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FLAG-TRANSITIVE BLOCK DESIGNS WITH PRIME
REPLICATION NUMBER AND ALMOST SIMPLE GROUPS

SEYED HASSAN ALAVI, MOHSEN BAYAT, JALAL CHOULAKI,
AND ASHARF DANESHKHAH

Abstract. In this article, we study 2-designs with prime replication number
admitting a flag-transitive automorphism group. The automorphism groups of
these designs are point-primitive of almost simple or affine type. We determine 2-
designs with prime replication number admitting an almost simple automorphism
group.

1. Introduction

A 2-(v, k, λ) design D is a pair (P,B) with a set P of v points and a set B of
blocks such that each block is a k-subset of P and each two distinct points are
contained in λ blocks. We say D is nontrivial if 2 < k < v − 1, and symmetric if
v = b, where b is the number of blocks of D. Each point of D is contained in exactly
r = bk/v blocks which is called the replication number of D. An automorphism
of a symmetric design D is a permutation of the points permuting the blocks and
preserving the incidence relation. The full automorphism group Aut(D) of D is the
group consisting of all automorphisms of D. A flag of D is a point-block pair (α,B)
such that α ∈ B. For G 6 Aut(D), G is called flag-transitive if G acts transitively
on the set of flags. The group G is said to be point-primitive if G acts primitively
on P. A group G is said to be almost simple with socle X if X E G 6 Aut(X),
where X is a nonabelian simple group. We adopt the standard notation as in [7, 11]
when we deal with almost simple groups with socle finite classical simple groups,
while in the case where the socle is an exceptional simple group, we sometimes use
alternative Lie notation. We here write Altn and Symn for the alternating group
and the symmetric group on n letters, respectively, and we denote by “n” the cyclic
group of order n. Further notation and definitions in both design theory and group
theory are standard and can be found, for example, in [11, 15, 18, 19].
The main aim of this paper is to study 2-designs with flag-transitive automorphism

groups. In 1988, Zieschang [32] proved that if an automorphism group G of a 2-
design with gcd(r, λ) = 1 is flag-transitive, then G is point-primitive group of almost
simple or affine type. Such designs admitting an almost simple automorphism group
with socle being an alternating group, a sporadic simple group or a finite simple
exceptional group have been studied in [2, 26, 28, 30, 31]. This problem for case
where the socle is a finite simple groups of Lie type is still open. This paper is devoted
to studying flag-transitive designs with prime replication number r in which case r
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Table 1. Some nontrivial 2-design with prime replication number

Line v b r k λ X Gα ∩X G Designs References

1 6 10 5 3 2 Alt5 D10 Alt5 - [10, 29]
2 7 7 3 3 1 PSL2(7) Sym4 PSL2(7) PG(2, 2) [1, 10, 23]
3 8 14 7 4 3 PSL2(7) 7:3 PSL2(7) - [10, 29]
4 11 11 5 5 2 PSL2(11) Alt5 PSL2(11) Paley [1, 10, 23]
5 12 22 11 6 5 M11 PSL2(11) M11 - [10, 28]
6 15 15 7 7 3 Alt7 PSL2(7) Alt7 PG2(3, 2) [1, 10, 31]
7 15 35 7 3 1 Alt7 PSL2(7) Alt7 PG(3, 2) [10, 30]
8 15 35 7 3 1 Alt8 23:PSL3(2) Alt8 PG(3, 2) [10, 30]

Note: The last column addresses to references in which a design with the parameters in
the line has been constructed.

and λ are coprime. We know two infinite families of examples of designs with prime
replication number namely projective space PG(n − 1, q) with (qn−1 − 1)/(q − 1)
prime and Witt-Bose-Shrikhande space W(2n) with 2n + 1 a Fermat prime. The
projective spaces are natural examples of designs with 2-transitive automorphism
groups [17] and the latter example arises from studying flag-transitive linear spaces
[8]. Our main result is Theorem 1.1 below.

Theorem 1.1. Let D be a nontrivial 2-(v, k, λ) design with prime replication number
r, and let α be a point of D. If G is a flag-transitive automorphism group of D of
almost simple type with socle X, then λ ∈ {1, 2, 3, 5} and v, k, λ, X, Gα ∩X and
G are as in one of the lines in Table 1 or one of the following holds:

(a) D is the Witt-Bose-Shrikhande space W(2n) with parameters v = 2n−1(2n−1),
b = 22n − 1, r = 2n +1 Fermat prime, k = 2n−1 and λ = 1, for n = 22

m
> 16.

Moreover, G = X = PSL2(2
n) and Gα ∩X = D2(2n+1);

(b) X = PSLn(q), Gα ∩X = ˆ[qn−1]:SLn−1(q)·(q − 1), v = (qn − 1)/(q − 1) and r
is a primitive divisor of (qn−1 − 1)/(q − 1) with n > 3.

In order to prove Theorem 1.1 in Section 3, we observe that the result for the
case where the socle X is an alternating group or a sporadic simple group follows
immediately from [26, 28, 30, 31]. For the remaining cases, the group G is point-
primitive [32], or equivalently, the point stabiliser H = Gα is maximal in G. If X is
a finite classical simple group, then we apply Aschbacher’s Theorem [6] which says
that H lies in one of the eight geometric families Ci (i = 1, . . . 8) of subgroups of G,
or in the family S of almost simple subgroups with some irreducibility conditions.
The case where X = PSL2(q) has been separately studied in Proposition 3.5. For
the remaining classical groups, we use the minimal degrees of permutation repre-
sentations of finite classical simple groups in characteristic p to show that r divides
the p′-part of |H ∩X|, and so we conclude that |X| < |H ∩X|3. The candidates for
such maximal subgroups H are recorded in [5]. In this list, we only need to consider
those subgroups H which belongs to Ci for i = 1, 2, 3, 5, 8, see Proposition 3.4. We
then analyse each possible cases in Propositions 3.6-3.9. Note that the case where
X = PSp4(q) needs more attention, see Proposition 3.8. If X is a finite exceptional
simple group in characteristic p, then we show that r 6= p, and since the subgroup
H is large in G, that is to say, |G| 6 |H|3, using the list of such subgroups in [4],
we obtain no possible parameters satisfying hypothesises of our main result. In this
paper, we use the software GAP [16] for computational arguments.
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2. Preliminaries

In this section, we state some useful facts in both design theory and group theory.
Lemma 2.1 below is an elementary result on subgroups of almost simple groups.

Lemma 2.1. [3, Lemma 2.2] Let G be an almost simple group with socle X, and let
H be maximal in G not containing X. Then G = HX and |H| divides |Out(X)|·|H∩
X|.

Lemma 2.2. (Tits’ Lemma [25, 1.6]) If X is a simple group of Lie type in charac-
teristic p, then any proper subgroup of index prime to p is contained in a parabolic
subgroup of X.

If a group G acts on a set P and α ∈ P, the subdegrees of G are the size of orbits
of the action of the point-stabiliser Gα on P.

Lemma 2.3. [22, 3.9] If X is a group of Lie type in characteristic p, acting on the
set of cosets of a maximal parabolic subgroup, and X is neither PSLn(q), PΩ

+
n (q)

(with n/2 odd), nor E6(q), then there is a unique subdegree which is a power of p.

Remark 2.4. We remark that even in the cases excluded in Lemma 2.3, many of
the maximal parabolic subgroups still have the property as asserted, see proof of
[24, Lemma 2.6]. In particular, for an almost simple group G with socle X = E6(q),
if G contains a graph automorphism or H = Pi with i one of 2 and 4, the conclusion
of Lemma 2.3 is still true.

Lemma 2.5. [30, Lemmas 5 and 6] Let D be a 2-design with prime replication
number r, and let G be a flag-transitive automorphism group of D. If α is a point
in P and H := Gα, then

(a) r(k − 1) = λ(v − 1). In particular, if r is prime, then r divides v − 1 and
gcd(r, v) = 1;

(b) vr = bk;
(c) r | |H| and λv < r2;
(d) r | d, for all nontrivial subdegrees d of G.

For a given positive integer n and a prime divisor p of n, we denote the p-part of
n by np, that is to say, np = pt with pt | n but pt+1 ∤ n.

Corollary 2.6. Let D be a flag-transitive 2-design with automorphism group G.
Then |G| 6 |Gα|

3, where α is a point in D.

Proof. By Lemma 2.5(c), we have that v < r2. The result follows from th v=|G:Gα|
and r 6 |Gα|. �

Proposition 2.7. Let D be a 2-design with prime replication number r admitting a
flag-transitive automorphism group G. Then G is point-primitive of almost simple
or affine type.

Proof. Since the parameter r is prime, it follows that r is coprime to λ, and so by [14,
2.3.7(a)], we conclude that G is point-primitive. Moreover, [32, Theorem] implies
that G is of almost simple or affine type. �

Lemma 2.8. Suppose that D is a 2-design with replication number r. Let G be a
flag-transitive automorphism group of D with simple socle X of Lie type in charac-
teristic p. If the point-stabiliser H = Gα contains a normal quasi-simple subgroup
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K of Lie type in characteristic p and p does not divide |Z(K)|, then either p divides
r, or KB is contained in a parabolic subgroup P of K and r is divisible by |K:P |.

