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Abstract

A frequency square is a square matrix in which each row and column is a permutation of the same
multiset of symbols. A frequency square is of type (n;λ) if it contains n/λ symbols, each of which
occurs λ times per row and λ times per column. In the case when λ = n/2 we refer to the frequency
square as binary. A set of k-MOFS(n;λ) is a set of k frequency squares of type (n;λ) such that when
any two of the frequency squares are superimposed, each possible ordered pair occurs equally often.

A set of k-maxMOFS(n;λ) is a set of k-MOFS(n;λ) that is not contained in any set of (k + 1)-
MOFS(n;λ). For even n, let µ(n) be the smallest k such that there exists a set of k-maxMOFS(n;n/2).
It was shown in [1] that µ(n) = 1 if n/2 is odd and µ(n) > 1 if n/2 is even. Extending this result, we
show that if n/2 is even, then µ(n) > 2. Also, we show that whenever n is divisible by a particular
function of k, there does not exist a set of k′-maxMOFS(n;n/2) for any k′ 6 k. In particular, this
means that lim supµ(n) is unbounded. Nevertheless we can construct infinite families of maximal
binary MOFS of fixed cardinality. More generally, let q = pu be a prime power and let pv be the
highest power of p that divides n. If 0 6 v − uh < u/2 for h > 1 then we show that there exists a set
of (qh − 1)2/(q − 1)-maxMOFS(n;n/q).
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1 Introduction

Let N(n) = {0, 1, . . . , n−1}. In what follows, rows and columns of an m×n array L are indexed by N(m)
and N(n), respectively, and L[i, j] denotes the entry in row i and column j of L. A frequency square F of
type (n;λ0, λ1, . . . , λm−1) is an n× n array such that symbol i occurs λi times in each row and λi times in
each column for each i ∈ N(m); necessarily

∑m−1
i=0 λi = n. In the case where λ0 = λ1 = · · · = λm−1 = λ

we say that F is of type (n;λ). If λ = n/2, then we refer to the frequency square as binary. A frequency
square of type (n; 1) is a Latin square of order n. Two frequency squares of type (n;λ0, λ1, . . . , λm−1)
are orthogonal if each ordered pair (i, j) occurs λiλj times when the squares are superimposed. A set of
mutually orthogonal frequency squares (MOFS) is a set of frequency squares in which each pair of squares
is orthogonal. We use the notation k-MOFS(n;λ) to denote k MOFS, each of type (n;λ).

Research into frequency squares focuses mainly on constructions of sets of MOFS, motivated originally
by problems in statistical experiment design. Hedayat, Raghavarao and Seiden [7] showed that the max-
imum k such that a set of k-MOFS(n;n/m) exists is k = (n − 1)2/(m− 1); such a set is called complete.
We give a new explanation for this result (Corollary 5). In the case when m = n/λ > 2, complete sets of
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MOFS of type (n;λ) are only known to exist when n is a prime power [10, 11, 12, 15]; a unified theory for
all known constructions is given in [9].

A non-prime power result form = 2 is given by Federer [6] (see also [15]), who showed that if there exists
a Hadamard matrix of order n, then there exists a complete set of MOFS of type (n;n/2). Conversely, it
is shown in [1] that there does not exist a complete set of MOFS of type (n;n/2) whenever n/2 is odd.

Two sets of frequency squares are isomorphic if one can be obtained from the other by some sequence
of the following operations:

• Applying the same permutation to the rows of all squares in the set.

• Applying the same permutation to the columns of all squares in the set.

• Transposing all squares in the set.

• Permuting the symbols in one of the squares.

• Permuting the squares within the set (in cases where we have imposed an order on the set).

Isomorphism is an equivalence relation and the equivalence classes it induces are isomorphism classes.
A set {F1, F2, . . . , Fk} of k-MOFS(n;λ) is said to be maximal if there does not exist a frequency square

F of type (n;λ) that is orthogonal to Fi for each 1 6 i 6 k. If we wish to specify that a set of k-MOFS(n;λ)
is maximal, then we may write k-maxMOFS(n;λ). Maintaining consistency with Latin square terminology,
a 1-maxMOFS(n;λ) is called a bachelor frequency square.

