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Abstract In this work we study metric properties of the well-known family of
binary Reed-Muller codes. Let A be an arbitrary subset of the Boolean cube,
and Â be the metric complement of A — the set of all vectors of the Boolean
cube at the maximal possible distance from A. If the metric complement of Â
coincides with A, then the set A is called a metrically regular set. The problem
of investigating metrically regular sets appeared when studying bent functions,
which have important applications in cryptography and coding theory and are also
one of the earliest examples of a metrically regular set. In this work we describe
metric complements and establish the metric regularity of the codes RM(0,m)
and RM(k,m) for k > m − 3. Additionally, the metric regularity of the codes
RM(1, 5) and RM(2, 6) is proved. Combined with previous results by Tokareva
N. (2012) concerning duality of affine and bent functions, this establishes the
metric regularity of most Reed-Muller codes with known covering radius. It is
conjectured that all Reed-Muller codes are metrically regular.
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1 Introduction

The problem of investigating and classifying metrically regular sets was posed by
Tokareva [17,18] when studying metric properties of bent functions [13]. A Boolean
function f in even number of variables m is called a bent function if it is at the
maximal possible distance from the set of affine functions.

Bent functions have various applications in cryptography, coding theory and
combinatorics [7,18]. In cryptography, bent functions are valued because of their
outstanding nonlinearity, which allows one to construct S-boxes for block ciphers
which possess high resistance to the linear cryptanalysis [7]. However, many prob-
lems related to bent functions remain unsolved; in particular, the gap between
the best known lower and upper bound on the number of bent functions is ex-
tremely large; currently known constructions of bent functions are rather scarse.
In 2010 [16], Tokareva has proved that, like bent functions are maximally distant
from affine functions, affine functions are at the maximal possible distance from
bent functions, thus establishing the metric regularity of both sets. This discovery
arouses interest in studying the property of metric regularity in order to better
understand the structure of the set of bent functions.

From the coding theory standpoint, bent functions form the set of points at the
maximal possible distance from the Reed-Muller code of the first order in an even
number of variables. Therefore, the aforementioned result by Tokareva establishes
the metric regularity of the codes RM(1,m) for even m. Reed-Muller codes are
extensively studied for many years, but their metric properties, like the covering
radius, are very elusive and are being discovered to this day; just recently, Wang
has found the covering radius of the code RM(2, 7) to be equal to 40 [19]. These
problems put Reed-Muller codes in our focus of the research of metric regularity.

Let us briefly overview the results obtained in this area. As mentioned be-
fore, Tokareva [16] has established the metric regularity of the sets of affine/bent
functions. Metric regularity of several classes of partition set functions is studied
in [15], while the works [4,5] touch upon metric properties of certain subclasses
of bent functions. Metric regularity has been actively investigated by the author:
metric complements of linear subspaces of the Boolean cube are studied in the
paper [10], while the works [11] and [12] are studying possible sizes of the largest
and smallest metrically regular set.

In this work we investigate the metric regularity of Reed-Muller codes. Nat-
urally, the knowledge of the covering radius of the code is necessary for working
with the set of its most distant points. Among the codes of high order, covering
radii of the codes RM(k,m) for k > m − 3 are known. The covering radius of
RM(1,m) for odd m > 7 is unknown, but has been determined for RM(1, 5) [1]
and RM(1, 7) [8,3]. In [14], Schatz has found the covering radius of RM(2, 6),
while recently Wang has established the covering radius of RM(2, 7) [19]. For
m > 7, the covering radius of RM(2,m) is currently unknown. We prove that the
codes RM(k,m), for k = 0 and k > m − 3 and the codes RM(1, 5), RM(2, 6)
are metrically regular and also describe their metric complements in most cases.

The paper is structured as follows. After providing necessary definitions and
examples, we prove the metric regularity of the code RM(1, 5). After that we
establish the metric regularity of the Reed-Muller codes of order 0, order m − 2
and higher, and then we move onto the codes of order m − 3. In order to handle
this case, we describe the method of “syndrome matrices” of calculating distances
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from vectors to the punctured RM(m−3,m) code, based on the “Covering codes”
[2] book by Cohen et al. Following the book, we calculate the covering radius of
the Reed-Muller code of order m− 3, and utilizing the method further, we obtain
the metric complement of this code. The description of the complement allows
us to establish that only the functions from RM(m − 3,m) are contained in
the second metric complement, which proves the metric regularity of the Reed-
Muller codes of order m − 3. We then proceed to establish the metric regularity
of the code RM(2, 6), based on the results obtained for the codes RM(2, 5) and
RM(1, 5), since the former can be constructed from the latter using the (u,u+ v)
construction. The paper concludes with an overview of the results obtained and a
hypothesis concerning the metric regularity of all Reed-Muller codes.

2 Definitions and examples

Let Fn
2 be the space of binary vectors of length n with the Hamming metric. The

Hamming distance d(·, ·) between two binary vectors is defined as the number of
coordinates in which these vectors differ, while wt(·) denotes the weight of a vector,
i.e. the number of nonzero values it contains. The plus sign + denotes addition
modulo two (componentwise in case of vectors), while the componentwise product
of two binary vectors is denoted by ∗.

LetX ⊆ F
n
2 be an arbitrary set and y ∈ F

n
2 be an arbitrary vector. The distance

from the vector y to the set X is defined as

d(y,X) = min
x∈X

d(y, x).

The covering radius of the set X is defined as

ρ(X) = max
z∈F

n
2

d(z,X).

The set X with ρ(X) = r is also called a covering code [2] of radius r.

Consider the set

Y = {y ∈ F
n
2 |d(y,X) = ρ(X)}

of all vectors at the maximal possible distance from the set X. This set is called
the metric complement [10] of X and is denoted by X̂. Vectors from the metric

complement are sometimes called the deep holes of a code. If
̂̂
X = X then the set

X is said to be metrically regular [18].

Note that metrically regular sets always come in pairs, i.e. if A is a metrically
regular set, then its metric complement Â is also a metrically regular set and
both of them have the same covering radius. For some simple examples of metric
complements and metrically regular sets, refer to [10,11,12].

The following trivial auxiliary lemma, established in [10], will be used through-
out the paper.

Lemma. Let C ⊆ F
n
2 be a linear code. Then ρ(Ĉ) = ρ(C) and a vector x ∈ F

n
2 is

in
̂̂
C if and only if x+ Ĉ = Ĉ.
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Let Fm be the set of all Boolean functions in m variables. The Reed-Muller
code of order k in m variables is defined as:

RM(k,m) = {f ∈ Fm : deg(f) 6 k},

where deg(·) denotes the degree of the algebraic normal form (ANF) of a function.
The Reed-Muller code can be also represented as the set of value vectors of the
corresponding functions. Throughout the paper we will often switch between these
two representations, sometimes “on the fly”. In most cases, m will denote the
number of variables, while n := 2m will denote the dimension of the space of value
vectors, which have coordinates numbered from 0 to 2m − 1. The i-th coordinate
of a value vector is the value of the corresponding function at the binary vector of
length m which is the binary representation of the number i. Weights of functions,
distances between functions and between a function and a set of functions are
defined as distances between their value vectors.

Throughout the paper, vectors of length m and square m × m matrices will
be denoted using roman typestyle letters (e.g., x,A), while vectors of length n
and vectors derived from them, as well as matrices related to such vectors, will be
denoted using bold letters (e.g., v,B).

Let f and g be two functions in m variables. Let Lb
A : Fm

2 → F
m
2 denote the

affine transformation of the variables with the matrix A and the vector b:

(f ◦ Lb
A)(x) = f(Ax + b).

Here ◦ denotes the operation of composition of two functions. If the vector b is
zero, it will be omitted from the notation. Functions f and g are called linearly
equivalent if one can be obtained from the other by applying a nonsingular linear
transformation to the variables, i.e. f = g ◦ LA, where detA 6= 0.

Extended affine equivalence is more common when classifying Boolean func-
tions: functions f and g are called EA-equivalent if there exists a nonsingular
binary matrix A, a Boolean vector b of length m and a function h of degree at
most 1 such that f = g ◦ Lb

A + h.

For our study we will use a variant of these two equivalence relations, which
will be referred to as extended linear equivalence (to the power of k). Functions f
and g are called ELk-equivalent if there exists a nonsingular binary matrix A and
a function h of degree at most k such that

f = g ◦ LA + h.

It is easy to see that this relation is indeed an equivalence. If two functions f and

g are ELk-equivalent, we will denote it by f
k
∼ g. We will also write f

k
= g if f

and g differ by a function of degree at most k. Note that the last relation is a
subrelation of the ELk-equivalence.