Proof. If B is a block incident with a point α of D, then r = |H :HB|, and so |K:KB|
divides r. If gcd(r, p) = 1, then |K:KB| is coprime to p, and now Lemma 2.2 implies
that KB is contained in a (maximal) parabolic subgroup P of K. Hence r is divisible
by |K:P |. �

3. Proof of the main result

In this section, we prove Theorem 1.1. suppose that D is a nontrivial 2-design
with prime replication number r and G is an almost simple automorphism group of
D with socle X being a finite non-abelian simple group. Suppose now that G is flag-
transitive. Then Proposition 2.7 implies that G is point-primitive. Let H := Gα,
where α is a point of D. Therefore, H is maximal in G (see [15, Corollary 1.5A]),
and so Lemma 2.1 implies that

v =
|X|

|H ∩X|
. (3.1)

In the proceeding sections, we consider each possibility for the non-abelian simple
group X .

3.1. Alternating and sporadic groups. Here, we consider the case where X is
an alternating group Altn (n > 5) or a sporadic simple group, and note that the
result follows immediately from the main results in [26, 28, 30, 31]:

Proposition 3.1. [26, 28, 30, 31] Let D be a nontrivial 2-design with prime repli-
cation number r. Suppose that G is an automorphism group of D of almost simple
type with socle X a sporadic simple group or an alternating group Altn with n > 5.
If G is flag-transitive, then (v, b, r, k, λ), G, X and Gα∩X are as in one of the lines
2 and 5-8 of Table 1.

3.2. Classical groups. In this section, we suppose that G is an almost simple
group with socle X = X(q) being a finite classical simple group of Lie type, where
q = pa for some positive integer a. We here use the following notation to denote the
finite classical simple groups.

PSLn(q), for n > 2 and (n, q) 6= (2, 2), (2, 3),

PSUn(q), for n > 3 and (n, q) 6= (3, 2),

PSp2n(q), for n > 2 and (n, q) 6= (4, 2),

PΩ2n+1(q), for n > 3 and q odd ,

PΩ±

2n(q), for n > 4.

In this manner, the only repetitions are:

PSL2(4) ∼= PSL2(5) ∼= Alt5, PSL2(7) ∼= PSL3(2), PSL2(9) ∼= Alt6,

PSL4(2) ∼= Alt8, (3.2)

PSp4(3)
∼= PSU4(2).

For a finite groupX , let p(X) be the minimal degree of permutation representation
of X . In particular, for a finite simple group X , the integer p(X) is just the index
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Table 2. The minimal degrees of permutation representations of fi-
nite classical simple groups of Lie type.

X p(X) Conditions

PSLn(q) (qn − 1)/(q − 1) (n, q) 6= (2, 5), (2, 7), (2, 9), (2, 11), (4, 2)
PSL2(q) q q = 5, 7, 11
PSL2(9) 6
PSL4(2) 8
PSUn(q) (qn − (−1)n)(qn−1 − (−1)n−1)/(q2 − 1) n > 5 and (n, q) 6= (6s, 2)
PSUn(2) 2n−1(2n − 1)/3 n ≡ 0 (mod 6)
PSU4(q) (q + 1)(q3 + 1)
PSU3(q) q3 + 1 q 6= 5
PSU3(5) 50
PSp2n(q) (q2n − 1)/(q − 1) n > 2, q > 2 and (n, q) 6= (2, 3)
PSp2n(2) 2n−1(2n − 1) n > 3
PSp4(3) 27
PΩ2n+1(q) (q2n − 1)/(q − 1) n > 3, q odd and q > 5
PΩ2n+1(3) 3n(3n − 1)/2 n > 3
PΩ+

2n(q) (qn − 1)(qn−1 + 1)/(q − 1) n > 4 and q > 3
PΩ+

2n(2) 2n−1(2n − 1) n > 4
PΩ−

2n(q) (qn + 1)(qn−1 − 1)/(q − 1) n > 4

of the largest proper subgroup of X , and we know these degrees for all finite simple
groups. Here, we need p(X) for finite classical simple groups X :

Lemma 3.2. [12] The minimal degrees p(X) of permutation representations of finite
classical simple groups of Lie type are given in Table 2.

Lemma 3.3. Let D be a 2-design with prime replication number r, and let G be a
flag-transitive automorphism group of D of almost simple type with socle X being a
finite classical simple group in characteristic p. Let also α be a point of D and H =
Gα. If X 6= PSL2(q), then r divides |H ∩X|p′, and hence |X| < |H ∩X|·|H ∩X|2p′.

Proof. By Lemma 2.5(c), the parameter r divides |H|, and so Lemma 2.1 implies
that r divides |Out(X)|·|H ∩X|. We show that r is coprime to |Out(X)|·|H ∩X|p,
and hence we conclude that r divides |H ∩X|p′, as claimed.
In what follows, we assume that X 6= PSL2(q). Further, assume the contrary that

r divides |Out(X)|·|H ∩X|p. Then r divides |Out(X)|·|X|p. We now consider each
possibility for X separately.

Suppose that X = PSLn(q) with n > 3 and q = pa. If (n, q) 6= (4, 2), then by
Lemma 3.2, we have that v > p(X) = (qn − 1)/(q − 1), and hence Lemma 2.5(c)
implies that

r2 >
qn − 1

q − 1
. (3.3)

Since r is a prime number dividing |Out(X)|·|X|p, by inspection |Out(X)| and |X|p
from [18, Table 5.1.A], we conclude that r divides 2ap ·gcd(n, q−1). Then r ∈ {2, p}
or r divides a or q − 1, and so r 6 max{a, p, q − 1} 6 q. Since n > 3, we conclude
by (3.3) that q2+ q+1 6 (qn−1)/(q−1) < r2 6 q2, and so q2+ q+1 < q2, which is
a contradiction. If X = PSL4(2), then r divides |Out(X)|·|X|2 = 27, and so r = 2.
By Lemmas 3.2 and 2.5(c), we have that 8 6 v < r2 = 4, which is impossible.
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Suppose that X = PSUn(q) with n > 3 and q = pa. Assume first that n > 5. If
(n, q) 6= (6m, 2), then by Lemma 3.2, we have that v > p(X) = (qn− (−1)n)(qn−1−
(−1)n−1)/(q2 − 1), and hence Lemma 2.5(c) implies that

r2 >
(qn − (−1)n)(qn−1 − (−1)n−1)

q2 − 1
. (3.4)

Since r is a prime number dividing |Out(X)|·|X|p, by inspection |Out(X)| and |X|p
from [18, Table 5.1.A], the parameter r divides 2ap · gcd(n, q + 1). Then r ∈ {2, p}
or r divides a or q + 1, and so r 6 max{a, p, q+ 1} 6 q + 1. Note that n > 5. Then
it follows from (3.4) that (q5+1)(q2+1) 6 (qn− (−1)n)(qn−1− (−1)n−1)/(q2−1) <
r2 6 (q + 1)2, that is to say, (q5 + 1)(q2 + 1) < (q + 1)2, which is a contradiction. If
(n, q) = (6m, 2), then r is a prime divisor of |Out(X)|·|X|2 dividing 2 · 3 · 2n(n−1)/2,
and so r = 2 or 3, by Lemmas 2.5(c) and 3.2, we must have 2n−1(2n−1) < 3r2 6 33,
for some n > 6, which is impossible. Assume now that n = 4. Since r divides
|Out(X)|·|X|p, it follows from [18, Table 5.1.A] that r divides 8ap. Then r ∈ {2, p}
or r divides a, and so r 6 max{a, p} 6 q. By Lemmas 2.5(c) and 3.2, we have that
(q+1)(q3+1) 6 λv < r2 6 q2, and so (q+1)(q3+1) < q2, which is impossible. Finally
assume that n = 3. If q 6= 5, then by Lemma 3.2, we have that v > p(X) = q3 + 1.
We use the information in [18, Table 5.1.A] and conclude that r divides 6ap. Then
r ∈ {2, 3, p} or r divides a, and so r 6 max{a, 3, p} 6 q. By Lemma 2.5(c) we
conclude that q3 + 1 6 λv < r2 6 q2, and so q3 + 1 < q2, which is impossible. If
q = 5, then from [18, Table 5.1.A], we conclude that r divides 30. Then r ∈ {2, 3, 5},
and so r 6 5. By Lemmas 2.5(c) and 3.2, we have that 50 6 λv < r2 6 25, which
is a contradiction.

Suppose that X = PSp2n(q) with n > 2 and q = pa. Assume first that q > 2 and
(n, q) 6= (2, 3). Then by Lemma 3.2, we have that v > p(X) = (q2n − 1)/(q − 1),
and hence Lemma 2.5(c) implies that

r2 >
q2n − 1

q − 1
. (3.5)

Since r is a prime number dividing |Out(X)|·|X|p, by inspection |Out(X)| and |X|p
from [18, Table 5.1.A], the parameter r must divide 2ap. Then r ∈ {2, p} or r
divides a, and so r 6 max{a, p} 6 q. Since n > 2, it follows from (3.5) that
(q2 + 1)(q + 1) 6 (q2n − 1)/(q − 1) < r2 6 q2, and so (q2 + 1)(q + 1) < q2,
which is a contradiction. Assume now that n > 3 and q = 2. In this case, r
divides |Out(X)|·|X|2, and so by [18, Table 5.1.A], we must have r = 2, which is a
contradiction. Assume finally that (n, q) = (2, 3). Then r divides |Out(X)|·|X|3 = 6,
and so r = 2 or 3. By Lemmas 3.2 and 2.5(c), we have that 27 6 v < r2 6 9, which
is impossible.