In [1] a number of existence and non-existence results are given for sets of k-maxMOFS(n;n/2), which
we summarise in the next two theorems. Note that a set of (n− 1)2-MOFS(n;n/2) is complete and thus
trivially maximal.

Theorem 1. There exists a set of k-maxMOFS(n;n/2) if:

• k = 1 and n ≡ 2 (mod 4) (furthermore such a frequency square is unique up to isomorphism);

• n = 6 and either 5 6 k 6 15 or k = 17; or

• k = 5, n ≡ 2 (mod 4) and n > 2.

Theorem 2. There does not exist a set of k-maxMOFS(n;n/2) if:

• k = 1 and n ≡ 0 (mod 4);

• n = 4 and k < 9; or

• n = 6 and either k ∈ {2, 3, 4, 16} or k > 18.

The structure of this paper is as follows. In §2, we give a construction for non-complete sets of
maxMOFS(n;n/2) when n ≡ 0 (mod 4) (we are not aware of any earlier construction of this nature).
For instance, we construct (2v − 1)2-maxMOFS(2vc; 2v−1c) for all v > 2 and odd c. This is part of a more
general construction for sets of maxMOFS(n;λ) given by Corollary 9. In §3 and §4, by exploiting the
theory of integral convex polytopes, we show that for any given k there are infinitely many values of n such
that a set of k′-maxMOFS(n;n/2) does not exist for any k′ 6 k.

Finally, in §5, we show that a set of 2-maxMOFS(n;n/2) does not exist whenever n is divisible by
4. The case when n/2 is odd remains elusive, but we conjecture the following (which holds for n < 8 by
Theorem 2):

Conjecture 3. If n is even, then there does not exist a set of 2-maxMOFS(n;n/2).

For even n, define µ(n) to be the size of the smallest maximal set of binary MOFS of order n. Then from
the above observations, µ(n) = 1 if n ≡ 2 (mod 4), and 2 < µ(n) 6 9 if n ≡ 4 (mod 8), but lim sup µ(n)
is unbounded. By comparison, it seems that maximal pairs of orthogonal Latin squares exist for all orders
n > 6, and this has been proved for all orders that are not twice a prime [3].
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2 A new construction for maximal MOFS

Here we give a new construction for maximal sets of MOFS via dilations of complete sets of MOFS. In the
following, we consider n× n matrices as vectors in an n2-dimensional real vector space equipped with the
inner product A ◦B =

∑

i

∑

j aijbij for matrices A = [aij] and B = [bij ]. Let Jn be the n× n matrix with
each entry equal to 1.

Theorem 4. Suppose that F = {F1, F2, . . . , Fk} is a set of k-MOFS(n;n/m) with symbols N(m). For
r, c ∈ N(n), s ∈ N(m) and 1 6 t 6 k we define

Rr[i, j] =

{

1 if i = r and

0 otherwise,

Cc[i, j] =

{

1 if j = c, and

0 otherwise,

Ss,t[i, j] =

{

1 if Ft[i, j] = s, and

0 otherwise.

Then {Jn} ∪ {Rr : 1 6 r 6 n− 1} ∪ {Cc : 1 6 c 6 n− 1} ∪ {Ss,t : 1 6 s 6 m− 1, 1 6 t 6 k} is a linearly
independent set.

