It follows that h, l are in the same block and we get a contradiction again. �

We illustrate the construction of Theorem 3.1.

Example 3.2. Figure 1 shows a PBD(10, {3, 4}) at left. The design is built from an affine plane of
order three (on vertex set {1, . . . , 9}) with one parallel class extended (to vertex 0). In the center,
template idempotent permutation codes of lengths 3 and 4 are shown. The code of length three is
simply an idempotent latin square, but note that the code of length four achieves minimum distance
three. On the right is shown the resultant 1-IPC(10, 9), an unimpressive code for illustration only.
It can be checked that two rows agree in at most one position (which if it exists is found within the
unique block containing the chosen row labels).

We conclude this section with an existence result for pairwise balanced designs, to which we can
apply Theorem 3.1. This is implicit in early constructions of mutually orthogonal latin squares,
[6, 21], but we provide a proof for completeness.

Lemma 3.3. Suppose m, t, u are integers satisfying N(t) ≥ m − 1 and 0 ≤ u ≤ t. Then there

exists a PBD(mt+ u, {m,m+ 1, t, u}).

Proof. Let us take MOLS L1, . . . , Lm−1 of order t. On the set of points [t] × [m + 1], define the
family of sets

Bij = {(i, 1), (j, 2), (L1(i, j), 3), . . . , (Lm−1(i, j),m− 1)}, i, j ∈ [t].

By a fiber we mean a set of the form Fh = {(x, h) : x ∈ [t]}. Any two points from different fibers
occur together in exactly one such block, by the properties of MOLS. Now, delete all but u points
from the last fiber, so that our point set is now V = [t] × [m] ∪ [u] × {m + 1}. Let F ′

h = Fh for
h = 1, . . . ,m and put F ′

m+1 = {(x,m + 1) : x ∈ [u]}. For each Bij , truncate a deleted point (if
present) to produce B′

ij . We claim that the B′

ij , i, j ∈ [t], together with F ′

h, h ∈ [m + 1], form the
blocks of a PBD on V . Consider a pair of distinct elements in V . If they are in different fibers, they
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{0, 1, 2, 3} {1, 4, 7} {1, 5, 9} {1, 6, 8}
{0, 4, 5, 6} {2, 5, 8} {2, 6, 7} {2, 4, 9}
{0, 7, 8, 9} {3, 6, 9} {3, 4, 8} {3, 5, 7}

0
5

2

8

6

3

9

4

1

7

PBD(10, {3, 4})

a c b
c b a
b a c

a c d b
c b d a
d a c b
b c a d

ingredient codes

0 2 3 1 5 6 4 8 9 7
2 1 3 0 7 9 8 4 6 5
3 0 2 1 9 8 7 6 5 4
1 2 0 3 8 7 9 5 4 6
5 7 9 8 4 6 0 1 3 2
6 9 8 7 0 5 4 3 2 1
4 8 7 9 5 0 6 2 1 3
8 4 6 5 1 3 2 7 9 0
9 6 5 4 3 2 1 0 8 7
7 5 4 6 2 1 3 8 0 9

resultant code

Figure 1. Recursive construction of a 1-IPC(10, 9).

belong to exactly one block of the form B′

ij (of size m or m + 1), and if they are in the same fiber

F ′

h, they are in this block (of size t or u). �

4. An improved exponent

We apply the partition and extension technique from [3] to construct an idempotent permutation
code. We briefly summarize the method as needed for our use to follow. Let Γ be a PC(n, n − 1),
say on symbol set [n]. Consider a partition P = {P1, . . . , Pk} of [n] and a family of disjoint subsets
M = {M1, . . . ,Mk} of Γ such that

• for each i = 1, . . . , k, the Hamming distance between distinct elements of Mi is n;
• for each i = 1, . . . , k and every σ ∈ Mi, there exists z ∈ Pi such that σ(z) ∈ Pi.

For σ ∈ Mi, we define its extension, ext(σ), a permutation σ′ on [n] ∪ {∞}, by

σ′(x) :=











σ(x) if x 6= z,∞,

∞ if x = z,

σ(z) if x = ∞,

where, z is some element in Pi such that σ(z) ∈ Pi. Observe that d(σ′, τ ′) ≥ n for any σ, τ ∈ ∪k
i=1Mi.