Suppose that X = PΩ2n+1(q) with n > 3 and q = pa odd. Assume first that
q 6= 3. Since r is a prime number dividing |Out(X)|·|X|p, by inspection |Out(X)|
and |X|p from [18, Table 5.1.A], we conclude that r divides 2ap. Then r ∈ {2, p} or
r divides a, and so r 6 max{a, p} 6 q. Since n > 3, we conclude by Lemmas 3.2
and 2.5(c) that q5 + q4 + q3 + q2 + q + 1 6 (q2n − 1)/(q − 1) < r2 6 q2, and so
q5+ q4+ q3+ q2+ q+1 < q2, which is a contradiction.Assume finally that q = 3 and

n > 3. Then r divides |Out(X)|·|X|3, and so r = 2 or 3. By Lemmas 3.2 and 2.5(c),
we have that 3n(3n−1 − 1) < 2r2 6 18, for some positive integer n > 3, which is
impossible.
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Table 3. The geometric subgroup collections

Class Rough description

C1 Stabilisers of subspaces of V

C2 Stabilisers of decompositions V =
⊕t

i=1 Vi, where dimVi = a
C3 Stabilisers of prime index extension fields of F
C4 Stabilisers of decompositions V = V1 ⊗ V2

C5 Stabilisers of prime index subfields of F
C6 Normalisers of symplectic-type r-groups in absolutely irreducible representations
C7 Stabilisers of decompositions V =

⊗t
i=1 Vi, where dimVi = a

C8 Stabilisers of non-degenerate forms on V

Suppose that X = PΩǫ
2n(q) with n > 4, q = pa and ǫ ∈ {+,−}. Assume first

that (ǫ, q) 6= (+, 2). Since r is a prime divisor of |Out(X)|·|X|p, it follows from
[18, Table 5.1.A] that r divides 6ap, and so r ∈ {2, 3, p} or r divides a. Then
r 6 max{a, p} 6 q. Since n > 4, we conclude by Lemmas 3.2 and 2.5(c) that
(q4 − ǫ1)(q3 + ǫ1) 6 (qn − ǫ1)(qn−1 + ǫ1) 6 λ(q − 1)v < (q − 1)r2 6 q2(q − 1),
and so (q4 − ǫ1)(q3 + ǫ1) < q2(q − 1), which is a contradiction. Assume finally that
(ǫ, q) = (+, 2). Then it follows from [18, Table 5.1.A] that r divides 6, and so r = 2
or 3. By Lemmas 3.2 and 2.5(c), we have that 2n−1(2n − 1) < r2 6 9, for some
positive integer n > 4, which is impossible.
Therefore, the parameter r divides |H ∩ X|p′. Note by Proposition 2.7 that the

group G is primitive, and by the assumption it is almost simple with socle X . Then
H = Gα is maximal in G, and so by Lemma 2.1, we have that v = |X :H ∩ X|.
Therefore, Lemma 2.5(c) implies that |X : H ∩X| = v < r2 6 |H∩X|2p′, and hence

|X| < |H ∩X|·|H ∩X|2p′. �

Suppose now that D is a nontrivial 2-design with prime replication number r.
Moreover, suppose that G is a flag-transitive automorphism group of D with socleX .
Recall by Proposition 2.7 that the groupG acts primitively on the point set of D, and
so the point-stabiliser H is maximal in G. We now apply Aschbacher’s Theorem [6]
which says that H lies in one of the eight geometric families Ci of subgroups of G,
or in the family S of almost simple subgroups with some irreducibility conditions.
We follow the description of these subgroups as in [18] and analyse each of these
cases separately. In what follows, if H belongs to the family Ci, for some i, then we
sometimes say that H is a Ci-subgroup. We also denote by ˆH the pre-image of the
group H in the corresponding linear group. A rough description of the Ci families
is given in Table 3.

Proposition 3.4. Let D be a nontrivial 2-design with prime replication number
r, and let α be a point of D. Suppose that G is an automorphism group of D of
almost simple type with socle X being a finite classical simple group of Lie type in
characteristic p and of dimension at least 3. If G is flag-transitive, then H = Gα is
maximal in G and H belongs to one of the geometric families Ci, for i = 1, 2, 3, 5, 8.

Proof. By Proposition 2.7, the point-stabliliser H is a maximal subgroup of G. Then
by Lemma 3.3, H is a large maximal subgroup of G such that |X| 6 |H∩X|3. By [5,
Theorem 7], we conclude that H does not belong to C7. Assume now that H belongs
to C6, C4 or S. We again apply [5, Theorem 7] and obtain the pairs (X,H ∩ X)
listed in Table 4 can be read off from [5, Tables 3 and 7]. For each such H ∩ X ,
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Table 4. Some large maximal subgroups of finite classical simple groups.

Class X H ∩X v ur Conditions

C6 PSL3(4) 32.Q8 23·5·7 3
S PSL3(4) Alt6 23·7 5
S PSL4(2) Alt7 23 7
C6 PSL4(5) 24.Alt6 55·13·31 5
S PSL4(7) PSU4(2) 23·5·76·19 5
S PSL5(3) M11 25·38·11·13 11
S PSU3(3) PSL2(7) 22·32 7
S PSU3(5) PSL2(7) 2·3·53 7
S PSU3(5) Alt7 2·52 7
S PSU3(5) M10 52·7 5
C6 PSU4(3) 24.Alt6 34·7 5
S PSU4(3) PSL3(4) 2·34 7
S PSU4(3) Alt7 24·34 7
S PSU4(5) Alt7 24·32·55·13 7
S PSU4(5) PSU4(2) 2·55·7·13 5
C6 PSU4(7) 24.Sp4(2) 22·5·76·43 5
S PSU5(2) PSL2(11) 28·34 11
S PSU6(2) M22 28·34 11
S PSU6(2) PSU4(3).2 29·33·5·11 7
S PSp4(q) Sz(q) q2(q2 − 1)(q + 1) q2 + 1 q = 2a > 4
S PSp4(7) Alt7 25·5·73 7
S PSp4(5) Alt6 23·53·13 5
S PSp4(2) Alt5 22·3 5
C6 PSp4(3) 24.Ω−

4 (2) 33 5
C6 PSp4(5) 24.Ω−

4 (2) 3·53·13 5
C6 PSp4(7) 24.O−

4 (2) 2·3·5·74 5
S PSp6(q) G2(q) q3(q4 − 1) q2 + q + 1 q even
S PSp6(2) PSU3(3).2 23·3·5 7
S PSp6(5) J2 22·3·57·13·31 7
S PSp8(2) Sym10 28·3·17 7
C6 PSp8(3) 26.Ω−

6 (2) 22·312·5·7·13·41 5
S PSp12(2) Sym14 225·33·5·17·31 13
S PSp16(2) Sym18 248·32·5·17·31·43·127·257 17
S PSp20(2) Sym22 281·35·52·17·312·41·43·73·127·257 19
S PΩ7(q) G2(q) q3(q4 − 1)/2 q2 + q + 1
S PΩ7(3) Sp6(2) 35·13 7
S PΩ7(3) Sym9 22·35·13 7
S PΩ7(5) Sp6(2) 58·13·31 7
S PΩ7(7) Sp6(2) 23·5·78·19·43 7
S PΩ9(3) Alt10 27·312·13·41 7
S PΩ+

8 (q) Ω7(q) q3(q4 − 1)/2 q2 + q + 1 q odd
C4 PΩ+

8 (q) PSp4(q)×PSp2(q) q7(q6 − 1)(q2 + 1) q2 + 1
S PΩ+

8 (q) PSp6(q) q3(q4 − 1) q2 + q + 1 q even
S PΩ+

8 (q)
3D4(q0) q240 (q180 − 1)(q120 − 1)(q60 − 1)(q20 + 1) q80 + q40 + 1 q = q30 odd

S PΩ+
8 (q) PΩ−

8 (q0) q6(q6 − 1)(q3 + 1)(q + 1) q2 + 1 q = q20
S PΩ+

8 (2) Alt9 26·3·5 7
S PΩ+

8 (3) Ω+
8 (2) 37·13 7

S PΩ+
8 (5) Ω+

8 (2) 510·132·31 7
S PΩ+

8 (7) Ω+
8 (2) 24·52·711·19·43 7

S PΩ−

10(2) M12 214·33·5·7·17 11
S PΩ−

10(2) Alt12 211·3·17 11
S PΩ+

10(3) Alt12 26·315·11·13·41 11
C4 PΩ+

12(q) PSp6(q)×PSp2(q) q20(q10 − 1)(q8 − 1)(q6 − 1)/(q2 − 1) q3 + 1
S PΩ−

12(2) Alt13 221·3·5·17·31 13
S PΩ+

14(2) Alt16 228·32·17·31·127 13
S PΩ+

16(2) Alt17 242·34·5·17·31·43·127 17
S PΩ−

18(2) Alt20 255·35·17·31·43·127·257 19
S PΩ−

20(2) Alt21 273·34·52·17·31·41·43·73·127·257 19
S PΩ+

22(2) Alt24 289·34·52·17·312·41·43·73·89·127·257 23
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by (3.1), we obtain v as in the third column of Table 4. Moreover, Lemma 3.3 says
that r divides |H ∩X|p′, and so we can find an upper bound ur of r as in the fourth
column of Table 4. The inequality λv < r2 rules out all cases except for (X,H ∩X)
being (PSL4(2),Alt7), (PSU3(3),PSL2(7)), or (PSp4(2),Alt5). If H ∩X ∼= Alt7 and
X = PSL4(2), then v = 8, and since r divides v − 1 by Lemma 2.5(a), we conclude
that r = 7. Since also bk = vr, it follows that b = 14 and k = 4. This says
that G has a subgroup of index 14, which is impossible. If H ∩ X ∼= PSL2(7) and
X = PSU3(3), then v = 36, and since r divides both v − 1 = 35 and |H ∩ X|7′
which is a divisor of 24 · 7, it follows that r = 7. We now apply Lemma 2.5(a)-(b)
and conclude that b = 42, k = 6 and λ = 1. This implies that G = PSU3(3) has a
subgroup of index 42, which is a contradiction. If H ∩X ∼= Alt5 and X = PSp4(2),
then v = 12, and this case can also be ruled out as r divides both v − 1 = 11 and
|H ∩X|2′ which is a divisor of 3 · 5. �

Proposition 3.5. Let D be a nontrivial 2-design with prime replication number r.
Suppose that G is an automorphism group of D of almost simple type with socle
X = PSL2(q) for q > 4. If G is flag-transitive, then Theorem 1.1(a) holds or
(v, b, r, k, λ), G, X and Gα ∩X are as in line 1,3 or 4 of Table 1.