Proof. Define R ′
r = nRr − Jn, C ′

c = nCc − Jn and S ′
s,t = mSs,t − Jn for each r, c, s, t. It is trivial that

{Jn} ∪ {Rr : 1 6 r 6 n − 1} and {Jn} ∪ {Cc : 1 6 c 6 n − 1} are both linearly independent sets,
as is {Jn} ∪ {Ss,t : 1 6 s 6 m − 1} for any given t. It follows that {Jn} ∪ {R

′
r : 1 6 r 6 n − 1},

{Jn} ∪ {C
′
c : 1 6 c 6 n − 1} and {Jn} ∪ {S

′
s,t : 1 6 s 6 m − 1} are each linearly independent sets. It is

also easy to check that
R

′
r ◦ C

′
c = R

′
r ◦S

′
s,t = S

′
s,t ◦ C

′
c = S

′
s,t ◦S

′
s′,t′ = 0

for all r, c, s, t, s′, t′, provided t 6= t′. Hence

{Jn} ∪ {R
′
r : 1 6 r 6 n− 1} ∪ {C ′

c : 1 6 c 6 n− 1} ∪ {S ′
s,t : 1 6 s 6 m− 1, 1 6 t 6 k}

is a linearly independent set, from which the result follows.

Corollary 5. If F is a set of k-MOFS(n;n/m), then k 6 (n− 1)2/(m− 1).

Proof. Theorem 4 exhibited a set of 1+2(n−1)+(m−1)k independent vectors in a n2-dimensional vector
space. It follows that (m− 1)k 6 (n− 1)2.

Note that previous proofs of Corollary 5 have been given in [7], [8] and [9].
Let F be a set of k-MOFS(n;n/m). The d-dilation of F is the set of k-MOFS(dn; dn/m) obtained by

replacing every entry e in every square in F by a d × d block of entries, each equal to e. It is trivial to
check that d-dilation does indeed create a new set of MOFS. We now explore the more interesting question
of whether d-dilation preserves maximality. We first give some necessary conditions.

Lemma 6. Let F be a set of k-MOFS(n;n/m). Let F ′ be the d-dilation of F and suppose that F ′ is
maximal. Then F is maximal and d 6≡ 0 (mod m).

Proof. If F was not maximal then we could extend it with a new frequency square F . But then the
d-dilation of F would be orthogonal to every square in F ′. So we can be sure that F is maximal.

If d is divisible by m then there exists a frequency square C of type (d; d/m). For example, we could
create C as a circulant matrix in which its first row contains every symbol d/m times. Now build a
frequency square of type (dn; dn/m) orthogonal to every square in F ′, by simply putting a copy of C in
the position of each dilated block. This contradicts the maximality of F ′, and completes the proof.
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Next we give some sufficient conditions. We first need to explain the idea of a relation, which was a
fundamental tool to show the existence of maximal sets of MOFS in [1] and [8]. The technique of relations
was previously used in [4] and [5] (with origins in [14]) to analyse maximal sets of mutually orthogonal
Latin squares.

A set F = {F1, . . . , Fk} of k-MOFS(n;n/m) can be written as an n2 × (k + 2) orthogonal array O in
which there is a row

[

i, j, F1[i, j], F2[i, j], . . . , Fk[i, j]
]

, (1)

for each i ∈ N(n) and j ∈ N(n). In this context it is safest to consider sets of MOFS to have an indexing
that implies an ordering on the squares (and hence the order of the columns in O is well-defined). Let Yc
be the set of symbols that occur in column c of O. Then a relation is a (k + 2)-tuple (X0, . . . , Xk+1) of
sets such that Xi ⊆ Yi for i ∈ N(k + 2), with the property that every row (1) of O has an even number
of columns c for which the symbol in column c is an element of Xc. We will consider a particular type of
relation from [8], for which we make the following definition. A Jedwab-Popatia relation is a relation such
that |Xi| = 1 for i > 2 and at least one of ∅ ( X0 ( Y0 and ∅ ( X1 ( Y1 holds.

The following theorem is proved in [8], generalising an earlier result from [1]. It shows that under
certain conditions a Jedwab-Popatia relation implies maximality. See [1, 8] for a more extensive study of
the structure of relations for sets of MOFS, including restrictions on which relations can be achieved.

Theorem 7. Suppose λ is odd and let F be a set of k-MOFS(n;λ) that satisfies a Jedwab-Popatia relation.
Then F is maximal.

