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Abstract

Storage archtectures ranging from minimum bandwidth regenerating encoded dis-
tributed storage systems to declustered-parity RAIDs can be designed using dense
partial Steiner systems in order to support fast reads, writes, and recovery of failed
storage units. In order to ensure good performance, popularities of the data items
should be taken into account and the frequencies of accesses to the storage units made
as uniform as possible. A proposed combinatorial model ranks items by popularity and
assigns data items to elements in a dense partial Steiner system so that the sums of
ranks of the elements in each block are as equal as possible. By developing necessary
conditions in terms of independent sets, we demonstrate that certain Steiner systems
must have a much larger difference between the largest and smallest block sums than
is dictated by an elementary lower bound. In contrast, we also show that certain dense
partial S(t, t+1, v) designs can be labeled to realize the elementary lower bound. Fur-
thermore, we prove that for every admissible order v, there is a Steiner triple system
(S(2, 3, v)) whose largest difference in block sums is within an additive constant of the
lower bound.
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1 Introduction

Distributed storage systems [14, 30], systems for batch coding [31], and multiserver private
information retrieval systems [17] have each employed combinatorial designs for data place-
ment, so that elements of the design are associated with data items and blocks with storage
units. In these contexts, the most common types of designs employed are t-designs and
t-packings. A t-(v, k, λ) packing is a pair (X,B), where X , the point set, is a v-set and and
B is a collection of k-subsets (blocks) of X such that every t-subset of X is contained in at
most λ blocks. The packing is a t-(v, k, λ) design when every t-subset of X is a subset of
exactly λ blocks. A t-(v, k, 1) design is a Steiner system, denoted by S(t, k, v). A 2-(v, 3, 1)
design is a Steiner triple system of order v, denoted by STS(v). When λ = 1, a t-(v, k, 1)
packing is also referred to as a partial S(t, k, v) or partial Steiner system.

When data items are of the same size, and data is placed on storage units using a t-design,
placement of data is uniform across the storage units. Indeed in t-(v, k, λ) design, every point

appears in exactly r =
λ(v

t
)

(k
t
)

blocks; this is the replication number of the design. In order to

understand why Steiner systems can be employed in data placement, we outline some exam-
ples. Large-scale distributed storage systems (DSS) must address potential loss of storage
units, while not losing data. One solution is to replicate each data item and distribute these
replicas among multiple storage nodes; systems such as the Hadoop Distributed File System
and the Google File System employ this strategy [8]. One can further mitigate information
loss by sensibly organizing the data. For example, exact Minimum Bandwidth Regenerating
(MBR) codes [14] consist of two subcodes, an outer MDS code along with an inner fractional
repetition code (FRC) that support redundancy and repairability, respectively. To make this
precise, an (n, k, d)-DSS with k ≤ d ≤ n consists of n storage nodes in which a read can
be accomplished by access to k nodes and a failed node recovered by access to d nodes. A
fractional repetition code C [14] with repetition degree ρ for an (n, k, d)-DSS is a collection
C of n subsets V1, V2, . . . , Vn of a set V , |V | = v, and of cardinality d each, satisfying the
condition that each element of V belongs to exactly ρ different sets in the collection. The
rate of the FRC is minI⊂[n],|I|=k | ∪i∈I Vi|. To optimize the rate and ensure correct repetition
and repair, we require that |Vi ∩ Vj | ≤ 1 whenever i 6= j. When ρ = v−1

d−1
, such an FRC is a

Steiner 2-(v, d, 1) design with replication number ρ, where the set of (coded) file chunks V is
the set of points and the set of storage nodes {V1, . . . , Vn} is the set of blocks of the design.

Steiner systems also prove useful for applications needing both high data availability and
throughput, such as transaction processing. The storage systems underlying these appli-
cations require uninterrupted operation, satisfying user requests for data even in the event
of disk failure and repairing these failed disks, on-line, in parallel. Continuous operation
alone is not sufficient, because such systems cannot afford to suffer significant loss of perfor-
mance during disk failures. Declustered-parity RAIDS (DPRAIDs) are designed to satisfy
these requirements [7, 21]. Like standard RAIDs (short for “Redundant Arrays of Inexpen-
sive Disks”), DPRAIDs handle disk failure by using parity-encoded redundancy, in which
subsets of the stored data (called parity stripes) are XORed together to store a single-error-
correction code. Unlike standard RAIDs, however, all disks in the DPRAID cooperate in the
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reconstruction of all the data units on a single failed disk. One can represent a DPRAID as
a t-(v, k, λ) design (X,B), with X (|X| = v) being the set of disks in the array, and B being
the set of all parity stripes, each of size k. Then each disk occurs in the same number c of
parity stripes, guaranteeing that the reconstruction effort is distributed evenly.

Although designs arise naturally in balancing data placement, little attention has been
paid to the relative popularity of the data items. However, one can exploit popularity
information in order to improve the relative equality of access among the storage units. Dau
and Milenkovic [11] formulate a number of problems to address access balancing, by labeling
the points of the underlying design. In order to introduce their problems and results, we
first present more definitions and known results concerning designs.