Proof. We can assume by (3.2) and Proposition 3.1 that q > 7. Note by Lemmas 2.1
and 2.5(c) that r divides |Out(X)|·|H ∩X|. If r divides |Out(X)| = gcd(2, q− 1)·a,
where q = pa, then r = 2 or r divides a. We now apply Lemma 3.2 and by the same
argument as in the proof of Lemma 3.3, we observe that r cannot be a divisor of
|Out(X)|. Thus r divides |H ∩X|, and hence (3.1) and Lemma 2.5(c) implies that
|X| < |H ∩X|3. We are now ready to apply [5, Theorem 7 and Proposition 4.7] and
[?, Theorems 1.1 and 2.2], and conclude that G and H are as in one of the groups
in Table 5 or H ∩X is one of the following groups:

(i) q: q−1
gcd(2,q−1)

;

(ii) PSL(2, q0), for q = q30 > 27;
(iii) PGL(2, q0), for q = q20 > 9;
(iv) D2(q−1)/ gcd(2,q−1), if q odd, then q > 13;
(v) D2(q+1)/ gcd(2,q−1), if q odd, then q 6= 7, 9;
(vi) Alt4, for q ∈ {5, 13};
(vii) Sym4, for q ∈ {7, 17, 23};
(viii) Alt5, for q ∈ {9, 11, 19, 29, 31, 41, 49, 59, 61, 71}.

Since r is a prime number dividing gcd(v − 1, |H ∩X|), by examining the fact that
v < r2, we conclude that H ∩ X is isomorphic to one of the groups p: p−1

gcd(2,p−1)
for

r = p, D2(q+1) for r dividing q+1, Sym4 for (r, q) = (3, 7), and Alt5 for (r, q) = (5, 11).
Then by [1, 8, 9, 13] and the same argument as in [29, Lemmas 3.1,3.3 and 3.7], the
assertion holds. �

Note by (3.2) and Propositions 3.1 and 3.5 that for X = PSLn(q) in Proposi-
tion 3.6 below, we only need to consider the case where n > 3 and (n, q) 6= (3, 2)
and (4, 2).

Proposition 3.6. Let D be a nontrivial 2-design with prime replication number r.
Suppose that G is an automorphism group of D of almost simple type with socle
X = PSLn(q) with n > 3 and (n, q) 6= (3, 2) and (4, 2). If G is flag-transitive and
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Table 5. Possible groups G and H in Proposition 3.5

G H |G : H |

PGL(2, 7) NG(D6) = D12 28
PGL(2, 7) NG(D8) = D16 21
PGL(2, 9) NG(D10) = D20 36
PGL(2, 9) NG(D8) = D16 45
M10 NG(D10) = C5 ⋊ C4 36
M10 NG(D8) = C8 ⋊ C2 45
PΓL(2, 9) NG(D10) = C10 ⋊ C4 36
PΓL(2, 9) NG(D8) = C8 ·Aut(C8) 45
PGL(2, 11) NG(D10) = D20 66
PGL(2, 11) NG(Alt4) = Sym4 55

H = Gα with α a point of D, then H ∩ X ∼= ˆ[qn−1]:SLn−1(q)·(q − 1) is a parabolic
subgroup, v = (qn − 1)/(q − 1) and r is a primitive divisor of (qn−1 − 1)/(q − 1).

Proof. Suppose that H0 = H ∩ X , where H = Gα with α a point of D. Since the
point-stabiliser H is maximal in G, by Lemma 3.3, Proposition 3.4 and [5, Theorem
7 and Proposition 4.7], one of the following holds:

(1) H ∈ C1∪C8;
(2) H is a C2-subgroup of type GLn/t(q) ≀ Symt with t = 2, 3;
(3) H is a C3-subgroup of type GLn/t(q

t) with t = 2, 3;
(4) H is a C5-subgroup of type GLn(q0) with q = qt0 and t = 2, 3.

In what follows, we analyse each of these possible cases separately.

(1) Let H be in C1. In this case H is reducible, that is, H ∼= Pm stabilises a
subspace of V of dimension m with 2m 6 n or G contains a graph automorphism
and H stabilises a pair {U,W} of subspaces of dimension m and n−m with 2m < n.

Suppose first that H ∼= Pm for some 2m 6 n. Then by [18, Proposition 4.1.17],
we have that

H0
∼= ˆ[qm(n−m)]:SLm(q)×SLn−m(q)·(q − 1).

Then by (3.1), we observe that v > qm(n−m). Note that r is prime and 2m 6 n. By
Lemma 3.3, we conclude that r divides |H0|p′, and so does qi − 1, for some 1 6 i 6
max{m,n −m} = n −m. Therefore, r 6 qn−m − 1. It follows from Lemma 2.5(c)
that qm(n−m) < λv < r2 6 (qn−m − 1)2 < q2(n−m). Thus qm(n−m) < q2n−2m, and so
m(n−m) < 2n−2m implying that m = 1. In this case, v = (qn−1)/(q−1), and so
v− 1 = q(qn−1 − 1)/(q− 1). Since r divides v− 1, it follows from Lemma 3.3 that r
divides (qn−1−1)/(q−1). If r divides qi−1, for some i 6 n−2, then r is a divisor of
gcd(qi−1, qn−1−1) = qgcd(i,n−1)−1, and since gcd(i, n−1) 6 [(n−1)/2], we conclude
that r 6 q[(n−1)/2]−1. Since also v < r2, it follows that qn−1 < (q−1)(q[(n−1)/2]−1)2

implying that qn < qn−1(q − 1), which is impossible. Therefore, r is a primitive
divisor of (qn−1 − 1)/(q − 1).

Suppose now that H stabilises a pair {U,W} of subspaces of dimension m and
n − m with 2m < n. Assume first that U ⊂ W . In this case, G has a subdegree
which is a power of p, and so r = p by Lemma 2.5(d). But this is impossible
by Lemma 3.3. Assume now that V = U ⊕ W . Then by [18, Proposition 4.1.4],
H0

∼= ˆSLm(q) × SLn−m(q). Then Lemma 3.3 implies that r divides |H0|p′, and so
does qi−1, for some 1 6 i 6 max{m,n−m} = n−m. Therefore, r 6 qn−m−1. Note
by (3.1) that v > q2m(n−m). Then Lemma 2.5(c) implies that q2m(n−m) < λv < r2 6
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(qn−m−1)2 < q2(n−m), that is to say, q2m(n−m) < q2n−2m, and so 2m(n−m) < 2n−2m
implying that m < 1, which is impossible.

Let now H be in C8. In this case H is a classical group. Then by [18, Propositions
4.8.3, 4.8.4 and 4.8.5], H0 is isomorphic to one of the following groups:
ˆSp2m(q)· gcd(m, q − 1) with n = 2m > 4,
PSO2m+1(q) with m > 1 and q odd,
PSOǫ

2m(q) with m > 2, q odd and ǫ = ±,
ˆSUn(q

1
2 )· gcd(n, q

1
2 − 1) with n > 3 and q a square.

Define

g(q) =



















q2m
2−m−3, if H0 =

ˆSp2m(q)· gcd(m, q − 1),

q2m
2+3m−1, if H0 = PSO2m+1(q),

q2m
2+m−2, if H0 = PSOǫ

2m(q),

q
n2

−4
2 , if H0 =

ˆSUn(q
1
2 )· gcd(n, q

1
2 − 1).

We now apply [5, Corollaries 4.2-4.3] and conclude that v > g(q) in relevant cases
for H0. Moreover, by Lemma 3.3, we conclude that r 6 qs + 1, where s = n
in the unitary case and s = m in all other cases. Since v < r2, it follows that
g(q) < (qs + 1)2, and hence we obtain the following possibilities:

(i) ˆSp4(q)· gcd(2, q − 1),

(ii) ˆSU3(q
1
2 )· gcd(3, q

1
2 − 1).