The Reed-Muller code of order k inm variables is usually denoted byRM(k,m).
Since we will refer to these codes regularly, we will use Rk,m instead. The number
of variables will often be omitted from the subscript if it is denoted by m.
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No Representative f Added g ∈ R̂1,5 C(g) Sum h = f + g C(h)
0 0 — — — —
1 2345 123+14+25 22 2345+123+14+25 12
2 2345+14 123+14+25 22 2345+123+25 ∼ 2345+123+34 8
3 2345+24 2345+123+24+35 14 123+35 ∼ 123+14 21
4 2345+24+35 2345+123+24+35 14 123 19
5 2345+14+25 123+14+25 22 2345+123 6
6 2345+123 123+14+25 22 2345+14+25 5
7 2345+123+12 12+34 28 2345+123+34 8
8 2345+123+34 12+34 28 2345+123+12 7
9 2345+123+14 14+25 28 2345+123+25 ∼ 2345+123+34 8
10 2345+123+45 12+45 28 2345+123+12 7
11 2345+123+12+34 12+34 28 2345+123 6
12 2345+123+14+25 123+14+25 22 2345 1
13 2345+123+12+45 12+45 28 2345+123 6
141 2345+123+24+35 2345+123+24+35 14 0 0
15 2345+123+145 123+14+25 22 2345+145+14+25 ∼ 2345+123+12+34 11
16 2345+123+145+45 123+145+45+24+35 26 2345+24+35 4
17 2345+123+145+24+45 2345+123+24+35 14 145+35+45 ∼ 123+14 21
18 2345+123+145+24+35 2345+123+24+35 14 145 ∼ 123 19
19 123 2345+123+24+35 14 2345+24+35 4
20 123+45 2345+123+24+35 14 2345+24+35+45 ∼ 2345+24+35 4
21 123+14 123+14+25 22 25 ∼ 12 27
222 123+14+25 123+14+25 22 0 0
23 123+145 123+14+25 22 145+14+25 ∼ 145+25 ∼ 123+14 21
24 123+145+23 23+45 28 123+145+45 ∼ 123+145+23 24
25 123+145+24 123+15+24 22 145+15 ∼ 123 19
263 123+145+45+24+35 123+145+45+24+35 26 0 0
27 12 12+34 28 34 ∼ 12 27
284 12+34 12+34 28 0 0

Table 1 Table of even weight coset classes of R1,5. Classes marked with a superscript are

the classes which constitute R̂1,5. C(·) denotes the No of the class the function belongs to.
Functions in the table are presented in an abbreviated notation: the number i1i2 . . . ik stands
for the monomial xi1xi2 . . . xik . For example, the representative function for the class 14 is
x2x3x4x5 + x1x2x3 + x2x4 + x3x5.

3 The Reed-Muller code R1,5

Let us first consider a special case — the code R1,5. This is the set of affine
functions, but in the odd number of variables, so it is not covered by the result of
Tokareva concerning bent functions.

In 1972, Berlekamp and Welch presented a partition of all cosets of the code
R1,5 into 48 classes with respect to the EA-equivalence and obtained weight dis-
tributions for each class of cosets [1]. The largest minimal weight (and therefore
the covering radius of the code) among all classes is equal to 12, and is attained
on four coset classes (classes 14, 22, 26 and 28 in Table 1). These four classes
constitute the metric complement of R1,5.

Theorem 1 The code R1,5 is metrically regular.

Proof. Since R1,5 is linear, it follows that ρ(R̂1,5) = ρ(R1,5) = 12 and f ∈
̂̂
R1,5

if and only if f + R̂1,5 = R̂1,5. Thus, in order to establish the metric regularity of

R1,5, we have to prove that for every f /∈ R1,5 it holds f + R̂1,5 6= R̂1,5.
Since the covering radius of the code is even, the second metric complement

of R1,5 can consist only of the cosets with codewords of even weight. There are
29 classes of such cosets, including the R1,5 code itself; they are listed in Table 1.

Classes marked with a superscript are those which constitute R̂1,5. The classifica-
tion is taken from the paper by Berlekamp and Welch [1], but in this table some
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of the class representatives were modified from their original variants using simple
variable swaps (for the original representatives the reader is referred to Table 5 in
the appendix of the paper).

Let us show that only the R1,5 code itself is contained in the second metric
complement. Let fc /∈ R1,5 be a function from a certain coset equivalence class

C, and assume that the function fc + gc, where gc ∈ R̂1,5, does not belong to

any of the 4 equivalence classes from the complement R̂1,5. This implies that

fc + R̂1,5 6= R̂1,5 and thus fc is not in the second metric complement.
Let now f /∈ R1,5 be an arbitrary function from the class C, and let (A, b, h)

be the matrix, the vector and the affine function such that

f ◦ Lb
A + h = fc.

Denote
gf = (gc + h) ◦ (Lb

A)
−1.

Then the function f+gf is EA-equivalent to fc+gc and therefore does not belong

to R̂1,5. Since (L
b
A)

−1 = LA−1b
A−1 , gf belongs to R̂1,5 and therefore f+R̂1,5 6= R̂1,5,

which means that f /∈
̂̂
R1,5.

Thus, if we prove that f + g /∈ R̂1,5 for some f ∈ C and some g ∈ R̂1,5, we
will prove that no function from the equivalence class C is in the second metric
complement.

The proof can be found in Table 1: for a representative f from each even
weight coset class we find a function g ∈ R̂1,5 such that f + g is equivalent

to the representative of some class which is not in R̂1,5. Thus, the second metric

complement
̂̂
R1,5 contains only the codeR1,5 itself, proving thatR1,5 is metrically

regular.
⊓⊔

Almost all equivalences presented in the fifth column of Table 1 are variable
swaps or simple additions of the form xi → xi + 1, xi → xi + xj or (for the class
20) xi → xi + xj + xk for certain i, j, k.

4 The Reed-Muller codes of orders 0, m, m − 1 and m − 2

The Reed-Muller codes of orders 0, m and m−1 coincide with the repetition code,
the whole space and the even weight code respectively. It is trivial that all of them
are metrically regular.

The covering radius of the Reed-Muller code of order m − 2 is equal to 2 [2].
By definition, this code consists of all Boolean functions of degree at most m− 2.
Since functions of degree m have odd weights, while functions of smaller degree
have even weights, functions of degree m are at distance 1 from Rm−2, while
functions of degree m− 1 are at distance 2 and therefore

R̂m−2 = Rm−1 \ Rm−2.

Since Rm−2 is linear, ρ(R̂m−2) = ρ(Rm−2) = 2 and thus functions of degree

m are at distance 1 from R̂m−2. It follows that
̂̂
Rm−2 = Rm−2 and Rm−2 is

metrically regular.
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5 The Reed-Muller codes of order m − 3: Syndrome matrices

McLoughlin [6] has proved that

ρ(Rm−3) =

{
m+ 1, if m is odd,

m+ 2, if m is even.

We are going to reestablish this result following the book “Covering codes” by Co-
hen et al., since our new results that follow rely on the methods and terminology
described in the book. In particular, we will describe the method of obtaining the
covering radius of Rm−3 using syndrome matrices as it is presented in the book,
with few minor adjustments. After that we will proceed to study the metric com-
plement of Rm−3. Results in Section 5 and 6, as well as general results concerning
the covering radius of Rm−3, belong to Cohen et al. [2], while all subsequent re-
sults concerning the metric complement and the metric regularity of the code have
been obtained by the author.

Let us first consider the covering radius of the punctured Reed-Muller code
R◦

m−3, i.e., the code without the 0-th coordinate (which corresponds to the value
of the function at zero). Let H denote the parity check matrix of this code. The
matrixH coincides with the parity check matrix of the non-punctured codeRm−3,
but with the first all-one row and the first column removed. Since Rm−3 is dual
to the code R2, the rows of H are punctured value vectors of the functions

x1, . . . , xm, x1x2, x1x3, . . . , xm−1xm.

The syndrome s of an arbitrary vector v ∈ F
n−1
2 is the product HvT. Let us

consider the syndrome s as an m × m symmetric matrix S, where the element
si,j of the matrix is equal to the component of the syndrome corresponding to the
row xixj of the parity check matrix H, while the diagonal element si,i is equal
to the component of the syndrome corresponding to the row xi of the matrix H.
Thus we have built a one-to-one correspondence between all cosets of R◦

m−3 and
all symmetric binary matrices (“syndrome matrices”).

Let e◦1, . . . e
◦
m ∈ F

n−1
2 be the punctured value vectors of the functions x1, . . . , xm.

Notice that the row of H corresponding to the function xixj is the componentwise
product e◦i ∗ e

◦
j .

Consider an m× (n− 1) matrix Bv which has e◦i ∗ v as its i-th row. Then the
symmetric matrix Sv = BvB

T
v corresponds to the syndrome HvT of the vector

v. It is easy to see that if f is a function with a punctured value vector equal to v,
then the set of nonzero columns of Bv is precisely the support of the function f
(bar, possibly, the all-zero vector). The number of nonzero columns in Bv is equal
to the weight of the vector v.

Given an arbitrary vector v ∈ F
n−1
2 , its distance from the code is equal to the

weight of the coset leader:

d(v,R◦
m−3) = min

u:HuT=HvT
wt(u).

Using the established correspondences between syndromes and symmetric matri-
ces, we can rewrite this as follows:

d(v,R◦
m−3) = min

u:BuB
T
u
=Sv

Col(Bu),
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where Col(Bu) is the number of nonzero columns in the matrix Bu. Let us denote
the minimum on the right by t(S) := min

u:BuB
T
u
=S

Col(Bu). Then

d(v,R◦
m−3) = t(Sv),

and, since the correspondence between all syndromes and all symmetric matrices
is one-to-one, we have

ρ(R◦
m−3) = max

v
d(v,R◦

m−3) = max
S

t(S).

Moreover, a vector v is in the metric complement R̂◦
m−3 if and only if t(Sv) =

ρ(R◦
m−3).
Let us call any matrix B such that BBT = S a factor of S. We can thus

describe the value t(S) as the minimum number of nonzero columns in a factor
over all factors of S of the form Bu, where u ∈ F

n−1
2 . We will call any factor

achieving this minimum a minimal factor.
Let us now expand the definition of the value t(S).

Lemma 1 Let S be a symmetric matrix, and let B be its factor (i.e. BBT = S).
The following operations do not change the property of B being a factor of S:

1. deleting a zero column;
2. deleting two equal columns;
3. swapping any two columns;
4. adding an arbitrary vector b to each column from some subset of columns of B

of even size, given that all columns of this subset sum to zero.

Proof. The proof is routine and is left to the reader. ⊓⊔

Since the subsets of nonzero columns of matrices {Bu : u ∈ F
n−1
2 } are precisely

all possible subsets of nonzero columns of length m, Lemma 1 allows us to remove
zero columns from allowed factors and ignore the possibility of duplicate columns
and thus reformulate the definition of the value t(S) in the following manner,
allowing the use of arbitrarily-sized matrices:

The value t(S) is equal to the minimum number of columns in a factor over all
factors of S. Any factor achieving this minimum is called a minimal factor of S.