Although storage systems handle “hot” (frequently accessed) and “cold” (infrequently
accessed) data categories differently, they do not take the long-term popularity of the data
items within each category into account, which may result in unbalanced access frequencies
to the storage units. Access balancing can be achieved in part by selecting an appropriate
packing or design, and by appropriate association of data items with elements of the packing
or design. Dau and Milenkovic [11] propose a combinatorial model that ranks data items
by popularity, and then strives to ensure that the sums of the ranks of the data elements in
each block are not too small, not too large, or not too different from block to block. In §2 we
summarize their model, state elementary bounds on various block sums, and provide a small
but important improvement in the lower bound on the smallest possible difference among
the block sums in a Steiner triple system. In §3 we establish a close connection between such
block sums and the size of a maximum independent set of elements in the packing or design.
For certain designs, this connection can be used to show that, no matter how data items
are associated with the elements of the design, the block sums must be far from the values
dictated by the elementary bounds from §2. Indeed, in order to approach the elementary
bounds, one must select designs or packings with very specific properties; we pursue this
in §4. The described findings indicate the need to find specific S(t, k, v) designs, or at least
‘dense’ t-(v, k, 1) packings, to match the elementary bounds more closely. In §5, we explore
a construction of t-(v, t+ 1, 1) packings that asymptotically match the bounds and contain
almost the same number of blocks as the full Steiner system S(t, t + 1, v). Completion of
the dense t-(v, t + 1, 1) packings to a Steiner system S(t, t + 1, v) appears problematic for
general t; doing so without dramatically changing the block sums appears to be even more
challenging. Nevertheless, in §6, we pursue this to establish, for every admissible order v,
the existence of a Steiner triple system of order v whose difference in block sums is at most
an additive constant more than the elementary lower bound.

2 Point Labelings and Block Sums

Let D = (V,B) be a t-(v, k, λ) packing. A point labeling of D is a bijection rk : V 7→
{0, . . . , v − 1}; our interpretation is that rk maps an element to its rank by popularity. The
reverse rk of a point labeling rk has rk(i) = v − 1 − rk(i) for each i ∈ {0, . . . , v − 1}. With
respect to a specific point labeling rk, define sum(B, rk) =

∑

x∈B rk(x) when B ∈ B. Then
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define
MinSum(D, rk)=min(sum(B, rk) : B ∈ B);
MaxSum(D, rk)=max(sum(B, rk) : B ∈ B);
DiffSum(D, rk)=MaxSum(D, rk)−MinSum(D, rk);

RatioSum(D, rk)=MaxSum(D, rk)/MinSum(D, rk).

Following [11], one primary objective is to choose point labelings to maximize theMinSum

and/or to minimize one of the other three. Access balancing is concerned primarily with
minimizing the DiffSum or RatioSum; because of the similarity between these two entities we
often focus on the DiffSum. Let RD denote the set of all point labelings of D. Noting that
MaxSum(D, rk) = k(v − 1)−MinSum(D, rk), we define

MinSum(D) =max(MinSum(D, rk) : rk ∈ RD);
MaxSum(D) = k(v − 1)−MinSum(D);
DiffSum(D) =min(DiffSum(D, rk) : rk ∈ RD);

RatioSum(D) =min(RatioSum(D, rk) : rk ∈ RD).

If the storage system dictates the data layout and data items have the same size, we are
free to permute the data items; this is captured by the selection of the point labeling rk. If
we are also free to choose the t-(v, k, 1) packing that determines the data layout, we may
select a packing to improve the sum metrics defined. In order to capture this, let Dt,k,v,b

denote the set of all t-(v, k, 1) packings having exactly b blocks. Then define

MinSum(t, k, v, b)=max(MinSum(D) : D ∈ Dt,k,v,b);
MaxSum(t, k, v, b)= k(v − 1)−MinSum(t, k, v, b);
DiffSum(t, k, v, b)=min(DiffSum(D) : D ∈ Dt,k,v,b);

RatioSum(t, k, v, b)=min(RatioSum(D) : D ∈ Dt,k,v,b).

When b =
(v
t
)

(k
t
)
, the packing is a Steiner system S(t, k, v); in these cases we omit b from the

notation to get MinSum(t, k, v) and similarly for all other entities.

Theorem 2.1. [11] When D is a Steiner system S(t, k, v),

MinSum(D) ≤ MinSum(t, k, v) ≤ 1
2
(v(k − t + 1) + k(t− 2));

MaxSum(D) ≥ MaxSum(t, k, v) ≥ 1
2
(v(k + t− 1)− kt);

DiffSum(D) ≥ DiffSum(t, k, v) ≥ (v − k)(t− 1);

RatioSum(D)≥RatioSum(t, k, v)≥ v(k+t−1)−kt
v(k−t+1)+k(t−2)

.

When k = t + 1, MinSum(D) ≤ (v − 1) +
(

t
2

)

, MaxSum(D) ≥ t(v − 1)−
(

t
2

)

, DiffSum(D) ≥
(t− 1)(v − t− 1), and RatioSum(D) ≥ RatioSum(t, t+ 1, v) ≥ t(v−1)−(t

2)
(v−1)+(t2)

.