If (i) holds, then v = q2(q3 − 1)/ gcd(2, q − 1) and r 6 q2 + 1, and so Lemma 2.5(c)
yields q2(q3 − 1)/ gcd(2, q − 1) 6 λv < r2 6 (q2 + 1)2, that is to say, q2(q3 − 1) <

gcd(2, q−1)(q2+1)2, which is impossible. If (ii) holds, then v > q
3
2 (q+1)(q

3
2 −1)/3

with q a square. Since r 6 q
3
2 + 1, it follows that v > r2, which is a contradiction.

(2) Let H be a C2-subgroup of type GLn/t(q) ≀ Symt with t = 2, 3. Then by [18,
Proposition 4.2.9], we have that H0

∼= ˆSLm(q)
t·(q − 1)t−1·Symt with n = mt.

It follows from (3.1) that v > qn(n−m)/(t!). Note here that r is prime and 2m < n.
Then by Lemma 3.3, we conclude that r 6 t(qm − 1), and so Lemma 2.5(c) implies

that qn(n−m)/(t!) 6 λv < r2 6 t2(qm − 1)2 < t2q2m. Thus qm
2t(t−1)−2m < t3(t − 1)!,

where t = 2, 3. This inequality holds only for (m, t, q) = (1, 3, 2) in which case we
have that r 6 3 and v = 28, and so v = 28 > 9 > r2, which is a contradiction.
(3) LetH be a C3-subgroup of type GLn/t(q

t) with t = 2, 3. Then by [18, Proposition
4.3.6], we have that H0

∼= ˆSLm(q
t)·(qt − 1)(q − 1)−1·t with t prime and n = mt.

By (3.1), we have that v > qn(n−m)/2. Since r is prime, Lemma 3.3 implies that
r 6 qmt − 1, and so Lemma 2.5(c) yields qn(n−m)/2 6 λv < r2 6 (qmt − 1)2 < q2mt.
This forces n(n − m) < 4n, and so m(t − 1) = n − m < 4. This inequality holds
only for (m, t) ∈ {(1, 2), (1, 3), (2, 2), (3, 2)} and considering the fact that n > 3, we
have (m, t) ∈ {(1, 3), (2, 2), (3, 2)}. In these cases, the groups X and H0 are as in
Table 6, and in each case we observe that the condition v < r2 does not hold except
for X = PSL3(q) and H ∩X ∼= ˆ(q2+ q+1):3. In which case v = q3(q2−1)(q−1)/3,
and r divides q2 + q + 1. It follows from Lemma 2.5(c) that q3(q2 − 1)(q − 1)/3 6

λv < r2 6 (q2+q+1)2, and so q3(q2−1)(q−1) < 3(q2+q+1)2. This inequality holds
only for q = 2, 3. Since (n, q) 6= (3, 2), we obtain q = 3 in which case X = PSL3(3),
H∩X ∼= 13:3 and v = 144. Since r divides both v−1 = 143 and |H∩X|3′ which is a
divisor of 13, it follows that r = 13. We now apply Lemma 2.5(a)-(b) and conclude
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Table 6. Some large maximal C3-subgroups of some linear groups.

Line X H ∩X v ur

1 PSL3(q)
ˆ(q2 + q + 1):3 q3(q2 − 1)(q − 1)/3 q2 + q + 1

2 PSL4(q)
ˆSL2(q

2)·(q + 1)·2 q4(q3 − 1)(q − 1)/2 q2 + 1

3 PSL6(q)
ˆSL3(q

2)·(q + 1)·2 q6(q5 − 1)(q3 − 1)(q − 1) q5 − 1

that b = 156, k = 12 and λ = 1 but none of PSL3(3) and PSL3(3):2 has subgroups
of index 156, which is a contradiction.

(4) Let H be a C5-subgroup of type GLn(q0) with q = qt0 and t = 2, 3. Then by [18,
Proposition 4.5.3], we see that H0

∼= ˆSLn(q0)· gcd(n, q− 1/(q0 − 1)) with q = qt0 and
t = 2, 3.

By [5, Corollary 4.3], we have that v > q
m(n2

−2)−n2+1
0 , and since r 6 qn0 − 1, the

inequality v < r2 forces that n = 3 and t = 2. In this case, v = q30(q
3
0 + 1)(q20 +

1)/ gcd(3, q0 + 1), and this case can also be ruled out as v > q60 > r2. �

Proposition 3.7. Let D be a nontrivial 2-design with prime replication number r.
Suppose that G is an automorphism group of D of almost simple type with socle
X. If G is flag-transitive, then the socle X cannot be PSUn(q) with n > 3 and
(n, q) 6= (3, 2), (4, 2).

Proof. Let H0 = H ∩ X , where H = Gα for some point α of D. Then by Lemma
3.3, Proposition 3.4, and [5, Theorem 2.7 and Proposition 4.17], one of the following
holds:

(1) H ∈ C1;
(2) H is a C2-subgroup of type GUn/t(q) ≀ Symt, where t = 2, or t = 3 and q ∈

{2, 3, 4, 5, 7, 9, 13, 16}, or 4 6 n = t 6 11 and q ∈ {2, 3, 4, 5};
(3) H is a C2-subgroup of type GLn/2(q

2);
(4) H is a C3-subgroup of type GUn/3(3

3) with n odd;
(5) H is a C5-subgroup of type GUn(q0) with q = q30 ;
(6) H is a C5-subgroup of type Spn(q) or O

ǫ
n(q) with ǫ∈{◦,−,+}.

We analyse each of these possible cases separately and arrive at a contradiction in
each case.

(1) Let H be in C1. Then H is reducible and it is either a parabolic subgroup Pm,
or the stabiliser Nm of a nonsingular subspace.

Assume first that H0
∼= Pm, for some 2m 6 n. Then since n > 3, by Lemma 3.2,

we have that v > q2 + q + 1. On the other hand, Lemma 2.3 says that there is a
subdegree which is a power of p. Since r is prime, Lemma 2.5(d) implies that r = p,
and this is impossible by Lemma 3.3.
Assume now that H0

∼= Nm with 2m < n. Then by [18, Proposition 4.1.4], we
have that

H0
∼= ˆSUm(q)×SUn−m(q)·(q + 1).

Here by (3.1), we have that v > qm(n−m). Note here that r is prime and 2m < n.
Thus by Lemma 3.3, we conclude that r divides |H0|p′, and so does qi − (−1)i, for
some 1 6 i 6 max{m,n−m} = n−m. Therefore, r 6 qn−m−1 + 1. It follows from
Lemma 2.5(c) that qm(n−m) 6 λv < r2 6 (qn−m−1 + 1)2 < q2n−2m. Thus qm(n−m) <
q2n−2m, and so m < 2. Thus m = 1 in which case v = qn−1(qn−(−1)n)/(q + 1)
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and r 6 qn−2 + 1. Therefore Lemma 2.5(c) implies that qn−1(qn − (−1)n)/(q+ 1) 6
λv < r2 6 (qn−2 + 1)2. Thus qn−1(qn − (−1)n) < (q + 1)(qn−2 + 1)2 and since
(q + 1)(qn−2 + 1)2 < 27q2n−3/8, we conclude that qn − (−1)n < 27qn−2/8, which is
a contradiction.

(2) Let H be a C2-subgroup of type GUn/t(q)≀Symt. Then by [18, Proposition 4.2.9],
we have that

H0
∼= ˆSUn/t(q)

t·(q + 1)t−1·Symt.

It follows from (3.1) that v > qn
2(t−1)/2t/(t!). Note by Lemma 3.3 that r divides t or

qn/t − (−1)n/t.
If t = 2, then r must divide qn/2 − (−1)n/2, and so r 6 qn/2+1. So Lemma 2.5(c)

implies that qn
2/4 < 2v < 2r2 6 2(qn/2 + 1)2 < 2qn+2, then qn

2
< 24 · q4n+8, and this

is true only for n = 4. In this case, v = q4(q2 + 1)(q2 − q + 1)/2 and r 6 q + 1, and
hence r2 < v, which is contradiction.
If t = 3, then either r = 3, or r is a divisor of qn/3 − (−1)n/3. In the former case,

as v < r2, we conclude that qn
2
< 543, and since n is a multiple of 3, we have that

(n, q) = (3, 3). Then v = 63, and so v > r2 = 9, which is a contradiction. Assume

now that r divides qn/3 − (−1)n/3. Since v < r2, it follows that qn
2
< 63(qn/3 + 1)6,

and this inequality holds only when n = 3 and q ∈ {3, 4, 5, 7}. In these cases, by
inspecting the index of maximal subgroups of X = PSU3(q) for q ∈ {3, 4, 5, 7}, we
observe that v < r2 does not hold.
If 4 6 n = t 6 11 and q ∈ {2, 3, 4, 5}, then r divides n! or q + 1. Therefore, as

v < r2, we conclude that qn(n−1) < (n!)2 · n4 or qn(n−1) < (n!)2 · (q + 1)4. These
inequalities hold, only when (n, q) = (4, 2) and (5, 2) for which v = 40 and v = 1408,
respectively. But here r = 3 or 5, respectively, and hence v > r2, which is a
contradiction.

(3) Let H be a C2-subgroup of type GLn/2(q
2). Then by [18, Proposition 4.2.4],

we have that H0
∼=ˆ(q − 1) · SLn/2(q

2)·2 with n even. Here by (3.1), we observe

that v > qn
2/4. As r divides |H0|p′ by Lemma 3.3, we have that r 6 qn/2 + 1. Then

Lemma 2.5(d) implies that qn
2/4 < λv < r2 6 (qn/2+1)2 < qn+2, and so n2 < 4n+8.

