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SHIFT-INEQUIVALENT DECIMATIONS OF THE

SIDELNIKOV-LEMPEL-COHN-EASTMAN SEQUENCES

ŞABAN ALACA AND GOLDWYN MILLAR

Abstract. We consider the problem of finding maximal sets of shift-inequivalent
decimations of Sidelnikov-Lempel-Cohn-Eastman (SLCE) sequences (as well as
the equivalent problem of determining the multiplier groups of the almost dif-
ference sets associated with these sequences). This is an open problem that was
originally posed in [10] and that was mentioned more recently as being open in
[1].
We derive a numerical necessary condition for a residue to be a multiplier of
an SLCE almost difference set. Using our necessary condition, we show that
if p is an odd prime and S is an SLCE almost difference set over Fp, then the
multiplier group of S is trivial. Consequently, for each odd prime p, we obtain
a family of φ(p − 1) shift-inequivalent balanced periodic sequences (where φ is
the Euler-Totient function) each having period p − 1 and nearly perfect auto-
correlation.
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1. Introduction

Let a = a0a1a2 . . . be a sequence of elements from the ring Z/MZ, where M
is some positive integer. Then a is periodic if there is an integer v > 0 such
that ai = av+i for all integers i ≥ 0. If v is the smallest such integer, then we
say that a has period v; indeed, for the rest of this section, assume a is in fact
periodic of period v. We shall discuss families of periodic sequences with certain
special properties that have a variety of applications (for instance, in stream-
cipher cryptography and code division multiple access (CDMA) communications
systems).

Let b = b0b1b2 . . . be another sequence of elements from the ring Z/MZ. Assume
that b is also periodic of period v. The (periodic) correlation Ca,b of a and b is
defined as follows: for each nonnegative integer τ,

Ca,b(τ) :=
v−1∑

t=0

exp

(
2πi(at − bt+τ )

M

)
,
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where the terms of a and b appearing in the exponents are interpreted as integers.
The function Ca,a is called the autocorrelation of a, and the values Ca,a(τ) for

1 ≤ τ ≤ v− 1 are called the out-of-phase autocorrelation values of a. We say that
a has low out-of-phase autocorrelation if its out-of-phase autocorrelation values
are small compared to v. Low out-of-phase autocorrelation is one of the criteria
for a periodic sequence to be suitable for use as a key sequence in a stream-cipher
cryptosystem (see the discussion of Golomb’s postulate R3 in [16, Section 5.1]
and [37]). Indeed, for a sequence to be useful for this purpose, its out-of-phase
autocorrelation values should be close to zero.

If there exists an integer ℓ such that for each positive integer i, ai = bi+ℓ, then
we say that a and b are shift-equivalent and that a and b are shifts of one another;
in this case, Ca,b can be obtained from Ca,a by simple formulae. If τ ≥ ℓ, then
Ca,b(τ) = Ca,a(τ − ℓ); if τ < ℓ, then Ca,b(τ) = Ca,a(τ + v− ℓ). If a and b are shift
inequivalent, then we say that Ca,b is the cross-correlation of a and b. Furthermore,
we consider a family F of shift-inequivalent sequences to have low cross-correlation
if for any pair of sequences c,d in F and for any τ, Cc,d(τ) is small compared to
v. More precisely, following [16], we stipulate that F has low cross-correlation if
for any pair of sequences c,d from F , Cc,d outputs only values less than or equal
to δ

√
v + ǫ, for some small integers δ and ǫ.

For CDMA applications, one would like to have families of shift-inequivalent
sequences with low cross-correlation such that each member of each family has
low out-of-phase autocorrelation (see, for instance, [16] or [20]). Furthermore,
one would like such families to be as large as possible (i.e. to include as many
sequences as possible). One may also desire that sequences in these families have
certain additional properties (such as cryptographic strength).

One indicator of cryptographic strength (besides low out-of-phase autocorrela-
tion) is the balance property. We say that the sequence a is balanced if in a given
period of a (i.e. in a given list of v consecutive elements of a) each element of
Z/MZ appears either ⌊v/M⌋ or ⌈v/M⌉ times.

There are several known families of shift-inequivalent sequences with good pe-
riodic correlation properties. We begin by briefly discussing the families most
relevant to our work in this paper.

Let p be a prime, let d be a positive integer, and let q = pd. Let α be a primitive
element of Fq, let A ∈ Fq, and let Tr denote the field trace from Fq to Fp given

by the rule that for β ∈ Fq. Tr(β) = β + βp + · · · + βp
d−1

. Let m = m0m1m2 . . .
be the sequence defined by the rule that mn = Tr(Aα−n). Then m is called an
m-sequence of degree d over Fp.

The basic properties of m-sequences were discovered in the 1950s by Golomb
[15] and Zierler [40]. In the case that p = 2, an m-sequence is (essentially) a
combinatorial object called a Singer difference set. These objects were originally
discovered and studied by Singer in the 1930s [34].
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It is known that the m-sequence m is a balanced sequence with period q−1. The
m-sequences also have near ideal autocorrelation: if τ 6= 0, then Cm,m(τ) = −1.
Furthermore, these sequences have another desirable cryptographic property called
the run property (see [16, Chapter 5] or [20, Chapter 10] for proofs of all of these
claims). However, the m-sequences do have low linear-complexity, which is a type
of cryptographic weakness (see [16, Section 5.1]).

It is possible to use m-sequences to build families of shift-inequivalent, balanced,
periodic sequences with good correlation properties. Let t ≥ 1 be an integer. Then
the t-fold decimation of a is the sequence whose ith entry is ati. Following [20], we
denote the t-fold decimation of a by a[t]. For a proof of the following result, see
[20, Proposition 10.2.1].

Lemma 1.1. Let p be a prime, let d be a positive integer, and let q = pd. Let m
be an m-sequence of degree d over Fp.
1) Every m-sequence of degree d over Fp is a shift of a decimation of m.
2) The decimation m[t] is again an m-sequence if and only if t is relatively prime
to q − 1.
3) The decimation m[t] is a shift of m if and only if t is a power of p.
4) There are φ(q − 1)/d shift inequivalent m-sequences of degree d over Fp.

Thus, the set of decimations {m[t]}, where t ranges over a set of integers con-
gruent to representatives of the distinct cosets of 〈p〉 in Z/(q − 1)Z∗, is a family
of φ(q − 1)/d shift inequivalent m-sequences. It is still an open problem to deter-
mine the precise cross-correlation values of the pairs of sequences in this family.
However, cross-correlation values are known in certain special cases. If t = 1 + pi

for some i, then we say that m[t] is a quadratic decimation, and the precise values
taken on by the function Cm,m[t] are known (see [13], [22], [29], and [32]; alter-
natively, see the discussion in [20]). Also, if t = −1, then in some cases, the
values taken on by Cm,m[t] are known (see [28]; the results from [28] are also briefly
discussed in [20]).

We define the termwise sum of the sequences a and b to be the sequence whose
ith term is ai+bi. Several authors have considered families of termwise sums of m-
sequences having the same period. One such family is the family of Gold sequences,
which is a family comprised of sequences constructed by taking termwise sums of
m-sequences with shifts of their quadratic decimations [14]. The family of Gold se-
quences of a given period is larger than the family of shift-inequivalent decimations
of an m-sequence having the same period, and it also has nice cross-correlation
properties. However, the Gold sequences have worse autocorrelation properties
than the m-sequences (and they are not always balanced). The correlation prop-
erties of the Gold sequences are summarized in [20, Table 11.1]. Interestingly, the
Gold sequences are currently used in the civilian C/A code for the US GPS system
(see [20, Section 11.2, Exercise 2]).