When in addition t = 2 (D is a Steiner triple system), the stronger bounds DiffSum(D) ≥
v and RatioSum(D) ≥ 2 hold.
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Theorem 2.1 provides bounds on the metrics across all Steiner systems S(t, k, v) and
all point labelings of them. In previous work, the focus has been on the MinSum (or
equivalently, by reversal, the MaxSum). Dau and Milenkovic [11] use the Bose [3] and
Skolem [20,32] constructions of Steiner triple systems to establish the existence of an STS(v)
D with MinSum(D) = v, the largest possible by Theorem 2.1 (These results are extended
by Brummond [4] for Kirkman systems). They accomplish this by specifying a particular
point labeling that meets the MinSum bound, but unfortunately the labeling chosen yields
a MaxSum near 8

3
v, a DiffSum near 5

3
v, and a RatioSum near 8

3
, far from the bounds of 2v,

v, and 2, respectively. The reversal of this labeling yields a MinSum far from optimal, the
same DiffSum, and a larger RatioSum.

One might hope to improve the DiffSum and RatioSum by choosing a different labeling or
by choosing a different Steiner system S(t, k, v). In Section 3, we show that certain S(t, k, v)s
cannot meet any of the bounds in Theorem 2.1.

2.1 Improved bounds for STSs

There is an STS(7) with MinSum = 6 and MaxSum = 13 with blocks 016, 024, 035, 123,
145, 256, and 346 (here we write abc for {a, b, c}). There is an STS(9) with MinSum = 9 and
MaxSum = 18 with blocks 018, 027, 036, 045, 126, 135, 147, 234, 258, 378, 468, and 567.
However, we establish that these are the only two Steiner triple systems with DiffSum = v,
and indeed the only STS(v) with RatioSum = 2 is the STS(9). We first prove a useful lemma.

Lemma 2.2. A 2-(x, 3, 1) packing on {0, . . . , x−1} with MaxSum x−1 has at most ⌊φ(x)/3⌋
triples, where

φ(x) =
x(x− 1)

4
−
⌊x

6

⌋

−







0 if x ≡ 0, 1, 4 (mod 6)
1
2
if x ≡ 2, 3 (mod 6)

1 if x ≡ 5 (mod 6)

Proof. We determine an upper bound on the number of pairs that could appear in triples of
the packing. In total there are

(

x
2

)

pairs; of these, exactly ⌊x
2
⌋ have sum equal to x− 1. For

each pair {a, b} with a+b < x−1, the pair {x−1−a, x−1−b} has sum 2x−2−(a+b) > x−1.
It follows that the number of pairs with sum at most x−1 is x2

4
when x is even, and x2−1

4
when

x is odd. Not all of these can appear together in a packing, as follows. Let a ∈ {0, . . . , ⌊x−2
3
⌋}.

Consider the pairs Pa = {{a, x − 1 − b} : a ≤ b ≤ 2a}. To place a pair of Pa in a triple of
sum at most x − 1, the third element must be from {0, . . . , a}, but it cannot be a. By the
pigeonhole principle, at least one pair of Pa cannot be in a triple of the packing, reducing
the number of pairs available by ⌊x+1

3
⌋. Simple calculations now show that the number φ(x)

of pairs available is as given in the statement.

Theorem 2.3. Let D be a Steiner triple system of order v ≥ 13. Then DiffSum(D) ≥ v + 1
and RatioSum(D) > 2.

Proof. Let v = 2x + 1, and consider an STS(2x + 1) D on elements {0, . . . , 2x}, noting
that x ≥ 6. Partition {0, . . . , 2x} into three classes V0 = {0}, Vs = {1, . . . , x}, and Vℓ =

5



{x + 1, . . . , 2x}. Suppose to the contrary that DiffSum(D) = v. Without loss of generality,
MinSum(D) ∈ {v − 1, v}, for otherwise we can apply the argument to the reversal of D.
Let m = MinSum(D) and M = MaxSum(D). Because m ≥ v − 1, all triples containing 0
contain one element of Vs and one of Vℓ, as follows. Consider the pair {0, w} with w ∈ Vs.
The third element y completing its triple satisfies y ≥ 2x − w ≥ 2x − x = x. Now y 6= x
because {0, x, x} cannot be a triple, so y > x, and hence y ∈ Vℓ. This accounts for all triples
involving 0.

Call a pair mixed if it contains an element of Vs and one from Vℓ, pure otherwise. Similarly
a triple is pure if it lies entirely on Vs or Vℓ, mixed when it has two from one and one from
the other. The number of mixed triples can be calculated as follows. There are x(x − 1)
mixed pairs not contained in triples containing 0, and each must be contained in a mixed
triple. Because each mixed triple contains two mixed pairs, there are exactly 1

2
x(x − 1)

mixed triples. Each mixed triple covers one pure pair. Hence the number of pure pairs to
be covered by pure triples is x(x− 1)− 1

2
x(x− 1) = 1

2
x(x− 1), and there are 1

6
x(x− 1) pure

triples.
Form a collection Ds of triples on {0, . . . , x − 1} by including {a, b, c} whenever {a +

1, b + 1, c + 1} is a pure triple on Vs, so that Ds contains triples each having sum at least

m − 3. The reversal Es then has each sum at most 3x −m. Form a collection Dℓ of triples
on {0, . . . , x− 1} by including {a, b, c} whenever {2x− a, 2x− b, 2x− c} is a pure triple on
Vℓ, so that Dℓ contains triples each having sum at least 6x −M . The reversal Eℓ then has
each sum at most M − 3x− 3.
Case 1. MinSum(D) = v and hence Maxsum(D) = 2v. Then Es and Eℓ both have maximum
sum at most x− 1. Applying Lemma 2.2 to Es and to Eℓ, D can contain at most 2φ(x) pairs
in pure triples, but 2φ(x) < 1

2
x(x − 1), which yields the contradiction. (Only when v = 9

would there be no contradiction.)
Case 2. MinSum(D) = v − 1 and hence Maxsum(D) = 2v − 1. Then Es has maximum sum
x and Eℓ has maximum sum x− 2. Because no edge involving element x− 1 can appear in a
triple of Eℓ, the number of pairs covered by triples is at most φ(x− 1) by Lemma 2.2. By a
similar argument, the number of pairs covered by triples of Es is at most φ(x+1) by Lemma

2.2. Because (x−1)(x−2)
4

+ x(x+1)
4

= x(x−1)
2

+ 1
2
, φ(x− 1) + φ(x+ 1) < 1

2
x(x − 1), which yields

the contradiction. (Only when v = 7 would there be no contradiction.)

