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Do non-free LCD codes over finite commutative Frobenius rings exist?
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Abstract

In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free

LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary

and sufficient condition for the existence of LCD code over finite commutative Frobenius rings. We

later show that a free constacyclic code over finite chain ring is LCD if and only if it is reversible, and

also provide a necessary and sufficient condition for a constacyclic code to be reversible over finite

chain rings. We illustrate the minimum Lee-distance of LCD codes over some finite commutative chain

rings and demonstrate the results with examples. We also got some new optimal Z4 codes of different

lengths which are cyclic LCD codes over Z4.
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1. Introduction

Codes over finite rings is quite a popular topic of interest. A linear code C a su is called Linear

Complementary Dual (LCD) code if C meets its dual C ⊥ trivially. LCD codes were first investigated by

Massey, he showed there a characterization of LCD codes and non-LCD codes over finite fields and

demonstrated that asymptotically good LCD codes exist [20]. LCD codes have been widely applied in

data storage, communications systems, consumer electronics, and cryptography. Carlet and Guilley

shown an application of LCD codes against side-channel attacks and fault injection attacks, and pre-

sented several constructions of LCD codes [4]. Cyclic LCD codes over finite fields are also referred as

reversible codes, Yang and Massey gave a necessary and sufficient condition for a cyclic code to have

a complementary dual [26] and proved that reversible cyclic codes over finite fields are LCD codes. In

[21], Massey showed that some cyclic LCD codes over finite fields are BCH codes, and also constructed

reversible convolutional codes which are in fact LCD codes. Tzeng and Hartmann [25] proved that the

minimum distance of a class of LCD codes is greater than that given by the BCH bound. Using the

hull dimension spectra of linear codes, Sendrier showed that LCD codes meet the asymptotic Gilbert-

Varshamov bound [24]. Dougherty et. al. developed a linear programming bound on the largest size
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of an LCD code of given length and minimum distance [9]. Guneri et. al. studied quasi-cyclic comple-

mentary dual codes using their concatenated structure in [14] and [13]. Ding et al. constructed several

families of cyclic LCD codes over finite fields and analyzed their parameters [7]. In [17], Li et al. stud-

ied a class of LCD BCH codes. Jin showed that some Reed-Solomon codes are equivalent to LCD codes

[16]. In [6], the authors proved that any MDS code is equivalent to an LCD code and constructed LCD

Maximum distance Separable codes. Jitman et. al. studied Complementary dual subfield linear codes

over finite fields [2].

Recently, in [18], Liu and Liu studied LCD codes over finite chain rings and provided a necessary

and sufficient condition for a free linear code to be a LCD code over finite chain ring. They also gave

a sufficient condition for a linear code (not necessarily free) over a finite chain ring to be LCD code,

which says "A linear code C over a finite chain ring with generator matrix G is LCD code if GGT is

invertible, where G T is the transpose of G " [18, Theorem 3.5]. They provided an example [18, Example

2] to state that the converse of [18, Theorem 3.5] is not in general true. However there is a mistake in

their example. In this paper, we prove that the converse of [18, Theorem 3.5] is indeed true. This lead

to the main result (see Theorem 2) of this paper, it proves that there are no non-free LCD codes over

finite commutative local Frobenius rings by showing that any LCD code over a finite commutative

Frobenius ring is the Chinese product of LCD codes over finite commutative local Frobenius rings

(see Theorem 5). The other contributions are the characterizations of projection of LCD codes (see

Theorem 3 ) and lift LCD codes (see Theorem 4) over a finite commutative local Frobenius ring. We also

show that a free constacyclic code C over finite chain ring is LCD code if and only if C is reversible. We

also prove a necessary and sufficient condition for a constacyclic code C of length n over finite chain

rings to be reversible when n is relatively prime to the characteristic of the finite chain ring.

The paper is organized as follows: In Section 2, we provide some basic tools which are required to

understand the results of further sections. In Section 3, we discuss LCD codes over finite commutative

Frobenius rings. Finally, Section 4 studies the complementary dual constacyclic codes over finite chain

rings in more general setting by a uniform method.

2. Some notations and basic results of codes over finite commutative Frobenius rings

Throughout this section R is a commutative finite ring with multiplicative unity 1 distinct to 0. A

commutative finite ring R is Frobenius if R as R -module is injective. Alternatively, we can say a finite

ring is Frobenius if R/J(R ) is isomorphic tosoc(R ) (as R -modules), whereJ(R ) is the Jacobson radical

andsoc(R ) is the socle of the ring R . Recall that the Jacobson radical is the intersection of all maximal

ideals in the ring and the socle of the ring is the sum of the minimal R -submodules. A ring is a local

ring if it has unique maximal ideal. A principal ideal ring is a ring such that each of its ideal is generated

by a single element.