3



Finally, m-sequences have been used to construct another class of sequences
called Gordon-Mills-Welch (GMW) sequences. These sequences were first discov-
ered (in the binary case, i.e. the case in which p = 2) by Gordon, Mills, and Welch
[19]. The construction of the GMW sequences relies on some rather deep results
concerning the “array structure” of m-sequences. GMW sequences are discussed
in [16] and [20]. For a nice discussion of the binary version of these sequences, see
[5].

In this paper, we consider another class of sequences, which are similar to the
m-sequences in that their definition relies on both the multiplicative and additive
structures of finite fields. Let p be an odd prime, let d be a positive integer, and
let q = pd. Let α be a primitive element of Fq, and let M |q− 1. Following [17], for
0 ≤ k ≤M −1, we set Dk = {αMi+k−1|0 ≤ i < (q−1)/M}. An M-ary Sidelnikov
sequence s = s0s1s2 . . . is a sequence of period q− 1 whose first q− 1 elements are
defined as follows: for 0 ≤ j < q − 1,

sj =

{
0 if αj = −1

k if αj ∈ Dk

.

This class of sequences was originally discovered by Sidelnikov in 1969 [33] and,
in the binary case (i.e. the case in which M = 2) rediscovered independently by
Lempel, Cohn, and Eastman in 1977 [10]. Consequently, we follow the authors
of [26] in referring to the M-ary Sidelnikov sequences as Sidelnikov-Lempel-Cohn-
Eastman (SLCE) sequences in the case that M = 2.

The Sidelnikov sequences have low out-of-phase autocorrelation. Indeed, in the
case that M = 2, if 1

2
(q − 1) is odd, then every out-of-phase autocorrelation value

of s is either ±2, and if 1
2
(q − 1) is even, then every out-of-phase autocorrelation

value of s is either 0 or −4 (see [10]). It is also clear from the definition of these
sequences that they have the balance property.

If c ∈ Z/MZ, then we stipulate that ca is the sequence whose ith entry is cai
and we say that ca is a constant multiple of a. The authors of [24] use the Weil
bound (a version of which is given in Theorem 2.1 of the present paper) to prove
an upper bound on the cross-correlation of a two distinct constant multiples of a
Sidelnikov sequence.

Theorem 1.1. [24] Let q be a power of an odd prime, and let M |q − 1. Let s be
an M-ary Sidelnikov sequence over F∗

q. Let c1, c2 ∈ Z/MZ, c1, c2 6= 0. Let a := c1s,
and let b := c2s. The for each τ = 0, ..., q − 2,

|Ca,b(τ)| ≤
√
q + 3.

As the authors of [24] note, it follows from Theorem 1.1 that the set of all
nonzero constant multiples of an M-ary Sidelnikov sequence forms a set of M − 1
sequences with nearly ideal cross-correlation.
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Using the Weil bound, the authors of [23] derive an upper bound on the cross-
correlation of two shift-inequivalent decimations of constant multiples of a Sidel-
nikov sequence.

Theorem 1.2. [23] Let q be a power of an odd prime, let d, d′ ∈ Z, and letM |q−1.
Let s be an M-ary Sidelnikov sequence over F∗

q . Assume that (d, q−1) = (d′, q−1) =
1 and that p divides neither d nor d′. Let c1, c2 ∈ Z/MZ, c1, c2 6= 0. Let a := c1s[d],
and let b := c2s[d

′]. Assume that a and b are shift-inequivalent. Then for each
τ = 0, ..., q − 2,

|Ca,b(τ)| ≤ (d+ d′ − 1)
√
q + 3.

The authors of [23] explicitly computed the cross-correlations of two shift-
inequivalent decimations of constant multiples of a Sidelnikov sequence in several
particular cases. In each case they considered, they found that the actual cross-
correlation values were well below the upper bounds implied by Theorem 1.2.

Several authors have used Sidelnikov sequences to construct families of sequences
with low cross-correlation in a manner similar to the way that m-sequences are used
to construct the Gold sequences. In [8], the authors consider a family consisting
of term-wise sums of constant multiples of a Sidelnikov sequence with constant
multiplies of one of its shifts. Let s be an m-ary Sidelnikov sequence over F∗

q ,

where q = pd. For 1 ≤ c1, c2 ≤M −1 and 0 ≤ r ≤ q−1, let uc1,c2;r be the sequence
whose ith entry uc1,c2;r(i) is defined by uc1,c2;r(i) := c1si + c2si+r. Let T := ⌈ q−1

2
⌉.

Let

L := {uc1,0;0|1 ≤ c1 ≤M − 1}
∪{uc1,c2;i|1 ≤ c1, c2 ≤ M − 1, 1 ≤ i ≤ T − 1}

∪{uc1,c2;T |1 ≤ c1 < c2 ≤M − 1}
The authors of [8] use the Weil bound to obtain an upper bound on the cross-
correlation values of the sequences in L.
Theorem 1.3. [8] The family L consists of (M − 1)2(T − 1) + M(M − 1)/2
shift-inequivalent sequences. Furthermore, the magnitudes of the cross-correlation
values of any two distinct sequences in L are less than or equal to 3

√
q + 5.

The authors of [9] enlarge the family from [8] by adding in termwise sums of
constant multiples of a Sidelnikov sequence with constant multiples of its decima-
tion by −1. For 1 ≤ c1, c2 ≤ M − 1 and 0 ≤ r < q − 1, let vc1,c2;r be the sequence
whose ith entry vc1,c2;r(i) is defined by vc1,c2;r(i) := c1si + c2s−i+r. Let

K := {v0,c1;0|1 ≤ c1 ≤M − 1}
∪{vc1,c2;i|1 ≤ c1, c2 ≤M − 1, 1 ≤ i ≤ T − 1}

∪{vc1,c2;T |1 ≤ c1, c2 ≤M − 1, c1 6= c2}
Let M := K ∪ L. The authors of [9] use the Weil bound obtain an upper bound
on the cross-correlation values of the sequences in M.
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Theorem 1.4. [9] The family M consists of 2(M − 1)2(T − 1) + 2(M − 1) +
3(M − 1)(M − 2)/2 shift-inequivalent sequences. Furthermore, the magnitudes of
the cross-correlation values of any two distinct sequences from M are less than or
equal to 4

√
q + 5.

Thus, the family M is nearly twice as large as the family L. However, the
cross-correlation of M is slightly worse than the cross-correlation of L.

We conclude our preliminary discussion of the Sidelnikov sequences by noting
that the authors of [17] show that certain Sidelnikov sequences have a nice “array
structure” somewhat analogous to the “array structure” of the m-sequences which
is used in the construction of the GMW sequences. Furthermore, they make use
of this “array structure” to generate a family of sequences with good correlation
properties, and they show that this family can be combined with the family from
[8] to form an even larger family with good correlation properties. We note also
that the authors of [25] have extended the results from [17].