3 Independent Sets

Let D = (V,B) be a t-(v, k, λ) packing. An independent set in D is a subset X ⊆ V such that
there is no B ∈ B with B ⊆ X . An independent set I is maximal if there is no independent
set Y with X ⊂ Y , and maximum if there is no independent set Y such that |Y | > |X|.
The independence number of D, denoted α(D), is the size of a maximum independent set.
There is a close connection between the independence number of a packing and the quality
of any of its labelings. Prior to establishing this fact, we first improve the lower bounds on
the DiffSum and RatioSum for Steiner triple systems.
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Lemma 3.1. A t-(v, k, λ) packing D has MinSum at most kα(D) −
(

k
2

)

, MaxSum at least

k(v − 1− α(D)) +
(

k
2

)

, and DiffSum at least k(v + k − 2− 2α(D)).

Proof. It suffices to prove the statement for MinSum. No matter how D is given a point
labeling, on elements with ranks in {0, . . . , α(D)}, there is a block. The sum of this block is
at most

∑k
i=1(α(D)− (i− 1)).

Corollary 3.1.1. Meeting the bound on MinSum in Theorem 2.1 for a t-(v, k, 1) packing D
requires that

α(D) ≥ v(k − t + 1)

2k
+
k + t− 3

2
.

For example, Corollary 3.1.1 states that a necessary condition for a partial Steiner triple
system D to have MinSum equal to v is that α(D) ≥ v

3
+ 1.

A single maximum independent set yields an upper bound on the MinSum or a lower
bound on the MaxSum, but cannot be used simultaneously for both. We prove this next.

Suppose that a t-(v, k, λ) packing D contains two disjoint independent sets of sizes γD
and δD, respectively, with γD ≥ δD. Set

γ′D =min
(

γD,
v(k−t+1)

2k
+ k+t

2
− 1

)

,

δ′D =min
(

δD,
v(k−t+1)

2k
+ k+t

2
− 1

)

.

Two independent sets form a maximum independent pair when γ′D+δ′D is as large as possible.

Lemma 3.2. A t-(v, k, λ) packing D with a maximum independent pair of sizes (γD, δD) has
DiffSum at least k(v + k − 2− δ′D − γ′D).

Proof. Form a point labeling of D in which the smallest x for which a block appears on
{0, . . . , x− 1} also has a block on {v − x, . . . , v − 1}; reverse the labeling if necessary to do
this. Suppose to the contrary that this labeling has DiffSum less than k(v+k−2−δ′D −γ′D).
If no block appears on {0, . . . , v(k−t+1)

2k
+ k+t

2
− 2} set c = v(k−t+1)

2k
+ k+t

2
− 1. Otherwise let c

be the smallest value for which a block appears on {0, . . . , c}, so that {0, . . . , c−1} forms an
independent set. Proceed similarly to select d so that {v − d, . . . , v − 1} is an independent
set. This labeling has MaxSum at least k(v − 1 − d) +

(

k
2

)

and MinSum at most kc −
(

k
2

)

,
based on Theorem 2.1 and Lemma 3.1. It follows that the DiffSum for this labeling is at
least k(v + k − 2 − d − c), so we have c + d > γ′D + δ′D. This contradicts the requirement
that the maximum independent pair have sizes (γD, δD).

Corollary 3.2.1. Meeting the bound on DiffSum in Theorem 2.1 for a t-(v, k, 1) packing D

requires that D have a maximum independent pair of sizes (v(k−t+1)
2k

+k+t
2
−1, v(k−t+1)

2k
+k+t

2
−1).

For a pair of independent sets to be maximum in this context, there is no requirement that
either be maximum, nor is it required that their combined size be as large as possible. For a
Steiner triple system, for example, Corollary 3.2.1 asks only for two disjoint independent sets,
each of size at least v

3
+1, for a combined size of 2v

3
+2. Applying the 2v+1 construction [9]
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twice to an STS(v), we form an STS(4v + 3) having a maximum independent pair of sizes
(2v + 2, v + 1); despite the fact that the combined size is over 3

4
of the size of the STS, such

a pair could not lead to a DiffSum that meets the bound of Theorem 2.1, because the second
largest of the pair is too small.

Corollary 3.2.1 gives a necessary condition, not a sufficient one. Nevertheless, some
bounds on the metrics can be stated.

Lemma 3.3. When a t-(v, k, 1) packing D has two disjoint independent sets of sizes α
and β, there is a point labeling with MinSum(D) ≥ α +

(

k
2

)

and (for the same labeling)

MaxSum(D) ≤ k(v − 1)− β − 1−
(

k
2

)

, so DiffSum(D) ≤ k(v − k)− β − α− 1.