Moreover, any factor B of S corresponds to exactly one factor of the initial
form Bu — the factor with the set of nonzero columns coinciding with the set of
nonzero columns of B. Therefore, presenting any minimal factor for a symmetric
matrix S allows us to obtain a coset leader u for the coset which this symmetric
matrix represents.

6 The Reed-Muller codes of order m − 3: Covering radius

In order to determine the covering radius of R◦
m−3 we will now investigate the

maximum possible value of t(S). Obviously,

t(S) > min
B:BBT=S

rank(B) > rank(S)
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for any matrix S, and therefore

max
S

t(S) > m.

This gives us a trivial lower bound. The following proposition provides a simple
upper bound:

Lemma 2 Let S be a symmetric matrix, and let B be its minimal factor. Then
all proper subsets of columns of B are linearly independent.

Proof. See [2], pp. 249–250.
⊓⊔

Corollary 1 t(S) 6 m+ 1 for any symmetric m×m matrix S.

Proof. Assume that for some symmetric matrix S it holds t(S) > m + 2. This
means that any minimal factor B of S has at least m + 2 columns and therefore
contains a linearly dependent proper subset of columns, which contradicts Lemma
2. ⊓⊔

This bound, combined with the previous one, shows us that the largest value
of t(S) is either m or m+ 1. The following result describes the matrices with the
larger value of t(S).

Lemma 3 Let S be a symmetric matrix. Then t(S) = m + 1 if and only if
rank(S) = m and S has an all-zero diagonal.

Proof. ⇐=
Assume that the matrix S is nonsingular and has an all-zero diagonal, and let

B be any of its factors. Notice that the vector consisting of all diagonal entries of
the matrix S is the sum of all columns of B. Therefore all columns of B sum to
zero, which means that all its nonzero columns form a linearly dependent set of
vectors. Since rank(B) > rank(S) = m, the matrix B has at least m + 1 nonzero
columns and therefore t(S) = m+ 1.

=⇒
Assume that t(S) = m+1. Let B be a minimal factor of S. Note that all proper

subsets of columns of B are linearly independent by Lemma 2, which implies that
all columns of B sum to zero, since B is an m× (m+ 1) matrix. Since the vector
consisting of diagonal elements of S is the sum of all columns of B, S has an
all-zero diagonal.

Assume that rank(S) < m. Then there exists a subset of rows in S summing
to 0; we denote these rows by Si1 ,Si2 , . . . ,Sip . Since Si = BiB

T, this implies

(Bi1 + . . .+Bip)B
T = 0.

Denote b = Bi1 + . . .+Bip . From the above it follows that the sum of certain
columns of B (those corresponding to the 1’s in the vector b) is equal to zero.

If the vector b is zero, then rank(B) < m and it must have a linearly dependent
proper subset of columns, contradiction with Lemma 2.

If it is nonzero and not an all-ones vector, then we obtain a proper subset of
columns of B which sum to 0, contradiction with Lemma 2.

Assume that b is an all-ones vector, and so all columns of B sum to zero.
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If m is even, then the number of columns in B is odd and therefore bbT = 1,
which contradicts bBT = 0.

If m is odd, then the number of columns in B is even and all rows have an
even number of ones, and, by Lemma 1, we can add any column of B to all its
columns and then remove a zero column from the resulting matrix, keeping it a
factor of S, which contradicts the minimality of B.

Thus, rank(S) is equal to m.
⊓⊔

Note that a matrix S with the properties described in the lemma (nonsingular
with an all-zero diagonal) exists if and only if m is even (see e.g. [2], p. 249). This
means that

max
S

t(S) = m+ 1− π(m),

where π(m) is the parity function, equal to 1 for odd m and to 0 for even m.

7 The Reed-Muller codes of order m − 3: m is even

7.1 The covering radius and the metric complement of the punctured
code

Let the number of variables m be even. From previous sections we have:

ρ(R◦
m−3) = max

S
t(S) = m+ 1.

A vector v ∈ F
n−1
2 is in the metric complement of R◦

m−3 if and only if t(Sv) =
m+1. The following statements will help us to characterize the syndromes of such
vectors:

Lemma 4 Let S be a symmetric m ×m matrix, m even. Then t(S) = m + 1 if
and only if S has a factor of rank m with m+ 1 columns which sum to zero.

Proof. =⇒
Assume that t(S) = m+ 1 and let B be an arbitrary minimal factor of S. By

Proposition 1, rank(S) = m and S has an all-zero diagonal. Therefore, rank(B) =
m and all its columns sum to zero.
⇐=
Let B be a factor of S of rank m with m+ 1 columns which sum to 0.
Assume that t(S) = k 6 m and let D be an arbitrary minimal factor of S with

k columns. Since the sum of all columns of a factor is the vector consisting of the
diagonal elements of S, the sum of all columns of D is also equal to zero. This
implies that rank(D) < m, and therefore rank(S) < m.

It is easy to see that each proper subset of columns ofB is linearly independent.
Notice that the existence of a factor with this property is shown to contradict with
the assumption “rank(S) < m” in the proof of Proposition 1, and in the case when
m is even the proof does not rely on the minimality of B.

Thus, t(S) = m+ 1 and B is a minimal factor of S.
⊓⊔
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It is easy to see that Lemma 4 describes all minimal factors of all matrices S
satisfying t(S) = m+ 1. Let us construct the following set:

U = {u ∈ F
n−1
2 : Bu has m+ 1 nonzero columns, m of which are

linearly independent and all of them sum to zero}.

Trivially, the set of matrices {Bu : u ∈ U} (up to columns permutations and
zero columns removal) includes exactly all minimal factors described in Lemma 4.
Therefore, if t(S) = m + 1 for some matrix S, then there exists a vector u ∈ U
such that S = BuB

T
u . Conversely, for any u ∈ U it holds t(BuB

T
u ) = m+1. Thus,

the vectors from the set U cover all cosets contained in the metric complement of
R◦

m−3:

R̂◦
m−3 =

⋃

u∈U

(
u+R◦

m−3

)
.

7.2 The covering radius and the metric complement of the
non-punctured code

We have obtained the covering radius and described the metric complement of the
punctured code. Let us return to the regular, non-punctured Reed-Muller code
Rm−3. Since it is obtained from the punctured code by adding a parity check bit
at the 0-th coordinate, the following result will be of use:

Lemma 5 Let C be a code with the covering radius r and the metric complement
Ĉ. Let Cπ be the code obtained from C by adding a parity check bit to all codewords
of C (in the front). Then ρ(Cπ) = r + 1 and Ĉπ is obtained from Ĉ by

1. adding a parity check bit to all vectors in case if r is odd or
2. adding an inversed parity check bit to all vectors in case if r is even.

Proof. Obviously, ρ(Cπ) 6 r + 1.
Let us prove (2). Assume that r is even. Denote

Ci = {c ∈ C : wt(c) mod 2 = i}, Ĉi = {c ∈ Ĉ : wt(c) mod 2 = i}, i = 0, 1.

Since r is even, vectors from Ĉ0 are at distance r from C0 and at a larger distance
from C1. Similarly, vectors from Ĉ1 are at distance r from C1 and at a larger
distance from C0.

Let c′ = (ǫ, c), where c /∈ Ĉ and ǫ ∈ {0, 1}. Then d(c′, Cπ) 6 d(c,C) + 1 6 r.

Let c ∈ Ĉ1. Then d((1, c), Cπ) = min(d(c,C1), d(c, C0)+1) = r, while d((0, c), Cπ) =
min(d(c,C1) + 1, d(c, C0)) > r.

Let c ∈ Ĉ0. Similarly, d((1, c), Cπ) = min(d(c,C1), d(c, C0) + 1) > r, while
d((0, c), Cπ) = min(d(c,C1) + 1, d(c, C0)) = r.

Therefore, vectors {(1, c)|c ∈ Ĉ0} ∪ {(0, c)|c ∈ Ĉ1} are the only ones at a
distance larger than r from Cπ, and this distance can be only equal to r+ 1. The
claim (2) of the lemma is proved.

The proof of the case (1) is completely similar to the above, but with some
sets switched around.

⊓⊔



12 Alexey Oblaukhov

Using this lemma we find that the covering radius of the non-punctured Reed-
Muller code Rm−3 is equal to m+ 2 and its metric complement can be described
as follows:

R̂m−3 =
⋃

u∈U

((π(u),u) +Rm−3) .

Let fv denote the function with the value vector v ∈ F
n
2 (non-punctured).

Recall that the set of nonzero columns of the matrixBv◦ coincides with the support
of the function fv, bar, possibly, the zero vector. Since all vectors in U have odd
weights and added parity check bit corresponds to the value of the function at
the all-zero vector, we can describe the metric complement of Rm−3 in terms of
functions instead of their value vectors as follows:

R̂m−3 =
⋃

g∈G

(g +Rm−3) ,

where

G = {f(1,u) : u ∈ U} = {g : supp(g) = {0,x1, x2 . . . , xm, x1 + . . .+ xm},

{x1, . . . , xm} are linearly independent}.

All functions in G form an equivalence class with respect to the linear equiv-
alence. Recall that two functions f and g are called ELk-equivalent if there exists
a nonsingular binary matrix A and a function h of degree at most k such that
g = f ◦ LA + h. It is now easy to see that a function g is in R̂m−3 if and only if
it is ELm−3-equivalent to some function from G. Since all functions in the metric
complement are equivalent, we can pick any function from it as the reference for
equivalence (and we will change this reference when it is convenient). We will call
the ELm−3-equivalence just “equivalence” for brevity from now on.