In this paper, we consider the problem of determining the shift-inequivalent
decimations of the SLCE sequences (i.e. the binary Sidelnikov sequences). Thus,
we attempt to obtain an analogue of Lemma 1.1 (in the binary case).

To that end, we prove a result that gives an easily checkable sufficient condition
to determine whether two decimations of an SLCE sequence are shift-inequivalent.
Using our result, we are able to show that an SLCE sequence over F∗

p is always
shift-inequivalent to each of its decimations. Consequently, we are able to produce
families of shift-inequivalent sequences with good autocorrelation properties.

Instead of studying SLCE sequences directly, it is convenient for us to instead
consider certain combinatorial objects that are closely related to periodic binary
sequences with good autocorrelation. Let v ∈ Z. If A ⊂ Z/vZ, we say that the
characteristic sequence of A is the sequence a over F2 of period v such that for
i = 0, ..., v − 1, ai = 1 if i ∈ A and ai = 0 otherwise. We also say that a is the
sequence associated with A and that A is the set of residues associated with a.

Let v, k. and λ be positive integers. A set D of k residues mod v is called a
(v, k, λ) cyclic difference set if for each nonzero residue x mod v, there exist exactly
λ ordered pairs of elements y1, y2 ∈ D for which y1 − y2 = x (see, for instance,
[7, Section VI] for an overview of the theory of difference sets). The sequence d

associated with D has two-valued autocorrelation

Cd,d(τ) =
{
v − 4(k − λ) if τ 6= 0

v if τ = 0

(see [16, Section 7.2]). As we mentioned at the bottom of p.2, the m-sequences
over F2 are associated with a class of cyclic difference sets called Singer difference
sets.

Let r be a positive integer. A set E of k residues mod v is called a (v, k, λ, r)
cyclic almost difference set if there exists a set R of r nonzero residues mod v, each
of which can be written as a difference of elements of E in exactly λ ways and if
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every other nonzero residue mod v can be written as a difference of elements of E
in exactly λ+ 1 ways (see [4] or [31] for surveys of the theory of almost difference
sets). The sequence e associated with E has three-valued autocorrelation

Ce,e(τ) =





v − 4(k − λ) if τ ∈ R

v − 4(k − λ− 1) if τ ∈ Z/vZ− {R ∪ {0}}
v if τ = 0

(see [31, Theorem 2]). As we mentioned on p.4, the SLCE sequences have three-
valued autocorrelation. Hence, these sequences are associated with a class of cyclic
almost difference sets. Indeed, let p be an odd prime, let d be a positive integer,
and let q = pd. Let s be an SLCE sequence defined over F∗

q. We will refer to the
cyclic almost difference set S corresponding to the SLCE sequence s as an SLCE
cyclic almost difference set.

We now introduce another way of thinking about sequences and cyclic difference
sets/almost difference sets. Let G be a finite cyclic group of order v. The integral
group ring Z[G] consists of all formal sums

∑
g∈G agg, where ag ∈ Z and with

addition and multiplication defined as follows:
∑

g∈G

agg +
∑

g∈G

bgg =
∑

g∈G

(ag + bg)g

and (∑

g∈G

agg
)(∑

h∈G

bhh
)
=
∑

f∈G

( ∑

gh=f

agbh

)
f.

For any subset A ⊆ G, we identify A with the group ring sum of all the elements
in A; indeed, we refer to this sum as A.

Notation 1.1. Throughout this paper, if r is some element of Z/nZ (where n is
a positive integer) then we will write r′ to denote the least positive integer in the
congruence class r.

Let t ∈ (Z/vZ)∗, let A =
∑
agg be a group ring element, and let A(t) :=

∑
agg

t′ .
We say that t is a multiplier of A if there exists α ∈ G such that A(t) = αA, and
we say that t is a strong multiplier of A if A(t) = A. Let Ac denote the complement
of A in G. Note that t is a multiplier of A if and only if t is a multiplier of Ac.
The elements of (Z/vZ)∗ which are multipliers of A form a group; we refer to this
group as the multiplier group H of A. Similarly, the elements of (Z/vZ)∗ which
are strong multipliers of A also form a group; we refer to this group as the strong
multiplier group H0 of A.

Let E be a cyclic almost difference set, and let e be the sequence associated
with E. Then E(t) is the group ring element corresponding to the decimation e[t′]
of e. Furthermore, t is a multiplier of E if and only if e[t′] is a shift of e; likewise,
t is a strong multiplier of E if and only if e[t′] = e.
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Let I be a complete set of distinct coset representatives of H. The set {e(t′) :
t ∈ I} is a maximal set of shift-inequivalent decimations of e. Thus, the problem
of determining the shift-inequivalent decimations of e is equivalent to the problem
of determining the multiplier group H.

It is clear from Lemma 1.1 that when p = 2, d ∈ N, and q = pd, the multiplier
group of a Singer difference set corresponding to an m-sequence defined over Fq is
〈2〉. Indeed, for any prime p and any power q = pd, it is possible to define Singer
difference sets over Fq, although they don’t correspond to m-sequences when p 6= 2
(see [33]). It is known that the multiplier group of a Singer difference set defined
over Fq is 〈p〉 (see [19]).

The problem of determining the multiplier groups of the SLCE cyclic almost
difference sets was considered in [10]. The authors of [10] were able to show that
〈p〉 is a subgroup of the group H0 of strong multipliers of S. Furthermore, they
explicitly computed the multiplier groups of SLCE cyclic almost difference sets in
a number of cases. They found that for most of the SLCE cyclic almost difference
sets that they considered, 〈p〉 comprised the entire multiplier group. However,
they did find a case in which 〈p〉 was actually a proper subgroup of the multiplier
group: when p = 3 and d = 2, the multiplier group H of the SLCE almost
difference set S is (Z/(32 − 1)Z)∗ = {1, 3, 5, 7} 6= {1, 3} = 〈p〉. It is mentioned
in [4] that the problem of determining the multiplier groups of the SLCE cyclic
almost difference sets is still open. In this paper, we make some progress towards
solving this problem using group characters and facts about cyclotomic fields.

Our approach is essentially a version the character method for studying differ-
ence sets (see [7]) and in particular is somewhat akin to the methods employed in
[12], [38], and [39]. However, some interesting complications arise from the fact
that the objects we are studying are almost difference sets rather than difference
sets.

Whereas the character values of the difference sets considered in [12] can be
expressed as multiples of Gauss or Jacobi sums, it turns out that the character
values of the SLCE sequences are multiples of Jacobi sums plus an extra constant
term (see Lemma 3.2 in Section 3). Thus, whereas Stickleberger’s theorem can be
brought directly to bear on problems concerning the difference sets considered in
[12], it is a little more difficult to apply Stickleberger’s theorem to problems con-
cerning the SLCE almost difference sets. We are able to surmount this difficulty
by making use of a technical lemma about the norms of certain elements in cyclo-
tomic fields (Lemma 2.3). This lemma enables us to apply Stickleberger’s theorem
to our problem and thus to prove the main theorem of this paper (Theorem 4.2).

We had several motivations for considering the problem of determining the mul-
tiplier groups of the SLCE almost difference sets.

As we have mentioned, knowing multiplier groups of SLCE almost difference
sets allows one to produce maximal families of shift-inequivalent decimations of
SLCE sequences. The relation of these families to the other Sidelnikov families
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is similar to the relation between the families of decimations of m-sequences and
the Gold sequences. The families of decimations of SLCE sequences have fewer
sequences than the other Sidelnikov families, but they do have the advantage that
each of their sequences has nearly perfect autocorrelation.