Proof. Any point labeling assigning labels {0, . . . , α − 1} to the points of the independent
set of size α, labels {v − β, . . . , v − 1} to the points of the independent set of size β, and
labels {α, . . . , v − β − 1} to the remaining points, meets the stated bounds.

A Steiner system S(t, k, v) is 2-chromatic if its elements can be partitioned into two
classes, both being independent sets. When a 2-chromatic S(3, 4, v) D exists (see, for exam-
ple, [12, 22, 27]), Lemma 3.3 establishes that DiffSum(D) ≤ 3v − 17.

Recall that Dau and Milenkovic [11] use the Bose and Skolem constructions of Steiner
triple systems. In retrospect, this choice is well-justified because the Bose construction leads
to maximum independent pairs of sizes (v

3
+ 1, v

3
+ 1) when v ≡ 3 (mod 6) and the Skolem

construction leads to maximum independent pairs of sizes (v+2
3

+ 1, v+2
3

+ 1) when v ≡ 1
(mod 6).

One must hence focus on Steiner triple systems, and on t-(v, k, 1) packings in general,
having large sizes in maximum independent pairs. This choice is important, because not all
such systems have even a single large independent set, as we explain next.

4 Small Maximum Independent Sets

Can one choose an arbitrary t-(v, k, 1) packing, and by cleverly choosing a point labeling
optimize one or more of the sum metrics? If not, how far from the bound of Theorem 2.1
can the best point labeling be? In order to discuss these questions, define

αmin(t, k, v)=min{α(D) : D is a t-(v, k, 1) packing}, and
α⋆
min(t, k, v)=min{α(D) : D is an S(t, k, v)}.

When an S(t, k, v) exists, αmin(t, k, v) ≤ α⋆
min(t, k, v).

Erdős and Hajnal [15] establish that αmin(2, 3, v) ≥ ⌊
√
2v⌋; indeed a simple greedy

algorithm produces an independent set of this size.
A t-(v, k, 1) packing has each element in at most

(

v−1
t−1

)

/
(

k−1
t−1

)

=
∏t−1

i=1
v−i
k−i

blocks. Applying
a result of Spencer [33] generalizing Turán’s theorem for graphs, we obtain

αmin(t, k, v) ≥ ck
v

(
∏t−1

i=1
v−i
k−i

)

1

k−1
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for ck a constant independent of v. For partial Steiner triple systems, this asserts that
αmin(2, 3, v) ≥ c · v

√
2/
√
v − 1, a small improvement on the Erdős-Hajnal result.

State-of-the-art lower bounds rely heavily on the following theorem, and all differ only
by constant factors.

Theorem 4.1. [1] Let κ ≥ 2 be a fixed integer. Let G be a (κ + 1)-uniform hypergraph on
n vertices. Then there are constants t0(κ) and n0(κ, τ) so that whenever

1. G is uncrowded (i.e., has no 2-, 3-, or 4- cycles);

2. the maximum degree ∆(G) satisfies ∆(G) ≤ τκ where τ ≥ t0(κ); and

3. n ≥ n0(κ, τ),

one has that

α(G) ≥ .98

e
· 10−5/κ · n

τ
· (ln τ)1/κ.

In order to apply this result to all t-(v, k, 1) packings, typically one selects a large subset
of the blocks that are uncrowded. The approach is used to establish the lower bound in the
following, while the upper bound is shown using the Lovász Local Lemma:

Theorem 4.2. [13, 28] For fixed k and t, there are absolute constants c and d for which

cv
k−t

k−1 (log v)
1

k−1 ≤ αmin(t, k, v) ≤ dv
k−t

k−1 (log v)
1

k−1 ,

Variations in Theorem 4.2 have resulted in improvements in the constants; see [16,23,24,
34].

It is possible in principle that restricting to Steiner systems, rather than packings, one
might observe different behaviour in the minima. However, Phelps and Rödl [26] establish
that the bounds of Theorem 4.2 apply to Steiner triple systems, not just to partial ones;
that is,

c
√
v ln v ≤ α⋆

min(2, 3, v) ≤ d
√
v ln v

for absolute constants c and d. Grable, Phelps and Rödl [19] establish similar statements
when t ∈ {2, 3} for all k > t.

For the applications intended, it is of interest to find independent sets of (at least) the
size guaranteed efficiently. For research in this vein, see [2,18]. Of course, one wants to find
a pair of disjoint maximum independent sets whose total size is as large as possible, but
this is NP-complete even for 3-uniform hypergraphs [25]. Remarkably, there is a polynomial
time algorithm to determine whether an S(3, 4, v) contains two independent sets, each of
size v/2 [10], but the ideas used do not appear to generalize.

Nevertheless, the bounds on sizes of smallest maximum independent sets provides bounds
on the best sum metrics one can hope to achieve. We state one such bound explicitly, showing
that some Steiner systems have only point labelings far from the bounds of Theorem 2.1.

Theorem 4.3. For infinitely many orders v, there exists an STS(v) D with MinSum(D) ≤
3c
√
v ln v−3 and MaxSum(D) ≥ 3v−3c

√
v ln v, and hence DiffSum(D) ≥ 3v−6c

√
v ln v+3.