Let us give an explicit (algebraic normal form) description of a certain function
from G. Denote by g∗ the function with the support {0, e1, e2, . . . , em, 1}, where
ei ∈ F

m
2 is the vector with 1 only in the i-th coordinate. Clearly, g∗ ∈ G and it

is straightforward to construct the algebraic normal form of this function: it is
the sum of all monomials containing an even number of variables, excluding the
monomial with all variables included:

g∗(x) = 1 +

m

2
−1∑

k=1

∑

16i1<...<i2k6m

xi1xi2 . . . xi2k .

This function is equivalent to the sum of all monomials containing m−2 variables,
so let us use this last function as g∗ moving forward. Let xi denote the product
of all m variables except xi, and let xixj denote the product of all m variables
except xi and xj . Using these conventions, we can write this new representative
function as follows:

g∗(x) :=
∑

16i<j6m

xixj .
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7.3 Metric regularity

We have established that

R̂m−3 = {g : g
m−3
∼ g′},

where g′ is an arbitrary function from the class G (or from R̂m−3), and have
constructed a certain representative of this equivalence class — g∗.

Since the code Rm−3 is linear, ρ(R̂m−3) = ρ(Rm−3) = m+2 and a function f

is in
̂̂
Rm−3 if and only if f+ R̂m−3 = R̂m−3. Let us prove the metric regularity of

Rm−3 by proving that no functions other that those contained in Rm−3 preserve
the metric complement under addition.

Let f /∈ Rm−3 be an arbitrary function. Since R̂m−3 is an ELm−3-equivalence
class, in order to show that f + R̂m−3 6= R̂m−3 it is enough to show there exists

a function f ′ such that f ′ m−3
∼ f and f ′ + R̂m−3 6= R̂m−3.

Case 1. Let f /∈ Rm−3 be a function of degree greater than m − 2. Since
ELm−3-equivalence preserves the degree for functions of degree higher than m −
3, any g ∈ R̂m−3 has degree m − 2 (like g∗), while f + g has a higher degree

and therefore cannot be equivalent to any of the functions from R̂m−3. Thus,
functions of degree greater than m − 2 do not preserve any function from the

metric complement and therefore cannot be in
̂̂
Rm−3.

Case 2. Let f /∈ Rm−3 be a function of degree m−2. We can uniquely present
it as follows:

f(x) =
∑

(i,j)∈I

xixj + h(x),

where deg(h) < m− 2. Denote by f̃ the following quadratic function:

f̃(x) :=
∑

(i,j)∈I

xixj .

We will call f̃ the quadratic dual of f .

The following result would be of use when handling this case:

Lemma 6 Let f and g be two functions of degree m − 2. Then f
m−3
∼ g if and

only if their quadratic duals are EL1-equivalent (EA-equivalent).

Proof. Since ELm−3-equivalence allows us to add functions of degree up to m−3,
we will assume that both f and g contain only monomials of degree m − 2. In
what follows we will discard monomials of degree less than m − 2 when talking
about ELm−3-equivalence, and we will discard monomials of degree less than 2
when talking about EL1-equivalence.

Let f(x) =
∑

(i,j)∈I

xixj be the ANF of f . Let us perform the following simple

nonsingular linear transformation of variables Lij :

Lij :

{
xi ← xi + xj ,

xk ← xk ∀k 6= i.
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The function f changes under this transformation (disregarding monomials of
degree less than m− 2) in the following manner:

Lij :





xixk ← xixk ∀k 6= i,

xjxk ← xjxk + xixk ∀k 6= i, j,

xkxl ← xkxl ∀k, l 6= i, j.

Let f1 denote the function obtained after this transformation. Then it is easy
to see that the dual function f̃1 is obtained from the dual function f̃ (disregarding
monomials of degree less than 2 since we consider EL1-equivalence) by the following
linear transformation:

Lji :

{
xj ← xj + xi,

xk ← xk ∀k 6= j.

which is simply the transposed transformation.

Assume now that g is obtained from f using some linear transformation L.
Trivially, L can be decomposed into a sequence of simple transformations:

L = Li1j1 ◦ Li2j2 ◦ . . . ◦ Lisjs .

From the above we can see that the dual function g̃ is obtained from f̃ using the
following transformation L̃:

L̃ = Lj1i1 ◦ Lj2i2 ◦ . . . ◦ Ljsis

which is a sequence of transposed simple transformations.

Thus we have established that, if f
m−3
∼ g, then f̃

1
∼ g̃. The reverse can be

shown using similar argumentation.

⊓⊔

It is known that any quadratic Boolean function is EA-equivalent to the func-
tion of the form x1x2 + x3x4 + . . . + x2k−1x2k for some k 6

m
2 , and any two

functions of this form with different number of variables are not EA-equivalent
one to the other. Using this result and Lemma 6 we conclude that f is equivalent
to the function pk for some k (0 < k 6

m
2 ), where

pk(x) = x1x2 + x3x4 + . . .+ x2k−1x2k =

k∑

i=1

x2i−1x2i.

Trivially, g∗ is equivalent to pm

2

. Then pk + pm

2

is equivalent to pm

2
−k, which

is (by Lemma 6) not equivalent to pm

2

and therefore not equivalent to g∗. This

means that f + R̂m−3 6= R̂m−3 and therefore f /∈
̂̂
Rm−3.

Since all functions which are not in Rm−3 have degree m−2 or higher, we have
just shown that none of them are in the second metric complement, and therefore
Rm−3 is metrically regular when m is even.
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8 The Reed-Muller codes of order m − 3: m is odd

8.1 The covering radius and the metric complement of the punctured
code

Let the number of variables m be odd. Many arguments for this case are simi-
lar or identical to the ones for the previous case, however, the proof a bit more
complicated. From Section 6 we have:

ρ(R◦
m−3) = max

S
t(S) = m,

and a vector v is in the metric complement of R◦
m−3 if and only if t(Sv) = m.

The following lemma will help to characterize matrices achieving this maximum:

Lemma 7 Let S be a symmetric m×m matrix, where m is odd. Then t(S) = m
if and only if S has an m×m factor which is either nonsingular, or has rank m−1
and all columns summing to zero.

Proof. =⇒

Assume that t(S) = m and let B be a minimal factor of S with m columns.
If the rank of B is smaller than m − 1, then B has a proper subset of columns
summing to zero, contradicting the minimality of B, so the rank of the factor must
be at least m− 1. If the rank is m, the proof is finished.

Assume that rank(B) = m− 1. Then some subset of columns of B must sum
to zero. Since B is minimal, it cannot be a proper subset by Lemma 2, therefore
all columns of B must sum to zero.

⇐=

Clearly, t(S) > rank(S), so if S = BBT for some nonsingular m ×m matrix
B, then the proof is finished.

Let S = BBT for some B of rank m− 1 with all columns summing to zero.

Assume that t(S) = k 6 m− 1 and let D be a minimal factor of S. Since the
sum of all columns of any factor is the vector composed of the diagonal elements
of S, the sum of all columns of D is also zero.

Assume that k = m − 1. Then D has an even number of columns, and each
row has an even number of ones, so we can add an arbitrary vector to all columns
of D while keeping it a factor of S using Lemma 1. Let us add the first column of
D to all its columns. Now the first column of D is zero and we can remove it by
Lemma 1. We have now obtained a factor of S with fewer columns than D has,
which contradicts the minimality of D.

Therefore, k can be at most m− 2. Since all its columns sum to zero, D is not
a full-rank matrix. Hence rank(D) is at most m− 3, which means that rank(S) is
at most m− 3 as well.

Since S = BBT, by Sylvester’s inequality we obtain rank(S) > rank(B) +
rank(BT) − m = m − 2. But we have just established that rank(S) 6 m − 3,
contradiction.

Thus, t(S) has to be greater than m− 1 and is equal to m.

⊓⊔
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Lemma 7 describes all minimal factors of all matrices S satisfying t(S) = m.
Let us put

U1 = {u : Bu has m nonzero columns which are linearly independent}

and

U2 = {u : Bu has m nonzero columns, m− 1 of which are

linearly independent and the sum of all columns is equal to zero}.

Denote U = U1∪U2. It is easy to see that the set of matrices {Bu : u ∈ U} (up
to columns permutations and zero columns removal) includes exactly all minimal
factors described in Lemma 7. Thus, if t(S) = m for some matrix S, then there
exists a vector u ∈ U such that S = BuB

T
u . Conversely, for any u ∈ U it holds

t(BuB
T
u ) = m. Therefore, the vectors from the set U cover all cosets contained in

the metric complement of R◦
m−3:

R̂◦
m−3 =

⋃

u∈U

(u+R◦
m−3).

8.2 The covering radius and the metric complement of the
non-punctured code

Let us return to the regular, non-punctured Reed-Muller code Rm−3. As with the
case when m is even, since the code is obtained from the punctured one by adding
a parity check bit, using Lemma 5 we conclude that the covering radius of Rm−3

is equal to m+ 1, and its metric complement is

R̂m−3 =
⋃

u∈U

((π(u),u) +Rm−3).

Recall once again that for any v ∈ F
n
2 , the set of nonzero columns of Bv◦

coincides with the support of the function fv, bar, possibly, the zero vector. Since
all vectors in U have odd weight and added parity check bit corresponds to the
value of the function at the all-zero vector, we can rewrite the metric complement
of Rm−3 in terms of functions instead of their value vectors:

R̂m−3 =
⋃

g∈G1∪G2

g +Rm−3,

where

G1 = {f(1,u) : u ∈ U1} =

= {g : supp(f) = {0,x1, x2 . . . , xm}, {x1, . . . , xm} are linearly independent},

and

G2 = {f(1,u) : u ∈ U2} =

= {g : supp(g) = {0,x1, x2 . . . , xm−1, x1 + . . .+ xm−1},

{x1, . . . , xm−1} are linearly independent}.
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It is easy to see that all functions in G1 form an equivalence class with respect
to the linear equivalence, so do functions in G2. Let us pick two arbitrary functions
g1 ∈ G1, g2 ∈ G2 from these two classes. Then it follows from the definition of the

ELk-equivalence that a function g is in R̂m−3 if and only if g
m−3
∼ g1 or g

m−3
∼ g2.