This inequality holds only for n = 4 in which case v = q4(q3 + 1)(q + 1)/2 and
r 6 q2 + 1, which implies that v > r2, a contradiction.

(4) Let H be a C3-subgroup of type GUn/3(3
3) with n odd. Then by [18, Proposition

4.3.6], we have thatH0
∼=ˆSUn/3(3

3)·21, but then the inequality |X| < |H0|·|H0|
2
3′ does

not hold, which is a contradiction.

(5) Let H be a C5-subgroup of type GUn(q0) with q = q30. We observe by [18,

Propositions 4.5.3], [5, Lemma 4.2 and Corollary 4.3] and (3.1) that v > q2n
2−9

0 .
We moreover have by Lemma 3.3 that r divides |H0|p′, and so does qi0 − (−1)i,
for some 1 6 i 6 n. Therefore, r 6 qn0 + 1, and so Lemma 2.5(c) implies that

q2n
2−9

0 6 λv < r2 6 (qn0 + 1)2 < q2n+2
0 . Thus q2n

2−9
0 < q2n+2

0 , and so 2n2 < 2n + 11,
which is impossible.

(6) Let H be a C5-subgroup of type Spn(q) or Oǫ
n(q). Then by [18, Propositions

4.5.5 and 4.5.6], H0 isomorphic to one of the following:

(i) H0
∼=PSO◦

n(q);
(ii) H0

∼=PSOǫ
n(q)·2 with q odd and ǫ = ±;

(iii) H0
∼=ˆSpn(q)· gcd(

n
2
, q + 1) with n even.
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Assume first that H0
∼=PSO◦

n(q) with n odd. Then [5, Lemma 4.2 and Corollary 4.3]

and (3.1) imply that v > q(n
2+n−6)/2. Note by Lemma 3.3 that r 6 q(n−1)/2 + 1, and

so Lemma 2.5(c) implies that q(n
2+n−6)/2 < (q(n−1)/2 + 1)2. This inequality does not

hold for n = 3, and if n > 5, it follows that q(n
2+n−6)/2 < qn+1, and so n2 < n + 8,

which is impossible.

Assume now that H0
∼=PSOǫ

n(q)·2 with q odd and ǫ = ±. Then [5, Lemma 4.2

and Corollary 4.3] and (3.1) imply that v > q(n
2+n−6)/2 and by Lemma 3.3, we have

that r 6 qn/2 + 1. Again, applying Lemma 2.5(c), we conclude that n2 < n + 10,
which is impossible.
Assume finally that H0

∼=ˆSpn(q)· gcd(
n
2
, q+1) with n even. By the same argument

as above, v > q(n
2
−n−6)/2 and r 6 qn/2 + 1, and so n2 < 3n + 10, which is true for

n = 4. In this case, v = q2(q3+1)/ gcd(2, q+1) and r 6 q2+1. By Lemma 2.5(c), we
have that q2(q3+1) = gcd(2, q+1)·v < gcd(2, q+1)·r2 6 gcd(2, q+1)·(q+1)2 implying
that q2(q3 + 1) < gcd(2, q + 1) · (q2 + 1)2. If q is even, then q2(q3 + 1) < (q2 + 1)2,
and if q is odd, then q2(q3 + 1) < 2(q2 + 1)2. But both inequalities do not hold. �

Proposition 3.8. Let D be a nontrivial 2-design with prime replication number r.
Suppose that G is an automorphism group of D of almost simple type with socle X.
If G is flag-transitive, then the socle X cannot PSpn(q)

′ with n > 4 even.

Proof. Let H0 = H ∩ X , where H = Gα for some point α of D. If q = 2, then
X = PSp4(2)

′ ∼= Alt6 and this case has been treated in Proposition 3.1. If q = 4,
than X = PSp4(4)

′, and so the possibilities for H0 can be read off from [11, p.
44], and so it is easily to check the inequality v < r2, and conclude that the only
possible case is H0

∼= PSL2(16):2 for r = 17. Since k is a divisor of vr = 17 ·120 and
k 6 r, we see that k ∈ {2, 3, 4, 5, 6, 8, 10, 12, 15, 17}. Since also λ(v − 1) = r(k − 1),
we have that (v, b, r, k, λ) is either (120, 255, 17, 8, 1), or (120, 136, 17, 15, 2). The
former case does not occur due to [24]. The latter case can be ruled out by GAP
[16]. Therefore, in what follows, we can assume that (n, q) 6= (4, 2) and (4, 4). By
Lemma 3.3, Proposition 3.4, and [5, Theorem 2.7 and Proposition 4.22], one of the
following holds:

(1) H ∈ C1 ∪ C8;
(2) H is a C2-subgroup of type Spn/t(q) ≀ Symt with t ∈ {2, 3, 4, 5};
(3) H is a C2-subgroup of type GLn/2(q);
(4) H is a C3-subgroup of type Spn/t(q

t) with t = 2, 3 or GUn/2(q);

(5) H is a C5-subgroup of type Spn(q0) with q = q20.

We now analyse each of these possible cases separately.

(1) Let H be in C1. Then H is parabolic or stabilises a nonsingular subspace of V .

Assume first that H∼=Pm, the stabiliser of a totally singular m-subspace of V ,
with 2m 6 n and m even. Since n > 4, by Lemma 3.2, we have that v > q2 + q+1.
By Lemma 2.3, there is a subdegree which is a power of p, and since r is prime,
Lemma 2.5(d) implies that r = p, which is a contradiction by Lemma 3.3.
Assume now that H0

∼=Nm, the stabiliser of a nonsingular m-subspace U of V with
m < n and m even. Then by [18, Proposition 4.1.3], we have that

H0
∼=ˆSpm(q)×Spn−m(q).

It follows from (3.1) that v > qm(n−m). By Lemma 3.3, r divides |H0|p′, and so
does q2i − 1, for some 1 6 i 6 max{m

2
, n−m

2
}=n−m

2
. Therefore, r 6 q(n−m)/2 +1. We



FLAG-TRANSITIVE BLOCK DESIGNS WITH PRIME REPLICATION NUMBER 15

now apply Lemma 2.5(c) and conclude that qm(n−m) 6 λv < r2 6 (q(n−m)/2 + 1)2 <
qn−m+2. Thus m(n−m) < n−m+ 2, which is impossible.

Let now H be in C8. Then by [18, Proposition 4.8.6], we have that H0
∼= Oǫ

n(q)
with q even. In this case, v = qm(qm + ǫ)/2, where n = 2m. It follows from proof of
[20, Proposition 1] that X has the subdegrees (qm−ǫ1)(qm−1+ǫ1) and qm−1(qm−ǫ1).
By Lemma 2.5(d), the parameter r divides c(qm−ǫ1), where c = gcd(q−2, qm−1+ǫ1),
and hence Lemma 2.8 implies that r is divisible by the index of a parabolic subgroup
in Oǫ

n(q) and this is clearly not possible.

(2) Let H be a C2-subgroup of type Spn/t(q) ≀Symt with t ∈ {2, 3, 4, 5}. Then by [18,

Proposition 4.2.10], we have that H0
∼= ˆSpn/t(q) ≀ Symt.

It follows from (3.1) that v > qm
2t(t−1)/2/(t!) with n = mt and m even. Lemma 3.3

implies that r 6 t(qm/2+1), and so by Lemma 2.5(d), we conclude that qm
2t(t−1)/2 6

(t!) · v < (t!) · r2 6 t2 · (t!) · (qm/2+1)2. Therefore qm
2t(t−1)/2 < t2 · (t!) · (qm/2+1)2. If

(m, t) = (2, 2), then we have that q = 2 or 3, and so X is isomorphic to PSp4(2)
′ ∼=

Alt6 or PSp4(3)
∼= PSU4(2), which are not the case by Propositions 3.1 and 3.7. If

(m, t) 6= (2, 2), then qm
2t(t−1)/2 < t2 · (t!) · (qm/2 + 1)2 < t2 · (t!) · qm+2, and hence

qm
2t(t−1)−2m−4 < t4 · (t!)2, where t ∈ {2, 3, 4, 5}. This inequality does not hold if

(m, t) 6= (2, 2), which is a contradiction.

(3) Let H be a C2-subgroup of type GLn/2(q). Then by [18, Proposition 4.2.5], we
have that H0

∼= ˆGLm(q)·2 with n = 2m.
Here by 3.1, we have that v > qm(m+1)/2, and by Lemma 3.3, we conclude that

r 6 qm − 1, and so Lemma 2.5(d) implies that qm(m+1) 6 2v < 2r2 6 2(qm − 1)2 <
2q2m. Thus m2 < m+ 1, which is impossible.

(4) Let H be a C3-subgroup of type Spn/2(q
2), Spn/3(q

3) or GUn/2(q). Then by [18,
Proposition 4.3.7 and 4.3.10], H0 isomorphic to one of the following subgroups:

(i) ˆGUm(q)·2 with m = n/2 and q odd;
(ii) PSpm(q

t)·t with m = n/t even and t = 2, 3.

Assume first that H0
∼= ˆGUm(q)·2 with m = n/2 and q odd. Note that r is odd

prime. Then by Lemma 3.3, we note that r is coprime to p, and so by Lemma 2.8,
the stabiliser of a block under H0 is contained in a parabolic subgroup of GUm(q),
and since the indices of parabolic subgroups of unitary groups of odd characteristic
are even, it follows that r is even but here v − 1 is odd, which is a contradiction.