Hence we must focus on specific Steiner systems or packings, if we are to obtain sum
metrics at or near the basic bounds.
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5 Dense t-(v, t + 1, 1) Packings

We establish next that one can obtain metrics close to the optimal when k = t+1 for packings
that contain all but a vanishingly small fraction of the blocks of an S(t, t+ 1, v) as v → ∞.
The independent set requirements indicate that we must have a maximum independent pair
having large sizes. To accomplish this, we partition all (t + 1)-subsets of Zv according to
their sum modulo v, and choose one class of the partition to form the blocks of the packing.
The basic strategy dates back at least a century to Bussey [6], and perhaps earlier.

Prior to establishing our result, we note that this is not a mere theoretical curiosity; as
Chen et al. observe in [7], declustered-parity RAIDs do not in practice need to have their
loads perfectly balanced. Hence, for practical reasons, one may choose to omit some blocks
from the design.

Theorem 5.1. Let t and v be integers with v >
(

t+2
2

)

+
(

t+1
2

)

and (v, t+1) = 1. For each of
the following statements, there exists a t-(v, t+ 1, 1) packing D on elements Zv having

(

v
t+1

)

v
=
v − t

v

(

v
t

)

(

t+1
t

)

blocks.

(1) MinSum(D) = v + σ and MaxSum(D) = tv + σ whenever −
(

t+2
2

)

+ 1 ≤ σ <
(

t+1
2

)

.

(2) MinSum(D) = v +
(

t+1
2

)

− 1.

(3) MaxSum(D) = tv −
(

t+2
2

)

+ 1.

(4) DiffSum(D) = (t− 1)v.

(5) RatioSum(D) =
tv+(t+1

2 )−1

v+(t+1

2 )−1
.

Proof. It suffices to prove statement (1); the other results follow directly from it.
Partition all (t + 1)-subsets of Zv into v classes {Bσ : 0 ≤ σ < v} by placing set S =

{x1, . . . , xt+1} in class Bσ if and only if σ ≡ Σt+1
i=1xi (mod v). Because for any t-subset T of

Zv and each σ with 0 ≤ σ < v there is a unique element s for which σ ≡ s+Σx∈Tx (mod v),
each Bσ is a t− (v, t+ 1, 1) packing.

Without restrictions on v, these v packings need not have the same number of blocks. We
now use the restriction that (v, t+1) = 1. Consider the orbits of (t+1)-subsets of Zv under
the cyclic action of Zv. When S is a (t+1)-subset of Zv with sum σ, let S+α be the subset
of Zv obtained by adding α (modulo v) to each element in S. Then the orbit containing S
is {S + α : 0 ≤ α < v}. For 0 ≤ α < v, the sum of S + α is σ + (t + 1)α (mod v). Now if
S + α and S + β have the same sum modulo v, we have (t+ 1)α ≡ (t+ 1)β (mod v), which
can happen only when α ≡ β (mod v). Hence every orbit contains exactly v blocks, one in

each of the v classes. It follows that each Bσ contains
( v

t+1)
v

blocks.
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Now we prove statement (1). First we treat the cases when σ ≥ 0. Choose σ so that
0 ≤ σ <

(

t+1
2

)

and consider the packing D = (Zv,Bσ). Suppose to the contrary that S is a
(t + 1)-subset of Zv with smallest sum τ < v + σ. When τ ≡ σ (mod v) and τ < v + σ, it
must happen that σ = τ = Σx∈Sx. But Σx∈Sx ≥ Σt

i=0i =
(

t+1
2

)

> σ, which is a contradiction.
Hence MinSum(D) ≥ v + σ. Because σ ≥ 0, tv + σ is the largest integer less than (t + 1)v
that is congruent to σ modulo v, and hence MaxSum(D) ≤ tv + σ.

Next we address the cases when −
(

t+2
2

)

+ 1 ≤ σ < 0. Let ω = v + σ, and consider the
packing D = (Zv,Bω). Then MinSum(D) ≥ ω = v + σ < v, because of the congruence
requirement. For MaxSum(D), suppose to the contrary that S is a (t+ 1)-subset of Zv with
largest sum τ > tv+σ = (t−1)v+ω. Then τ = tv+ω. Now Σt+1

i=1(v− i) = (t+1)v−
(

t+2
2

)

≥
Σx∈Sx. Hence ω ≤ v −

(

t+2
2

)

so σ ≤ −
(

t+2
2

)

, which is a contradiction.

Statements (2), (4), and (5) follow by taking σ =
(

t+1
2

)

− 1. Statement (3) follows by

taking σ = −
(

t+2
2

)

+ 1.

Not surprisingly, the packings so produced contain large independent sets. For example,
when σ = 0, the elements {0, . . . , ⌊ v

t+1
⌋} form an independent set.

Theorem 5.1 yields packings that are dense in the following sense. When an S(t, t+1, v)

exists, it has
(v
t
)

(t+1

t
)
blocks; the packings considered have a v−t

v
fraction of this number. Hence

for fixed t the fraction of t-sets left uncovered by the packing approaches 0 as v → ∞.
Moreover, the bounds established for dense t-(v, t+ 1, 1) packings on MinSum and MaxSum

match the values from Theorem 2.1 (which are best for Steiner systems). On the other hand,
as v → ∞ and t is fixed, the ratio of DiffSum of the packing to the bound approaches 1, and
the RatioSum approaches its bound of t − 1. By generalizing to partial systems, Theorem
5.1 applies to all parameters that are large enough, whether or not an S(t, t+ 1, v) exists.