In fact, we can pick any function from the ELm−3-equivalence class of G1 and from
the ELm−3-equivalence class of G2 respectively as our references of equivalence.

Let us give an explicit (algebraic normal form) description of a certain function
from G1. Denote by g∗1 the function with the support {0, e1, e2, . . . , em−1, 1}. After
a bit of calculation one can explicitly describe its ANF:

g∗1(x) = xm + (1 + xm)


1 +

m−3

2∑

k=1

∑

16i1<...<i2k6m−1

xi1xi2 . . . xi2k


 .

This function has degree m− 1 and, omitting all terms of degree less than m− 2,
it is trivially ELm−3-equivalent to the following function which we will use as g∗1
from now on:

g∗1 := xm + xmg⋆, (1)

where g⋆, defined by

g⋆(x1, x2, . . . , xm−1) =


 ∑

16i<j6m−1

xixj


 ,

is a function of the first m−1 variables. Moving on we will denote the (m−1)-tuple
of the first m− 1 variables as x̄. We will also denote affine transformations of the
first m−1 variables as L̄b

A (with the matrix and the vector of corresponding sizes).
Let us now give an explicit description of a certain function from G2. Denote

by g∗2 the function with the support {0, e1, e2, . . . , em−1,
m−1∑
i=1

ei}. After a bit of

calculation one can explicitly describe its ANF:

g∗2(x) = (1 + xm)


1 +

m−3

2∑

k=1

∑

16i1<...<i2k6m−1

xi1xi2 . . . xi2k


 .

This function has degree m− 1 and is trivially ELm−3-equivalent to the function
xmg⋆, which we will use as g∗2 from now on:

g∗2 := xmg⋆ (2)

Note that g∗1 = xm + g∗2 .
Before we proceed to establish the metric regularity of Rm−3, we will build

some alternative representatives of the equivalence classes of G1 and G2. The
following lemma will be helpful:

Lemma 8 Let f be a function such that f
m−2
= xm. Let A be a nonsingular m×m

matrix. Then f ◦ LA
m−2
= xm if and only if the matrix A has the following form:

A =

(
Ā 0m−1

w 1

)
,

where 0m−1 is an all-zero column of length m − 1, Ā is an arbitrary nonsingular
(m− 1)× (m− 1) matrix and w is an arbitrary row of length m− 1.
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Proof. ⇐=
Trivially, such transformation of the first m− 1 variables keeps the monomial

xm in f the only monomial of degree (m−1), and the linear transformation cannot
increase the degree of any of the other monomials.

=⇒
Assume that f ◦LA

m−2
= xm. This means that the change of variables keeps the

monomial xm intact and does not produce any other monomials of degree m− 1.
Clearly, the action of this change on monomials of degree m − 2 and smaller is
irrelevant, so let us inspect the action on xm.

It is easy to see that the coefficient of the monomial xi in the resulting function,
obtained after applying transformation LA to the variables, is precisely the value
of the (m−1)× (m−1) minor, obtained from the matrix A by removing the m-th
row and the i-th column. So we need the matrix A to have all such minors be
equal to zero, except for the last one, obtained by removing the last column.

Let Ā1, Ā2, . . . , Ām denote the columns of the matrix A with the last coordinate
removed. Then the condition on the minors described above can be reformulated
as follows: sets of columns {Ā1, . . . , Āi−1, Āi+1, . . . , Ām} are linearly dependent
for all i 6= m, while the set of the first m−1 columns is linearly independent. This
implies that the following set of equations holds:





Ām +
∑

j6m−1

b1,jĀ
j = 0

Ām +
∑

j6m−1

b2,jĀ
j = 0

. . .

Ām +
∑

j6m−1

bm−1,jĀ
j = 0

where B = (bi,j) — the coefficients matrix — is an (m− 1)× (m− 1) matrix with
bi,i = 0 for all i.

If we denote the rows of the matrix B by Bi, and denote by Ā the (m− 1)×
(m−1) matrix composed of the first m−1 columns Ā1, . . . , Ām−1, we can rewrite
this in the following manner:





Ā · BT
1 = Ām

Ā · BT
2 = Ām

. . .

Ā · BT
m−1 = Ām

Since Ā is nonsingular, the solution to each equation (which is a system of equa-
tions on bi,j ’s for i-th row) is unique and hence B1 = B2 = . . . = Bm−1. Since
bi,i = 0, the matrix B is a zero matrix, which means that Ām = 0. This implies
that the last column of the matrix A can have 1 only in the last coordinate, and
since A is nonsingular, this has to be the case. Thus, A is of the form stated in
the lemma.

⊓⊔

This lemma shows us that all linear transformations of the described form,
and only such transformations among all linear, transform functions of the form
xm+h with deg(h) 6 m−2 into functions of the same form, preserving xm as the
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only monomial of degree m − 1. Let us look closer at how such transformations
act on monomials of degree m− 2 in such functions:

Corollary 2 Let f be a function of degree m− 1 such that

f = xm + xmf1 + f2,

where f1, f2 do not depend on xm and deg(f1) 6 m− 3, deg(f2) 6 m− 2. Let A
be a matrix satisfying the conditions of Lemma 8. Then

f ◦ LA
m−3
= xm + xm(f1 ◦ L̄Ā) + f3,

where f3 is some function of degree at most m− 2 which does not depend on the
variable xm.

Proof. Straighforward from the proof of Lemma 8. ⊓⊔

Let us now build alternative representatives for the metric complement of
Rm−3. Since Ā in Lemma 8 can be any nonsingular matrix, choosing Ā so that

g⋆ ◦ L̄Ā
m−3
= pm−1

2

, (this is possible by Lemma 6) and filling the vector w with

zeroes, we obtain a matrix A such that

g∗∗1 := g∗1 ◦ LA
m−3
= xm + xm(g⋆ ◦ L̄Ā) + h1

m−3
= xm + xmpm−1

2

+ h1. (3)

Here pm−1

2

, h1 do not depend on xm and h1 has degree at mostm−2. Additionally,

g∗∗2 := g∗2 ◦ LA
m−3
= xm(g⋆ ◦ L̄Ā)

m−3
= xmpm−1

2

. (4)

We will use these equivalent functions g∗∗1 and g∗∗2 as class representatives in some
cases.

8.3 Metric regularity

We have established that

R̂m−3 = {g : g
m−3
∼ g1} ∪ {g : g

m−3
∼ g2},

where g1 is an arbitrary representative of an ELm−3-equivalence class of G1 and
g2 is an arbitrary representative of an ELm−3-equivalence class of G2, and have
presented some variants of these representatives — functions g∗1 , g

∗
2 , g

∗∗
1 and g∗∗2

(equations (1)-(4)).

Since the code Rm−3 is linear, ρ(R̂m−3) = ρ(Rm−3) = m+2 and the function

f is in
̂̂
Rm−3 if and only if f+R̂m−3 = R̂m−3. Let us prove the metric regularity of

Rm−3 by proving that no functions other than those contained in Rm−3 preserve
the metric complement under addition.

Let f /∈ Rm−3 be an arbitrary function. Since R̂m−3 is a union of two ELm−3-
equivalence classes, in order to show that f + R̂m−3 6= R̂m−3 it is enough to show

that there exists a function f ′ such that f ′ m−3
∼ f and f ′ + R̂m−3 6= R̂m−3.

Case 1. Let f /∈ Rm−3 be a function of degree greater than m − 1. Since
ELm−3-equivalence preserves degree of functions with degree higher than m − 3,
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any g ∈ R̂m−3 has degree m−1 or m−2 (like g∗1 and g∗2 respectively), while f +g
has higher degree and therefore cannot be equivalent to any of the functions from

R̂m−3. Thus, functions of degree greater than m− 1 cannot be in
̂̂
Rm−3.

Case 2. Let f /∈ Rm−3 be a function of degree m− 1. Any function of degree
m− 1 is trivially ELm−3-equivalent to a function with xm as the only monomial
of degree (m− 1), so

f
m−3
∼ xm + xmf1 + f2, (5)

where f1, f2 do not depend on xm, f1 is either zero or has degree m− 3, while f2
is either zero or has degree m− 2.

Case 2.1. Assume that f1 in (5) is nonzero. Then, from Lemma 8 and Lemma
6 it follows that

f
m−3
∼ xm + xmpk + f3 =: f ′ (6)

for some k > 0 and some f3 of degree at most m − 2 (pk, f3 do not depend on

xm). If we now sum f ′ and g∗∗2 ∈ R̂m−3, we obtain:

g∗∗2 + f ′ m−3
= xm + xm(pk + pm−1

2

) + f3
m−3
∼ xm + xmpm−1

2
−k + f4,

where f4 is a function of degree at most m−2, not depending on xm, and the last
equivalence is a simple variable renaming.

Let us denote this last function as g′. It has degree m−1 and therefore cannot
be equivalent to the functions from G2. It cannot be equivalent to the functions
from G1 either, because, by Lemma 8, any linear transformation of variables with
matrix D which preserves xm will act onto it in the following manner:

g′ ◦ LD
m−3
= xm + xm(pm−1

2
−k ◦ L̄D̄) + f5,

where f5 is some function of degree at most m−2 in the first m−1 variables. It is
clear that no matrix D̄ can match the monomials of degreem−2 containing variable
xm of the function g′ and of the function g∗∗1 , since pm−1

2
−k is not equivalent to

pm−1

2

. Thus, the function g′ = g∗∗2 + f ′ is not in R̂m−3, and therefore, if f1 is

nonzero, f is not in
̂̂
Rm−3.

Case 2.2 Assume that both f1 and f2 in (5) are zero. Then

f
m−3
∼ xm =: f ′.