Let R be a finite ring with maximal ideals m1, · · · ,mu and s1, · · · , su their indices of stability, respec-

tively. Clearly R/m
s j

j is a finite local ring with maximal ideal m j /m
s j

j . Then we have the ring epimor-

phisms

Φ j : R → R j

a 7→ a +m j
(1)

and Ker(Φ j ) = m
s j

j (1≤ j ≤ u). The ring epimorphisms Φ j (1≤ j ≤ u) induce the following ring homo-
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morphisms

Φ : R → R1× · · ·×Ru

a 7→ (Φ1(a ), · · · ,Φu (a )) .
(2)

Since the maximal ideals m1, · · · ,mu of R are coprime and
⋂u

j=1m
s j

j = {0R }, the ring homomorphism (4)

is a ring isomorphism, by the Chinese remainder theorem, see [22, p.224]. We denote the inverse of

this map by CRT and we say that R is the Chinese product of rings {R j }
u
j=1.

Theorem 1. [22, p.224] Let R be a Frobenius ring, then

R =CRT(R1, R2, · · · , Ru ),

where R j is a local Frobenius ring.

That is R j :=R/m
s j

j is a local Frobenius ring for each j . The following is an example of a ring that is

local Frobenius ring but not a chain ring. We shall use this ring to exhibit several of the results of the

paper.

Example 2.1. [10]Let Rm =Z2[u1, u2, · · · , um ]/〈u
2
1 , u2

2 , · · · , u2
m 〉, where 〈u2

1 , u2
2 , · · · , u2

m 〉denotes the ideal

generated by u2
1 , u2

2 , · · · , u2
m , and m is a positive integer. Then

J(Rm ) = 〈u1, u2, · · · , um 〉 and Soc(Rm ) =

®
k∏

i=1

ui

¸
.

Thus Rm/J(Rm )�Soc(Rm ) (as Rm -modules), so Rm is a finite commutative local Frobenius ring. How-

ever Rm is non-chain if m > 1.

We shall use the previous decomposition of rings to understand codes defined over finite commu-

tative Frobenius rings. The zero element in R n will be denoted as 0. A linear code C of length n over

a finite ring R is an R -submodule of R n . Let C j be a code of length n over R j , and extend the map Φ

coordinatewise to R n as

Φ : R n → (R1)
n × · · ·× (Ru )

n

a 7→ (Φ1(a), · · · ,Φu (a)) ,
(3)

where

Φ j : R n → (R j )
n

(a1, a2, · · · , an ) 7→
�
Φ j (a1),Φ j (a2), · · · ,Φ j (an )

�
.

(4)

Then C = CRT(C1, C2, · · · , Cu ) = Φ
−1(C1 ×C2 × · · · ×Cu ), where Φ j (C ) = C j for 1 ≤ j ≤ u . We say that C

is the Chinese product of codes C1, C2, · · · , Cu . This allows us to reduce the study of codes over finite

commutative Frobenius rings to that of codes over finite commutative local Frobenius rings. The rank

of a linear code C over R of length n , is defined by

rankR (C ) :=min
�

i ∈N : there exists a monomorphism C ,→R i as R -modules
	

.

We say that a linear code C over R is free if C is isomorphic (as a module) to R t for some t . It is imme-

diate that if C is free then rankR (C ) = t , where C �R t . A linear [n , k ]-code over R is an R -submodule

of R n of rank k . Note that a standard generator matrix for any free linear [n , k ]-code C over R is of the

form [Ik |M]U, where M is a matrix over R , U is a permutation matrix and k =rankR (C ).

3



Lemma 1. [8, Theorem 2.4] Let C j be a linear code over R j for i = 1, 2, . . . , u , and C =CRT(C1, C2, · · · , Cu ).

Then

1. |C |=
∏u

i=1 |C j |;

2. rankR (C ) =max
¦
rankR j

(C j ) : 1≤ j ≤ u
©

;

3. C is a free code if and only if each C j is a free code with the same rank rankR (C ).

We attach the standard inner-product to R n , that is

[v , w] =

n∑

j=1

v j w j , (5)

where v := (v1, v2, · · · , vn ) and w := (w1, w2, · · · , wn ) are elements in R n . For a code C , its dual code is

defined as follows:

C ⊥ = {u ∈ R n : [u, c] = 0R , for all c in C }. (6)

It is well known that for codes over Frobenius rings, |C ||C ⊥ |= |R |n , (see [27] for a proof).

Lemma 2. [8, Theorem 2.7] If C =CRT(C1, C2, · · · , Cu ) is a code over R , then C ⊥ =CRT(C ⊥1 , C ⊥2 , · · · , C ⊥u ).

For the rest of the paper R will denote the Chinese product of finite commutative local Frobenius

rings R1, R2, . . . , Ru unless otherwise is specified. Let Mk×n (R j ) be the set of all k ×n-matrices over R j .

For A∈Mk×n (R j ), the transpose of the matrix A is denoted by AT . We also let 0 denote the zero matrix,

where the size will either be obvious from the context or specified whenever necessary. Similarly, we

denote the k×k identity matrix by Ik . The elements c1, c2, . . . , ck ∈ R n are said to be linearly independent

over R j if for all (x1, x2, · · · , xk ) in the set (R j )
k such that x1c1 + x2c2 + · · ·+ xk ck = 0 implies that x1 =

x2 = · · ·= xk = 0. If the rows of a k ×n-matrix A over R j are linearly independent, then we say that A is a

full-row-rank matrix. If there is an k ×n-matrix B over R j such that AB= Ik , then we say that A is right-

invertible and B is a right inverse of A. When k = n , we say that A is non-singular, if the determinant

det(A) is a unit of R j . Otherwise, A is said to singular. Note that a matrix A is invertible over R j , if

and only if A is nonsingular over R j . The following two results about full-row-rank matrices over finite

commutative Frobenius rings appear in [11].