Although Theorem 5.1 establishes a DiffSum of (t − 1)v for certain dense t-(v, t + 1, 1)
packings, one might hope to obtain a somewhat smaller DiffSum when t > 2. Theorem 5.2
gives one result in this direction, producing a packing that achieves a smaller DiffSum than
that of Theorem 5.1 when t = 3, but is nearly as dense.

Theorem 5.2. When v > 18 is even, there is a 3-(v, 4, 1) packing D with v−4
v−1

(v3)
(43)

blocks,

having MinSum(D) = v + 2, MaxSum(D) = 3v − 6, and hence DiffSum(D) = 2v − 8.

Proof. Write v = 2s. We form D on elements {0, . . . , 2s− 1}, with blocks

1. {{a, b, c, s+ d} : 0 ≤ a < b < c < s, 0 ≤ d < s, a+ b+ c+ d ≡ 2 (mod s)}, and

2. {{s+ a, s+ b, s+ c, d} : 0 ≤ a < b < c < s, 0 ≤ d < s, a+ b+ c+ d ≡ s− 6 (mod s)}.

This forms a 3-(v, 4, 1) packing with the specified number of blocks. Because a+ b+ c+ d ∈
{s+2, 2s+2, 3s+2}, blocks of the first class have sum in {2s+2, 3s+2, 4s+2}. Similarly,
because a + b + c + d ∈ {s − 6, 2s − 6, 3s − 6}, blocks of the second class have sum in
{4s − 6, 5s− 6, 6s− 6}. Hence MinSum(D) = 2s + 2 = v + 2 and MaxSum(D) = 6s− 6 =
3v − 6.
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6 Sums and Steiner triple systems

Despite the utility of dense packings in the intended applications, it remains desirable to
employ a Steiner system when possible. In what follows, we extend Theorem 5.1 to produce
Steiner triple systems in which the sum metrics are close to optimal.

Building on the construction in Theorem 5.1, Schreiber [29] and Wilson [35] demonstrate
that for certain values of v, the packing can be completed to an STS(v). We provide a proof
of their result, in order to examine the consequences for certain sums. The construction
relies on a number-theoretic property, which we state next without proof.

Theorem 6.1. [29] Every cycle in an abelian group G of order n contains twice an odd
number of elements if and only if, for every prime divisor p of n, the order of −2 (mod p)
is singly even.

Lemma 6.2. Let n ≡ 1, 5 (mod 6). Every pair in {{a, b} : a, b ∈ Zn \ {0}, a ≡ −2b
(mod n)} has (n + 1)/2 ≤ a+ b ≤ (n− 1)/2 + n.

Proof. Consider such a pair a, b ∈ Zn with b ≡ −2a (mod n). We examine two cases:
Case 1: 1 ≤ a ≤ (n− 1)/2. Then b = n− 2a and hence (n+ 1)/2 ≤ a+ b ≤ n− 1.
Case 2: (n+1)/2 ≤ a ≤ n−1: Then b = 2n−2a and hence n+1 ≤ a+b ≤ n+(n−1)/2.

Theorem 6.3. Whenever v ≡ 1, 3 (mod 6) and for every prime p dividing v − 2, it
is the case that the order of −2 mod p is singly even. Hence there is an STS(v), D,
with MinSum(D) ≥ v − 2, MaxSum(D) ≤ 2v + 2, and hence DiffSum(D) ≤ v + 4 and
RatioSum(D) ≤ 2v+2

v−2
.

Proof. Let n = v−2. As in the proof of Theorem 5.1, construct the 2-(v, 3, 1) packing B0 on
Zn. Each triple in this packing has sum v− 2 or 2v− 4 at present. The pairs left uncovered
by any triple are E0 = {{x,−2x} : x ∈ Zv−2 \ {0}}, each having sum between (v − 1)/2 and
(v − 3)/2 + v − 2 by Lemma 6.2.

Because for every prime p dividing v − 2, it is the case that the order of −2 mod p is
singly even, Theorem 6.1 ensures that the pairs in E0 can be partitioned into two 1-factors,
F1 and F2, on Zn \ {0}.

To form an STS(v) on Zv with block set C, we employ the mapping φ : Zv−2 7→ Zv \
{(v − 1)/2, (v + 1)/2} defined by φ(x) = x when 0 ≤ x ≤ (v − 3)/2 and φ(x) = x+ 2 when
(v − 1)/2 ≤ x < v − 2. Then C is formed as follows.

(1) When {x, y, z} ∈ B0, place {φ(x), φ(y), φ(z)} in C;

(2) For i = 1, 2, when {x, y} ∈ Fi, place {(v − 3 + 2i)/2, φ(x), φ(y)} in C;

(3) Place {0, (v − 1)/2, (v + 1)/2} in C.
Triples of B0 have sum v−2 or 2v−4, so triples of type (1) in C have sum between v−2 and
v+2, or between 2v−2 and 2v+2. A pair {x, y} ∈ E0 has (v−1)/2 ≤ x+y ≤ (v−1)/2+(v−3).
Applying φ, we have (v − 1)/2 ≤ φ(x) + φ(y) ≤ (v − 1)/2 + (v + 1). Hence, each triple of
type (2) in C has sum at least v − 1 and at most 2v + 1. Finally, the single type (3) block
has sum v.
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Unlike the point labelings in [11], the labeling for the Schreiber-Wilson construction in
Theorem 6.3 need not achieve the largest MinSum or smallest MaxSum. Nevertheless it yields
a substantial improvement on earlier constructions with respect to the DiffSum and RatioSum,
within an additive constant of the best bound possible for the DiffSum. Unfortunately,
Theorem 6.3 requires that the order of −2 mod p be singly even, and so applies to an infinite
set of orders but not all admissible ones. We remedy this next, using a result from [5], but
obtaining slightly weaker bounds.