Using the transformation L1m : x1 ← x1 + xm (and removing the terms of degree

less than m − 2), the function g∗1 = xm + xmg⋆ transforms into g∗1 ◦ L1m
m−3
=

xm + x1 + xmg⋆.

If we now sum f ′ and g∗1 ◦L1m ∈ R̂m−3 we will obtain the function g′
m−3
= x1+

xmg⋆. If we swap the variables x1 and xm in it by another linear transformation
and regroup terms, we will see that

g′
m−3
∼ xm +

∑

26i<j6m−1

xixj +

m−1∑

i=2

xixm
m−3
∼ xm + xmpm−3

2

+ h
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for some h of degree at most m− 2 in the first m− 1 variables. By Lemma 8 and
Lemma 6, this function cannot be equivalent to g∗∗1 and it is not equivalent to g∗2

by degree comparison. Therefore, g′ is not in R̂m−3, and hence f is not in
̂̂
Rm−3.

Case 2.3 Assume that f1 in (5) is zero and f2 is nonzero. Then

f
m−3
∼ xm + f2 =: f ′.

Since f2 does not contain the variable xm, all terms of f2 are of the form xixm

for some i. Without loss of generality (swapping variables among the first m− 1 if
needed) we can assume that f2 contains xm−1xm. Renaming variables in g∗∗2 , we
can transform it into:

g∗∗2
m−3
∼ x2x3 + x4x5 + . . .+ xm−1xm.

If we now add f ′ and the function above, which belongs to R̂m−3, we will obtain

the function g′ := xm +

m−3

2∑
k=1

x2kx2k+1 +
∑
i∈I

xixm, which is equivalent to

g′
m−3
∼ xm + xmpm−3

2

+ h

for some h of degree at most m− 2 in the first m− 1 variables. By Lemma 8 and
Lemma 6, this function cannot be equivalent to g∗∗1 and it is not equivalent to g∗2

by degree comparison. Therefore, g′ is not in R̂m−3, and thus f is not in
̂̂
Rm−3.

Case 3. If f /∈ Rm−3 is a function of degree m−2, then, by arguments similar
to the case of even m, f is equivalent to pk (in m variables) for some k > 0. Then

pk + g∗∗2
m−3
∼ pm−1

2
−k.

The function on the right is inequivalent to both g∗∗2 (because m−1
2 6= m−1

2 − k)

and g∗1 (by degree comparison), therefore f /∈
̂̂
Rm−3.

Since all functions which are not in Rm−3 have degree m − 2 or higher, we
have proven that none of them are in the second metric complement, and therefore
Rm−3 is metrically regular when m is odd.

Factoring in the results from Section 7, we have proved the following

Theorem 2 Rm−3 is metrically regular for any m > 3.

9 The Reed-Muller code RM(2, 6)

Let us consider one other special case. If we change the order of values in the value
vectors of functions so that the first half of values corresponds to the values of the
function when the last variable is set to 0, and the other half corresponds to the
values of the function when the last variable is set to 1, then each Reed-Muller
code (for m > 1, r > 0) can be inductively defined as follows:

Rr,m = {(u,u+ v) : u ∈ Rr,m−1,v ∈ Rr−1,m−1}.

In particular,

R2,6 = {(u,u+ v) : u ∈ R2,5,v ∈ R1,5}.
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Since bothR2,5 andR1,5 were shown to be metrically regular, this construction
proves useful and allows us to establish the metric regularity of the code R2,6 as
well. From now on, vectors in bold will represent value vectors of functions in 5
variables (of length 32), while value vectors of 6-variable functions will be presented
as pairs of value vectors of 5-variable functions. Additionaly, in this section we will
use the notion of an automorphism of a set, which will denote an isometric bijective
mapping from the whole space to itself which maps the given set to itself.

First, let us establish one of the basic tools for the following investigations.
Recall that ρ(R2,5) = 6 (Section 8), ρ(R1,5) = 12 [1] and ρ(R2,6) = 18 [14].

Lemma 9 Let (y,w) be in R̂2,6. Then y ∈ R̂2,5 and for any u ∈ R2,5 such that

d(y,u) = 6 it holds d(w+ u,R1,5) = 12, i.e. (w+ u) ∈ R̂1,5.

Proof. Assume that y /∈ R̂2,5, i.e. d(y,R2,5) < 6. Then there exists a vector
u ∈ R2,5 such that d(y,u) < 6. From the inductive construction of R2,6 it follows
that the distance between (y,w) and R2,6 is at most the distance between y
and u plus the distance between w and u + R1,5. The latter is in turn equal to
d(w+ u,R1,5), which is bounded by the covering radius of R1,5. Therefore,

d((y,w),R2,6) 6 d(y,u) + d(w+ u,R1,5) < 6 + 12 = 18.

This contradicts with (y,w) ∈ R̂2,6, hence y is in R̂2,5.
The second part is now trivial: if u ∈ R2,5 is a vector such that d(y,u) = 6,

then the distance d(w + u,R1,5) has to achieve the maximum of 12 in order for
the vector (y,w) to be in the metric complement of R2,6. ⊓⊔

Let (ũ, ũ+ ṽ) ∈
̂̂
R2,6. We will prove that (ũ, ũ+ ṽ) is in R2,6 in two steps:

first we establish that ũ is in R2,5, then we prove that ṽ is in R1,5.

Recall (Section 8) that R̂2,5 = {g : g
2
∼ g1}∪ {g : g

2
∼ g2}, where g1 and g2 are

some representatives of two EL2-equivalence classes. Let us denote

R̂1
2,5 := {g : g

2
∼ g1}, R̂

2
2,5 := {g : g

2
∼ g2}.

Then the following lemma is useful for proving the first half.

Lemma 10 For each i = 1, 2 one of the following statements holds:

1. ∀y ∈ R̂i
2,5 ∀w ∈ F

32
2 it holds (y,w) /∈ R̂2,6;

2. ∀y ∈ R̂i
2,5 ∃w ∈ F

32
2 such that (y,w) ∈ R̂2,6;

Proof. Assume that for some i the second statement does not hold. Then, inverting
it, we obtain

∃y∗ ∈ R̂i
2,5 : ∀w ∈ F

32
2 it holds (y∗,w) /∈ R̂2,6

We will now prove that any y ∈ R̂i
2,5 satisfies the claim of this statement and not

just the vector y∗. First, note that the statement “∀w ∈ F
32
2 it holds (y∗,w) /∈

R̂2,6” is equivalent to the following:

∀w ∈ F
32
2 ∃u ∈ R2,5 : d(y∗,u) + min

v∈R1,5

d(w+ u,v) < 18. (7)
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Let y be an arbitrary vector from R̂i
2,5. Since all functions in R̂i

2,5 are EL2-
equivalent, there exists a nonsingular linear transformation of variables L and a
function g ∈ R2,5 such that fy = fy∗ ◦L+g. Let us denote as g the value vector of
g and as L the linear transformation on F

32
2 , corresponding to the transformation

L on functions. Then y = Ly∗ + g.

Let us take an arbitrary vector w ∈ F
32
2 and let us denote wy = L−1(w+ g).

Then, by (7), there exists a vector u ∈ R2,5 such that

d(y∗,u) + min
v∈R1,5

d(wy + u,v) < 18. (8)

Trivially, the transformation L, as well as the addition of the function g are
both automorphisms of F32

2 . So let us apply L to all vectors being compared in (8)
and add g to some of them, without changing the inequality:

d(Ly∗ + g,Lu+ g) + min
v∈R1,5

d(Lwy + Lu,Lv) < 18. (9)

Note that the transformation L is also an automorphism of the codes R1,5 and
R2,5. Let us denote uy := Lu+ g. Then uy ∈ R2,5 and (9) can be transformed
into

d(y,uy) + min
v∈R1,5

d(w+ uy,v) < 18. (10)

Thus, for an arbitrary w ∈ F
32
2 we have found a vector uy ∈ R2,5 such that

(10) holds. This means that (7) holds for the vector y that we have previously

selected from R̂i
2,5. Since our selection was arbitrary, we have proved that the first

statement of the lemma holds for the set R̂i
2,5 in question. ⊓⊔

Proposition 1 Let (ũ, ũ+ ṽ) ∈
̂̂
R2,6. Then ũ ∈ R2,5.

Proof. Let us denote Y := {y ∈ F
32
2 | ∃w ∈ F

32
2 ; (y,w) ∈ R̂2,6}. From Lemma 9 it

follows that Y ⊆ R̂2,5 and is nonempty. From Lemma 10 we can conclude that Y

can only coincide with one of the three sets: R̂1
2,5, R̂

2
2,5 or R̂2,5.

Let (ũ, ũ+ ṽ) ∈
̂̂
R2,6. Then, as we know, (ũ, ũ+ ṽ)+R̂2,6 = R̂2,6. This implies

that ũ+ Y = Y . Since R2,5 is proven to be metrically regular, we know that only
the vectors from R2,5 preserve its metric complement under addition. Following
the proof of the metric regularity of the code Rm−3,m for m odd (Subsection 8.3),

it is easy to see that the same can be shown true for the sets R̂1
2,5 and R̂2

2,5 if they
are considered separately one from another. Therefore, regardless of the contents
of Y , only vectors from R2,5 preserve it under addition, and therefore ũ ∈ R2,5.