Lemma 3. Let R j be a finite commutative Frobenius rings. A k×n-matrix A is full-row-rank, if and only

if A is right-invertible.

Lemma 4. Let Abe an k×k -matrix over a finite commutative Frobenius ring R . The following statements

are equivalent:

1. A is invertible.

2. A is non-singular.

3. A is full-row-rank.

The next corollary follows from a typical linear algebra argument.

Corollary 1. The k×n-matrixAover R j is singular, if and only if there is a nonzero vector X := (x1, · · · , xk )
T

in R k such that AX = 0.
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3. Characterization of LCD codes over finite commutative Frobenius rings

In [18, Theorem 3.5], it is proved that any linear code C j over R j with a generator matrix G j is LCD

if, G j GT
j is invertible, and other hand it is also stated that the converse of [18, Theorem 3.5] is not true

in general with an example [18, Example 2]. However there is a mistake in that example (as (2, 0, 0, 2, 0)

is in C ∩ C ⊥). From [18, Corollary 3.6.], if C j is free then the converse of [18, Theorem 3.5] is true.

Therefore, it is enough to prove that any LCD code over a finite commutative local Frobenius ring R j

is free.

Definition 3.1. An R j -module C j of rank k is projective if there is an R j -module M such that (R j )
k and

C j ⊕M are isomorphic (as R j -modules).

Remark 1. Let A j and B j be R j -modules. If A j ⊕B j is free, then A j and B j are projective.

Lemma 5. [15, Theorem 2.] Any projective module over a local ring is free.

In the following result, we prove that there does not exist non-free LCD code over finite commuta-

tive local Frobenius rings.

Theorem 2. Over finite commutative local Frobenius rings, any LCD code is free.

Proof. Let C j be an LCD code over a commutative local Frobenius ring R j and n is the length of C j .

Then C j ⊕ C ⊥j is a direct summand in (R j )
n . Since R is Frobenius, by the results in [27], C satisfies

|C j | × |C
⊥
j | = |R j |

n . Thereby C j ⊕ C ⊥j = (R j )
n . So the R -module C j ⊕ C ⊥j is free, and by Remark 1, it

follows that C j is projective. Now C j is a finitely generated projective R j -module and R j is a local ring

and by Lemma 5, C j is free.

It follows from Theorem 2 and [18, Corollary 3.6] that there does not exist non-free LCD codes over

finite commutative local Frobenius rings. We now show that the converse of Theorem 2 does not hold

in general. To show this we cite the following example.

Example 3.1. Let C be a linear code over Z4 with generator matrix

G=





1 0 0 0 2 0 0

0 1 0 0 0 1 1

0 0 1 0 0 1 1

0 0 0 1 1 0 0



 .

Clearly C is free. But C is not LCD, as (0, 0, 0, 2, 2, 0, 0)∈C ∩C ⊥.

Proposition 1. A linear code C j over R j with generator matrix G j . If G j GT
j is nonsingular, then C j is

free.

Proof. Suppose that C j is not free. Then G j is not full-row-rank. From Lemma 3, it follows that G j is

not right-invertible. Hence G j GT
j is singular.

Corollary 2. A linear code C j over R j with generator matrix G j is LCD, if and only if G j GT
j is nonsingular.

Proof. Suppose that C j is LCD with rank k , and c ∈C j . From Theorem 2, C j is free and c can be written

as c= vG for some v in (R j )
k . If G j GT

j is singular, by Corollary 1 there is a nonzero vector u in (R j )
k such

that uG j GT
j = 0. Now uG is a nonzero vector in C j . So that

(uG)cT = (uG)(vG)T = uG j GT
j vT = 0vT = 0

5



and hence uG is also a vector in C ⊥j . It follows that C j ∩C ⊥j , {0}, i.e., that C is not LCD. Absurd, therefore

G j GT
j is nonsingular.

Suppose that G j GT
j is nonsingular. Let c ∈ C j ∩C ⊥j , by Proposition 1, C j is free. On the one hand,

c ∈C j implies that there is u ∈ (R j )
k such that c= uG j . It follows that

cGT
j (G j GT

j )
−1G j = uG j GT

j (G j GT
j )
−1G j = uG j = c, (7)

and the other hand, c ∈C ⊥j , it follows that cGT
j = 0. So

cGT
j (G j GT

j )
−1G j = 0(G j GT

j )
−1G j = 0. (8)

From (7) and (8), it follows that c= 0. Whence C j is LCD.

Example 3.2. The linear code C of length 8 generated by G =





1 0 0 0 0 1 2 1

0 1 0 0 1 2 3 1

0 0 1 0 0 0 3 2

0 0 0 1 2 3 1 1



 over Z4 is

LCD code whose minimum Lee distance is 4 and has free rank 4 ([8, 44, 4]-code). The Gay image of C is a

non-linear binary code of length 16 and minim Hamming distance 4.