Alternatively, if one knows that a decimation s[t′] of an SLCE sequence s is
shift-inequivalent to s, then one can also use s and s[t′] to construct a family of
shift-inequivalent sequences using a construction similar to the one given in [9].

Since the SLCE sequences are balanced and have good autocorrelation proper-
ties, they are candidates for use as key sequences in stream cipher cryptosystems.
However, the existence of a non-trivial multiplier for the group ring element associ-
ated with a sequence is a cryptographic weakness. Suppose the sequence s is used
as a key sequence for a stream cipher. If s is shift-equivalent to its decimation s[t′]
and if an eavesdropper intercepts part of a cipher text message enciphered using
s, then she may be able to recover more of the cipher text by correlating the part
she has received with its decimation by t′.

Explicit determinations of multiplier groups of difference sets and related com-
binatorial objects are also of interest in theoretical combinatorics. Multiplier the-
orems (i.e. theorems guaranteeing the existence of multipliers for combinatorial
structures of certain types and having certain parameters) are useful for proving
nonexistence results about difference sets and related objects (see [7, Sections VI.2
and VI.4]), and explicit determinations of multiplier groups of known structures
can help point the way to more general theorems. Furthermore, computations of
multiplier groups can be useful for proving different types of combinatorial results.
For instance, one of the authors made use of the determination of the multiplier
groups of the Singer difference sets given in [19] to prove a structural result about
a related class of combinatorial objects called circulant weighing matrices [30].

Finally, we believe the problem under consideration in this paper is an intrin-
sically interesting design-theoretic problem. The SLCE almost difference sets are
important and useful mathematical objects. So, it is natural to try to determine
their symmetries.

2. Preliminary Results

The use of characters in the study of cyclic difference sets dates back to the work
of Marshall hall in the 1940s (see [21]). As Beth et al. mention [7, bottom of p.10],
this approach became standard after the paper of Turyn from 1965 [35]. The use of
characters in the study of multipliers dates back to the work of Yamamoto in 1963
[39]; this approach was also employed by Xiang in 1994 [38]. For an overview of
the use of characters in the theory of cyclic difference sets, see [7, Section VI.3 and
Sections VI.13-VI.16]. In this paper, we make particular use of characters defined
over multiplicative groups of finite fields. The study of characters over finite fields
was initiated by Gauss and Jacobi, who considered character sums now known as
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Gauss sums and Jacobi sums ; for a discussion of characters over finite fields, see
[27, Chapter 8].

Notation 2.1. Let n be a positive integer. Henceforth, the symbol ζn will denote
a primitive, complex nth root of unity.

Let G be a cyclic group of order v. A group character is a homomorphism
χ : G → 〈ζv〉. Such a homomorphism can be extended by linearity to a map from
Z[G] to Z[ζv], the ring of integers of the cyclotomic field Q(ζv) of order v.

The order of the character χ is equal to the largest order of the complex roots
of unity χ(g) (as g ranges over G). It is known that for each n|v, there exist
exactly φ(n) characters defined on G having order n. In fact, the characters of a

group G of order v themselves form a group of order v, which we shall denote Ĝ,

under the operation of pointwise multiplication (so, for ψ, χ ∈ Ĝ and for g ∈ G,
ψ · χ(g) = ψ(g)χ(g)).

We will make use of the following result, commonly known as the inversion
formula, relating character values to group ring elements (see [7, Lemma VI.3.5]).

Lemma 2.1. Let G be a cyclic group of order v, and let

A =
∑

h∈G

ahh

be an element in Z[G]. Then the coefficients of A can be recovered from the char-
acter values of A as follows. For h ∈ G,

ah =
1

|G|
∑

χ∈Ĝ

χ(A)χ(h−1).

Consequently, if for A,B ∈ Z[G] χ(A) = χ(B) for every χ ∈ Ĝ, then A = B.

We adopt the following convention. For an integer i ∈ {0, . . . , p − 1}, we refer
to the corresponding element of Fp by italicizing i .

We note that if χ is a nontrivial character on F∗
q, it is common to extend χ to

a map on Fq by setting χ(0 ) = 0. However, it is sometimes useful to define χ(0 )
to be equal to something else. In this paper, we consider both characters χ on Fq
for which χ(0 ) = 0 and characters χ on Fq for which χ(0 ) = 1.

It is possible to define a logarithm over Fq. Let q be an odd prime power, and
let α be a primitive element of Fq. For x ∈ Fq, we stipulate that

logα(x) =

{
i if x = αi, 0 ≤ i ≤ q − 2

0 if x = 0 .

As Gong and Yu note ([17] and [18]) the M-ary Sidelnikov sequence s defined over
Fq using α is completely determined by the congruences

(2.1) si ≡ logα(α
i + 1) (mod M), 0 ≤ i ≤ q − 2.

10



Still following Gong and Yu, we define a multiplicative character ψM of order M
on Fq by the rule that for x ∈ Fq,

(2.2) ψM(x) = exp

(
2πlogα(x)i

M

)
.

Note that ψM (0 ) = 1.
Gong and Yu remark that (2.1) and (2.2) imply the following identity, which we

will use later in this paper.

(2.3) exp

(
2πsji

M

)
= ψM (αj + 1), 0 ≤ j ≤ q − 2.

We need to make use of a well-known character sum bound called the Weil
bound. There are several different versions of this result in the literature. The
version we use is essentially the version stated as Corollary 2.3 in [36]. However,
we also make use of the refinement introduced by Gong and Yu [18] to adapt the
bound to character sums for which the characters ψ involved satisfy the condition
ψ(0) = 1. In [18], Gong and Yu apply their refinement to a slightly different version
of the Weil bound than the one stated as Corollary 2.3 in [36]. However, their logic
applies equally well to the result from [36].

Theorem 2.1. (Weil Bound) Let f1(x), ..., fn(x) be monic, pairwise prime polyno-
mials in Fq[x] whose largest square-free divisors have degrees d1, ..., dn, respectively.
Let ψ1, ..., ψn be non-trivial characters on Fq. Suppose that for each i = 1, ..., n,
ψi(0 ) = 1. Assume that for some 1 ≤ i ≤ n, the polynomial fi(x) is not of the
form g(x)ord(ψi) in Fq[x], where ord(ψi) is the smallest positive integer d such that
ψdi = 1. For each i = 1, ..., n, let ei be the number of distinct roots of fi(x) in Fq.
Then for any ai ∈ Fq, i = 1, ..., n,

|
∑

x∈Fq

ψ1(a1f1(x)) · · · ψn(anfn(x))| ≤
(

n∑

i=1

di − 1

)
√
q +

n∑

i=1

ei.

In this paper, we consider the following type of character sum (which is, in fact,
a type of Jacobi sum).

Notation 2.2. Let k|q − 1, and let χ be a character of order k on Fq for which
χ(0 ) = 0. Then we set

K(χ) = χ(4 )
∑

x∈Fq

χ(x)χ(1− x).

We note the following result for later reference (see [6], Theorem 2.1.8).