With Π = (P ,M), we define

ext(Π) := {ext(σ) : σ ∈ ∪k
i=1Mi},

a PC(n + 1, n). Of course, we may for convenience use permutations on other sets than [n]. One
natural choice is to use a finite field with the affine linear group of permutations. The bound
M(q2 + 1, q2) ≥ q3 + q2 for a prime power q was obtained earlier using the above method, [2].
We construct a similar (actually slightly weaker) idempotent code, with the proof provided for
completeness.

Theorem 4.1. For any prime power q, there exists a (q − 1)-IPC(q2 + 1, q2).
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Proof. Let Fq2 denote the field of order q2. Consider Π = (P ,M), where P is taken to be the
partition of Fq2 into additive cosets of the subfield Fq, and where M is the union of any q subsets of
AGL(1, q2) of the form Ma = {x 7→ ax+ b : b ∈ Fq2}, where a runs over q elements in Fq2 \ Fq. We
remark that M is a PC(q2, q2− 1) partitioned into q cosets of the cyclic subgroup M1, a PC(q2, q2).

For such elements a, we claim that |{(x, ax + b) : x, ax + b ∈ c+ Fq}| = 1 for any b, c ∈ Fq2 . First,
suppose x, y ∈ c+ Fq, x 6= y, with ax+ b, ay+ b ∈ c+ Fq. Then x− y, a(x− y) ∈ Fq, and so a ∈ Fq,
a contradiction. So these sets have size at most one. To see that they are nonempty, fix c and note
that there are q choices for x ∈ c+ Fq and, for each, q choices for b so that ax+ b ∈ c+ Fq.

The extension ext(Π) is a PC(q2+1, q2) by [3, Theorem 1]. A (q−1)-IPC(q2+1, q2) can be obtained
from it as follows. Every permutation in Ma has a unique fixed point since a 6= 1. A permutation in
Ma may lose a fixed point after extension if that position gets replaced by ∞. We remove such new
permutations without fixed points. Since every set P ∈ P has size q, at most q permutations are
removed in this way from each ext(Ma). Since sets in P are disjoint, every symbol of Fq2 is a fixed
point of at least q− 1 of the remaining permutations. By removing some permutations if necessary,
we can ensure every symbol of Fq2 is a fixed point exactly q − 1 times.

Finally, we choose the last set for M. Pick any q − 1 permutations from coset M1 other than the
identity. Adjoin the new symbol ∞ at the end of each of these permutations. Then ∞ will be the
only fixed point and the entire permutation code is a (q − 1)-IPC(q2 + 1, q2). �

We remark that it is also possible to get an r-IPC(q+1, q) for primes q, where r = O(
√
q). For this,

take the construction from [3, Section 4] and change it as in the proof of Theorem 4.1 by removing
permutations without fixed points and using O(

√
q) permutations from coset M1 = {x 7→ x+ b : b ∈

Fq} for the last set for M.

Next we cite an important number-theoretic result used in [4] for MOLS.

Lemma 4.2 (Buchstab sieve; see [14]). Let 2 = p0, p1, . . . , pk be the primes less than or equal

to y, and let ω = {a0, a1, . . . , ak, b1, . . . , bk} be a set of 2k + 1 integers. Let Bω(x, y) denote the

number of positive integers z ≤ x which do not lie in any of the arithmetic progressions z ≡ ai
(mod pi), i = 0, 1, . . . , k or z ≡ bj (mod pj), j = 1, . . . , k. Then Bω(x, x

4.2665) tends to infinity with

x, independent of the selections ω.

The tools are now in place for our asymptotic lower bound on M(n, n− 1).

Theorem 4.3. For sufficiently large n, there exists an r-IPC(n, n− 1) with r ≥ n0.0797.

Proof. We follow a similar strategy as in [4, 21], applying the Buchstab sieve. The main idea is to
write n in the form mt+ u, where these parameters satisfy the conditions of Lemma 3.3 while being
each a product of large enough prime powers.

To simplify the calculations below, put β := 4.2665 and γ = 0.0797, and note that 2γ(β + 2) < 1.

Let r = ⌈nγ⌉. Choose a prime power q satisfying (r+1) ≤ q ≤ 2(r+1) and q 6≡ n (mod 2). Indeed,
Bertrand’s postulate allows for q prime when n is even, and otherwise the interval permits a choice
in which q is a power of 2. Let m := q2. In view of Corollary 2.4 and Theorem 4.1, there exist both
r-IPC(m,m− 1) and r-IPC(m+ 1,m). It is important for an estimate to follow that m = O(n2γ),
and so in particular m+ 1 < n1/(β+2) for sufficiently large n.