We can now present conditions which guarantee that the d-dilation of a set of MOFS is maximal.

Theorem 8. Suppose that F ′ is the d-dilation of a set F of k-MOFS(n;n/m). Then F ′ is maximal if
either

• d2 6≡ 0 (mod m) and F is a complete set of MOFS or

• d and n/m are odd, and F satisfies Jedwab-Popatia relation.

Proof. If both n/m and d are odd then dn/m is also odd. Also, if F satisfies a Jedwab-Popatia relation
then it is easy to see that F ′ also satisfies a Jedwab-Popatia relation, and hence is maximal by Theorem 7.

Hence for the remainder of the proof we may assume that F = {F1, . . . , Fk} is a complete set; in other
words k = (n− 1)2/(m− 1).

Aiming for a contradiction, assume that there exists a frequency square F of type (dn; dn/m) that is
orthogonal to every square in the d-dilation F ′ = {F ′

1, . . . , F
′
k} of F . Let X = [xij ] be the integer matrix

of order n in which xij is the number of times that symbol 0 occurs in the ij-th block of F . Since 0 occurs
dn/m times in every row and column of F we have

X ◦Rr = d2n/m, (2)

X ◦ Cc = d2n/m, (3)

X ◦ Jn = d2n2/m, (4)

for r, c ∈ N(n). Also, the fact that F and F ′
t are orthogonal frequency squares means that

X ◦Ss,t = (dn/m)2 (5)

for s ∈ N(m) and 1 6 t 6 k.
However (2), (3), (4) and (5) have another simultaneous solution, namely the matrix with all entries

equal to d2/m. If d2 6≡ 0 (mod m) then this solution is not an integer matrix, and hence is different from
the solution exhibited above. Having two distinct solutions contradicts Theorem 4, so we conclude that F ′

must be maximal.
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Corollary 9. Let q = pu be a prime power and let pv be the highest power of p that divides n. If
0 6 v − uh < u/2 for h > 1 then there exists a set of (qh − 1)2/(q − 1)-maxMOFS(n;n/q).

Proof. From [7] we know that a complete set F of MOFS(qh; qh−1) exists. Let d = n/qh and note that d
is an integer because v > uh. Also, by assumption, the highest power of p dividing d is pv−uh. It follows
that d2 6≡ 0 (mod q) since 2(v − uh) < u. Hence, applying Theorem 8 gives the result.

Applying Corollary 9 to the binary case we have q = 2, which necessitates v = h, and we find that there
exists a set of (2v − 1)2-maxMOFS(n;n/2) whenever n ≡ 2v (mod 2v+1). The v = 1 case of this statement
is just the existence of bachelor frequency squares, as given in Theorem 1, but for v > 1 we get something
new.

Next we give an example that shows that a d-dilation of a maximal set of binary MOFS need not itself
be maximal, even if d is odd. This shows that a tempting generalisation of Theorem 8 fails.

Consider the example (16) given in [1] of a set F of 5-maxMOFS(6; 3) that do not satisfy a relation.
Let F ′ be the 3-dilation of F . We claim that F ′ is not maximal. Indeed, a frequency square that extends
F ′ can be obtained from the following matrix:

















0 3 2 1 3 0
1 0 2 2 3 1
3 1 0 2 1 2
1 2 2 1 0 3
1 1 2 2 0 3
3 2 1 1 2 0

















.

We simply replace each entry c in this matrix by a frequency square of type (3; 3 − c, c); for example, a
binary 3× 3 circulant block that has c positive entries in each row.

3 Asymptotic non-existence results

In this section we show that µ(n), the size of the smallest maximal set of MOFS(n, n/2), does not satisfy
any bound that is uniform in n. Instead, we find that for any k there exist infinitely many n for which
µ(n) > k. This provides an interesting counterpoint to Theorem 1 and Corollary 9, both of which provide
infinite families of maximal sets of binary MOFS of a fixed cardinality. For example, Corollary 9 shows
that µ(n) 6 9 for all n ≡ 4 (mod 8), and µ(n) 6 49 for all n ≡ 8 (mod 16), and so on.