Assume now thatH0
∼= PSpm(q

t)·t withm = n/t even and t = 2, 3. By [5, Lemma

4.2 and Corollary 4.3] and (3.1), we have that v > qm
2t(t−1)/2/4t, where t = 2, 3.

Note by Lemma 2.5(d) that r 6= 2, 3 unless (m, t, q) = (2, 2, 2) in which case X =
PSp4(2)

′ ∼= Alt6 and this case has been treated in Proposition 3.1. Then Lemma 3.3
implies that r 6 qmt/2 + 1. We again apply Lemma 2.5(d) and conclude that

qm
2t(t−1)/2 6 4tv < 4tr2 6 4t(qmt/2 + 1)2 < 4tqmt+2, and so qm

2t(t−1) < 16t2q2mt+4,
where t = 2, 3. This inequality holds only for (m, t) = (2, 2). In this case, X =
PSp4(q)

′ and H0 = PSp2(q
2)·2 with v = q2(q2−1)/2 and q 6= 2, 4. According to [24,

p. 329], the nontrivial subdegrees are

(q2 + 1)(q − 1), q(q2 + 1)/2 and q(q2 + 1) if q is odd, and

(q2 + 1)(q − 1) and q(q2 + 1) if q is even.

Since r is a prime divisor of q2 + 1 and r2 > v = q2(q2 − 1)/2, it follows that
2(q2 + 1)2 > s2q2(q2 − 1), where rs = q2 + 1, for some positive integer s, but this



16 S.H. ALAVI, M. BAYAT, J. CHOULAKI, AND A. DANESHKHAH

is true only when s = 1. Hence r = q2 + 1 is a Fermat prime and q = 2a. We now
apply Lemma 2.5(a) and conclude that k = 1 + λ(q2 − 2)/2, and since k 6 r, we
must have λ(q2 − 2) 6 2q2. Excluding the case where X = PSp4(2)

′ ∼= Alt6, this
inequality implies that λ = 1, 2. By [24], we can assume that λ = 2. In this case by
Lemma 2.5(a)-(b), we have that k = q2 − 1 and b = q2(q2 + 1)/2.
Let K = PSp2(q

2) ∼= PSL2(q
2). Then by Lemma 2.8, KB is contained in a

parabolic subgroup P of index q2 + 1 in K and |K : P | = r = q2 + 1. Therefore, P
is a subgroup of H of index 2(q2+1). Since |H : HB| = r = q2+1 is prime and |H :
K| = 2, K does not contain HB. Therefore, H = KHB, and so q2+1 = |H : HB| =
|K : KB| = |K : P | · |P : KB| = (q2+1) · |P : KB|. This implies that KB = P ∼= q2 :
(q2 − 1). Since b = q2(q2 + 1)/2, we conclude that |G : GB| = q2(q2 + 1)/2, and so
|X : XB| = q2(q2+1)/(2c) for some divisor c of |Out(X)| = 2a = 2t+1. By inspecting
maximal subgroups of X ∼= PSp4(q) recorded in [7, Table 8.14], we observe that the
only maximal subgroups of X whose indices divide |X : XB| = q2(q2 + 1)/(2c) are
Sp2(q)

2 : 2 and SO+
4 (q), both of index q2(q2 + 1)/2, and this implies that c = 1 and

XB is maximal in X and is isomorphic to Sp2(q)
2 : 2 or SO+

4 (q). Let now R be a
Sylow r-subgroup of X , where r = q2 + 1 is a Fermat prime. We now apply [27,
Theorem 1.3.4] and observe that q2+1 divides |R : RB|, and so R is semiregular, and
hence C := CX(R) is transitive on the block set B. Therefore, X = XBC. Suppose
that M is a maximal subgroup of X containing C. Then X = XBM , and since
XB is maximal in X , the possible subgroups XB and M can be read off [21, Table
1], and so excluding the cases where q = 2, 4 and the fact that XB is Sp2(q)

2 : 2
or SO+

4 (q), we have that (XB,M) is (SO+
4 (q),PSp2(q

2)·2), (PSp2(q) ≀ 2, SO
−

4 (q)) or
(SO+

4 (q),
2B2(q)). The latter case can be ruled out as 2B2(q) has no subgroups of

order q2 + 1. If M = PSp2(q
2)·2 = H0, then since by [7, p. 364], the subgroup R

is self-centralising in H0, it follows that CB = C ∩ XB = R ∩ XB = RB = 1, and
hence q2(q2 − 1)2 = |X : R| = |X : C| = |XB : CB| = |XB| = 2q2(q2 − 1)2, which
is a contradiction. If M = SO−

4 (q)
∼= PSL2(q

2):2, then by inspecting the maximal
subgroups of PSL2(q

2) and the fact that 2(q2 + 1) is a divisor of the size of the
normalizer N of R in X , we conclude that N = D2(q2+1):2. Note also by [7, p. 364]
that NH0(R) = (q2+1) : 4. Then N = NH0(R), this again implies that C = Cα = R,
and so |CB| = 1, which has been already shown that is not the case.

(5) Let H be a C5-subgroup of type Spn(q0) with q = q20. In this case by [18,
Proposition 4.5.4], we have that H0

∼= PSpn(q0)·c with q = q20 and c 6 2, (with
c = 2 if and only if q is odd).

It follows from (3.1) that v > q
n(n+1)/2
0 /2, and so Lemma 3.3 implies that r 6

q
n/2
0 + 1. Thus by Lemma 2.5(d), we have that q

n(n+1)
0 < 4q2n+4

0 , and so n2 < n+ 6,
which is impossible. �

Proposition 3.9. Let D be a nontrivial 2-design with prime replication number r.
Suppose that G is an automorphism group of D of almost simple type with socle X.
If G is flag-transitive, then the socle X cannot be PΩǫ

n(q) with ǫ ∈ {◦,−,+}.

Proof. Let H0 = H ∩ X , where H = Gα for some point α of D. Then by Lemma
3.3, Proposition 3.4 and [5, Theorem 2.7 and Proposition 4.23], one of the following
holds:

(1) H ∈ C1;
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Table 7. Some large maximal C2-subgroups of some orthogonal groups.

Class X H ∩X lv ur Condition

C2 PΩ+
n (q) Ω±

n/2
(q)2·2f q(n

2
−24)/4 q(n+4)/4 f = 2, 3

C2 PΩ+
n (q) Ωn/2(q)

2·4 q(n
2
−20)/4 q(n+2)/4 n

2
q is odd

C2 PΩ−
n (q) Ωn/2(q)

2·4 q(n
2
−20)/4 q(n+2)/4 n

2
q is odd

C2 PΩ+
n (q) GLn/2(q) q(n

2
−2n)/4/2 qn/2 − 1

C5 PΩn(q) Ωn(q0)·2 q
n(n−1)/2
0 /4 q

n/2
0 + 1 n is odd and q = q20

C5 PΩ+
n (q) PΩǫ′

n (q0)·2
c q

n(n−1)/2
0 /4 q

n/2
0 + 1 ǫ′ = ±, c 6 2 and q = q20

C2 PΩ+
8 (2) Ω−

2 (2)2·24 28·33·52·7 3
C2 PΩ−

10(2) Ω−

2 (2)5·25 215·3·52·7·11·17 3
C2 PΩ−

12(2) Ω−

4 (2)2·23 223·34·5·7·11·13·17·31 5
C2 PΩ7(3) 26·Alt7 37·13 7
C2 PΩ7(5) 26·Alt7 32·58·13·31 7
C2 PΩ+

8 (3) 26·Alt8 310·5·13 7
C2 PΩ9(3) 27·Alt9 2·312·5·13·41 7
C2 PΩ−

10(3) 28·Alt10 316·13·41·61 7
C2 PΩ11(3) 29·Alt11 2·321·11·13·41·61 11
C2 PΩ+

12(3) 210·Alt12 225·7·11·132·41·61 11
C2 PΩ13(3) 211·Alt13 2·331·5·7·11·13·41·61·73 13

(2) H is a C2-subgroup of type Oǫ′

n/t(q) ≀ Symt and one of the following holds:

(a) t = 2;
(b) (n, t, q, ǫ, ǫ′) = (12, 3, 2,−,−), (10, 5, 2,−,−) or (8, 4, 2,+,−);
(c) n = t and either (n, q) = (7, 5), or 7 6 n 6 13 and q = 3;

(3) H is a C2-subgroup of type GLn/2(q) with ǫ = +;

(4) H is a C3-subgroup of type Oǫ′

n/t(q
2) or GUn/2(q);

(5) H is a C5-subgroup of type Oǫ′

n (q0) with q = q20.

If H is a Ci-subgroup, for i = 2, 5, then we apply [18, Propositions 4.2.11, 4.2.14,
4.2.15, 4.5.8 and 4.5.10], and obtain the pairs (X,H ∩X) listed in Table 7. For each
such H ∩X , by [5, Lemma 4.2 and Corollary 4.3], (3.1) and Lemma 3.3, we obtain
a lower bound lv of v and an upper bound ur of r as in the fourth and fifth column
of Table 7, and then we easily observe that lv > u2

r, and this violates Lemma 2.5(c).
This leaves the Ci-subgroups for i = 1, 3, which we analyse each case separately.

(1) Let H be in C1. Then H stabilises a totally singular i-subspace with 2i 6 n or
a non-singular subspace.