Lemma 2.2. Let χ be a character on Fq of order k > 1 for which χ(0 ) = 0. Then

K(χ) ≡ −q (mod 2(1− ζk)).
11



For each j ∈ (Z/vZ)∗, let σj denote the automorphism of Q(ζv) that maps ζv to
ζj

′

v . Recall that Gal(Q(ζv)/Q) = {σj |j ∈ (Z/vZ)∗} (see, for example, [11, Theorem
26, p. 596]).

We will need the folllowing technical lemma concerning cyclotomic fields (see
[6], Theorem 2.1.9).

Lemma 2.3. Let k > 1. Then the norm of 1− ζk in Q(ζk) is given as follows:

N(1− ζk) =

{
ℓ if k is a power of a prime ℓ

1 otherwise.

Let m and v be positive integers greater than 1, and let m|v. It follows from
the Fundamental Theorem of Galois Theory (specifically, [11, Theorem 14.14, (3)])
that the extension Q(ζv) ⊃ Q(ζm) is Galois (say, with Galois group H). Further-
more, by [11, Theorem 14.14, (4)], Gal(Q(ζv)/Q)/H ∼= Gal(Q(ζm)/Q). So, if Nv

denotes the norm in Q(ζv) and Nm denotes the norm in Q(ζm), then

Nv(1− ζm) =
∏

σ∈Gal(Q(ζv)/Q)

σ(1− ζm) =
∏

σ∈Gal(Q(ζm)/Q)

σ(1− ζm)
φ(v)/φ(m)

= Nm(1− ζm)
φ(v)/φ(m).

Thus, we obtain the following corollary of Lemma 2.3.

Corollary 2.1. Let v and m be positive integers greater than 1, and let m|v. Then
the norm of 1− ζm in Q(ζv) is given as follows:

N(1 − ζm) =

{
ℓφ(v)/φ(m) if m is a power of a prime ℓ

1 otherwise.

Recall that the rings of integers of cyclotomic fields (and, indeed, the rings of
integers of any algebraic number fields) are Dedekind domains (see, for instance,
[3, Theorem 8.1.1]). Hence, every ideal in Z[ζv] factors uniquely as a product of
prime ideals.

Notation 2.3. For the rest of this section, let k be a positive integer that is not
divisible by p such that d is the order of p (mod k). Let q = pd. Furthermore, let
P be a prime ideal lying over (p) in Z[ζk].

Notation 2.4. Let T be a set of distinct coset representatives of 〈p〉 in (Z/kZ)∗.

For a proof of the next result, see [27, Theorem 13.2.2].

Theorem 2.2.

(p) =
∏

j∈T

σj(P ).

Additionally, Z[ζk]/P ∼= Fq, and the multiplicative subgroup {ζ ik + P |0 ≤ i < k} is
comprised of all k of the kth roots of unity in Z[ζk]/P.

12



Let χP : (Z[ζk]/P )
∗ → C be the function defined by the rule that for α + P ∈

Z[ζk]/P, χ(α + P ) = ζ ik, where ζ
i
k is the unique power of ζk congruent to α(q−1)/k

(mod P ) (see [27, Proposition 14.2.1 on p. 204]; see also [6, (11.2.1) on p. 344]).
Set χP (0 + P ) = 0. Then χP is called a Techimuller character. Any character of
order k on Fq can be viewed as a Techimuller character (so long as it maps 0 + P
to 0) by identifying a generator α+P of (Z[ζk]/P )

∗ with a generator γ of F∗
q such

that χP (α + P ) = χ(γ).
The next theorem, which gives the prime ideal factorization of (K(χ)) in Z[ζk],

is a consequence of Stickleberger’s Theorem on Gauss sums (indeed, this result
follows by setting m = n = 1 in Corollary 11.2.4 from [6] and using Theorem
11.2.9 from [6] to rewrite the term appearing in the exponent).

Theorem 2.3.

(K(χP )) =
∏

j∈T

σj−1(P )d−
∑d−1

i=0
{⌊ 2j′pi

k
⌋−2⌊ j′pi

k
⌋}.

As Berndt et al. note [6, p. 349, comment in the proof of Theorem 11.2.9],

the term {⌊2j′pi

k
⌋ − 2⌊ j′pi

k
⌋} appearing in Theorem 2.3 equals 1 or 0 according to

whether the remainder upon dividing j′pi by k is greater than k/2 or not.

3. Character Values

We begin this section by fixing some notation that we will use for the rest of
the paper.

Notation 3.1. Let Y := {y ∈ F∗
q | y = x(1 − x) for some x ∈ F∗

q}, and let
Z := Y c.

Our work in this paper relies on the following lemma of Lempel, Cohn, and
Eastman [10].

Lemma 3.1. Let q be an odd prime power, and let S be an SLCE almost difference
set over F∗

q. Z is a shift of S: in fact, Z = −4−1S, so that S = −4Z and
Sc = −4Y.

A version of the following lemma appeared in our recent paper [2]. For conve-
nience (and since we are stating the result in slightly different language) we provide
a proof.

Lemma 3.2. Let q be an odd prime power, and let S be an SLCE almost difference
set over F∗

q. Let χ be a character on Fq. Then

χ(Sc) =
1

2
χ(−1 )(K(χ) + 1).

Proof. The reasoning in the next two sentences is taken from [6, Theorem 2.14],
where it serves a different purpose. Let γ ∈ F∗

q be fixed. An element x ∈ F∗
q satisfies

13



the equation x(1−x) = γ if and only if it satisfies the equation (2x−1 )2 = 1−4γ.
Hence, the number of solutions of the equation x(1 −x) = γ in F ∗

q is 1+ρ(1−4γ),
where ρ denotes the (unique) quadratic character on Fq (with ρ(0 ) set equal to 0).
It follows that every element of F∗

q is represented either twice or zero times in the

form x(1 − x), save for 4−1, which is represented once.
Making use of Lemma 3.1, we see that

χ(−1 )K(χ) = χ(−4 )
∑

x∈F∗

q

χ(x)χ(1 − x)

= χ(−4 )
∑

x∈F∗

q

χ(x(1 − x)) = χ(−4 )χ
(∑

x∈F∗

q

x(1 − x)
)

= χ(−4 )χ(2Y − 4−1) = χ(2Sc − (−1 )) = 2χ(Sc)− χ(−1 ).

So, we deduce that

χ(Sc) =
1

2
χ(−1 )(K(χ) + 1). �

Note that it follows from Lemma 2.2 that the expression we have given in Lemma
3.2 for χ(Sc) is indeed an algebraic integer.

4. Multiplier Theorems

We begin by showing how the results of Section 3 can be used to recover a
theorem of Lempel, Cohn, and Eastman [10].

Theorem 4.1. [10] Let q be a power of an odd prime p, and let S be an SLCE
almost difference set over F∗

q . Then 〈p〉 is a subgroup of the strong multiplier group
of S.

Proof (new). Let χ be a character on F∗
q, and let i be a positive integer. Then,

by Lemma 3.2 and the Child’s Binomial Theorem,

χ((Sc)(p
i)) = σpi(χ(S

c)) =
1

2
σpi(χ(−1 )(K(χ) + 1))

=
1

2
χ(−1 )p

i

(
∑

x∈F∗

q

χ(xp
i

)χ((1 − x)p
i

) + 1) =
1

2
χ(−1 )(

∑

x∈F∗

q

χ(xp
i

)χ(1 − xp
i

) + 1)

=
1

2
χ(−1 )(K(χ) + 1) = χ(Sc).