A linear [n , k ]-code C ′ over R j is a lift of a linear [n , k ]-code C over S by ring epimorphism f j : S →

R j , if C ′ = f j (C ), where

f j (C ) :=
�
( f j (c1), f j (c2), · · · , f j (cn )) : (c1, c2, · · · , cn ) ∈C

	
.

We call C ′ the projection of C by f j .

Lemma 6. Let S and R j be finite commutative local Frobenius rings with S× and (R j )
× the unit group

of S and R , respectively. Then f j (S
×) = (R j )

×, for any ring epimorphism f j : S→ R j .

The following result is a generalization of [18, Theorem 3.9] to any finite commutative local Frobe-

nius ring S and any ring epimorphism f j : S → R j .

Theorem 3. Let S and R j be finite commutative local Frobenius rings. The projection of any LCD [n , k ]-

code over S by ring epimorphism f j : S→ R j , is also an LCD [n , k ]-code over R j .

Proof. Let C be an LCD [n , k ]-code over S with a generator matrix G. From Theorem 2, C is free. There-

fore the projection f j (C ) of C by f j is a free [n , k ]-code over R j with a generator matrix f j (G). Now

f j

�
det(GGT )
�
=det
�
f j (G) f j (G

T )
�

.

From Lemma 6 and Theorem 2, it follows that ,det
�
f j (G) f j (G

T )
�

is a unit in R j . Whence f j (C ) is a LCD

[n , k ]-code over R j .

The result revisits and extends [18, Theorem 3.10] to any finite commutative local Frobenius ring

S and any ring epimorphism f j : S → R j .

Theorem 4. Let S and R j be finite commutative local Frobenius rings. Any lift of an LCD [n , k ]-code

over R j by ring epimorphism f j : S → R j , is also an LCD [n , k ]-code over S .

6



Proof. Let C ′ be an LCD [n , k ]-code over R j with a generator matrix G j . Since f j : S → R j is a ring-

epimorphism, there is a full-row-rank matrix G over S such that G j = f j (G). Consider the free [n , k ]-

code C over S with generator matrix G. Now

f j

�
det(GGT )
�
=det
�
f j (G) f j (G

T )
�

.

By Lemma 6 and Theorem 2, it follows that GGT is nonsingular. Consequently, C is LCD.

The map

πm : Rm → F2∑
A⊆{1,2,··· ,m}

cA

∏
i∈A

ui 7→ c;

is a ring-epimorphism. From Theorems 3 and 4, a linear code C over Rm is LCD, if and only if πm (C )

is a binary LCD code. From [5, Theorem 1], if (1, 1, · · · , 1) < πm (C )
⊥ then C is LCD if and only if there

exists a basis c1, c2, · · · , ck of C such that [ci , c j ] =δi , j , for all 1≤ i , j ≤ k .

Example 3.3. Consider the linear [n , k ]-code C over Rm with generator matrix




1 0 0 · · · 0 λ1,1 · · · λ1,n−k

0 1 0 · · · 0 λ2,1 · · · λ2,n−k
...

...
...

...
...

...
...

0 · · · 0 1 0 λk−1,1 · · · λk−1,n−k

0 · · · 0 0 1 λk ,1 · · · λk ,n−k




,

where n −k is an even integer and πm (λi , j ) = 1, for all 1≤ i ≤ k , 1≤ j ≤ n −k . From Theorem 4, the code

C is LCD, since πm (C ) is a binary LCD code, by [5, Theorem 1].

Theorem 5. A linear code C = CRT(C1, C2, · · · , Cu ) over R is LCD if and only if, the linear code C j over

R j is LCD, for all 1≤ j ≤ u .

Proof. The map Φ : R → R1× · · ·×Ru is a ring-isomorphism, and by Lemma 2, it follows that

C ∩C ⊥ =CRT(C1 ∩C ⊥1 , C2 ∩C ⊥2 , · · · , Cu ∩C ⊥u ).

Thus C is LCD over R if and only if, C j is LCD over R j for all 1≤ j ≤ u .

Remark 2. From Lemma 7 and Theorem 5, it is easy to see that an LCD code C = CRT(C1, C2, · · · , Cu )

over R is non-free, if and only if there are 1≤ j1 < j2 ≤ u such that rankR j1
(C j1
),rankR j2

(C j2
).

Example 3.4. Let C1 be an LCD code over Z3 with generator matrix G1 :=




1 0 0 1 1

0 1 0 1 1

0 0 1 1 1



 , and C2

be an LCD code over Z5 with generator matrix G2 :=

�
1 0 1 1 1

0 1 0 4 2

�
. From Remark 2, the Chinese

product of C1 and C2 is the non-free LCD code C over Z15 with generator matrix

G :=




1 0 6 1 1

0 1 0 4 7

0 0 10 10 10



 ,

since rankZ3
(C1) = 3, 2=rankZ5

(C2). But C is a projective module over Z15.