⊓⊔

Recall from Section 3 that R̂1,5 is composed of 4 EA-equivalence classes: R̂1,5 =⋃4
i=1 R̂

i
1,5. Similar to Lemma 10, the following statement holds:

Lemma 11 For each i = 1, 2, 3, 4 one of the following statements holds:

1. ∀w′ ∈ R̂i
1,5 ∀(y,w) ∈ R̂2,6 ∀u ∈ R2,5 (d(y,u) = 6→ w + u 6= w′);

2. ∀w′ ∈ R̂i
1,5 ∃(y,w) ∈ R̂2,6 ∃u ∈ R2,5 : (d(y,u) = 6 ∧w + u = w′);
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Proof. Assume that for some i the second statement does not hold. Then there
exists a vector w∗ ∈ R̂i

1,5 such that

∀(y,w) ∈ R̂2,6 ∀u ∈ R2,5 (d(y,u) = 6→ w + u 6= w∗) (11)

Let w′ be an arbitrary vector from R̂i
1,5. Since all functions in R̂i

1,5 are EA-
equivalent, there exists a nonsingular affine transformation of variables A and a
function g ∈ R1,5 such that fw′ = fw∗◦A+g. Let us denote as g the value vector of
g and as A the linear transformation on F

32
2 , corresponding to the transformation

A on functions. Then w′ = Aw∗ + g.
Let (y,w) be an arbitrary vector from R̂2,6 and u be an arbitrary vector from

R2,5. Since A is an automorphism of the codes R2,5 and R1,5, the vector A−1u
is in R2,5 and (A,A) ·R2,6 = R2,6. Since the addition of g is an automorphism of

R2,5, R1,5 and F
32
2 , the vector (A−1y,A−1(w + g)) is in R̂2,6. Hence, from (11)

it follows that:

d(A−1y,A−1u) = 6→ A−1(w + g) +A−1u 6= w∗. (12)

Applying A, (12) shows to be equivalent to the following statement:

d(y,u) = 6→ w + u 6= w′. (13)

Hence, we have shown that for an arbitrary vector w′ from R̂i
1,5, an arbitrary

vector (y,w) from R̂2,6 and an arbitrary u from R2,5 (13) holds. This proves that

the first statement holds for the class R̂i
1,5.

⊓⊔

The following result shows that any of the EA-equivalence classes of the metric
complement of R1,5 are also rather “unstable” when summed with a non-affine
function:

Lemma 12 For any v /∈ R1,5 and any i = 1, 2, 3, 4 there exists a vector w ∈ R̂i
1,5

such that v+w /∈ R̂1,5.

Proof. Like in Section 3, in order to prove the statement it is enough to show
that for any i = 1, 2, 3, 4 and any EA-equivalence class C of F32

2 of even weight
(other than R1,5) there exists a function f ∈ C and a function g ∈ R̂i

1,5 such that

f + g /∈ R̂1,5. The proof for this can be found in the appendix in Tables 2-5. ⊓⊔

Theorem 3 The code R2,6 is metrically regular.

Proof. Since any linear code is a subset of its second metric complement, we only

need to prove that
̂̂
R2,6 ⊆ R2,6. Let (ũ, ũ+ ṽ) be a vector from

̂̂
R2,6. We have

already proved that ũ is in R2,5, therefore the vector (0, ṽ) is also in
̂̂
R2,6. Let us

prove that ṽ is in R1,5.

Assume that ṽ /∈ R1,5. Since (by Lemma 9) for an arbitrary (y,w) ∈ R̂2,6

there exists a vector u ∈ R2,5 such that (w+ u) ∈ R̂1,5, for some i the second
statement of Lemma 11 must hold.

By Lemma 12, there exists a vector w∗ ∈ R̂i
1,5 such that ṽ +w∗ /∈ R̂1,5.
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By the second statement of Lemma 11, for thisw∗ there exists a vector (y,w) ∈

R̂2,6 and a vector u ∈ R2,5 such that (d(y,u) = 6 ∧w + u = w∗). Since (0, ṽ) ∈
̂̂
R2,6, (y,w + ṽ) is also in R̂2,6, and since d(y,u) = 6, by Lemma 9 the vector

w + ṽ+ u is in R̂1,5. But w + ṽ+ u = ṽ +w∗ /∈ R̂1,5, contradiction. Therefore,
ṽ ∈ R1,5 and hence (ũ, ũ+ ṽ) ∈ R2,6. ⊓⊔

10 Conclusion

In this paper we have established the metric regularity of the codes RM(1, 5),
RM(2, 6) and of the codes RM(k,m) for k > m − 3. Factoring in the result
by Tokareva [16], which proves the metric regularity of RM(1,m) for even m,
all infinite families of Reed-Muller codes with known covering radius are covered.
The only other Reed-Muller codes with known covering radius, metric regularity
of which has not been yet established, are RM(1, 7) and RM(2, 7). Given these
results, we formulate the following

Conjecture. All Reed-Muller codes RM(k,m) are metrically regular.

The availability of the coset weight distributionfor allowed us to consider the
code RM(1, 5), and the fact that the covering radius of RM(2, 6) attains an
upper bound given by the (u,u+ v) construction [14] allowed us to establish its
metric regularity even without describing the metric complement. However, the
codes RM(1, 7) and RM(2, 7) are much harder to consider because of the lack of
similar regularities, the larger number of variables, the larger covering radius and
the unconstructive nature of the results which describe their covering radius.

I would like to thank Natalia Tokareva, Alexander Kutsenko and the collective
of the Selmer Center of the University in Bergen for the inspiration and helpful
remarks during the development of this work.
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Appendix

Tables 2-5 show that for any EA-equivalence class R̂i
1,5 of R̂1,5 and for each EA-

equivalence class C of F32
2 there exists a function f ∈ C and a function g ∈ R̂i

1,5

such that f + g does not belong to R̂1,5. Note that, if this function f is not in

R̂1,5 and f + g belongs to a class C ′, then we do not have to search for a function

with such properties in the class C ′ since (f + g) + g = f does not belong to R̂1,5

— this is why some rows in the following tables are skipped.
Notations in Tables 2-5 are the same as in Table 1 (see Section 3). The second

column of Table 5 contains “canonical” representatives for each EA-equivalence
class, as they were obtained in the paper [1] by Berlekamp and Welch. In other
columns and tables, some representatives are changed by either simple variable
swaps or more complex transformations. These more complex transformations are
marked with an asterisk and explained below for each table, along with other
clarifications. Hereafter “i←i+ j” stands for “xi←xi + xj”, while two-way arrows
denote variable swapping; all transformations are applied consecutively.

Table 2: Representatives f for classes 7, 9, 10 and 22 (column 2) are obtained
from “canonical” using the following transformations:
(7) 3←3+0; (9) 4←4+3+0; (10) 1←1+0; (22) 4↔5; 1↔3;

Functions g from R̂1
1,5 (third column) are obtained from “canonical” using trans-

formations:
2345+123+24+35 ◦ (2←2+0) = 2345+345+123+13+24+35;
2345+123+24+35 ◦ (5←5+0) = 2345+234+123+24+35;
2345+123+24+35 ◦ (1←1+0) = 2345+123+24+35+23;

Transformations which produce function in column 5 from h in column 4:
(1) 2←2+0; 4←4+0; 1↔3; (2) 2←2+0; 4←4+0; 1←1+4; 3←3+0; 5←5+2; 1↔3;
2↔4; 3↔5; (3) 1↔3; 4↔5; (5) 3←3+0; 1↔2; (6) 3←3+0; 1↔3; 3↔4; 4↔5;
(7) 5←5+0; 1↔5; 3↔4; (8) 1↔3; 2↔5; (9) 4←4+0; 1←1+2; 1↔4; 2↔5;
(10) 4←4+3; 2←2+5; 1↔4; (11) 1←1+4; (12) 1←1+2; 2↔4; (13) 3←3+0; 4←4+0;
1↔4; 2↔5; 4↔5; (15) 3←3+0; 1↔4; 2↔3; 4↔5; (16) 1←1+0; 3←3+0; 1↔4; 2↔3;
4↔5; (17) 1←1+0; 1↔5; 3↔4; 2↔5; (18) 2↔4; 3↔5; (20) 4←4+3+0; 5←5+2+0;
(23) 2↔4; 3↔5; 5←5+2+0; 1←1+0; 4←4+3+0; (24) 2↔4; 3↔5; 5←5+2+0;
1←1+0; 4←4+3+0; (26) 2↔4; 3↔5;
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Table 3: Functions g from R̂2
1,5 (third column) are obtained from “canonical”

using variable swaps. Transformations which produce function in column 5 from
h in column 4:
(1) 2↔3; (2) 4←4+2+0; 2↔3; (3) 1←1+0; 2↔3; (4) 3←3+2+0; 1←1+2+3;
(7) 4←4+2+0; 2↔4; 3↔5; (8) 2↔4; (10) 2←2+4+0; 2↔4; 3↔5; (11) 2←2+5+0;
(13) 2←2+5+0; 5←5+3+0; 3↔5; (15) 2↔4; 3↔5; (16) 1←1+0; 2↔4; 3↔5;
(17) 1←1+0; 2↔5; 3↔4; (18) 2↔4; 3↔5; (19) 3←3+0; 1↔5; (21) 1↔5;
(23) 5←5+0; 1↔5; 2↔4; 3↔5; (24) 5←5+0; 3←3+5; 2↔4; 3↔5; (25) 4←4+0; 2↔4;
3↔5; (26) 4←4+0; 2←2+5; 2↔4; 3↔5; (27) 1↔2; 4↔5;

Table 4: Representatives f for classes 4 and 9 (column 2) are obtained from
“canonical” using the following transformations: (4) 3←3+0; (9) 1←1+2;

Functions g from R̂3
1,5 (third column) are obtained from “canonical” using trans-

formations:
123+145+23+24+35 ◦ (1←1+2) = 123+145+245+24+35;
123+145+245+24+35 ◦ (3←3+0) = 123+145+245+24+35+12;
123+145+245+24+35+12 ◦ (4↔5) = 123+145+245+25+34+12;
123+145+245+24+35+12 ◦ (2↔4; 3↔5) = 123+145+234+24+35+14;
123+145+23+24+35 ◦ (2↔4; 3↔5) = 123+145+45+24+35;