It follows by Lemma 2.1 that (Sc)(p
i) = Sc. Consequently, S(pi) = S. �

As a result of Theorem 4.1, the problem of determining the multiplier group of
S reduces to determining which elements of T are multipliers of S. To that end,
we now establish a necessary condition for an element t ∈ T to be a multiplier of
S.

14



Theorem 4.2. Let p be an odd prime, let d be a positive integer, and let q = pd.
Let S be an SLCE almost difference set over Fq. Let T be a set of distinct coset
representatives of 〈p〉 in (Z/(q − 1)Z)∗, and let t ∈ T be a multiplier of S. Then

the sets S0 = {j ∈ T : d −∑d−1
i=0 {⌊

2(j−1)′pi

q−1
⌋ − 2⌊ (j−1)′pi

q−1
⌋} > 0} and tS0 are either

identical or disjoint.

Proof. Notice that t is also a multiplier of D = 2(−1 )Sc (where 2 ∈ Z and
−1 ∈ F∗

q−1). So, there exists g ∈ F∗
q such that D(t) = gD. Let P be a prime ideal

lying over p in Z[ζq−1]. Recall that the Techimuller character χP can be treated as
a character on F∗

q . By Lemma 3.2, we have that

χP (D
(t)) = χP (g)χP (D) = ζχP (D) = ζ(K(χP ) + 1),

where ζ is some (not necessarily primitive) (q − 1)th root of unity. But, we also
have that

χP (D
(t)) = σt(χP (D)) = σt(K(χP ) + 1) = σt(K(χP )) + 1.

Consequently,

σt(K(χP ))− ζK(χP ) = ζ − 1.(4.1)

Now, assume there is a prime ideal Q lying over p that contains both K(χP ) and
σt(K(χP )). Then, by (4.1), ζ−1 ∈ Q. Note that ζ is a primitive mth root of unity
for some m dividing q − 1.

By Corollary 2.1, if m is a product of more than one prime, then N(1− ζ) = 1,
and it follows that ζ − 1 is a unit. However, since ζ − 1 ∈ Q, this implies that
Q = Z[ζq−1], which is a contradiction. On the other hand, if m = ℓs, for some
prime ℓ and some positive integer s, then by Corollary 2.1, N(1−ζ) = ℓφ(q−1)/φ(m),
and so ℓφ(q−1)/φ(m) ∈ Q. But, since ℓ|m|(q−1), we have that gcd(p, ℓφ(q−1)/φ(m)) = 1.
So, since p ∈ Q also, the Euclidean Algorithm implies that 1 ∈ Q. Once again, we
get the contradiction that Q = Z[ζq−1].

The remaining possibility is that m = 1, i.e. that ζ = 1. In this case, (4.1)
implies that σt(K(χP )) = K(χP ). So, if any prime ideal lying over K(χP ) also lies
over σt(K(χP )), then every prime ideal lying over K(χP ) also lies over σt(K(χP )).
Consequently, by Theorem 2.3, S0 and tS0 are either identical or disjoint. �

As an application of Theorem 4.2, we shall prove that in the case d = 1, the
multiplier group of S is trivial. But first, we identify a few special cases that
cannot be dealt with using Theorem 4.2.

It is known that −1 is never a multiplier of a nontrivial cyclic difference set [5].
Interestingly, in the case that p = 3 and d = 2, −1 actually is a multiplier of S.
Naturally, it is of interest to determine when S has −1 as a multiplier. However,
at least in the case d = 1, it is easy to see that our condition never rules out −1
as a multiplier of S.
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Let d = 1. In this case, the set S0 has a particularly simple description: namely,

S0 = {j ∈ (Z/(p− 1)Z)∗ : (j−1)′ < (p− 1)/2}.

Hence, it is clear that j ∈ S0 if and only if (j−1)′ < (p − 1)/2 if and only if
(−j−1)′ > (p − 1)/2 if and only if −j /∈ S0. So, in this case, S0 and −S0 are
disjoint and so our condition does not rule out −1 as a multiplier.

Fortunately, we do have another tool at our disposal to help determine whether
−1 is a multiplier of S. For, if −1 is a multiplier of S, then for some τ = 0, ..., q−2,
Cs,s[−1](τ) = q − 1. However, by Theorem 1.4, Cs,s[−1](τ) ≤ 4

√
q + 5. So, we must

have that q − 1 ≤ 4
√
q + 5, i.e. that q − 4

√
q ≤ 6. But, for x > 4, x− 4

√
x is an

increasing function, and for q = 33, q − 4
√
q > 6. So, if q ≥ 27, then −1 is not a

multiplier of S. It can be checked directly that for q < 27, −1 is a multiplier of S if
and only if q equals 3 or 9. Thus, the following proposition is a direct consequence
of the cross-correlation bound from [9].

Proposition 4.1. Let q be an odd prime power, and let S be an SLCE almost
difference set defined over F∗

q. Then −1 is a multiplier of S if and only if q equals
3 or 9.

There are two other cases we cannot handle using Theorem 4.2. Let d = 1, and
let p be a prime congruent to 1 (mod 4). Then Theorem 4.2 does not rule out
(p− 1)/2± 1 as multipliers of S.

Note that ((p − 1)/2 − 1)−1 = ((p − 1)/2 − 1). Now, j ∈ S0 if and only if
(j−1)′ < (p− 1)/2 if and only if (p− 1)/2− (j−1)′ < (p− 1)/2 if and only if (since
each element of (Z/(p− 1)Z)∗ is odd) (((p− 1)/2− 1)j−1)′ < (p− 1)/2 if and only
if ((p− 1)/2− 1)j ∈ S0. So, S0 = ((p− 1)/2− 1)S0. Similarly, one can argue that
S0 and ((p− 1)/2 + 1)S0 are disjoint. It follows that we cannot use Theorem 4.2
to show that (p− 1)/2± 1 are not multipliers of S.

So, in order to show that (q − 1)/2 ± 1 are (almost) never multipliers of S,
we prove a (weak) bound on the cross-correlations of s with s[(q − 1)/2 ± 1] and
make an argument similar to the one we made to show that −1 is (almost) never
a multiplier of S.

Lemma 4.1. Let q be a prime power such that q ≡ 1 (mod 4), let α be a primitive
element of F∗

q , and let s be the SLCE sequence defined over F∗
q using α. Then

the cross-correlation values of s with s[(q − 1)/2 ± 1] are less than or equal to
max{3√q + 6, 1

2
(q + 3

√
q + 7)}.

Proof. In what follows, let ρ be the quadratic character on Fq, but let us stipulate
that ρ(0 ) = 1. Let τ = 0, ..., q − 2. Then, by (2.3),

|Cs,s[(q−1)/2−1](τ)| = |
q−2∑

j=0

exp

(
2πi(sj − s((q−1)/2−1)j+τ )

2

)
|
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= |
q−2∑

j=0

ρ(αj + 1)ρ(α((q−1)/2−1)j+τ + 1)|

= |
q−2∑

j=0
j even

ρ(αj + 1)ρ(ατ)ρ(α−j + α−τ ) +

q−2∑

j=0
j odd

ρ(αj + 1)ρ(ατ )ρ(−α−j + α−τ )|

= |
q−2∑

j=0

(
1 + ρ(αj)

2

)
ρ(αj + 1)ρ(α−τ)ρ(α−j)ρ(α−ταj + 1)

+

q−2∑

j=0

(
1− ρ(αj)

2

)
ρ(αj + 1)ρ(α−τ )ρ(α−j)ρ(α−ταj − 1)|

≤ 1

2
(|
∑

x∈Fq

ρ(x+ 1)ρ(x)ρ(x+ ατ )|+ |
∑

x∈Fq

ρ(x+ 1)ρ(x+ ατ )|

|
∑

x∈Fq

ρ(x+ 1)ρ(x)ρ(x− ατ )|+ |
∑

x∈Fq

ρ(x+ 1)ρ(x− ατ )|) + 1.