Let Γ(m) be the least common multiple of the integers 1, 2, . . . , m. Let m1 = m2 = 1, m3 = 2 and
recursively define mi+1 = 2mi(mi − 1)Γ(2mi − 1) for i > 3. We will show that:

Theorem 10. If 4m2k divides n, then there does not exist a set of k-maxMOFS(n;n/2).

Note that mi divides m2k for all i < 2k, so Theorem 10 implies that µ(n) > k if 4m2k divides n. We
actually prove a more general result which implies Theorem 10 but does not require the frequency squares
to be orthogonal:

Theorem 11. If 4m2k divides n, then given any set F = {F1, F2, . . . , Fk} of binary frequency squares of
order n, there exists a binary frequency square F which is orthogonal to every frequency square in F .

Since log(Γ(m)) ∼ m (see, for example, [13]), the sequence {mi} grows asymptotically faster than the
tetration (iterated exponentiation) of k base e; so certainly n≫ k.

In the remainder of the paper, given arrays L1, L2, . . . , Lk of the same dimensions, the join L1 ⊕ L2 ⊕
· · ·⊕Lk is defined to be the array obtained by overlapping these arrays; that is, the array in which cell (r, c)
contains the ordered k-tuple (L1[r, c], L2[r, c], . . . , Lk[r, c]). Also, given rows r1 and r2 of any rectangular
array L, we use L(r1, r2) to denote the two-rowed array in which the first row is equal to row r1 of L
and the second row is equal to row r2 of L. We start with an elementary lemma that gives a strategy for
constructing orthogonal mates for frequency squares, two rows at a time.
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Lemma 12. Let F be a frequency square of type (n;n/2) and let R be a partition of the rows of F into
pairs. Suppose there exists a binary n× n array F ′ such that for each {r1, r2} ∈ R:

• each row of F ′(r1, r2) contains n/2 zeros and n/2 ones;

• each column of F ′(r1, r2) contains 1 zero and 1 one;

• within F (r1, r2)⊕ F
′(r1, r2), each of the pairs (0, 0), (0, 1), (1, 0) and (1, 1) occurs n/2 times.

Then F and F ′ are orthogonal frequency squares of type (n;n/2).

Henceforth in this section, F is the join of a set {F1, F2, . . . , Fk} of frequency squares, each of type
(n;n/2). Let r1, r2 be two rows of F and let P be an equipartition of the columns of F (r1, r2). We say
that P is good with respect to row ri and square Fj (where i ∈ {1, 2} and 1 6 j 6 k) if: (a) |P| is even
and each element of P has even cardinality; and (b) for each P ∈ P, the number of columns c in P with
Fj [ri, c] = 1 is equal to |P |/2. Note that (b) implies that for each P ∈ P, the number of columns c in P
with Fj[ri, c] = 0 is also equal to |P |/2.

Lemma 13. Let F be the join of a set F = {F1, F2, . . . , Fk} of frequency squares, each of type (n;n/2)
and let R be a partition of the rows of F into pairs. Suppose that for each {r1, r2} ∈ R, there exists an
equipartition P of the columns of F (r1, r2) such that P is good with respect to row ri and square Fj for
each i ∈ {1, 2} and 1 6 j 6 k. Then there exists a binary frequency square F ′ orthogonal to each frequency
square in F .

Proof. We construct F ′ two rows at a time. Let {r1, r2} ∈ R and let P be an equipartition of the columns
of F (r1, r2) satisfying the conditions of the lemma. Let P = P0 ∪ P1 be any partition of P into two parts
of equal size. For each P ∈ Pi and i ∈ {0, 1}, place i in cell F ′[r1, c] and 1 − i in cell F ′[r2, c] for each
c ∈ P . Repeat this process for each element of R. The result follows from Lemma 12.

For the rest of this section, R is a partition of the rows of F into pairs and {r1, r2} ∈ R. Lemma 13
allows us to focus on the array F (r1, r2). The next lemma is a straightforward observation.

