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Abstract

The distance distribution of a code is the vector whose ith entry is the number of pairs of
codewords with distance i. We investigate the structure of the distance distribution for cyclic
orbit codes, which are subspace codes generated by the action of F∗

qn
on an Fq-subspace U of

Fqn . We show that for optimal full-length orbit codes the distance distribution depends only
on q, n, and the dimension of U . For full-length orbit codes with lower minimum distance, we
provide partial results towards a characterization of the distance distribution, especially in the
case that any two codewords intersect in a space of dimension at most 2. Finally, we briefly
address the distance distribution of a union of optimal full-length orbit codes.

1 Introduction

Following the seminal work of Kötter and Kschischang [10] in 2008, there have been a variety of
lines of research on subspace codes and their applications to random network coding. Two major
directions stand out: attempts to maximize the size of a subspace code given a fixed ambient space
and minimum distance, and attempts to find algebraic constructions of subspace codes with best
possible minimum distances, see [14, 13, 6, 8, 9, 3] for some of the more recent papers as well as
the monograph [7] on network coding and subspace designs. One class of subspace codes that have
attracted particular interest are cyclic orbit codes [4, 15, 5, 1, 11, 2, 16] due to their algebraic
structure and efficient encoding/decoding algorithms.

In this paper, we are interested in further classifying cyclic orbit codes of a fixed size and
minimum distance using the finer invariant of the distance distribution. The latter encodes, for
any possible subspace distance, the number of codeword pairs with that distance. It can thus
detect subspace codes with the fewest number of codeword pairs attaining the minimum distance.
Such codes may be regarded as superior to those with the same minimum distance but with more
codeword pairs attaining that distance.

A cyclic orbit code is a subspace code of the form Orb(U) = {αU | α ∈ F∗
qn}, where U is

an Fq-subspace of the field extension Fqn . In particular it is a constant-dimension code, that is,
all subspaces in the code have the same dimension, namely k := dim(U). It is well known that
if Orb(U) has maximum possible distance, i.e. 2k, then k is a divisor of n and U is a shift of
the subfield Fqk . These codes are known as spread codes and their distance distribution is trivial
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because all subspaces intersect pairwise trivially. Their downside is their small size: they contain
only (qn − 1)/(qk − 1) codewords, which is the smallest size of any cyclic orbit code generated by a
k-dimensional subspace. On the other hand, the largest size of such a code is (qn − 1)/(q − 1), and
codes attaining this size will be called full-length orbit codes. Full-length orbit codes with distance
2k − 2, which is the best possible, will be called optimal full-length orbit codes. Hence optimal
full-length orbit codes maximize the size of the code as well as the distance (as long as the latter
is less than 2k).

Over the last few years, several different constructions of optimal full-length orbit codes have
been found [1, 2, 11]. In 2018, Roth, Raviv, and Tamo [12] showed that all of these codes are
generated by subspaces known as Sidon spaces. Our first major result, Theorem 3.7, shows that
the distance distribution of optimal full-length orbit codes is fully determined by the parameters
q, n, and k, regardless of the choice of Sidon space. In deriving this result, another interesting
parameter arises, namely the number, f(U), of fractions inside the field Fqn that can be obtained
from elements of the given subspace U (up to factors from Fq). For Sidon spaces this number is
fully determined by q, n, k. Furthermore, we provide the minimum and maximum possible value
of f(U) over all k-dimensional subspaces and show that f(U) is minimal iff Orb(U) is a spread
code and maximal iff Orb(U) is an optimal full-length orbit code.

In Section 4, we investigate the distance distribution of full-length orbit codes with distance
less than 2k − 2. In this case, the distance distribution is – unsurprisingly – not fully determined
by q, n, k and the distance. In Theorem 4.1 we describe the distance distribution as closely as
possible for the case where the distance is 2k − 4. It involves, in addition to q, n, and k, a further
parameter r, whose meaning will become clear in Section 4. Various examples illustrate possible
values of this parameter, but more work is needed to find its exact range or at least bounds.
Alternatively, the distance distribution is fully determined by q, n, k and the above mentioned
parameter f(U). However, we do not yet understand what values f(U) may take or how to design
subspaces with a particular value.

Finally, in Section 5 we consider codes that are the union of optimal full-length orbit codes.
Constructions of such codes can be found in [12]. We show that Theorem 3.7 generalizes straight-
forwardly to this scenario, that is, the distance distribution is fully determined by q, n, k, and the
number of orbits in the union.

Throughout the paper, we will in fact study the intersection distribution rather than the
distance distribution. That is, we count the number of codeword pairs whose intersection attains a
given dimension. Thanks to the definition of the subspace distance in (2.1) this is clearly equivalent
to studying the distance distribution.

2 Preliminaries

We begin by recalling some basic facts about subspace codes and cyclic orbit codes. Throughout
we fix a finite field Fq. A subspace code (of block length n) is simply a collection of subspaces in Fn

q

with at least two elements. The code is called a constant-dimension code if all subspaces have the
same dimension. The distance between two subspaces V,W ⊆ Fn

q is defined as

d(V,W ) := dimV + dimW − 2 dim(V ∩W ) (2.1)

and the subspace distance of a subspace code C is ds(C) := min{d(V,W ) | V, W ∈ C, V 6=W}.
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Cyclic orbit codes are most conveniently defined in the field extension Fqn , considered as an
n-dimensional Fq-vector space. Let Gq(k, n) be the Grassmannian of k-dimensional Fq-subspaces
of Fqn . Then F∗

qn induces a group action on Gq(k, n) via (α,U) 7−→ αU , where αU = {αu | u ∈ U},
which of course is a subspace in Gq(k, n). A constant-dimension codes in Gq(k, n) is called a cyclic
subspace code if it is invariant under this group action. Hence cyclic subspace codes are unions of
orbits under this action. Throughout most of this paper we will study codes that form a single
orbit and only in Section 5 turn to more general cyclic subspace codes. We fix the terminology
of cyclic orbit codes and list some properties in the next definition. Further details can be found
in [5].

Definition 2.1. Let U ∈ Gq(k, n). The cyclic orbit code generated by U is the subspace code
Orb(U) := {αU | α ∈ F∗

qn}. It is a constant-dimension code of dimension k. We define the
stabilizer of U in the obvious way as Stab(U) := {α ∈ F∗

qn | αU = U}. It is easy to see that
Stab(U) = F∗

qt for some t ∈ N (which is a divisor of gcd(k, n)). In fact, the field Fqt is the largest
subfield of Fqn over which U is a vector space, i.e., U is closed under multiplication by scalars in Fqt.
The orbit-stabilizer theorem tells us that if Stab(U) = F∗

qt then |Orb(U)| = (qn − 1)/(qt − 1). If
t = 1, we call Orb(U) a full-length orbit code.

Taking the stabilizer into account, we can give a more concise description of the orbit. In order
to do so, we make the following definition. It appeared first in [1, Def. 4].

Definition 2.2. Let t ∈ N be a divisor of n. On F∗
qn we define the equivalence relation

α ∼t β ⇐⇒
α

β
∈ Fqt.

Note that the right hand side is equivalent to αF∗
qt = βF∗

qt . We set F∗
qn/∼t = Pt(Fqn), the projective

space over the Fqt-vector space Fqn . Clearly |Pt(Fqn)| =
qn−1
qt−1 . The equivalence class of α ∈ F∗

qn

is denoted by α(t). For t = 1 we omit the subscript/superscript; thus α ∼ β ⇐⇒ αβ−1 ∈ Fq and
P(Fqn) = P1(Fqn) = {α | α ∈ Fqn}.

Note that α(t) = αF∗
qt and the projective space Pt(Fqn) is actually the cyclic orbit code generated

by Fqt if we add the zero vector to every equivalence class αF∗
qt .

Remark 2.3. Let U ∈ Gq(k, n) and Stab(U) = F∗
qt . Then the map

Pt(Fqn) −→ Orb(U), α(t) 7−→ αU

is a well-defined bijection.

Let us now turn to the minimum distance and the distance distribution of a cyclic orbit code.
Fix a subspace U ∈ Gq(k, n) and let Stab(U) = F∗

qt . By the very definition of the subspace

distance in (2.1) we have d(βU,αU) = d(U,αβ−1U) for all α, β ∈ F∗
qn . Furthermore, d(U,αU) =

2k − 2 dim(U ∩ αU) for any α ∈ F∗
qn . This implies

ds(Orb(U)) = min{d(U,αU) | α ∈ F∗
qn , αU 6= U}

= 2k − 2max{dim(U ∩ αU) | α ∈ F∗
qn , αU 6= U}.

In this paper we will study the distance distribution of cyclic orbit codes. Without loss of
generality we may restrict ourselves to the case where 2k ≤ n. Indeed, because d(V ⊥,W⊥) =

3



d(V,W ), where V ⊥ denotes the orthogonal complement of V with respect to the standard dot
product, a subspace code and its dual have the same distance distribution. For the following
definition recall that d(U,αU) is always even and that d(U,αU) = 2i ⇐⇒ dim(U ∩ αU) = k − i.
Furthermore, we projectify simply over the scalar field Fq as this does not require knowledge of the

stabilizer. Of course, Orb(U) = {αU | α ∈ P(Fqn)} and αU = βU iff α(t) = β
(t)
.