For τ 6= 0 or (q− 1)/2, the Weil bound (Theorem 2.1) implies that the magnitude
of the first sum is less than or equal to 2

√
q+3, the magnitude of the second sum

is less than or equal to
√
q+2, the magnitude of the third sum is less than or equal

to 2
√
q + 3, and the magnitude of the fourth sum is less than or equal to

√
q + 2.

So, if τ 6= 0 or (q − 1)/2, then |Cs,s[(q−1)/2−1](τ)| ≤ 3
√
q + 6.

If τ = 0, then the magnitude of the first sum is 0, the magnitude of the second
sum is q, and by the Weil bound, the magnitude of the third sum is less than or
equal to 2

√
q + 3 and the magnitude of the fourth sum is less than or equal to√

q+2. So, |Cs,s[(q−1)/2−1](0)| ≤ 1
2
(q+3

√
q+7). Likewise, |Cs,s[(q−1)/2−1]((q−1)/2)| ≤

1
2
(q + 3

√
q + 7).

By similar arguments, one can show that for τ 6= 0 or (q−1)/2, |Cs,s[(q−1)/2+1](τ)| ≤
3
√
q + 6. Furthermore, one can also show that |Cs,s[(q−1)/2+1](0)| ≤ 1

2
(q + 3

√
q + 7)

and |Cs,s[(q−1)/2+1]((q − 1)/2)| ≤ 1
2
(q + 3

√
q + 7). �

If (one of) (q − 1) ± 1 is a multiplier of S, then for some τ = 0, ..., q − 2,
Cs,s[(q−1)±1](τ) = q − 1. However, by Lemma 4.1, Cs,s[(q−1)±1](τ) ≤ max{3√q +
6, 1

2
(q + 3

√
q + 7)}.

Now, q−1 ≤ 3
√
q+6 if and only if q−3

√
q ≤ 7. Similarly, q−1 ≤ 1

2
(q+3

√
q+7)

if and only if q − 3
√
q ≤ 9. But, for x ≥ 4, x − 3

√
x is an increasing function,

and for q = 52, q − 3
√
q = 10 > 7, 9. Thus, if q ≥ 25, then (q − 1)/2 ± 1 are

not multipliers of S. It can be checked directly that for q < 25, (q − 1)/2 ± 1 are
multipliers of S if and only if q equals 9. Thus, the following proposition is a direct
consequence of Lemma 4.1.
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Proposition 4.2. Let q be a prime power such that q ≡ 1 (mod 4), and let S be
an SLCE almost difference set defined over F∗

q. Then (q− 1)/2± 1 are multipliers
of S exactly when q equals 9.

These exceptional cases having been dealt with, we now turn to the work of
using Theorem 4.2 to show that the multiplier group of an SLCE almost difference
set over a prime field is trivial.

Notation 4.1. Let S1 := {j ∈ (Z/(p− 1)Z)∗ : j′ < (p− 1)/2}.
Lemma 4.2. Let p be an odd prime, and let S be an SLCE almost difference set
over F∗

p. Let t ∈ (Z/(p − 1)Z)∗ be a multiplier of S not equal to ±1. Then there
exists a ∈ S1 such that aS1 = S1 and a 6= 1.

Proof. Since the multipliers of S form a group, t−1 is also a multiplier of S.
Hence, by Theorem 4.2, t−1S0 = S0 or t−1S0 ∩ S0 = ∅.

Assume first that t−1S0 = S0. Then for each j ∈ (Z/(p−1)Z)∗, (j−1)′ < (p−1)/2
if and only if (tj−1)′ < (p−1)/2. Hence, for each j ∈ (Z/(p−1)Z)∗, (j)′ < (p−1)/2
if and only if (tj)′ < (p − 1)/2. Therefore, S1 = tS1. Furthermore, since 1 ∈ S1,
S1 = tS1 implies t ∈ S1.

Now assume that t−1S0 ∩ S0 = ∅. It then follows from the fact that | − t−1S0| =
|S0| = |Sc0| and the definition of S0 that −t−1S0 = S0. Thus, we can apply the
above argument with “−t” in place of “t” to deduce that S1 = −tS1 (and that
−t ∈ S1). �

As it turns out, the problem of deciding which elements a ∈ (Z/(p − 1)Z)∗

(a 6= 1) satisfy the equation aS1 = S1 is very similar to a probelm which arises in
a different context. A Jacobi sum is called pure if some positive integral power of
it is real. In [1], Akiyama determines the conditions under which Jacobi sums of
the form K(χ) defined over Fp2 are pure. Like our work in this paper, Akiyama’s
work relies on Stickleberger’s Theorem: indeed, he shows that a Jacobi sum is pure
exactly when a condition holds that is almost identical to the necessary condition
for a residue to be a multiplier given in Lemma 4.2.

Proposition 4.3. [1] Let p be an odd prime, let k|p2− 1, and let χ be a character
on Fp2 of order k. Let R1 = {x ∈ (Z/kZ)∗ : x′ ∈ [1, k/2) ∩ Z}. Then K(χ) is pure
if and only if there exists a ∈ R1 such that aR1 = R1 and p ≡ −a (mod k).

As a result of the similarity between our condition and Akiyama’s condition, we
are able to apply the methods from [1] almost directly. Akiyama’s classification
of pure Jacobi sums breaks into a number of cases, as does our proof that the
multiplier group is of S is trivial when d = 1. We will explicitly give the proof of
our result in two special cases in order to show how the ideas from [1] translate to
our context.

The proof of the following corollary is a straightforward modification of the proof
of Lemma 4 in [1].
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Corollary 4.1. Let p be a prime congruent to 3 mod 4, and let S be an SLCE
almost difference set over F∗

p. Then the multiplier group of S is trivial.

Proof. Let t 6= ±1 be a multiplier of S. Then, by Lemma 4.2, there exists a ∈ S1

such that a 6= 1 and aS1 = S1. Pick an integer i such that

p− 1

2i+1
< a′(4.2)

and

a′ ≤ p− 1

2i
.(4.3)

Since a 6= 1, it follows from (4.3) that (p− 1)/2i+1 ≥ 1 and so that

2i ≤ (p− 1)/2.(4.4)

Since p ≡ 3 (mod 4), there exists a congruence class y ∈ (Z/(p − 1)Z)∗ con-
taining (p − 1)/2 − 2i. It follows from (4.4) that y ∈ S1. Since a

′ is odd, we have
that

a′
(
p− 1

2
− 2i

)
≡ p− 1

2
− 2ia′ (mod p− 1).

By (4.2) and (4.3),

p− 1

2
< 2ia′ ≤ p− 1.