We now are ready to answer the question: "Do non-free LCD codes over finite commutative Frobe-

nius ring R exist?". It is evident from Example 3.4 that "non-free LCD codes over finite commutative

Frobenius rings exist and they are projective modules over R ."
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4. Constacyclic LCD codes over finite chain rings

Throughout this section R will denote a finite chain ring (and hence a Frobenius ring) with residue

field Fq , γ a unit in R , and n a positive integer relatively prime to q . The projection π : R → Fq extends

naturally to a projection R [X ]→ Fq [X ] as follows: π( f ) =
∑

i π( fi )X
i for f =
∑

i fi X i ; also a projection

R n → (Fq )
n as follows: π(c) = (π(c0),π(c1), · · · ,π(cn−1)) for c = (c0, c1, · · · , cn−1). Thus for any nonempty

subset C of R n , π(C ) = {π(c) : c ∈C }.

Recall that a linear code C of length n over R is γ-constacyclic if (γcn−1, c0, c1, · · · , cn−2) ∈ C , when-

ever (c0, c1, · · · , cn−1) ∈ C . C is called cyclic and negacyclic, respectively, when γ is 1 and −1. A con-

stacyclic code of length n over R is non-repeated root if n and q are coprime. It is known that the

γ-constacyclic codes over R are identified to ideals of R [X ]/〈X n −γ〉 via the R -module isomorphism

Υ : R n → R [X ]/〈X n −γ〉

(c0, c1, · · · , cn−1) 7→ c0+ c1x + · · ·+ cn−1x n−1,

where x := X + 〈X n −γ〉. In this section, we deal with non-repeated root γ-constacyclic LCD codes of

length n over R .

Let k ∈ {0, 1, 2, . . . , n} and f := f0 + f1X + · · ·+ fk X k be a polynomial of degree deg( f ) := k over R

with k < n , we denote by Mk ( f ), the (n −k )×n-matrix defined by:





f0 f1 · · · fk 0 0 · · · 0

0 f0 f1 · · · fk 0 · · · 0
...

...
...

...
...

.. .
...

0 · · · 0 f0 f1 · · · fk 0

0 · · · 0 0 f0 f1 · · · fk




. (9)

Obviously, if f0 is a unit in R , then the rank of Mk ( f ) is n − k . Note that for any free γ-constacyclic

code C over R of rank n −k , there is an only monic polynomial g of degree k dividing X n −γ in R [X ]

whose Mk (g ) is a generator matrix for C . This polynomial g is called the generator polynomial of C

and the free γ-constacyclic code over R with generator polynomial g of length n , is denotedP (R ; n ; g ).

Conventionally,P (R ; n ; g ) = {0}, if deg(g )≥ n . Thus X n −γ is the generator polynomial of {0}.

From now on, g denotes a monic polynomial over R with g (0) is a unit in R , and the nonzero ele-

ment γ in Γ (R ) is the remainder of the Euclidian division of X n by g .

From [19, Theorem 5.2.], the quotient ring R [X ]/〈X n − γ 〉 is a principal ideal ring, if either R is

a field, or X n −π(γ) is free-square. Recall that a polynomial over a finite field is called square-free, if

it has no multiple irreducible factors in its decomposition. Of course, X n −π(γ) is free-square since

gcd(n , q ) = 1. From [23, Theorem 2.7], if g ∈ R [X ] is monic and π(g ) is square-free, then g factors

uniquely into monic, coprime basic-irreducible. For any polynomial f in Fq [X ] dividing X n − γ [22,

Theorem XIII.4] implies the existence and unicity of a polynomial g ∈ R [X ] such that π(g ) = f and g

divides X n −γ, since X n −γ is square-free in Fq [X ]. The polynomial g will be called the Hensel lift of

f .

Lemma 7. [12, Lemma 3.1 (3)] Let g1 and g2 be monic polynomials over R dividing X n −γ. Then

P (R ; n ; g1)∩P (R ; n ; g2) =P (R ; n ;µ(g1, g2)), (10)

where µ(g1, g2) denotes the Hensel lift of lcm(π(g1),π(g2))
1 to R [X ].

1lcm(π(g1),π(g2)): the least common multiple of π(g1),π(g2).

8



For a polynomial f (X ) of degree r, f ∗(X ) denotes its reciprocal polynomial and is given by f ∗(X ) =

X r f ( 1
X ). A polynomial f (X ) is self-reciprocal, if f ∗(X ) = f (X ). Consider the permutation Φ : R n → R n

defined as follows: Φ((a0, a1, . . . , an−1)) = (an−1, an−2, . . . , a0). Recall that a linear code C of length n over

R is reversible if Φ(C ) =C . Obviously,

Φ(P (R ; n ; g )) =P (R ; n ; g ∗). (11)

On the other hand, for any γ-constacyclic code C =P (R ; n ; g ), it is well-know that

C ⊥ =Φ(P (R ; n ; bg )), (12)

where bg (X )g (X ) = X n −γ. This leads to the following result.

Proposition 2. Let g be a monic polynomial g of degree k dividing X n − γ. If C = P (R ; n ; g ), then

C ⊥ =P (R ; n ;cg ∗ ), where bg (X )g (X ) = X n −γ.

From the precedent result, we have C ⊥ =P (R ; n ;cg ∗ ) andcg ∗ (X ) divides X n −γ−1. For this, we have

the following result.

Proposition 3. The dual of any γ-constacyclic code over R is γ−1-constacyclic.