Theorem 6.4. Whenever v ≡ 1, 3 (mod 6), there is an STS(v), D, with MinSum(D) ≥
v − 5, MaxSum(D) ≤ 2v + 2, and hence DiffSum(D) ≤ v + 7 and RatioSum(D) ≤ 2v+2

v−5
.

Proof. Form B0 over Zv−2 as in the proof of Theorem 6.3. Remove element 0 as well as all
triples {{0, x, v−2−x} : 1 ≤ x ≤ (v−3)/2} to form D0. Let E0 be the set of pairs on Zv−2 not
covered by a triple of B0. The pairs in E0, together with {{x, v− 2−x} : 1 ≤ x ≤ (v− 3)/2}
form a 3-regular graph G on Zv−2 \ {0}. By [5, Lemma 9], G can be partitioned into three
1-factors, F1, F2, and F3.

To form the STS(v) on Zv with block set C, we employ the mapping ψ : Zv−2 \ {0} 7→
Zv \ {(v − 3)/2, (v − 1)/2, (v + 1)/2} defined by ψ(x) = x− 1 when 1 ≤ x ≤ (v − 3)/2 and
ψ(x) = x+ 2 when (v − 1)/2 ≤ x < v − 2. Then C is formed as follows.

(1) When {x, y, z} ∈ D0, place {ψ(x), ψ(y), ψ(z)} in C;

(2) For i = 1, 2, 3, when {x, y} ∈ Fi, place {(v − 5 + 2i)/2, ψ(x), ψ(y)} in C;

(3) Place {(v − 3)/2, (v − 1)/2, (v + 1)/2} in C.
Triples of B0 have sum v−2 or 2v−4, so triples of type (1) in C have sum between v−5 and
v−2, or between 2v−1 and 2v+2. By Lemma 6.2, a pair {x, y} ∈ E0 has (v−1)/2 ≤ x+y ≤
(v− 1)/2+ (v− 3). Applying ψ, we have (v− 1)/2− 2 ≤ ψ(x) +ψ(y) ≤ (v− 1)/2+ (v+1).
It follows that each triple of type (2) in C has sum at least v − 4 and at most 2v + 1. The
block of type (3) in C has sum 3v−3

2
.

Although the bounds are slightly weaker, Theorem 6.4 applies to all admissible orders
for Steiner triple systems. In conjunction with Theorem 2.2, for all v ≡ 1, 3 (mod 6) with
v ≥ 13 one has v + 1 ≤ DiffSum(2, 3, v) ≤ v + 7 and 2 + 1

v
≤ RatioSum(2, 3, v) ≤ 2 + 12

v−5
.

Using a simple computational search, we constructed S(2, 3, v)s with specified MinSum and
MaxSum, as shown next:

Order v MinSum MaxSum DiffSum RatioSum

7 v − 1 2v − 1 v 2 + 1
v−1

9 v 2v v 2
13,15,19,21,25,27v − 1 2v v + 1 2 + 2

v−1

7,15,19,21,27 v 2v + 1 v + 1 2 + 1
v

13,25 v 2v + 2 v + 2 2 + 2
v

It appears plausible that DiffSum(2, 3, v) = v + 1 when v ≥ 13. It also appears plausible
that RatioSum(2, 3, v) ∈ {2 + 1

v
, 2 + 2

v
} for every v 6= 9, but there is insufficient data to

speculate on when it takes the larger value and when the smaller.
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7 Concluding remarks

Because Theorem 5.1 achieves a DiffSum of (t − 1)v for dense t-(v, t + 1, 1) packings, one
might hope that this difference can be realized for S(t, t + 1, v) Steiner systems. However,
Theorem 2.3 establishes that this does not happen when t = 2 unless v ∈ {7, 9}, although
Theorem 6.4 is within an additive constant. The situation when t = 3 appears to be quite
different. There is an S(3, 4, 8) with blocks

{0127, 0136, 0145, 0235, 0246, 0347, 0567,
1234, 1256, 1357, 1467, 2367, 2457, 3456},

having MinSum 10 and MaxSum 18. Adapting the construction in [12, 27], one can produce
an S(3, 4, v) with MinSum v + 2, MaxSum 3v − 6, and hence DiffSum 2v − 8 whenever v
is a power of 2. In these cases, the upper bound on the MinSum and the lower bound on
the MaxSum from Theorem 2.1 are met simultaneously. We do not expect this to happen
for all orders, because the smallest DiffSum for an S(3, 4, v) when v ∈ {10, 14} appears to
arise from systems with MinSum v + 1 and MaxSum 3v − 5. It may happen that for every
admissible v, an S(3, 4, v) with DiffSum strictly smaller than 2v exists. If so, completing the
packing from Theorem 5.1 could not yield the smallest DiffSum. Nevertheless, the structure
of independent sets must underlie appropriate constructions.
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