Ergo, ay ∈ Sc1. But this contradicts the fact that aS1 = S1.
So, if t is a multiplier of S, then t = ±1. But, by Proposition 4.1, −1 is never a

multiplier of S. Hence, the multiplier group of S is trivial. �

The proof of the next result is a straightforward modification of the proof of
Lemma 5 from [1].

Corollary 4.2. Let p be a prime congruent to 1 mod 8 and greater than 142 + 1.
Let S be an SLCE almost difference set over F∗

p. Then the multiplier group of S is
trivial.

Proof. Let t 6= ±1, (p − 1)/2 ± 1 be a multiplier of S. Then, by Lemma 4.2,
there exists a ∈ S1 such that a 6= 1 and aS1 = S1. For c, d ∈ Z+, set T (c, d) =
{x ∈ (Z/(p− 1)Z)∗ : x′ ∈ [c, d)∩Z}, and for j = 1, 2, 3, 4, set Tj = T (((j − 1)(p−
1)/4, j(p− 1)/4).

Note that there is a residue y ∈ S1 containing (p − 1)/2 − a′. Furthermore,
since every integer belonging to a congruence class in S1 is odd, the condition
aS1 = S1 is equivalent to the condition yS1 = S1. Note that the hypothesis that
t 6= (p− 1)/2± 1 guarantees that y 6= ±1. Hence, we may assume a ∈ T1. Indeed,
let us begin by assuming a′ ∈ [8, (p− 1)/4) ∩ Z.
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Let i be the positive integer such that

a′ ∈
[
p− 1

2i+2
,
p− 1

2i+1

)
.(4.5)

Write p− 1 = 2em, where e ≥ 3 and m is odd. Let A, B, C, and D be elements of
(Z/(p−1)Z)∗ containing (p−1)/2e+2i, (p−1)/2e+2i+1, (p−1)/2e+(p−1)/4+2i,
and (p− 1)/2e + (p− 1)/4 + 2i+1, respectively. Note that since a′ ≤ (p− 1)/2i+1

and a′ ≥ 8, we have that 2i+4 ≤ 2i+1a′ ≤ p− 1. Hence, A,B,C,D ∈ S1.
Assume for the sake of contradiction that aA, aB, aC, and aD are all in S1.

First, note that (
p− 1

2e
+ 2i+1

)
−
(
p− 1

2e
+ 2i

)
= 2i,

and by (4.5),

2ia′ ∈
[
p− 1

4
,
p− 1

2

)
.

Hence, aB − aA ∈ T2. So, if aA ∈ T2. then aB ∈ T3 and so aB ∈ Sc1, which
contradicts our assumption. Thus, aA ∈ T1, and aB ∈ T2.

Since a′ is odd, we consider the following two cases.
1) (a′ ≡ 1 (mod 4)) In this case,

a′
(
p− 1

2e
+
p− 1

4
+ 2i+1

)
≡ p− 1

4
+ a′

(
p− 1

2e
+ 2i+1

)
(mod p− 1).

Hence, since aB ∈ T2, it follows that aD ∈ T3 and so aD ∈ Sc1, which contradicts
our assumption.
2) (a′ ≡ 3 (mod 4)) In this case,

a′
(
p− 1

2e
+
p− 1

4
+ 2i

)
≡ 3(p− 1)

4
+ a′

(
p− 1

2e
+ 2i

)
(mod p− 1).

Hence, since aA ∈ T1, it follows that aC ∈ T4 and so aC ∈ Sc1, which contradicts
our assumption. Thus, aA, aB, aC, and aD cannot all lie in S1 simultaneously;
the equation aS1 = S1 cannot be true.

It remains to consider the cases a′ = 3, 5, 7. But, note that aS1 = S1 implies
a2S1 = S1. Also, (p− 1)/4 > 72 implies that for each of these choices of a′, (a2)′ ∈
[8, (p− 1)/4) and so the above argument can be applied to obtain a contradiction.

Thus, if t is a multiplier of S, then t = ±1, (p− 1)/2 ± 1. But, by Proposition
4.1 and Proposition 4.3, −1 and (p − 1) ± 1 are not multipliers of S. Hence, the
multiplier group of S is trivial. �

For proofs of the next three corollaries, see the proofs of Lemma 6, Lemma 7,
and Lemma 8, respectively, in [1].
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Corollary 4.3. Let p be a prime satisfying p− 1 = 4m for some integer m such
that (m, 3) = 1. Let p be greater than 102+1. Let S be an SLCE almost difference
set over F∗

p. Then the multiplier group of S is trivial.

Corollary 4.4. Let p be a prime satisfying p− 1 = 4m for some integer m which
is odd and not square free. Let p be greater than 462+1. Let S be an SLCE almost
difference set over F∗

p. Then the multiplier group of S is trivial.

Corollary 4.5. Let p be a prime satisfying p− 1 = 12m for some integer m that
has a prime factor greater than 6. Further assume that (m, 6) = 1. Let p be greater
than 702+1. Let S be an SLCE almost difference set over F∗

p. Then the multiplier
group of S is trivial.

Let S be an SLCE almost difference set over F∗
p. Assume, to begin with, that

p > 702 + 1. By Corollary 4.1, the multiplier group of S is trivial unless 4|(p− 1).
So, assume p−1 = 4m, for some integer m. By Corollary 4.2, the multiplier group
of S is trivial unless m is odd. Assume m is odd. By Corollary 4.3, the multiplier
group of S is trivial unless 3|m. So, assume p − 1 = 12m′, for some integer m′.
By Corollaries 4.2 and 4.4, unless m′ is square free and relatively prime to 6, then
the multiplier group of S is trivial. Assume m′ is indeed square free and relatively
prime to 6. Then, by Corollary 4.5, the multiplier group of S is trivial unless
m′ = 5, in which case p < 702 + 1, contradicting our assumption.

Thus, when p > 702 + 1, the multiplier group of S is trivial. Using a simple
Python program, we verified that for each p < 702+1 such that p ≡ 1 (mod 4), the
multiplier group of S is trivial. For each such prime, we checked every element of
(Z/(p−1)Z)∗ not equal to ±1,±((p−1)/2−1) against Lemma 4.2 to see whether
it could be ruled out as a multiplier. It turns out that Lemma 4.2 rules out almost
every potential multiplier. Somewhat oddly, the only exceptions are t = ±11 and
t = ±19 when p = 61. These exceptional cases are, in fact, quite similar to some
exceptional cases noted in Akiyama’s paper (see [1, p. 99]). One can check directly
that ±11 and ±19 are not multipliers of S in the case that p = 61. Hence, we have
the following theorem.

Theorem 4.3. Let p be an odd prime, let S be an SLCE almost difference set over
F∗
p, and let s be the SLCE sequence corresponding to S. Then the multiplier group

of S is trivial, and F1 = {s[t′] : t ∈ (Z/(p − 1)Z)∗} is a family of φ(p − 1) shift
inequivalent decimations of s.

Our work in this paper suggests several (as of yet open) problems for future re-
search. It would be interesting to extend our results toM-ary Sidelnikov sequences
(where M is any divisor of q − 1). It would also be interesting to obtain explicit
classifications of the multiplier groups of SLCE almost difference sets when d > 1.
Finally, it would be interesting to obtain new bounds on the cross-correlation
values of a Sidelnikov sequence with one of its decimations.
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