Lemma 14. Let P be good with respect to row ri, i ∈ {1, 2}, and square Fj, 1 6 j 6 k, for the array
F (r1, r2). If P ′ is an equipartition coarser than P and |P ′| is even, then P is also good with respect to row
ri and square Fj.

Let f(1) = 2 and f(m) = (2m − 2)Γ(2m− 1) for m > 2. Informally, the following lemma states that
if β is divisible by f(m), then we can partition any integer partition of 2mβ with maximum part size 2m
and average part size m into 2β/f(m) integer partitions of mf(m), with average part size m in each of the
smaller partitions. For the purposes of motivation, we will apply Lemma 15 before proving it in the next
section, using the theory of integral convex polytopes.

Lemma 15. Let m > 1 and β be integers such that f(m) divides β. Then for any non-negative integers
x0, x1, . . . , x2m such that

2m
∑

i=0

ixi = 2mβ;

2m
∑

i=0

xi = 2β (6)

there exist non-negative integers xi,j, for 0 6 i 6 2m and 1 6 j 6 2β/f(m) such that

2m
∑

i=0

ixi,j = mf(m);

2m
∑

i=0

xi,j = f(m) (7)

for each 1 6 j 6 2β/f(m) and
2β/f(m)
∑

j=1

xi,j = xi

for each 0 6 i 6 2m.

6



Proof of Theorem 11. Consider the array F (r1, r2). For 2 6 s 6 2k, define βs = n/4ms. Our proof will be
by induction on s. We first construct an equipartition P that is good with respect to both row r1 and square
F1 and row r2 and square F1. Here each P ∈ P is a pair of columns {c, c′} such that F1[r1, c] = 1−F1[r1, c

′]
and F1[r2, c] = 1−F1[r2, c

′]. The fact that F1 is a frequency square ensures such a P exists (cf. Lemma 21
later). Note also that |P| = n/2, which by assumption is even.

For the inductive step, assume that there exists an equipartition P which is good with respect to row
ri and square Fj for a set S of order pairs (i, j) ∈ {1, 2}×{1, 2, . . . , k} such that |S| = s, where 2 6 s < 2k
and |P| = 2βs. The base case s = 2 follows from the previous paragraph, since β2 = n/4.

Next, let (t, u) be a fixed pair in ({1, 2}×{1, 2, . . . , k})\S. We will show that there exists an equipartition
P ′ such that: (a) P ′ is coarser than P; (b) |P ′| = 2βs+1 and (c) P ′ is good with respect to row rt and
square Fu. The result then follows by induction and Lemmas 13 and 14.

Let β = βs, m = ms and Y = {1, 2, . . . , 2β}. Let P = {Pj : j ∈ Y} be the equipartition of the columns
and for j ∈ Y let yj be the number of 1’s in row rt and square Fu within the columns of Pj. Then

∑

j∈Y

yj = 2mβ (8)

and 0 6 yj 6 2m for j ∈ Y .
Next, define xi to be the number of indices j ∈ Y such that yj = i. Thus by (8):

2m
∑

i=0

ixi = 2mβ and
2m
∑

i=0

xi = 2β.

By definition,

βs+1 =
n

4ms+1
=

n

4mf(m)
=

β

f(m)
,

since mℓ+1 = mℓf(mℓ) for all ℓ > 2. Thus by Lemma 15, there exist xi,j , for 0 6 i 6 2m and 1 6 j 6 2βs+1

such that
2m
∑

i=0

ixi,j = mf(m) = ms+1;

2m
∑

i=0

xi,j = f(m) (9)

for 1 6 j 6 2βs+1 and
2βs+1
∑

j=1

xi,j = xi

for 0 6 i 6 2m.
We now use this information to construct the coarser partition P ′. We do this by partitioning Y into

subsets Yj for 1 6 j 6 2βs+1, such that Yj contains xi,j indices ℓ such that yℓ = i for each 0 6 i 6 2m.
Then, for each 1 6 j 6 2βs+1, let

P ′
j :=

⋃

γ∈Yj

Pγ.