Assume first that H stabilises a totally singular i-subspace. If n is odd, we argue
exactly as in the symplectic case. Let now n = 2m and suppose that i < m. Then
H = Pi unless i = m− 1 and ǫ = +, in this case, H = Pm,m−1. Note by Lemma 2.3
that there is a subdegree which is a power of p (except in the case where ǫ = +, n/2
is odd and H = Pm or H = Pm−1). Then Lemma 2.5(d) implies that r = p but this
is impossible by Lemma 3.3.
Assume now that H = Pm when X = PΩ+

2m(q). Note here that Pm and Pm−1 are
the stabilisers of totally singular m-spaces from the two different X-orbits. Then
by [18, Proposition 4.1.20] and (3.1), we have that v > qm(m−1)/2. We conclude by
[24, p. 332] that G has a subdegree of power p when m is even. This case again
can be ruled out by Lemma 3.3. This leaves the case where m > 5 is odd in which
case by [24, p. 332], G has a subdegree dividing qm − 1. Lemma 2.5(d) implies that
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r 6 qm − 1, and so by Lemma 2.5(c), qm(m−1)/2 6 v < r2 6 (qm − 1)2 < q2m, then
qm(m−1)/2 < q2m, that is to say, m2 < 5m, which is impossible.

Assume finally that H is the stabiliser of a non-singular i-subspace. If i = 1, then
by (3.1), we have that v = qm(qm + δ1)/2 if n = 2m+ 1 is odd and v = qm−1(qm −
δ1)/ gcd(2, q−1) if n = 2m is even. According to [24, p.331-332], r 6 (qm− δ1)/2 if
n is odd and r 6 (qm−1 +1)/ gcd(2, q− 1) if n is even, and so Lemma 2.5(c) implies
that qm(qm + δ1) < q2m if n is odd and qm−1(qm − δ1) < q2m−2 + 2qm−1 + 1 if n
is even. In both cases, we conclude that r2 < v, which is a contradiction. Hence
i > 2 and by [18, Proposition 4.1.6] and (3.1), we have that v > qi(n−i)/4. It follows
from [18, Proposition 4.1.6] and Lemma 3.3 that r 6 q(n−i)/2 + 1. So Lemma 2.5(c)
implies that qi(n−i) < 4v < 4r2 6 4(q(n−i)/2) + 1)2 < qn−i+4. Thus (i− 1)(n− i) < 4,
which is impossible.

(4) Let H be a C3-subgroup of type Oǫ′

n/2(q
2) or GUn/2(q). Then by [18, Propositions

4.3.14-4.3.18 and 4.3.20], one of the following holds:

(i) H ∼= NG(Ω
ǫ′

n/2(q
2)) with ǫ′ = ± if n/2 is even and empty otherwise;

(ii) H ∼= NG(GUn/2(q)) with ǫ = (−)n/2.

Assume that H ∼= NG(Ω
ǫ′

n/2(q
2)) with ǫ′ = ± if n/2 is even and empty otherwise.

If q is odd, we apply the Tits Lemma 2.2 to H , to see that an index of a parabolic
subgroup of H divides r, it then follows that r is even, but we see that v is even,
and which is a contradiction with the fact that r dividing v − 1. Hence q is even
and therefore also n/2 is even. Then (3.1) implies that v > q(n

2+8n−24)/8/4. On the
other hand Lemma 3.3 implies that r 6 qn/2 + 1. So by Lemma 2.5(c), we conclude

that q(n
2+8n−24)/8 < 4v < 4r2 6 4(qn/2 + 1)2 < qn+4, and this yields n2 < 56, which

is a contradiction with the fact that n > 8.
Assume finally that H ∼= NG(GUn/2(q)) with ǫ = (−)n/2. Then by (3.1), we have

that v > q(n
2−2n)/4/2. Also Lemma 3.3 implies that r 6 qn/2 + 1. Therefore by

Lemma 2.5(c), we conclude that q(n
2
−2n)/4 < 2v < 2r2 6 2(qn/2 + 1)2 < qn+3, and

this yields n2 < 6n+ 12, which is a contradiction. �

3.3. Exceptional groups. In this section, we suppose that D is a nontrivial 2-
design with prime replication number r and G is an almost simple automorphism
group G whose socle X is a finite exceptional simple group of Lie type. Here, it is
convenient to adopt the Lie notation for groups of Lie type, so for example, we will
write A−

n−1(q) in place of PSUn(q), D
−

n (q) instead of PΩ−

2n(q), and E−

6 (q) for
2E6(q).

Also recall that the type of a subgroup H of G provides an approximate description
of the group theoretic structure of H .

Proposition 3.10. There is no nontrivial 2-design with prime replication number
r admitting a flag-transitive almost simple automorphism group whose socle is an
exceptional finite simple group of Lie type.

Proof. Suppose that D is a nontrivial 2-design with prime replication number r. Let
G be a flag-transitive almost simple automorphism group of D with simple socle X ,
where X is a finite exceptional simple group of Lie type. Then by Proposition 2.7
and Corollary 2.6, the point-stabliliser H = Gα is a large maximal subgroup of
G. Suppose first that H is a parabolic subgroup. If X 6= E6(q), then Lemma 2.3
implies that r divides λpc for some positive integer c, and so r = p, and hence by
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Table 8. Large maximal non-parabolic subgroups H of almost sim-
ple groups G with socle X a finite exceptional simple group of Lie
type.

X H ∩X lv ur Condition
2B2(q) 13:4 24·5·7 13 q=8

41:4 28·52·31 41 q=32
2B2(q

1/3) q(q2 + 1) q + 1
2G2(q) A1(q),

2G2(q
1/3) q2(q2 − q + 1) q + 1

3D4(q) (q2 + ǫq + 1)Aǫ
2(q), A1(q

3)A1(q), G2(q) q9 + 1 q3 + 1 ǫ=±
3D4(q

1/2) q6(q4 − q2 + 1)(q3 + 1) q4 + q2 + 1 q square
72:SL2(3) 29·33·13 7 q=2

2F4(q)
2B2(q) ≀ 2, B2(q):2,

2F4(q
1/3) q8(q6 + 1) q2 + 1

SU3(8):2, PGU3(8):2 226·52·7·132·37·109 19 q=8
A2(3):2, A1(25), Alt6·2

2, 52:4·Alt4 27·52 13 q=2
G2(q) Aǫ

2(q) q3(q3 + ǫ1)/2 q2 − ǫq + 1
2G2(q), A1(q)

2, G2(q
1/b) q3(q3 − 1)(q + 1) q3 + 1 b=2, 3

23·A2(2) 23·32·72 3 q=3
A1(13), J2 25·13 13 q=4
G2(2), 2

3·A2(2) 56·31 7 q=5
G2(2) 22·75·19·43 7 q=7
J1 23·32·5·115·37 19 q=11

F4(q) B4(q), D4(q), A1(q)C3(q), C4(q), C2(q
2), C2(q)

2, 2F4(q) q8(q8 + q4 + 1) q6 + 1
3D4(q), F4(q

1/b), A1(q)G2(q) q12(q8 − 1)(q4 + 1) q8 + q4 + 1 b = 2, 3
A3(3),

3D4(2), D4(2), Alt9−10, A3(3), J2, Sym6≀Sym2 211·7·13·17 13 q=2
Eǫ
6(q) A1(q)A

ǫ
5(q), F4(q), (q − ǫ1)Dǫ

5(q), C4(q) q12(q9 − ǫ1) q6 + 1 ǫ=±
(q2 + ǫq + 1)·3D4(q) q24(q5 − ǫ1) q8 + q4 + 1 (ǫ, q) 6=(−, 2)
(q − ǫ1)2·D4(q) q24(q12 − 1) q3 + 1 (ǫ, q) 6=(+, 2)
Eǫ′

6 (q
1/2) q36(q12 + 1) q9 + 1 ǫ=+, ǫ′=±

Eǫ
6(q

1/3) q36(q18 − ǫ1) q9 + 1 ǫ=±
Fi22, B3(3), Alt12, J3 216·32·7·13·19 13 (ǫ, q)=(−, 2)

E7(q) (q − ǫ1)Eǫ
6(q), A1(q)D6(q), A

ǫ
7(q), A1(q)F4(q), E7(q

1/b) q27(q14 − 1) q15 + 1 ǫ=±, b=2, 3
Fi22 246·32·72·19·31·43·73·127 13

E8(q) A1(q)E7(q), D8(q), A
ǫ
2(q)E

ǫ
6(q), E8(q

1/b) q56(q30 − 1) q15 + 1 ǫ=±, b=2, 3

inspecting the value of v in each case (see for example [4, Table 5]), we observe that
v > r2, which is a contradiction. If X = E6(q), then by Remark 2.4, we only need
to consider the cases where the Levi factor of H is of type A1A4 or D5 in which
cases r 6 q5 + 1 and v > q14 + 1, and hence v > r2, which is a contradiction.
Therefore, H is not parabolic, and hence we apply [4, Theorem 1.6] and obtain
H ∩ X as listed in the second column of Table 8. By the same manner as in the
classical groups, for each possible subgroup H , we can obtain a lower bound lv for v
and an upper bound ur for r, and then we easily observe that λv < r2 cannot hold.
For example, if X = F4(q) and H is of type Ω9(q), then by Lemma 2.5(c), we have
that q16 < q8(q8 + q4 + 1) = v < r2 6 (q4 + 1)2, and so q16 < (q4 + 1)2, which is
impossible. �
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