Definition 2.4. Let k ≤ n/2 and U ∈ Gq(k, n). Suppose ds(Orb(U)) = 2d. Set ℓ = k − d, thus
ds(Orb(U)) = 2k − 2ℓ and ℓ = max{dim(U ∩ αU) | a ∈ F∗

qn , U 6= αU}. We call ℓ the maximum
intersection dimension of Orb(U). For i = d, . . . , k define δ2i = |{αU | d(U,αU) = 2i}|. Then
(δ2d, . . . , δ2k) is the distance distribution of Orb(U). For i = 0, . . . , ℓ we define λi = |Li|, where

Li = Li(U) = {α ∈ P(Fqn) | dim(U ∩ αU) = i},

and call (λ0, . . . , λℓ) the intersection distribution of Orb(U). Suppose Stab(U) = F∗
qt . Then λi =

(qt − 1)/(q − 1)δ2(k−i) for i = 0, . . . , ℓ and
∑k

i=d δ2i =
∑ℓ

i=0(q − 1)/(qt − 1)λi = |Orb(U) \ {U}| =
(qn − 1)/(qt − 1)− 1.

A few comments are in order. First of all, in the distance distribution we only count the dis-
tances to the “reference space” U . This may be regarded as the analogue of the weight distribution
of a linear block code where only the distances to the zero vector are counted as opposed to all
pairwise distances. The complete number of pairs (βU,αU) such that d(βU,αU) = 2i is then
(qn − 1)(qt − 1)−1δ2i. Secondly, for the intersection distribution we count each single subspace αU
with a multiplicity (qt − 1)(q − 1)−1 = |P(Fqt)|, thus the factor relating δ2(k−i) and λi. All of this
shows that the intersection distribution, as defined above, fully determines the distance distribu-
tion. From now on we will study the intersection distribution. Accordingly, instead of the subspace
distance ds(Orb(U)) = 2d we will specify the parameter ℓ = k − d, which we call the “maximum
intersection dimension”

We collect a few properties and special cases in the following remark.

Remark 2.5. Consider the situation of Definition 2.4 where Stab(U) = F∗
qt. Then U and all its

cyclic shifts are vector spaces over Fqt, and hence t | k. As a consequence, d(U,αU) = 2k−2 dim(U∩
αU) is a multiple of t for all α ∈ Fqn and δj = 0 if j 6∈ rZ, where r = lcm(2, t). For the same reason
Li = ∅ if t ∤ i. This also implies that t | ℓ, thus either ℓ ≥ t or ℓ = 0. If ℓ = 0, then all subspaces
of the orbit code intersect trivially, and thus their union consists of (qn − 1)(qt − 1)−1(qk − 1) + 1
elements. Since this number can be at most qn, we conclude that t = k. Thus we have the following
scenarios:

(a) If ds(Orb(U)) = 2k, then Stab(U) = F∗
qk

and thus U = aFqk for some a ∈ Fqn . This is the
best distance a cyclic orbit code can have, but comes at the cost of the length, which is just
(qn− 1)/(qk − 1), the shortest possible among all cyclic orbit codes of dimension k. The code is
a spread code, i.e., all subspaces intersect pairwise trivially and their union is the entire space.
The intersection distribution is simply given by λ0 = (qn − qk)/(q − 1).

(b) If ds(Orb(U)) < 2k, then we even have the upper bound ds(Orb(U)) ≤ 2(k − t). In particular,
if t = 1, the code is a full-length orbit, i.e., has maximal possible length (qn − 1)/(q − 1), and
its distance is at most 2k − 2. Later in Theorem 3.7 we will see that all full-length orbits with
distance 2k − 2 have the same intersection distribution (λ0, λ1).

Part (a) tells us in particular that the intersection distribution of Orb(U) is fully determined
for any 1-dimensional subspace U . Therefore, we may restrict ourselves to k ≥ 2. The following
class of orbit codes will be at the focus of the next section.
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Definition 2.6. A full-length orbit code with distance 2k− 2 is called an optimal full-length orbit.

3 The Intersection Distribution of Optimal Full-Length Orbit Codes

We fix k, n ∈ N such that 2 ≤ k ≤ n/2. We introduce some crucial parameters associated with
a given subspace. They will be needed later to study the intersection distribution of cyclic orbit
codes.

Definition 3.1. Let U ∈ Gq(k, n) and ds(Orb(U)) = 2k − 2ℓ, thus ℓ is the maximum intersection
dimension of Orb(U). We define

(1) L = L(U) =
⋃ℓ

i=1Li, where Li is as in Definition 2.4.
(2) S = S(U) = {α ∈ P(Fqn) | α ∈ Stab(U)}.
(3) M = M(U) = {(u, v) | u, v ∈ U \ 0, u 6= v}.
(4) F = F(U) = {uv−1 | u, v ∈ U \ 0} and f := |F|. We call F the set of fractions of U .

If Stab(U) = F∗
qt, we have s := |S| = (qt − 1)/(q − 1).

Note that L = {α | 0 6= U ∩ αU 6= U}. In particular L ∩ S = ∅. Recall the intersection
distribution (λ0, . . . , λℓ), where λi = |Li|. Since λ0 is fully determined by (λ1, . . . , λℓ), it suffices to
study the sets L1, . . . ,Lℓ. Hence we omit L0 in the union L. As for part (3) above, note that for
nonzero vectors u, v ∈ U the property u 6= v is equivalent to the linear independence of u, v in the
Fq-vector space U . Therefore,

Q := |M| =
qk − 1

q − 1

qk − q

q − 1
. (3.1)

Finally, the set F consists of all equivalence classes of fractions (within the field Fqn) of nonzero
elements in U . Its size f will play a crucial role later on in the study of the intersection distribution
of Orb(U). The next result shows the relation of F to Orb(U): the elements in the equivalence
classes of F correspond to the shifts αU such that αU ∩ U 6= 0. In particular, for determining
the intersection distribution we only need to consider shifts αU where α ∈ F , which reduces
considerably the computational effort.

Proposition 3.2. Let U ∈ Gq(k, n) such that Stab(U) = F∗
qt. Let ds(Orb(U)) = 2k − 2ℓ. Then

the map ψ : M −→ F , (u, v) 7−→ uv−1 is well-defined and satisfies F = ψ(M) ∪ {1} = L ∪ S.
Furthermore, for any α ∈ F we have

(a) α ∈ S ⇐⇒ |ψ−1(α)| = (qk − 1)/(q − 1),
(b) α ∈ Li ⇐⇒ |ψ−1(α)| = (qi − 1)/(q − 1).

Since Li = ∅ if t ∤ i, this implies that the pre-images never have size (qi − 1)/(q − 1), where t ∤ i.

Proof. The well-definedness of ψ is clear and so is ψ(M) ∪ {1} = F . To show that ψ(M) ∪ {1} =
L ∪ S, let α = uv−1 ∈ ψ(M) for some u, v ∈ U \ 0. Then there exists λ ∈ F∗

q such that u = λαv.
Since λU = U this implies U ∩ αU 6= 0. Hence either U = αU or dim(U ∩ αU) ∈ {1, . . . , ℓ}. In
the first case α ∈ Fqt, thus α ∈ S and in the second case α ∈ L. Since obviously 1 ∈ S, this shows
ψ(M) ∪ {1} ⊆ L ∪ S. The proof of the reverse inclusion proceeds similarly. If α ∈ L ∪ S, then
1 ≤ dim(U ∩ αU) ≤ k. Hence there exist u, v ∈ U with u = αv. So α = uv−1 is either 1 or in
ψ(M).
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It remains to show (a) and (b). Note first that for (v,w) ∈ ψ−1(α), the second component
w is uniquely determined by the first one. Thus it suffices to count the number of possible first
components.

Let α ∈ S. Then U = αU . As a consequence, for every v ∈ U there exists a unique w ∈ U
such that v = αw. Hence α = vw−1 = ψ(v,w). Because there exist (qk − 1)/(q − 1) elements v
such that v ∈ U , the result follows.

Let α ∈ Li. Hence dim(U ∩ αU) = i. Then for every v ∈ U ∩ αU there exists w ∈ U such that
v = αw. Using that there exist (qi − 1)/(q − 1) elements v such that v ∈ U ∩ αU , we may argue
as above to conclude that |ψ−1(α)| ≥ (qi − 1)/(q − 1). Conversely, suppose that (x, y) ∈ ψ−1(α).
Then x = αy and x = λαy for some λ ∈ Fq. Thus x ∈ U ∩ αU . This leaves (qi − 1)/(q − 1) choices
for x, and thus |ψ−1(α)| ≤ (qi − 1)/(q − 1). Hence |ψ−1(α)| = (qi − 1)/(q − 1).