Obviously, both {0} and R n are γ-constacyclic codes for any unit γ in R . Inversely, we have the

following result.

Lemma 8. Let C be a free code of length n over R . If C is both α-constacyclic and β -constacyclic for α,β

units in R with π(α),π(β ), then either C = {0} or C =R n .

Proof. Assume that C , {0}. There exists a polynomial g := g0 + g1X + · · ·+ gk−1X k−1 + X k with k <

n such that C = P (R ; n ; g ). Then the word c := (0, · · · , 0, g0, g1, · · · , gk−1, 1) belongs to C . Since C is

both α-constacyclic and β -constacyclic, it follows that cα := (α, 0, · · · , 0, g0, g1, · · · , gk−1) ∈ C and cβ :=

(β , 0, · · · , 0, g0, g1, · · · , gk−1) ∈ C . Thus αcβ − βcα = (α− β )(0, 0, · · · , 0, g0, g1, · · · , gk−1). Now π(α) , π(β )

and C is linear over R , therefore c′ := (0, 0, · · · , 0, g0, g1, · · · , gk−1) ∈C . And so on, we have (0, · · · , 0, 1)∈C

since g0 is a unit in R . By constacyclicity of C , it follows that C =R n .

Corollary 3. If π(γ2), 1, then any free γ-constacyclic code of length n over R is LCD.

Proof. Assume that π(γ2) , 1, and let C be a free γ-constacyclic code of length n over R . Then by

Proposition 3, C ⊥ is a γ−1-constacyclic code. Thus, C ∩C ⊥ is both γ-constacyclic and γ−1-constacyclic.

Therefore, by Lemma 8, C ∩C ⊥ = {0}, i.e., C is an LCD code as because C ∩C ⊥ can not be R n , when

π(γ2), 1.

Thus, in order to obtain all γ-constacyclic LCD codes, we need to consider only the case when

π(γ2) = 1. Moreover, the dual code of any π(γ)-constacyclic code over Fq is still a π(γ)-constacyclic

code over Fq when π(γ2) = 1.

Lemma 9. Let C be an α-constacyclic code of length n over Fq with α2 = 1. The following assertions are

equivalent.

1. C is LCD;

2. g is self-reciprocal;

3. C is reversible.
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Proof. Let C = P (Fq ; n ; f ). From Proposition 2, C ⊥ = P (Fq ; n ;cf ∗ ) and since α2 = 1, it follows from

Proposition 7 that

C ∩C ⊥ =P (Fq ; n ;lcm( f , cf ∗ )).

So C is LCD if and only if lcm( f , cf ∗ ) = X n −α. Since deg( bf ) = n −deg( f ) and deg( f ) = deg( f )∗, it

follows that f andcf ∗ are coprime. Hencelcm( f , cf ∗ ) = f cf ∗ . As f Òf = X n−α andα2 = 1, it follows that

f ∗cf ∗ = X n −α−1 = X n −α= f cf ∗ ,

which is equivalent to saying f = f ∗. From Eq. (11), C is reversible if and only if f = f ∗.

Remark 3. Let g be a monic polynomial in R [X ]. SinceP (R ; n ; g ) =

§
c ∈ R n : g divides Ψ(c )

ª
, it follows

that π(P (R ; n ; g )) =P (Fq ; n ;π(g )).

From Remark 3, Theorems 3 and 4, we have

Lemma 10. Let C be a γ-constacyclic code of length n over R . Then C is LCD if and only if π(C ) is both

π(γ)-constacyclic and LCD .

Theorem 6. Let C be a γ-constacyclic code of length n over R and g its generator polynomial. Then C

is LCD and γ2 = 1 if and only if C is reversible.

Proof. Let C =P (R ; n ; g ). From Proposition 2, C ⊥ =P (R ; n ;cg ∗ ). Since γ2 = 1, it follows that g ∗ divides

X n −γ. It can use Lemma 7 and we have C ∩C ⊥ =P (R ; n ;µ(g , cg ∗ )). Then C is LCD and γ2 = 1 if and

only if µ(g , cg ∗ ) = X n −γ, this implies that µ(g , cg ∗ ) = gcg ∗ . Since g bg = X n −γ, it follows that g ∗ = g . By

Equality (11), C is reversible.

Conversely, if C is reversible, then π(C ) is also reversible. From Lemmas 9 and 10, C is LCD. More-

over if C is reversible, by Equality (11), we have g ∗ = g . But g bg = X n − γ and g ∗cg ∗ = X n − γ−1. So

X n −γ= X n −γ−1, because g ∗ = g . Whence γ2 = 1.

We now will provide some examples to demonstrate our results. We used the Magma Computer

Algebra System [3] in our computations. We have got some good codes, some optimal known codes

and some new optimal codes over Z4 [1].

Example 4.1. The factorization of X 7−1 overZ4 into a product of basic irreducible polynomials overZ4

is given by

X 7 −1= (X −1)(X 3 +2X 2+X +7)(X 3 +3X 2 +2X +7).

Let f (X ) = X 3+2X 2 +X +7 and g (X ) = X 3 +3X 2 +2X +7. From Theorem 6, we have

• The cyclic codeP (Z4; 7; (X −1)) is LCD and reversible. This is [7, 46, 2] optimal code.