7



Now, use Lemma 4.2 with m taking the role of y, ai = −⌊ n
m+1⌋, and bj = mjn− ⌊ n

m+1⌋, where mj

denotes the multiplicative inverse of m modulo pj . We remark that, since m and n have opposite
parity, these choices are consistent for p = 2; that is, a0 ≡ b0 (mod 2). The conclusion of Lemma 4.2
gives that, for sufficiently large n, there exists a positive integer t′ ≤ mβ , so that, with t := t′+⌊ n

m+1⌋,
we have t 6≡ 0 (mod p) and mt 6≡ n (mod p) for each prime p ≤ m. The first congruence conditions
is immediately equivalent to t′ 6≡ ai (mod pi) and the second comes from mt = m(t′ + ⌊ n

m+1⌋) ≡ n

iff t′ ≡ mjn− ⌊ n
m+1⌋ = bj (mod pj).

Put u = n−mt so that n = mt+ u. Since t ≥ n
m+1 , we have u ≤ t. And u is nonnegative since

u = n−mt ≥ n−m

(

mβ +
n

m+ 1

)

=
n

m+ 1
−mβ+1

> n1−1/(β+2) − n(β+1)/(β+2) = 0.

Recall that t is divisible by no primes less than or equal to m. It follows by Theorem 2.6 that
there exists an (m − 1)-IPC(t, t − 1) and hence, since m − 1 ≥ r, an r-IPC(t, t − 1). Indeed, we
have N(t) > m from MacNeish’s bound, Theorem 2.5. We also chose t so that u = n − mt is
divisible by no primes less than or equal to m. From this, we likewise obtain an r-IPC(u, u− 1). By
Lemma 3.3, there exists a PBD(mt + u, {m,m+ 1, t, u}). Hence, by Theorem 3.1, there exists an
r-IPC(n, n− 1). �

Our main result, Theorem 1.1, stating that M(n, n− 1) ≥ n1.0797 for large n, is now an immediate
consequence of Theorem 4.3.

5. Discussion

Our exponent 0.0797 is only slightly better than 1/14.8 ≈ 0.0675 already known for MOLS. However,
in certain cases it may be possible to construct a PBD whose block sizes are large primes or primes
plus one. For example, a projective plane of order p is a PBD(p2 + p+ 1, {p+ 1}). If p′ is another
prime, say with

√
2p < p′ < p, then, by deleting all but p′ points from one line of this plane we

obtain a PBD(p2 + p′, {p′, p, p+ 1}). Our construction gives an r-IPC(n, n− 1) with r on the order
of n1/4, and this is not in general subsumed by existing MOLS bounds nor existing permutation
code constructions. A little more generally, an exponent approaching 1/4 can be achieved when n
has a representation n = p1 + p2p3 for primes pi satisfying n1/2−ǫ < p1 < max{p2, p3} < n1/2+ǫ.

The exponent could also be improved if a better construction for designs with large block sizes could
be used in place of Lemma 3.3. Even with our family of designs from Lemma 3.3, the hypothesis
N(t) ≥ m− 1 significantly harms our exponent. Wilson’s construction for MOLS in [21] drops this
strong requirement on t. However, a preliminary look at the construction suggests that a suitable
relaxation for permutation codes PC(n, n − 1) is likely to demand a partition into codes of full
distance, so that some latin square structure is maintained. This is an idea worth exploring in
future work.

In another effort to work around the hypothesis N(t) ≥ m− 1, we explored the idea of letting t = s2

for an integer s with no prime factors up to about
√
m. Our remainder u = n − ms2 is then a

quadratic in s and one must avoid an extra arithmetic progression. The allowed range for s is too
small for the trade-off to be worthwhile.
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Applying equation (2.1) to a known permutation code with n = 60, we can report the existence
of a 6-IPC(60, 59). By comparison, it is only known that N(60) ≥ 5; see [1]. As a next step in
researching r-IPC(n, n− 1), it would be interesting to accumulate some additional good examples,
primarily in the case when neither n nor n− 1 is a prime power.

Finding a maximum idempotent code (with the assumption on r-regularity dropped) is closely related
to finding a smallest maximal set of permutations at distance n in a PC(n, n−1). Some preliminary
experiments on known codes suggest that it is sometimes possible to have one permutation at
distance exactly n− 1 to all others. As one example, the current lower bound on M(54, 53) is 408
(see [3]), yet there is an idempotent code of size 407.

Finally, we remark that using designs to join permutation codes may be a fruitful approach not only
for smaller Hamming distances, but also perhaps for other measures of discrepancy, such as the Lee
metric.
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