Corollary 3.3. Let U ∈ Gq(k, n) such that Stab(U) = F∗
qt. Let ds(Orb(U)) = 2k − 2ℓ. Recall the

cardinalities f = |F|, s = |S|, Q = |M|, and λi = |Li| for i = 1, . . . , ℓ. Then

f = s+
ℓ∑

i=1

λi. (3.2)

and

Q =
ℓ∑

i=1

qi − 1

q − 1
λi +

qk − 1

q − 1
(s− 1). (3.3)

In the special case where t = 1, i.e. Orb(U) is a full-length orbit, we have s = 1, and thus

f = 1 +

ℓ∑

i=1

λi and Q =

ℓ∑

i=1

qi − 1

q − 1
λi. (3.4)

Proof. The identity in (3.2) is a consequence of L∪S = F from Proposition 3.2 along with L∩S = ∅.
From the same proposition we have ψ(M) = L ∪ S \ {1}, thus M =

⋃ℓ
i=1 ψ

−1(Li) ∪ ψ
−1(S \ {1}).

Now (3.3) follows from Proposition 3.2(a) and (b) and the cardinality of M in (3.1). The rest
follows from s = (qt − 1)/(q − 1).

Recalling Q from (3.1), the above identities (3.2) and (3.3) allow us to give a lower and upper
bound on the number of fractions of U in terms of q and k.

Proposition 3.4. With the data as in Corollary 3.3 we have

qk − 1

q − 1
≤ f ≤ Q+ 1.

Furthermore,

(a) f = (qk − 1)/(q − 1) ⇐⇒ ℓ = 0 ⇐⇒ t = k. This is the spread-code case, thus U = aFqk for
some a ∈ Fqn.

(b) f = Q + 1 ⇐⇒ ℓ = 1 ⇐⇒ ds(Orb(U)) = 2k − 2. This is the case of optimal full-length orbits
(see Definition 2.6).
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Proof. The lower bound for f is obvious from dim(U) = k. As for the upper bound, note that
qi−1
q−1 ≥ 1 for i = 1, . . . , ℓ and i = k. So by (3.2) and (3.3)

f − 1 =

ℓ∑

i=1

λi + (s− 1) ≤
ℓ∑

i=1

(
qi − 1

q − 1

)
λi +

qk − 1

q − 1
(s− 1) = Q. (3.5)

It remains to prove (a) and (b). (a) If ℓ = 0, then t = k by Remark 2.5 and f = s = (qk−1)/(q−1)
thanks to (3.2) and Definition 3.1. Conversely, let f = (qk − 1)/(q− 1). Then f = |{u | u ∈ U \0}|.
Replacing U by a suitable shift we may assume without loss of generality that 1 ∈ U . Then the
above along with the definition f = |F| = |{uv−1 | u, v ∈ U \ 0}| tells us that for every u, v ∈ U \ 0
there exists w ∈ U and λ ∈ Fq such that uv−1 = λw. Hence U is closed under division and inverses
and is therefore the subfield Fqk . The rest follows again from Remark 2.5.

(b) Suppose ℓ = 1, i.e., ds(Orb(U)) = 2k − 2. Then Remark 2.5(b) implies t = 1. Thus s = 1
and subsequently f = Q + 1 by (3.4). On the other hand, if f = Q + 1 then we have equality

in (3.5), which in turn implies ℓ = s = 1 since qi−1
q−1 > 1 for i > 1.

Full-length orbits with maximum possible distance 2k − 2 do indeed exist. This has been
studied in detail in [12].

Definition 3.5 ([12, Def. 1]). A subspace U ∈ Gq(k, n) is called a Sidon space if it has the property
that whenever a, b, c, d ∈ U \ 0 are such that ab = cd, then {a, b} = {c, d}.

Theorem 3.6 ([12, Lemma 34]). Let U ∈ Gq(k, n). Then Orb(U) is a full-length orbit with
minimum distance 2k − 2 if and only if U is a Sidon space.

In [12, Thm. 12 and Thm. 16] Sidon spaces in Gq(k, n) are constructed for the case where k <
n/2 is a divisor of n or k = n/2 and q ≥ 3, and thus the existence of full-length orbits with
maximum possible distance is guaranteed for these cases.

It follows now easily from the above results that all these orbit codes have the same intersection
distribution.

Theorem 3.7. Let U ∈ Gq(k, n) be a Sidon space. Then the full-length orbit Orb(U) has intersec-
tion distribution (λ0, λ1), where

λ1 = Q =
qk − 1

q − 1

qk − q

q − 1
= f − 1, λ0 =

qn − 1

q − 1
− λ1 − 1.

In particular, the intersection distribution of a full-length orbit code with maximum distance depends
only on the parameters q, n, and k. Furthermore, all k-dimensional Sidon spaces in Fqn have the
same number of fractions.

Proof. Under the given assumptions we have t = 1, and thus s = 1, as well as ℓ = 1. Now the
result for λ1 follows from (3.4), while λ0 can be computed using Definition 2.4.

Since for k = 2 every U ∈ Gq(k, n) leads to an orbit code with distance ds = 2k or ds = 2(k−1),
we have fully described the intersection distribution of all such orbit codes. Hence from now on we
may assume k ≥ 3.
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Examples show that for full-length orbit codes with minimum distance at most 2(k − 2) the
intersection distribution does not only depend on q, n, k and the minimum distance. We will study
that case in further detail in the next section.

We close this section with a generalization of the previous results by taking the stabilizer into
account. This improves on the upper bound for f given in Proposition 3.4.

Proposition 3.8. Let U ∈ Gq(k, n) and Stab(U) = F∗
qt. Then

qk − 1

q − 1
≤ f ≤

qk − 1

qt − 1

qk − qt

q − 1
+
qt − 1

q − 1
.

(a) f = qk−1
qt−1

qk−qt

q−1 + qt−1
q−1 ⇐⇒ ds(Orb(U)) = 2(k− t) (which is the maximum possible distance for a

cyclic orbit code with stabilizer F∗
qt). This is the case if and only if U is a Sidon space over Fqt,

i.e., if a, b, c, d ∈ U \ 0 and ab = cd, then {a(t), b
(t)
} = {c(t), d

(t)
}.

(b) If ds(Orb(U)) = 2(k − t), then the intersection distribution is given by (λ0, λt), where

λt =
qk − 1

qt − 1

qk − qt

q − 1
= f −

qt − 1

q − 1
, λ0 =

qn − qt

q − 1
− λt.

In particular, if Stab(U) = F∗
qk/2

then f = (q3k/2 − 1)/(q − 1).

Proof. By assumption t | gcd(n, k). Set q̂ = qt, k̂ = k/t, and n̂ = n/t. Then |Orb(U)| = (q̂n̂ −
1)/(q̂−1), and thus it is a full-length orbit if considered as a collection of Fq̂-subspaces in the ambient
space Fq̂n̂ . Hence we may apply (3.4) if we replace Fq by Fq̂. In order to do so, we need to generalize
Definition 3.1 and the sets Li by projectifying with respect to the scalar field Fq̂. We denote the

resulting sets and cardinalities with a superscript (t), thus L
(t)
i = {α(t) | dimFq̂

(U ∩ αU) = i} etc.

Then S(t) = {1
(t)
} and

λit =
qt − 1

q − 1
λ
(t)
i , f =

qt − 1

q − 1
f (t), s =

qt − 1

q − 1
s(t), Q(t) = |M(t)| =

q̂k̂ − 1

q̂ − 1

q̂k̂ − q̂

q̂ − 1
. (3.6)

Now we can prove the above statement. From Proposition 3.4 we have (q̂k̂ − 1)/(q̂ − 1) ≤ f (t) ≤
Q(t) + 1, and (3.6) leads to the stated inequalities.
(a) Proposition 3.4(b) tells us that f (t) = Q(t)+1 iff the subspace distance is 2(k̂−1), and where the
distance is computed via dimensions over Fqt . Hence the latter becomes ds(Orb(U)) = 2t(k̂− 1) =
2(k − t) as dimensions over Fq.

(b) From Theorem 3.7 we have λ
(t)
1 = Q(t) = f (t) − 1 and λ

(t)
0 = (q̂n̂ − 1)/(q̂ − 1) − λ

(t)
1 − 1.

Using (3.6), we obtain the stated expression for λt and λ0.

Finally, if t = k/2, then U is not a cyclic shift of a field and thus must be Sidon over Fqt . Hence
we may apply (a) and simplify.

4 Intersection Distribution of General Full-Length Orbit Codes

In this section we will generalize some of the results of the previous section to the intersection
distribution of a cyclic orbit code with smaller minimum distance. After the spread codes and op-
timal full-length orbits, the cyclic orbit codes with the best combination of orbit size and minimum
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distance are full-length orbit codes with minimum distance 2k − 4. Our goal in this section is to
describe the intersection distribution of such codes in terms of the parameters q, n, k and a new pa-
rameter r. This new parameter counts the number of cyclic orbits generated by the 2-dimensional
intersections U ∩ αU . These parameters together with (3.3) are enough to completely determine
the intersection distribution, which we give in the following theorem. In this section we may and
will assume 3 ≤ k ≤ n/2. Recall Q = |M| from (3.1).

Theorem 4.1. Let U ∈ Gq(k, n) generate a full-length orbit with ds(Orb(U)) = 2k − 4. Then one
of the following cases occurs.