• The cyclic codeP (Z4; 7; f (X )) is not LCD, since f (X ) is not self-reciprocal.

• The cyclic code P (Z4; 7; f (X )g (X )) is LCD, since f (X )g (X ) is self-reciprocal. This code has mini-

mum Lee distance 7 but has only 4 codewords.

Note that if C is γ-constacyclic of odd length over Z4, then C is LCD if and only if C is reversible.
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Example 4.2. The factorization of X 15 − 1 over Z4 into a product of basic irreducible polynomials over

Z4 is given by

X 15 −1= (X −1)(X 2+X +1)(X 4+X 3+X 2 +X +1)(X 4+2X 2 +3X +1)(X 4+3X 2 +2X +1).

The self-reciprocal polynomials and the LCD codes generated by those seld-reciprocal polynomials are

shown in the following table:

Generators (self-reciprocal) of LCD code C [n , 4k1 , dL ] Remarks

g1 = X −1 [15, 414, 2]

g2 = X 2 +X +1 [15, 413, 2]

g3 = (X −1)(X 2+X +1) [15, 412, 2]

g4 = X 4 +X 3+X 2+X +1 [15, 411, 2]

g5 = (X −1)(X 4 +X 3+X 2 +X +1) [15, 410, 2]

g6 = (X
2+X +1)(X 4+X 3+X 2 +X +1) [15, 49, 4] Good

g7 = (X −1)(X 2 +X +1)(X 4+X 3 +X 2+X +1) [15, 48, 4]

g8 = (X
4 +2X 2 +3X +1)(X 4+3X 2 +2X +1) [15, 47, 3]

g9 = (X −1)(X 4 +2X 2 +3X +1)(X 4 +3X 2+2X +1) [15, 46, 6] Good

g10 = (X
2+X +1)(X 4 +2X 2+3X +1)(X 4+3X 2 +2X +1) [15, 45, 3]

g11 = (X −1)(X 2+X +1)(X 4 +2X 2+3X +1)(X 4+3X 2 +2X +1) [15, 44, 6]

g12 = (X
4 +2X 2+3X +1)(X 4+3X 2 +2X +1)(X 4 +X 3+X 2 +X +1) [15, 43, 5]

g13 = (x −1)(X 4+2X 2 +3X +1)(X 4 +3X 2+2X +1)(X 4+X 3 +X 2+X +1) [15, 42, 10] Good

g14 = (X
2+X +1)(X 4+2X 2 +3X +1)(X 4 +3X 2+2X +1)(X 4+X 3 +X 2+X +1) [15, 41, 15]

Example 4.3. The factorization of X 9 − 1, X 17 − 1, X 31 − 1 and X 63 − 1 over Z4 into a product of basic

irreducible polynomials are given by

X 9−1= (X −1)(X 2+X +1)(X 6 +X 3+1),

X 17 −1= (X −1)(X 8 +2X 6+3X 5 +X 4+3X 3 +2X 2 +1)(X 8+X 7 +3X 6+3X 4 +3X 2 +X +1),

X 31−1= h1h2h3h4h5h6h7,

where h1 = (X −1), h2 = (X
5+3X 2+2X +3), h3 = (X

5+2X 4+X 3+3), h4 = (X
5+2X 4+3X 3+X 2+3X +3),

h5 = (X
5+3X 4 +X 2+3X +3), h6 = X 5 +X 4+3X 3 +X +3), h7 = (X

5+X 4 +3X 3+X 2 +2X +3), and

X 63 −1= g1g2 . . .g13,

where g1 = (X−1), g2 = (X
2+X+1), g3 = (X

3+2X 2+X+3), g4 = (X
3+3X 2+2X+3), g5 = (X

6+2X 3+3X+1),

g6 = (X
6 + X 3 + 1), g7 = (X

6 + 2X 5 + 3X 4 + 3X 2 + X + 1), g8 = (X
6 + 2X 5 + X 4 + X 3 + 3X + 1); g9 =

(X 6 + 3X 5 + 2X 3 + 1); g10 = (X
6 + 3X 5 + 2X 4 + X 2 + X + 1), g11 = (X

6 + 3X 5 + X 3 + X 2 + 2X + 1),

g12 = (X
6 + X 5 + X 4 + 2X 2 + 3X + 1), g13 = (X

6 + X 5 + 3X 4 + 3X 2 + 2X + 1). In the following table,

we list cyclic LCD codes over Z4 of different lengths and their generators. It is noted that some of the

codes (which are LCD) are good known codes and some are new optimal codes over Z4 [1].
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Generators of C [n , 4k1 , dL ] Remarks