Transformations which produce function in column 5 from h in column 4:
(1) 3←3+0; (2) 3←3+0; (4) 1←1+0; (5) 1←1+2; 1←1+0; (6) 2←2+5+0;
3←3+4+0; 1←1+0; 2↔4; 3↔5; (7) 3←3+4; 1←1+4; 2↔4; 3↔5; (8) 2←2+5+0;
2↔4; 3↔5; (9) 5←5+0; 2←2+5+0; 2↔4; 3↔5; (11) 3←3+2; 2↔4; 3↔5; 2↔3;
(14) 2↔4; 3↔5; (15) 5←5+2+0; 3↔4; (16) 3↔4; (17) 4←4+3+0; (19) 1←1+0;
3←3+4; 2←2+5; 2↔4; 3↔5; (21) 3←3+0; 1↔4; 2↔3; 4↔5; (22) 5←5+0; 2←2+4;
2↔4; 3↔5; (23) 5←5+0; 1↔5; 3↔4; (24) 5←5+0; 5←5+2+0; 1↔5; 3↔4;
(27) 5←5+2; 1←1+0; 3←3+4;

Table 5: Functions g from R̂4
1,5 (third column) are obtained from “canonical”

using variable swaps. Transformations which produce function in column 5 from
h in column 4:
(2) 2↔4; (7) 2↔3; (9) 2↔3; 4↔5; (16) 1←1+0; (17) 1←1+0; (19) 3←3+0;
(21) 1↔2; 4↔5; (23) 1←1+0; (24) 1←1+0; (25) 2↔3; 4↔5; (27) 1↔3; 2↔4;
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No Representative f g from R̂1
1,5(14) Sum h = f+g h is equal to C(h)

0 0 — — — —
1 2345 2345+345+123+13+24+35 123+345+13+24+35 123+145+24 25
2 2345+12 2345+345+123+13+24+35 123+345+12+13+24+35 123+145+23 24
3 2345+24 2345+123+24+35 123+35 123+14 21
4 2345+24+35 2345+123+24+35 123 ← 19
5 2345+12+35 2345+123+24+35 123+12+24 123+14 21
6 2345+123 2345+234+123+24+35 234+24+35 123+14 21
7 2345+245+123∗ 2345+123+24+35 245+24+35 123+14 21
8 2345+123+24 2345+123+24+35 35 12 27
9 2345+123+14+13∗ 2345+345+123+13+24+35 345+14+24+35 123+14 21
10 2345+123+45+23∗ 2345+123+24+35 23+24+35+45 12 27
11 2345+123+12+35 2345+123+24+35 12+24 12 27
12 2345+123+14+35 2345+123+24+35 14+24 12 27
13 2345+123+13+45 2345+345+123+13+24+35 345+24+35+45 123+14 21
141 2345+123+24+35 2345+123+24+35 0 ← 0
15 2345+123+145 2345+234+123+24+35 145+234+24+35 123+145+24 25
16 2345+123+145+45 2345+234+123+24+35 145+234+24+35+45 123+145+24 25
17 2345+123+145+24+45 2345+123+24+35 145+45+35 123+14 21
18 2345+123+145+24+35 2345+123+24+35 145 123 19
19 123 — — — —
20 123+45 2345+123+24+35 2345+24+35+45 2345+23+45 4
21 123+14 — — — —
222 123+24+35∗ 2345+123+24+35 2345 ← 1
23 123+145 2345+123+24+35+23 2345+145+24+35+23 2345+123+45 10
24 123+145+23 2345+123+24+35 2345+145+24+35+23 2345+123+45 10
25 123+145+24 — — — —
263 123+145+23+24+35 2345+123+24+35 2345+145+23 2345+123+45 10
27 12 — — — —
284 24+35 2345+123+24+35 2345+123 ← 6

Table 2 Proof of Lemma 12 for the class R̂1
1,5.

No Representative f g from R̂2
1,5(22) Sum h = f+g h is equal to C(h)

0 0 — — — —
1 2345 123+14+25 2345+123+14+25 2345+123+14+35 12
2 2345+12 123+14+25 2345+123+12+14+25 2345+123+14+35 12
3 2345+23 123+14+25 2345+123+23+14+25 2345+123+14+35 12
4 2345+25+34 123+14+25 2345+123+14+34 2345+123+14 9
5 2345+14+25 123+14+25 2345+123 ← 6
6 2345+123 — — — 21
7 2345+123+12 123+14+25 2345+12+14+25 2345+12+34 5
8 2345+123+25 123+14+25 2345+14 2345+12 2
9 2345+123+14 — — — 21
10 2345+123+45 123+14+25 2345+14+25+45 2345+12+34 5
11 2345+123+12+34 123+15+34 2345+12+15 2345+12 2
12 2345+123+14+35 — — — 27
13 2345+123+12+45 123+15+34 2345+12+15+45+34 2345+12+34 5
141 2345+123+24+35 123+24+35 2345 ← 1
15 2345+123+145 123+14+25 2345+145+14+25 2345+12+34 11
16 2345+123+145+45 123+14+25 2345+145+14+25+45 2345+12+34 11
17 2345+123+145+24+45 123+24+35 2345+145+35+45 2345+123+24 8
18 2345+123+145+24+35 123+24+35 2345+145 2345+123 6
19 123+235 123+14+25 235+14+25 123+45 20
20 123+45 — — — —
21 123+14 123+14+25 25 12 27
222 123+14+25 123+14+25 0 ← 0
23 123+145 123+14+25 145+14+25 123+14 21
24 123+145+23 123+14+25 145+14+25+23 123+45 20
25 123+145+24 123+15+24 145+15 123 19
263 123+145+23+24+35 123+15+24 145+15+23+35 123+45 20
27 14 123+14+25 123+25 123+14 21
284 14+25 123+14+25 123 ← 19

Table 3 Proof of Lemma 12 for the class R̂2
1,5.
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No Representative f g from R̂3
1,5(26) Sum h = f+g h is equal to C(h)

0 0 — — — —
1 2345 123+145+245+24+35+12 2345+123+145+245+24+35+12 2345+123+145+24+35 18
2 2345+12 123+145+245+24+35 2345+123+145+245+24+35+12 2345+123+145+24+35 18
3 2345+23 123+145+23+24+35 2345+123+145+24+35 ← 18
4 2345+245+23+45∗ 123+145+245+24+35 2345+123+145+23+24+35+45 2345+123+145+24+35 18
5 2345+12+35 123+145+245+24+35+12 2345+123+145+245+24 2345+123+145+24+45 17
6 2345+123 123+145+23+24+35 2345+145+23+24+35 2345+123+45 10
7 2345+123+12 123+145+245+24+35 2345+145+245+24+35+12 2345+123+35+14 12
8 2345+123+24 123+145+23+24+35 2345+145+23+35 2345+123+45 10
9 2345+123+14+23+24∗ 123+145+234+24+35+14 2345+145+234+23+35 2345+123+12+45 13
10 2345+123+45 — — — —
11 2345+123+12+34 123+145+245+25+34+12 2345+145+245+25 2345+123+24 8
12 2345+123+14+35 — — — —
13 2345+123+12+45 — — — —
141 2345+123+24+35 123+145+23+24+35 2345+145+23 2345+123+45 10
15 2345+123+145 123+145+23+24+35 2345+23+24+35 2345+23+45 4
16 2345+123+145+45 123+145+45+24+35 2345+24+35 2345+23+45 4
17 2345+123+145+24+45 123+145+23+24+35 2345+23+35+45 2345+23+45 4
18 2345+123+145+24+35 — — — —
19 123 123+145+23+24+35 145+23+24+35 123+45 20
20 123+45 — — — —
21 123+14 123+145+234+24+35+14 145+234+24+35 123+145+24 25
222 123+14+25 123+145+23+25+34 145+14+23+34 123+45 20
23 123+145 123+145+245+24+35 245+24+35 123+14 21
24 123+145+23 123+145+245+24+35 245+23+24+35 123+14 21
25 123+145+24 — — — —
263 123+145+23+24+35 123+145+23+24+35 0 ← 0
27 35 123+145+45+24+35 123+145+45+24 123+145+23 24
284 24+35 123+145+23+24+35 123+145+23 ← 24

Table 4 Proof of Lemma 12 for the class R̂3
1,5.

No Representative f g from R̂4
1,5(28) Sum h = f+g h is equal to C(h)

0 0 — — — —
1 2345 12+34 2345+12+34 ← 5
2 2345+12 12+34 2345+34 2345+23 3
3 2345+23 — — — —
4 2345+23+45 23+45 2345 ← 1
5 2345+12+34 — — — —
6 2345+123 12+34 2345+123+12+34 ← 11
7 2345+123+12 12+34 2345+123+34 2345+123+24 8
8 2345+123+24 — — — —
9 2345+123+14 14+35 2345+123+35 2345+123+24 8
10 2345+123+45 12+45 2345+123+12 ← 7
11 2345+123+12+34 — — — —
12 2345+123+14+35 14+35 2345+123 ← 6
13 2345+123+12+45 12+45 2345+123 ← 6
141 2345+123+24+35 24+35 2345+123 ← 6
15 2345+123+145 24+35 2345+123+145+24+35 ← 18
16 2345+123+145+45 23+45 2345+123+145+23 2345+123+145+45 16
17 2345+123+145+24+45 23+45 2345+123+145+24+23 2345+123+145+24+45 17
18 2345+123+145+24+35 — — — —
19 123 12+45 123+12+45 123+45 20
20 123+45 — — — —
21 123+14 14+25 123+25 123+14 21
222 123+14+25 14+25 123 ← 19
23 123+145 23+45 123+145+23+45 123+145 23
24 123+145+23 23+45 123+145+45 123+145+23 24
25 123+145+24 24+35 123+145+35 123+145+24 25
263 123+145+23+24+35 24+35 123+145+23 ← 24
27 12 12+34 34 12 27
284 12+34 12+34 0 ← 0

Table 5 Proof of Lemma 12 for the class R̂4
1,5.
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