(a) U contains a cyclic shift of Fq2 (hence n is even). In this case Orb(U) has intersection distri-
bution (λ0, λ1, λ2), where

λ2 = q + rq(q + 1),

λ1 = Q− (q + 1)λ2 =
qk − 1

q − 1

qk − q

q − 1
− (q + 1)(q + rq(q + 1)),

λ0 = |P(Fqn)| − λ1 − λ2 − 1 =
qn − 1

q − 1
+ q2(1 + r(q + 1)) −Q− 1

for some r ≥ 0.
(b) U does not contain a cyclic shift of Fq2. In this case, Orb(U) has intersection distribution

(λ0, λ1, λ2), where

λ2 = rq(q + 1),

λ1 = Q− (q + 1)λ2 =
qk − 1

q − 1

qk − q

q − 1
− rq(q + 1)2,

λ0 = |P(Fqn)| − λ1 − λ2 − 1 =
qn − 1

q − 1
+ rq2(q + 1)−Q− 1

for some r ≥ 1.

The proof is deferred to the end of this section. Before setting up the necessary preparation,
we draw some further conclusions about the possible values of λ1 and λ2.

Corollary 4.2. Let U ∈ Gq(k, n) generate a full-length orbit with ds(Orb(U)) = 2k − 4. Then
the intersection distribution (λ0, λ1, λ2) of Orb(U) depends only on q, n, k, and f . Further, the
following inequalities hold.

q ≤ λ2 ≤
Q

q + 1
, 0 ≤ λ1 ≤ Q− q(q + 1),

Q

q + 1
≤ f − 1 ≤ Q− q2. (4.1)

Proof. By assumption Stab(U) = F∗
q, and thus t = s = 1 in Corollary 3.3. Hence Eq. (3.4) reduces

to
f − 1 = λ1 + λ2 Q = λ1 + (q + 1)λ2. (4.2)

Because either qk−1
q−1 or qk−1−1

q−1 is divisible by q + 1, we have Q ∈ q(q + 1)Z; see (3.1). Since
Theorem 4.1 says that λ2 ∈ qZ, we also have λ1 ∈ q(q+1)Z and (f − 1) ∈ qZ. In fact Theorem 4.1
implies the stronger statement that f − 1 ∈ q(q + 1)Z if and only if U does not contain any cyclic
shift of Fq2 . Now we can solve this system of equations for λ1 and λ2 in terms of q,Q, and f to get

λ1 =
1

q
((q + 1)(f − 1)−Q) λ2 =

1

q
(Q− (f − 1)). (4.3)

9



Both of these values are guaranteed to be in Z by the above discussion. Therefore the intersec-
tion distribution of Orb(U) is completely determined by q, n, k and the value f = |F(U)|. The
inequalities of (4.1) follow from λ1 ≥ 0 and λ2 ≥ q together with (4.2).

The next example shows that equality can be achieved on both sides of (4.1), with the maximum
of λ2 corresponding to the minimum of λ1 and vice versa. In other words, there exist subspaces U
where ℓ = 2, t = 1, and dim(U ∩ αU) ∈ {0, 2, k} for all α ∈ F∗

qn , and hence λ1 = 0. Similarly,
there exist subspaces U with ℓ = 2, t = 1, and λ2 = q. However, in general the restriction that
λ2 (mod q(q + 1)) ∈ {0, q} means that the upper bound of Q/(q + 1) may not be attainable.

Example 4.3. Let q = 3, k = 3, n = 8 and let γ be primitive in F38 . Then α = γ
3
8
−1

32−1 is a primitive

element of F9 ⊆ F38 and β = γ
3
8
−1

34−1 is a primitive element of F81 ⊆ F38 . Define U = 〈1, α, ρ〉 for
some ρ ∈ F∗

38 \ 〈1, α〉. Hence F9 ⊆ U . Since gcd(k, n) = 1, the subspace U generates a full-length
orbit for any linearly independent choice of ρ. There are two possibilities:

(a) ρ ∈ F81 \ F9

(b) ρ ∈ F38 \ F81.

In (a), we have U ⊆ F81, and thus v
w ∈ F81 for any v,w ∈ U \0. As a consequence, the only nonzero

intersections are of the form U ∩ βsU . Since U and βsU are both 3-dimensional F3-subspaces of
the 4-dimensional F3-subspace F81, we conclude dim(U ∩ βsU) ∈ {2, 3}. This leads to

λ1 = 0, λ2 =
Q

q + 1
= 39

for any such choice of ρ. The 39 elements resulting in a 2-dimensional intersection are exactly the
elements of P(F81) \ {1}.
In (b), a computation using SageMath shows that

λ1 = Q− q(q + 1) = 144, λ2 = q = 3

for any such choice of ρ. Noting that αsF9 = F9 for any s and Stab(U) = F3, we conclude that
F9 ⊆ U ∩ αsU ( U for any s such that αs 6∈ F3. It follows that U ∩ αsU = F9 and therefore the
three elements that result in a 2-dimensional intersection are exactly the elements of P(F9) \ {1}.
We will see later in Proposition 4.8 that this can be generalized.

The construction in part (a) of this example generalizes to provide examples of full-length orbit
codes where the subspace distance is 2k − 2ℓ for arbitrarily large ℓ and λi = 0 for small i. Since
computation with SageMath shows that many, if not most, subspaces have λ1 > λi for i > 1, these
are unusual subspaces. The following example generalizes Example 4.3(a).

Example 4.4. Let q be a prime power and consider a tower of fields Fq ⊂ Fqs ⊂ Fqm ⊂ Fqn .
Our goal is to find U so that U has full length orbit but λi = 0 for small values of i, generalizing
Example 4.3 (a). To this end, let U be a k-dimensional Fq-subspace of Fqm containing Fqs and that
is not an Fqs-vector space. As in the previous example, all fractions of elements of U are in Fqm,
and thus any nontrivial intersection U ∩ αU arises from some α ∈ Fqm. For any such α we have
dim(U +αU)+dim(U ∩αU) = dimU +dimαU and thus dim(U ∩αU) = 2k−dim(U +αU). From
k ≤ dim(U + αU) ≤ m we obtain

2k −m ≤ dimFq(U ∩ αU) ≤ k.
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Since Fqs ⊂ U is fixed by any shift by an element of Fqs we see that there exist intersections with
dim(U ∩ αU) ≥ s. Because U is not an Fqs-vector space it follows that these intersections are not
all of U , hence ds(Orb(U)) ≤ 2(k − s). Choose now k such that k ≥ s+m

2 . Then the above shows
that λi = 0 for i = 1, . . . , s− 1 as desired. Example 4.3(a) is an example of such a choice of U with
q = 3, s = 2,m = 4, n = 8, and k = 3.

In order to prove Theorem 4.1 we need to develop a few tools. The next definitions make sense
even when ds(Orb(U)) < 2k − 4, so we give the general versions before specializing to the scenario
of Theorem 4.1.

Definition 4.5. Let U ∈ Gq(k, n) such that ds(Orb(U)) = 2k − 2ℓ. For any subspace V ⊆ U with
dim(V ) = ℓ, we define AV = {α ∈ P(Fqn) | V ⊆ U ∩ αU}.

Note that AV = S(U) ∪ {α ∈ P(Fqn) | V = U ∩ αU}, where S(U) is as in Definition 3.1. Then

S(U) ( AV ⇐⇒ V = U ∩ αU for some α ∈ Fqn . (4.4)

We are, of course, interested in the case that V arises as a maximal dimension intersection U ∩αU
for some α. To this end, we introduce a group action of Fq on Fqn .

Proposition 4.6. The map

ϕ : (Fqn \ Fq)× Fq −→ (Fqn \ Fq), (α, λ) 7−→
α

1 + λα
,

is well-defined and satisfies the following properties.

(a) The map ϕ is a group action of Fq on Fqn \ Fq.
(b) Let Fqt be a subfield of Fqn and λ ∈ Fq. Then ϕ(α, λ) ∈ Fqt \ Fq ⇐⇒ α ∈ Fqt \ Fq.
(c) |Orbϕ(α)| = q for all α ∈ Fqn \ Fq, and thus Fqt \ Fq is the disjoint union of qt−1 − 1 orbits for

any divisor t of n.
(d) For any α ∈ Fqn \ Fq the set Orbϕ(α) = { α

1+λα | λ ∈ Fq} has cardinality q.
(e) Let α ∈ Fqn \ Fq and β = ρα for some ρ ∈ F∗

q. Then ϕ(β, λ) = ρϕ(α, ρλ). As a consequence,

the set Orbϕ(α) depends only on the projective equivalence class α.

(f) P(Fqn) \ {1} is the disjoint union of (qn−1 − 1)/(q − 1) sets of the form Orbϕ(α).

It should be noted that the map ϕ is not a well-defined map on equivalence classes in projective
space, yet it leads to a disjoint union of projectivized orbits.