(X −1)(X 6 +X 3+1) [9, 42, 6] Good

(X 6 +X 3+1) [9, 43, 3] Good

(X −1)(X 2+X +1) [9, 46, 2] Good

(X 8 +X 7+3X 6 +3X 4+3X 2 +X +1) [17, 49, 7] Optimal

(X −1)(X 8 +X 7+3X 6 +3X 4 +3X 2+X +1) [17, 48, 8] Optimal

h1h2h3h4h4h7 [31, 410, 16] Optimal

h2h3h5h6 [31, 411, 12] Optimal

h1h5h6 [31, 420, 8] Optimal

h2h3 [31, 421, 6] Optimal

g2g3g4g5g6g7g9g10g12g13 [63, 413, 36] Optimal

g1g3g4g5g6g7g9g10g12g13 [63, 414, 34] Optimal

g3g4g6g7g8g10g11g12g13 [63, 415, 21] Optimal

g1g6g7g10g11g12g13 [63, 420, 18] Optimal

g1g5g6g7g9g13 [63, 432, 16] Optimal

g1g2g7g8g10g11g12g13 [63, 424, 14] Optimal

g2g3g4g6g10g12 [63, 437, 12] Optimal

g1g2g3g4g10g12 [63, 442, 10] Optimal

g2g5g6g7g9g13 [63, 431, 9] Optimal

g3g4g7g8g11g13 [63, 433, 7] Optimal

g1g8g11 [63, 450, 6] Optimal

Example 4.4. The factorization of X 15 − 1 over Z8 into a product of basic irreducible polynomials over

Z8 is given by

X 15−1= (X −1)(X 2+X +1)(X 4+X 3+X 2+X +1)(X 4+4X 3 +6X 2+3X +1)(X 4+3X 3 +6X 2+4X +1).

Out of 1 and X 15−1, there are 14 self-reciprocal polynomials dividing X 15 −1 in Z8[X ] and they are:

g1 = X −1;

g2 = X 2+X +1;

g3 = (X −1)(X 2+X +1);

g4 = X 4 +3X 3 +6X 2+4X +1;

g5 = (X −1)(X 4+3X 3 +6X 2 +4X +1);

g6 = (X
2 +X +1)(X 4+3X 3 +6X 2 +4X +1);

g7 = (X −1)(X 2 +X +1)(X 4+3X 3 +6X 2 +4X +1);

g8 = (X
4 +4X 3+6X 2 +3X +1)(X 4 +3X 3 +2X 2+1);

g9 = (X −1)(X 4 +4X 3+6X 2 +3X +1)(X 4+3X 3 +2X 2+1);

g10 = (X
2 +X +1)(X 4+4X 3 +6X 2 +3X +1)(X 4 +3X 3+2X 2 +1);

g11 = (X −1)(X 2+X +1)(X 4 +4X 3+6X 2 +3X +1)(X 4 +3X 3 +2X 2+1);

g12 = (X
4 +3X 3+6X 2 +4X +1)(X 4 +4X 3+6X 2 +3X +1)(X 4+3X 3 +2X 2+1);

g13 = (X −1)(X 4 +3X 3+6X 2 +4X +1)(X 4 +4X 3 +6X 2+3X +1)(X 4+3X 3 +2X 2 +1);

g14 = (X
2+X +1)(X 4 +3X 3 +6X 2+4X +1)(X 4+4X 3 +6X 2+3X +1)(X 4+3X 3 +2X 2 +1).

From Theorem 6, the nontrivial cyclic code P (Z8; 15; g i ) over Z8, is LCD, for all 1 ≤ i ≤ 14. Moreover

P (Z8; 15; g i (γX )) is a nontrivial γ-constacyclic LCD code over Z8, where γ ∈ {3; 5; 7}, for all 1 ≤ i ≤ 14.

Hence there are 56 nontrivial constacyclic LCD codes of length 15 over Z8.
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Example 4.5. The factorization of X 9−1 overZ8 into a product of basic irreducible polynomials overZ8

is given by

X 9−1= (X −1)(X 2+X +1)(X 6 +X 3+1).

All three factors of X 9 − 1 over Z8 are self-reciprocal polynomials in Z8[X ] and hence all cyclic codes of

length 9 over Z8 are LCD and so reversible.

Generators of C [n , 4k1 , dH ]

(X −1) [9, 88, 2]

(X 6+X 3 +1) [9, 83, 3]

(X 2+X +1) [9, 47, 2]

(X −1)(X 6 +X 3+1) [9, 82, 6]

(X −1)(X 2+X +1) [9, 86, 3]

(X 2+X +1)(X 6 +X 3+1) [9, 81, 9]

Example 4.6. The Cyclic code C of length 5 generated by g (X ) = X 2+(3w +2)X +1 over G R (4, 2), where

G R (4, 2) is the Galois Extension ofZ4 order 2 and w is a root of the basic primitive polynomial X 2+X +1,

is LCD code and its minimum Hamming distance is 3 ([5, 163, 3]).

5. Conclusion

In paper, we have done an extensive study of LCD codes over finite commutative Frobenius rings.

We have first corrected a wrong result given in [18]which in deed led to the claim that "there do not ex-

ist non-free LCD codes over finite commutative local Frobenius rings". We also answered the question

posed in the title that there exists non-free LCD codes over finite commutative Frobenius rings but not

over finite commutative local Frobenius rings. We have also obtained a necessary and sufficient con-

dition for any linear code over a finite commutative Frobenius ring to be LCD. We also characterized

non-repeated root constacyclic LCD codes and revercible over finite chain rings and we found some

new optimal codes over Z4 which are infact cyclic LCD codes over Z4.
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