Proof. Since α 6∈ Fq, we have 1 + λα 6= 0 for any λ ∈ Fq. Further, suppose ϕ(α, λ) ∈ Fq, say
α

1+λα = µ ∈ Fq. Then α(1 − λµ) = µ and either α = µ
1−µλ ∈ Fq or 1 − λµ = 0 and µ = 0. Since

both are a contradiction, ϕ is well-defined. It remains to prove (a)–(f).
(a) One straightforwardly verifies that ϕ(ϕ(α, λ), µ) = ϕ(α, λ + µ).
(b) Suppose ϕ(α, λ) ∈ Fqt \ Fq, say

α
1+λα = µ ∈ Fqt \ Fq. Then with the same reasoning as above

we conclude α ∈ Fqt \ Fq. The converse is trivial.
(c) ϕ(α, λ) = ϕ(α, µ) implies λ = µ (since α 6= 0). Hence |Orbϕ(α)| = q, and the rest is clear.
(d) We want to show that the cardinality of an orbit under ϕ is preserved by passing to projective
space. So suppose that ϕ(α, λ) = ϕ(α, µ). Then we have 1 + λα = ρ(1 + µα) for some ρ ∈ F∗

q.
Since α 6∈ Fq, {1, α} is Fq-linearly independent and so we have ρ = 1 and λ = µ.

(e) Suppose β = ρα for some ρ ∈ F∗
q. Then ϕ(β, λ) =

β
1+ρλα = ρ α

1+ρλα = ρϕ(α, ρλ).
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(f) By (d) Orbϕ(α)∩Orbϕ(ρα) = ∅ for all ρ ∈ F∗
q \{1} and α ∈ Fqn \Fq. On the other hand, thanks

to (e), Orbϕ(α) = Orbϕ(ρα) for all ρ ∈ F∗
q. Since |P(Fqn)\{1}| = (qn−q)/(q−1), all of this together

with (d) shows that the qn−1 − 1 disjoint orbits covering Fqn \ Fq collapse to (qn−1 − 1)/(q − 1)
projectivized orbits covering P(Fqn) \ {1}.

We next show that the sets AV decompose into the projectivized versions of the orbits of ϕ.

Proposition 4.7. Let U ∈ Gq(k, n) such that ds(Orb(U)) = 2k − 2ℓ and let Stab(U) = F∗
qt.

Furthermore, let V ⊆ U with dim(V ) = ℓ. Then we have the following.

(a) If α ∈ AV , then ϕ(α, λ) ∈ AV for each λ ∈ Fq.
(b) Suppose V = U ∩ αU for some α ∈ Fqn. Write AV = S(U) ∪· A, where S(U) is as in Def-

inition 3.1 and A := {β | V = U ∩ βU}. Then A is a disjoint union of projectivized orbits

Orbϕ(β). Thus |AV | = aq + qt−1
q−1 for some a ∈ N and in particular |AV | ≥ q + 1.

(c) If β = ϕ(α, λ) ∈ AV for λ 6= 0, then βα−1 = ϕ(α−1, λ−1) ∈ Aα−1V .

Proof. (a) Suppose V ⊆ U ∩ αU and λ ∈ Fq. We have to show that V ⊆ U ∩ ϕ(α, λ)U . Let
{v1, . . . , vm} be a basis of V . Since V ⊂ U ∩ αU there exist {u1, . . . , um} ⊂ U such that vi = αui
for i = 1, . . . , ℓ. Then ui + λvi ∈ U and

ϕ(α, λ)(ui + λvi) =
αui(1 + λα)

1 + λα
= vi.

Therefore V ⊆ U ∩ ϕ(α, λ)U .
(b) Let V = U ∩ αU and λ ∈ Fq. Then (a) implies V ⊆ U ∩ ϕ(α, λ)U . Since dim(V ) = ℓ
is the maximum possible intersection dimension, we conclude that either V = U ∩ ϕ(α, λ)U or
U ∩ϕ(α, λ)U = U . In the latter case ϕ(α, λ) ∈ Stab(U) = F∗

qt , and thus by Proposition 4.6(b) also
α ∈ F∗

qt, which is a contradiction. Thus V = U ∩ ϕ(α, λ)U . All of this shows that if α ∈ A, then

ϕ(α, λ) ∈ A. With the aid of Proposition 4.6(f) we obtain that A is a disjoint union of projectivized
orbits. The rest is clear.
(c) Without loss of generality β = ϕ(α, λ). By assumption V ⊆ U ∩ βU . Because α ∈ Orbϕ(β),

Part (a) shows that V ⊆ U ∩αU . Therefore α−1V ⊆ U ∩α−1U and so α−1 ∈ Aα−1V . By (a) again
ϕ(α−1, λ−1) ∈ Aα−1V . Now

βα−1 = α−1ϕ(α, λ) =
1

1 + λα
= λ−1 α−1

1 + λ−1α−1
= λ−1ϕ(α−1, λ−1).

Since λ−1 ∈ Fq, we conclude βα−1 = ϕ(α−1, λ−1) and the claim follows.

We now focus on subspaces U that generate a full-length orbit code (i.e., Stab(U) = F∗
q) and

satisfy ds(Orb(U)) = 2k−4. We will show next that in this case |AV | = q+1 for any 2-dimensional
intersection V = U ∩ αU ; that is, AV is the union of {1} and a single projectivized orbit. There
are two possibilities for a 2-dimensional subspace V over Fq: either V = γFq2 for some γ ∈ Fqn

(hence n is even) or V itself has full-length orbit. In the first case, we can explicitly describe AV .

Proposition 4.8. Let n be even and U ∈ Gq(k, n) generate a full-length orbit with ds(Orb(U)) =
2k− 4. Suppose there exist α, γ ∈ F∗

qn such that V := γFq2 = U ∩αU . Then AV = P(Fq2) and thus
|AV | = q + 1.
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Proof. We can reduce to the case γ = 1 since any β ∈ F∗
qn satisfies

γFq2 = U ∩ βU ⇐⇒ Fq2 = γ−1U ∩ βγ−1U = U ′ ∩ βU ′, (4.5)

where U ′ = γ−1U . Notice that Orb(U ′) = Orb(U). If we can show that

{β | Fq2 ⊆ U ′ ∩ βU ′} = P(Fq2),

the claim follows from (4.5). Thus we assume that V = Fq2 = U ∩ αU .

In order to show AV ⊆ P(Fq2) suppose to the contrary that there exists β ∈ AV \P(Fq2). Then
Fq2 = U ∩ βU and β−1Fq2 ∩ Fq2 = {0}. Furthermore,

Fq2 ⊂ U and β−1Fq2 ⊂ U.

Therefore k ≥ 4 and we can decompose U as U = Fq2 ⊕ β−1Fq2 ⊕ U ′ for some U ′ ∈ Gq(k − 4, n).
Now we have for any ρ ∈ Fq2 \ Fq

ρ−1(Fq2 ⊕ β−1Fq2) = Fq2 ⊕ β−1Fq2 ⊆ U,

so Fq2 ⊕ β−1Fq2 ⊆ U ∩ ρU and thus dim(U ∩ ρU) ≥ 4. Since ρ 6∈ Stab(U) = F∗
q, this contradicts

ds(Orb(U)) = 2k − 4. All of this shows that AV ⊆ P(Fq2).

In the same way, since Fq2 ⊆ U , every ρ ∈ P(Fq2) leads to Fq2 ⊆ U ∩ ρU , and thus ρ ∈ AV .
Hence P(Fq2) ⊆ AV , and this concludes the proof.

Remark 4.9. The above result generalizes straightforwardly to full-length orbits with distance
2k− 2ℓ and intersections of the form V = γFqℓ = U ∩αU . In that case one arrives at AV = P(Fqℓ).

The line of argument in the first part of the above proof can be extended to show that there is
at most one such V arising as an intersection U ∩ αU .

Proposition 4.10. Let U ∈ Gq(k, n) generate a full-length orbit with ds(Orb(U)) = 2k − 4. Then
there exists at most one subspace V ∈ Gq(2, n) such that V = U ∩ αU for some α ∈ F∗

qn and
V = γFq2 for some γ ∈ F∗

qn.

Proof. If n is odd, no such subspace exists, so let n be even. Suppose to the contrary that there
exist distinct subspaces V1, V2 such that V1 = U ∩ α1U = γ1Fq2 and V2 = U ∩ α2U = γ2Fq2 . We
will show that ds(Orb(U)) < 2k − 4.

Since V1 6= V2, we must have γ1
γ2

6∈ Fq2 and even γ1Fq2 ∩ γ2Fq2 = {0}. Now γ1Fq2 ⊆ U and

γ2Fq2 ⊆ U implies U = γ1Fq2 ⊕ γ2Fq2 ⊕ U ′ for some U ′ ∈ Gq(k − 4, n). This in turn leads to
γ1Fq2 ⊕ γ2Fq2 ⊆ U ∩ ρU for any ρ ∈ Fq2 \ Fq. Since ρ 6∈ Stab(U), we arrive at the contradiction
ds(Orb(U)) ≤ 2k − 8 < 2k − 4.

It remains to describe the behavior when a maximal intersection V = U ∩ αU has full-length
orbit. In this case it turns out that there is a collection of related subspaces {Vi} that all have
associated sets AVi of the same cardinality. Further, each Vi is given by the cyclic shift α−1

i V for
some αi ∈ AV and we can explicitly describe the elements of AVi in terms of those of AV . This
holds even in the more general setting where ds(Orb(U)) = 2k−2ℓ. Although we will give the proof
for the case ℓ = 2, the general case does not differ significantly. Therefore Proposition 4.11 can be
easily extended to the general case where U has full-length orbit with ds(Orb(U)) = 2k − 2ℓ and
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V = U ∩ αU ∈ Gq(ℓ, n) such that Stab(V ) = F∗
q. In particular, if gcd(ℓ, n) = 1 then Stab(V ) = F∗

q

for every maximal intersection V = U ∩ αU and the proposition applies.

For the following result recall from Definition 4.5 that if U generates a full-length orbit then
AV = {1} ∪ {β | V = U ∩ βU}.

Proposition 4.11. Let U ∈ Gq(k, n) generate a full-length orbit with ds(Orb(U)) = 2k − 4. Fur-
thermore, suppose there exists V ∈ Gq(2, n) such that V = U ∩ α1U for some α1 ∈ F∗

qn and V
generates a full-length orbit. Let |AV | = s+ 1 and write AV = {α1, . . . , αs, 1}.

(a) The distinct cyclic shifts of V that arise as intersections U ∩ βU are precisely the shifts by

elements {α−1
i | i = 1, . . . , s} ∪ {1}. In particular, there are |AV | = s+ 1 such shifts.

(b) For each i = 1, . . . , s we have Aα−1

i V = {αjα
−1
i | j = 1, . . . , s} ∪ {α−1

i } and |Aα−1

i V | = s+ 1.

Proof. (a) First we show that each α−1
i V arises as an intersection U ∩ βU . By assumption, V =

U ∩ αU = 〈v0, w0〉 for some v0, w0 ∈ V . Then for each i ∈ {1, . . . , s} there exist vi, wi ∈ U such
that

v0 = αivi and w0 = αiwi.

Define Vi = α−1
i V = 〈vi, wi〉. Then

U ∩ α−1
i U = α−1

i (U ∩ αiU) = α−1
i V = Vi, (4.6)

so each of the shifts Vi arises as an intersection.

Next we show that V, V1, . . . , Vs are distinct. It follows immediately that V 6= Vi for any i
because Stab(V ) = F∗

q and αi 6= 1. Suppose now Vi = Vj , thus 〈vi, wi〉 = 〈vj , wj〉. From

vi =
αj

αi
vj and wi =

αj

αi
wj (4.7)

we conclude that
αj

αi
∈ Stab(Vi) = Stab(V ) = F∗

q, and since αi 6= αj if i 6= j, we arrive at i = j.

It remains to show that the shifts Vi are the only cyclic shifts of V that arise as intersections.
SupposeW = γV = U ∩βU for some γ, β ∈ F∗

qn . Then V = γ−1W ⊆ γ−1U and thus V ⊆ U ∩γ−1U

by choice of V . Thus γ−1 ∈ AV , as desired.
(b) Recall that AVi = {β ∈ P(Fqn) | U ∩ βU = Vi} ∪ {1}. We want to show that

AVi =

{
1

αi
,
α1

αi
, . . . ,

αs

αi

}
. (4.8)

For “⊇” note that trivially 1 ∈ AVi and α
−1
i ∈ AVi thanks to (4.6). Consider now αjα

−1
i for j 6= i.

Then αj 6= αi and thus
αj

αi
6∈ F∗

q = Stab(U). Moreover, (4.7) yields Vi ⊆ U ∩
αj

αi
U . Since by

assumption the dimension of the intersection cannot be bigger than 2, we conclude Vi = U ∩
αj

αi
U .

For “⊆” suppose β ∈ AVi \{α
−1
i , 1}. Then there exist u1, u2 ∈ U such that vi = βu1 and wi = βu2.

Thus αiβu1 = v0, αiβu2 = w0 and αiβ 6= 1. All of this shows that U ∩αiβU = V . Hence αiβ ∈ AV

and so αiβ = αj for some j ∈ {1, . . . , s}. Thus β = αjα
−1
i . This establishes (4.8). Finally, it is

easy to see that the listed elements in (4.8) are distinct and thus |AVi | = s+ 1.

Our next result says that |AV | = q + 1 in the situation of Proposition 4.11.
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Proposition 4.12. Let U ∈ Gq(k, n) generate a full-length orbit with ds(Orb(U)) = 2k−4. Suppose
there exists V ∈ Gq(2, n) such that V = U ∩ αU for some α ∈ F∗

qn. Let β ∈ AV \ {1}. Then

(a) α = β or 1 = λα−1 + µβ−1 for some λ, µ ∈ F∗
q,

(b) |AV | = q + 1.

Proof. (a) Let V = 〈v1, v2〉 = U ∩ αU and let β ∈ AV \ {1}. Then there exist u1, u2, w1, w2 ∈ U
such that

vi = αui = βwi for i = 1, 2.

Note that v1, v2 ∈ U as well. Define Ũ = 〈v1, u1, w1〉. Then Ũ ⊆ U and

v2
v1
Ũ = 〈v2, u2, w2〉 ⊆ U ∩

v2
v1
U.

Since v1, v2 are Fq-linearly independent, the element v2
v1

is not in F∗
q = Stab(U), and thus U ∩ v2

v1
U 6=

U . Therefore dim(U ∩ v2
v1
U) ≤ 2 and so {v1, u1, w1} must be Fq-linearly dependent.

Now we may argue as follows. First of all, the sets {v1, u1} and {v1, w1} are both Fq-linearly
independent because α, β 6∈ Fq. Next, if u1 = λw1 for some λ ∈ Fq then βw1 = αu1 = αλw1, and
hence β = α. It remains to consider the case v1 = λu1 + µw1 for some λ, µ ∈ F∗

q. But this implies
immediately 1 = λα−1 + µβ−1, as desired.

(b) Let β ∈ AV \ {1, α}. Part (a) tells us that µβ−1 = 1− λα−1 for some λ, µ ∈ F∗
q. The q − 1

choices for λ imply that there are at most q− 1 options for such β. Thus |AV | ≤ q+1. The reverse
inequality has been established in Proposition 4.7(b).

We now have all of the pieces in place to prove Theorem 4.1.

Proof of Theorem 4.1. By applying (3.4) and Definition 2.4 with t = 1 and ℓ = 2 we notice that it
suffices to compute λ2 for such a subspace U . Hence we need to determine |{β | dim(U ∩βU) = 2}|.
We distinguish two cases.
Case 1: Suppose U contains a cyclic shift of Fq2 . Then U = γFq2 ⊕ U ′ for some U ′ ∈ Gq(k − 2, n)

and γ ∈ Fqn . Then |AγFq2
\ {1}| = q by Proposition 4.8, and this is the number of β ∈ P(Fqn) such

that U ∩ βU = γFq2 . Moreover, thanks to Proposition 4.10 there does not exist any V ∈ Gq(2, n)
such that V = γ′Fq2 = U ∩αU for some α, γ′ ∈ Fqn except for V = γFq2 . In other words, any other
2-dimensional intersection V = U ∩ αU has full-length orbit. Proposition 4.12 shows that for each
such V we have |AV \ {1}| = q, which is the number of β ∈ P(Fqn) leading to the 2-dimensional
intersection V . Furthermore, Proposition 4.11 says that the collection of all 2-dimensional inter-
sections with full-length orbit can be partitioned into sets of the form {V, α−1

1 V, . . . , α−1
q V }, each

one with cardinality q + 1. Suppose we have r such sets. Note that r = 0 is possible. Then

∑

V=U∩αU
dim(V )=2
V 6=γFq2

|AV \ {1}| = rq(q + 1).

Combining all of this, we arrive at λ2 = q + rq(q + 1), as desired.
Case 2: Suppose U does not contain a cyclic shift of Fq2 . Then any V ∈ Gq(2, n) with V = U ∩ αU
for some α has full-length orbit and since ds(Orb(U)) = 2k − 4 there exists at least one such

15



subspace. So the previous argument shows that
∑

V=U∩αU
dim(V )=2

|AV \ {1}| = rq(q + 1) for some r ≥ 1

and λ2 = rq(q + 1), as stated.

We conclude this section with some examples illustrating various intersection distributions for
full-length orbits with distance 2k − 4. We used SageMath to compute the values of λ2 and r
that occurred for some different values of the parameters q, n, and k. Recall from Theorem 4.1
that λ2 fully determines the intersection distribution. For each triple (q, n, k), we generated random
subspaces in Gq(k, n) containing the element 1 and analyzed those that generated a full-length orbit
with distance 2k − 4. In the following table we list all occurring values for λ2 along with their
frequency N , ordered accordingly. For example, when (q, n, k) = (2, 10, 4) we found 248 subspaces
with λ2 = 2 and 2598 subspaces with λ2 = 6 etc. In the same way we list the corresponding value
of r. Recall from Corollary 4.2 that the maximum possible value for λ2 is Q/(q + 1).

q n k λ2 r N Q
q+1

2 10 4 2, 6, 8, 12, 14, 0, 1, 1, 2, 2, 248, 2598, 34, 2059, 90, 70

18, 20, 24, 30 3, 3, 4, 5 298, 94, 195, 49

2 11 4 6, 12, 18, 24, 30, 42 1, 2, 3, 4, 5, 7 1760, 1251, 63, 57, 12, 24 70

2 11 5 6, 12, 18, 24, 30, 36, 42, 48, 1, 2, 3, 4, 5, 6, 7, 8, 3, 7, 22, 67, 243, 494, 982, 1228, 310

54, 60, 66, 72, 78, 84, 90, 9, 10, 11, 12, 13, 14, 15, 1483, 1285, 1143, 783, 519, 258, 153,

96, 102, 108, 114, 120, 126 16, 17, 18, 19, 20, 21 90, 39, 29, 11, 2, 1

2 12 4 2, 6, 8, 12, 14, 18, 0, 1, 1, 2, 2, 3, 150, 953, 4, 664, 6, 13, 70

20, 24, 30, 42 3, 4, 5, 6 9, 13, 2, 4

2 13 4 6, 12, 18, 24, 30, 42 1, 2, 3, 4, 5, 7 1486, 967, 7, 8, 3, 18 70

2 13 5 6, 12, 18, 24, 36, 42, 1, 2, 3, 4, 5, 6, 7, 1136, 2933, 1535, 1485, 528, 310

48, 54, 60, 66, 72 8, 9, 10, 11, 12 437, 148, 97, 36, 26, 6, 6

3 9 4 12, 24, 36, 48, 60, 72, 84 1, 2, 3, 4, 5, 6, 7 2900, 3537, 283, 354, 290, 160, 55 390

3 11 4 12, 24, 36, 48, 60, 72, 84 1, 2, 3, 4, 5, 6, 7 1048, 1091, 4, 8, 12, 6, 2 390

3 12 4 3, 12, 24, 27, 36, 48 0, 1, 2, 2, 3, 4 21, 288, 397, 1, 2, 4 390

Table 1: Example values of λ2, r for random search of full-length orbits with distance 2k − 4

Besides the random searches that we present above, we also performed, for various choices
of parameters, exhaustive searches among all subspaces in Gq(k, n) that contain 1. We mostly
restricted ourselves to k = 3 because of computational feasibility. The results of these exhaustive
searches are presented in Table 2 on the next page. Again, the values of N in the table are the
frequencies of the values of λ2 (and r). Notice in particular that the values of λ2 we found by
random search in Table 1 for q = 2, n = 10, k = 4 do indeed exhaust all possible values of λ2 for
these parameters.

Each value of N appearing in Table 2 is a multiple of (qk − 1)/(q − 1); this is due to the fact
that for any subspace U containing 1, the shifts α−1U for α ∈ U \ 0 also contain 1 and generate
the same orbit as U . Furthermore, these are all of the elements of Orb(U) that contain 1. This
means that our exhaustive search counts every cyclic orbit code (qk − 1)/(q − 1) times. Note that
Table 2 shows that the upper bound for λ2 in Corollary 4.2 is quite poor in general.

Finally we present an example concerning the value f(U). From Theorem 3.7 and Corollary 4.2
we know that for full-length orbits Orb(U) with distance 2k−2 or 2k−4 the intersection distribution
is completely determined by q, n, k, and f(U); see also (4.3). In fact, this also holds when the
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q n k λ2 r N Q
q+1

2 6 3 2, 6 0, 1 35, 63 14

2 7 3 6 1 147 14

2 8 3 2, 6, 14 0, 1, 2 140, 280, 7 14

2 8 4 12, 14, 18, 20 2, 2, 3, 4, 1080, 1200, 3000, 1200, 70

24, 30, 38 4, 5, 6 2760, 1200, 750

2 9 3 6 1 588 14

2 9 4 6, 12, 18, 24, 30 1, 2, 3, 4, 5 31995, 33120, 11340, 7560, 2025 70

2 10 3 2, 6 0, 1 595, 1190 14

2 10 4 2, 6, 8, 12, 14, 0, 1, 1, 2, 2, 35700, 213375, 2550, 164235, 7650, 70

18, 20, 24, 30 3, 3, 4, 5 22725, 7650, 14325, 3750

3 6 3 3, 12 0, 1 130, 377 39

3 7 3 12 1 1183 39

3 8 3 3, 12, 39 0, 1, 3 1170, 3510, 13 39

3 9 3 12 1 10647 39

5 6 3 5, 30 0, 1 806, 3999 155

Table 2: Values of λ2, r for exhaustive search of full-length orbits with distance 2k − 4

distance is 2k because in that case the intersection distribution is trivial. It is thus natural to
ask whether q, n, k, f(U) along with the distance also determine the intersection distribution of
full-length orbits if the distance is at most 2k − 6.

However, this does not hold. Furthermore, q, n, k, and f(U) do not determine the distance of
the orbit code.

Example 4.13. Let q = 2, n = 11, k = 5 and suppose ω is a primitive element of F211 over F2

satisfying ω11 = ω2 + 1. Define

U=〈1, ω417, ω1823, ω1983, ω64〉, V =〈1, ω1332, ω468, ω749, ω1627〉, W =〈1, ω1618, ω942, ω1041, ω1315〉.

Then all three subspaces generate full-length orbits. A computation using SageMath shows that
ds(Orb(U)) = ds(Orb(V )) = 4 = 2k − 6, whereas ds(Orb(W )) = 6 = 2k − 4. Furthermore,
f(U) = f(V ) = f(W ) = 703, and hence f does not determine the distance. Finally Orb(U) has
intersection distribution (λ0, λ1, λ2, λ3) = (1343, 624, 60, 18) while Orb(V ) has (λ0, λ1, λ2, λ3) =
(1343, 600, 96, 6). Thus, the intersection distribution is not determined by q, n, k, f and the distance.

5 Intersection Distributions of Unions of Full-Length Orbits

In this section we generalize the ideas of Sections 2 and 3 to codes that arise as union of orbits
generated by subspaces of the same dimension. We need to start by adapting the definitions from
the single orbit case to multiple orbits. Analogously to Definition 2.4 we define the distance and
intersection distributions with respect fixed reference spaces for each orbit. In order to relate these
two distributions we need to restrict ourselves to subspaces with the same stabilizer.

Definition 5.1. Let k ≤ n/2 and Uj ∈ Gq(k, n) with Stab(Uj) = Fqt for j = 1, . . . ,m and define
C =

⋃m
j=1Orb(Uj). Suppose ds(C) = 2d. For i = d, . . . , k define δ2i = |{(Uj , αUj′) | 1 ≤ j ≤ j′ ≤

m, d(Uj , αUj′) = 2i}|. We call (δ2d, . . . , δ2k) the distance distribution of C. Furthermore, we set
ℓ = k − d, thus ℓ is the maximum dimension of the intersection spaces Uj ∩ αUj′ . For i = 0, . . . , ℓ
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and 1 ≤ j ≤ j′ ≤ m we define Li(Uj , Uj′) = {α ∈ P(Fqn) | dim(Uj ∩ αUj′) = i} and set λi as

λi(C) =
∑

j≤j′

|Li(Uj , Uj′)|.

We call (λ0, . . . , λℓ) the intersection distribution of C. As in Definition 2.4 we have λi = (qt −
1)/(q − 1)δ2(k−i) for i = 0, . . . , ℓ.

We now extend Definition 3.1 to the case of multiple generating subspaces. It will suffice to
extend the definitions to pairs (U, V ) of subspaces and we will do so for L, M, and F . There is no
meaningful generalization of S(U) to two spaces, and in fact no such space will be needed.

Definition 5.2. Let k ≤ n/2 and U, V ∈ Gq(k, n). Define ℓ = max{dim(U ∩ αV ) | α ∈ F∗
qn}. Note

that the cyclic code Orb(U) ∪Orb(V ) has minimum distance at most 2k − 2ℓ. We define

(1) L(U, V ) =
⋃ℓ

i=1 Li(U, V ), where Li(U, V ) is as in Definition 5.1.
(2) M(U, V ) = {(u, v) | u ∈ U \ 0, v ∈ V \ 0}.
(3) F(U, V ) = {uv−1 | u ∈ U \ 0, v ∈ V \ 0} and fU,V := |F(U, V )|.

Notice that when U = V , each of these definitions reduces to the corresponding part in Def-
inition 3.1. As in the single subspace case, we omit i = 0 from the definition of L(U, V ) since λ0
can be calculated from λi, i = 1, . . . , ℓ. We will carry this out in the proof of Theorem 5.7.

Again, the cardinality of M(U, V ) depends only on q, n, and k and we denote this by

Q̂ := |M(U, V )| =

(
qk − 1

q − 1

)2

. (5.1)

For any two subspaces U, V ∈ Gq(k, n) generating different orbit codes we have again a map

ψ : M(U, V ) → P(Fqn) given by ψ(u, v) = uv−1. As in Section 3, ψ surjects onto L(U, V ).

Proposition 5.3. Let U, V ∈ Gq(k, n) such that Orb(U) 6= Orb(V ) and set ℓ = max{dim(U ∩αV ) |

α ∈ F∗
qn}. The map ψ : M(U, V ) → F(U, V ), (u, v) 7−→ uv−1 is well-defined. It satisfies

F(U, V ) = ψ(M(U, V )) = L(U, V ). Furthermore, for any α ∈ F(U, V ) we have

α ∈ Li(U, V ) ⇐⇒ |ψ−1(α)| = (qi − 1)/(q − 1).

Proof. The well-definedness of ψ is clear and so is ψ(M(U, V )) = F(U, V ). We show next that
ψ(M(U, V )) = L(U, V ). First, let α = uv−1 ∈ ψ(M(U, V )) for some u ∈ U \ 0, v ∈ V \ 0.
Then there exists λ ∈ F∗

q such that u = λαv. Since λV = V this implies U ∩ αV 6= 0. Hence
dim(U ∩αV ) ∈ {1, . . . , ℓ} and thus α ∈ L(U, V ). This shows ψ(M(U, V )) ⊆ L(U, V ). The proof of
the reverse inclusion proceeds similarly. If α ∈ L(U, V ), then 1 ≤ dim(U ∩ αV ) ≤ ℓ. Hence there
exist u ∈ U \ 0, v ∈ V \ 0 with u = αv. So α = uv−1 is in ψ(M(U, V )).

It remains to show α ∈ Li(U, V ) ⇐⇒ |ψ−1(α)| = (qi − 1)/(q − 1). Fix α ∈ F(U, V ). Note first
that for (v,w) ∈ ψ−1(α), the second component w is uniquely determined by the first one. Thus it
suffices to count the number of possible first components.

Let α ∈ Li(U, V ). Hence dim(U ∩ αV ) = i. Then for every v ∈ U ∩ αV there exists w ∈ V
such that v = αw. Using that there exist (qi − 1)/(q − 1) elements v such that v ∈ U ∩ αV , it
follows that |ψ−1(α)| ≥ (qi − 1)/(q − 1). Conversely, suppose that (x, y) ∈ ψ−1(α). Then x = αy
and x = λαy for some λ ∈ Fq. Thus x ∈ U ∩ αV . This leaves (qi − 1)/(q − 1) choices for x, and

thus |ψ−1(α)| ≤ qi−1
q−1 . Hence |ψ−1(α)| = qi−1

q−1 .
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The restriction that Orb(U) 6= Orb(V ) implies that U 6= αV for any α, hence the differences
between the statements of Proposition 3.2 and Proposition 5.3. As in Section 3, we can use this
result to derive identities relating the sizes |Li(U, V )| for i = 1, . . . , ℓ.

Corollary 5.4. Let U, V ∈ Gq(k, n) such that Orb(U) 6= Orb(V ). Let ℓ = max{dim(U ∩ αV ) |

α ∈ F∗
qn}. Recall the cardinalities fU,V = |F(U, V )|, Q̂ = |M(U, V )|, and set λi = |Li(U, V )| for

i = 1, . . . , ℓ. Then

fU,V =

ℓ∑

i=1

λi. (5.2)

and

Q̂ =

ℓ∑

i=1

qi − 1

q − 1
λi. (5.3)

Proof. The identity in (5.2) follows immediately from L(U, V ) = F(U, V ) from Proposition 5.3.
From the same proposition we have ψ(M(U, V )) = L(U, V ), thus M(U, V ) =

⋃ℓ
i=1 ψ

−1(Li(U, V )).
Now (5.3) follows from Proposition 5.3 and the cardinality of M(U, V ) in (5.1).

In the single orbit case, we saw that orbit codes generated by a Sidon space have full length
and maximal possible dimension. The Sidon property can be extended to various spaces in such a
way that the orbits stay sufficiently far away from each other in the subspace distance. This reads
as follows.

Definition 5.5. Let U and V be distinct k-dimensional subspaces of Fqn . We say that U and V
have the two-space Sidon property if any a, c ∈ U \ 0 and b, d ∈ V \ 0 with ab = cd satisfy a = c
and b = d.

Lemma 5.6 ([12, Lemma 36]). Let U and V be distinct subspaces in Gq(k, n). The following
conditions are equivalent.

(a) dim(U ∩ αV ) ≤ 1 for all α ∈ F∗
qn.

(b) U and V have the two-space Sidon property.

As a consequence, if U, V ∈ Gq(k, n) are Sidon spaces and have the two-space Sidon property then
the cyclic subspace code Orb(U) ∪Orb(V ) has cardinality 2(qn − 1)/(q − 1) and distance 2k − 2.

Comparing the above definition with Definition 3.5 one may wonder whether the assumption
ab = cd should also allow for the conclusion a = d and c = b, which is an option in the case where
a, b, v, d ∈ U ∩ V . However, this is not necessary. The difference between the above lemma and
the situation in Theorem 3.6 lies in the obvious fact that the property dim(U ∩ αV ) ≤ 1 for all
α ∈ F∗

qn can never be true if V = U . For further details we refer to the proofs of Theorem 3.6 and
Lemma 5.6 in [12].

We can use the above lemma to extend our earlier results to cyclic codes that are unions of
cyclic orbits generated by Sidon spaces that pairwise have the two-space Sidon property. Such
codes have maximal possible length and distance 2k − 2. Their existence has been established
in [12, Construction 37], where the authors give a construction as a generalization of their own
[12, Construction 15]. Another construction from the same paper, [12, Construction 11], can be
generalized in the same way to give another class of cyclic orbit codes of this type.

We have now all of the necessary pieces to describe the intersection distribution of such codes.
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Theorem 5.7. Let U1, . . . , Um ∈ Gq(k, n) be distinct subspaces such that each Ui is a Sidon space
and each pair Ui, Uj with i 6= j has the two-space Sidon property. Let C =

⋃m
i=1 Orb(Ui). Then C is

a cyclic subspace code with |C| = m(qn−1)(q−1)−1 and ds(C) = 2k−2. Further C has intersection
distribution (λ0, λ1) where

λ1 = m

(
qk − 1

q − 1

)(
qk − q

q − 1

)
+

(
m

2

)(
qk − 1

q − 1

)2

,

λ0 = m

(
qn − 1

q − 1
−Q− 1

)
+

(
m

2

)(
qn − 1

q − 1
− Q̂

)
.

Proof. Clearly C is a cyclic subspace code (in the sense of the paragraph before Definition 2.1).
Each orbit has size (qn − 1)(q − 1)−1 since it is generated by a Sidon space, and because each
pair has the two-space Sidon property, Lemma 5.6 implies that the orbits are disjoint. Hence
|C| = m(qn−1)(q−1)−1. As for the minimum distance note that on the one hand min{d(Uj , αUj′) |
j < j′, α ∈ F∗

qn} ≥ 2k−2 thanks to Lemma 5.6 while on the other hand each orbit itself has distance
2k − 2 by Theorem 3.6.

For the intersection distribution define λi,j,j′ = |Li(Uj , Uj′)| for i = 0, 1 and 1 ≤ j ≤ j′ ≤ m.
Recall that λi =

∑
j≤j′ λi,j,j′. Since each Uj is a Sidon space, Theorem 3.7 gives us

λ1,j,j = Q =

(
qk − 1

q − 1

)(
qk − q

q − 1

)
.

For j < j′, Eq. (5.3) gives

λ1,j,j′ = Q̂ =

(
qk − 1

q − 1

)2

.

Now the statement for λ1 follows from the fact that there are m distinct orbits and
(
m
2

)
pairs

thereof.

It remains to compute λ0. For each of the m orbits we have λ0,j,j = (qn−1)/(q−1)−1−λ1,j,j;
see also Theorem 3.7. On the other hand, the intersection distribution in Definition 5.1 takes
(qn − 1)/(q − 1) intersections between distinct orbits into account. Hence for each of the

(m
2

)
pairs

of distinct orbits we have λ0,j,j′ = (qn − 1)/(q − 1)− λ1,j,j′. Now the result for λ0 follows.

6 Conclusion and Open Problems

In this paper we investigated the intersection distribution, and thus the distance distribution, for
cyclic orbit codes that have maximum possible length and distance at least 2k − 4. For distance
2k− 2 the intersection distribution can be fully described and in fact depends only on q, n, k, while
for distance 2k − 4 the additional parameter f = f(U) plays a role. Many cases remain to be
investigated. We conclude with some specific open problems and directions for future work.

(1) Throughout our work, the parameter f = |F(U)| plays a prominent role. Can we provide
more information about f for more general subspaces? For instance, can we find a lower
bound on f that guarantees distance 2k − 4? The question of how many fractions a subspace
has may also be related to questions raised in [12] about the size of the “product” space
U2 = 〈

∑n
i=1 uivi | ui, vi ∈ U〉.
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(2) Can we determine for given parameters (q, n, k) the range for r (or λ2) in Theorem 4.1? Tables 1
and 2 in Section 4 show that the upper bound for λ2 given in Corollary 4.2 is in most cases
very poor.

(3) Our main tool for proving Theorem 4.1 was a detailed study of intersections U∩αU of maximal
dimension ℓ = 2. However, to find the intersection distribution for ℓ ≥ 3, studying intersections
of maximal dimension is insufficient. What can we say about intersections that are not of
maximal dimension?

(4) Can Theorem 4.1 be generalized to cyclic subspace codes with multiple orbits and distance
2k − 4?
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