From (9), each P ′
j is the union of f(m) parts of the equipartition P which between them contain ms+1 =

n/4βs+1 ones in row rt of square Fu. Hence P
′ = {P ′

j : 1 6 j 6 2βs+1} is an equipartition of the columns
which is coarser than P and is good with respect to row rt and square Fu. This completes the proof.

4 Proof of Lemma 15 via integral convex polytopes

In this section we prove Lemma 15. We first rephrase the problem in terms of convex polytopes and then
use a handy result on the integer decomposition property of integral convex polytopes from [2].
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We begin with the following definitions. A halfspace in Rn is a set of the form {x ∈ Rn : a · x 6 b} or
{x ∈ Rn : a · x > b}, for a fixed vector a ∈ Rn and real number b. A convex polytope P is an intersection
of halfspaces that is bounded. The dimension of a convex polytope P ⊆ Rn is the affine dimension of P;
that is, the smallest dimension d such that a translation of P is contained in a d-dimensional subspace of
Rn.

We will be interested in the following convex polytopes. Let m be a fixed positive integer. For b ∈ R+,
let P(b) be the (2m− 1)-dimensional convex polytope

P(b) =

{

(x0, . . . , x2m) ∈ R2m+1 :

2m
∑

i=0

xi = b,

2m
∑

i=0

ixi = mb, xi > 0 for i = 0, . . . , 2m

}

.

An element v of a convex polytope P is a vertex if the only way to write v = ax+(1−a)y for a ∈ (0, 1)
and x, y ∈P is to put x = v = y. Let eℓ ∈ R2m+1 be the ℓ-th standard basis vector, where the entries are
indexed from 0. Define V = V (b) = {vi,j : 0 6 i < m < j 6 2m} ∪ {vm}, where vi,j =

j−m
j−i

b ei +
m−i
j−i

b ej
for each 0 6 i < m < j 6 2m and vm = b em. It is easy to check that V ⊆P(b). We show that in fact V
is the set of vertices of P(b).

Lemma 16. The convex polytope P(b) has vertex set V .

Proof. First we show that the elements of V are indeed vertices of P(b). All elements of P(b) have
non-negative entries, so v = ax + (1 − a)y with a ∈ (0, 1) and v, x, y ∈ P(b) only if supp(x) ⊆ supp(v)
and supp(y) ⊆ supp(v). It is easy to check that vm is the only element of P(b) with exactly one non-zero
entry, and hence vm is a vertex. Also, vi,j with i < m < j is a vertex because there is no element v ∈ P

distinct from vi,j with supp(v) = {i, j}.
Now we show that no element x = (x0, . . . , x2m) ∈P(b) \ V is a vertex. By the previous paragraph, x

has at least two non-zero entries. If xi = 0 for all i < m, then we have the contradiction

2m
∑

i=0

ixi =

2m
∑

i=m

ixi > m

2m
∑

i=m

xi = mb,

since
∑2m

i=0 xi = b and xj > 0 for at least one j > m. Similarly, we cannot have that xi = 0 for all i > m.
In particular, any element of P(b) with exactly two non-zero entries must be one of the vi,j .

So, assume that x has at least 3 non-zero entries. By the previous argument, there must be i < m < j
such that xi and xj are non-zero. Thus, we can find a ∈ (0, 1) that is sufficiently small to ensure that
ab j−m

j−i
< xi and abm−i

j−i
< xj . Then we can write x = avi,j + (1 − a)x′ where x′ = (x′0, . . . , x

′
2m) with

x′i =
1

1−a
(xi − ab

j−m
j−i

), x′j =
1

1−a
(xj − ab

m−i
j−i

) and x′ℓ =
1

1−a
xℓ if ℓ /∈ {i, j}. By the choice of a, all entries of

x′ are non-negative. Moreover, x′ ∈P, since

2m
∑

ℓ=0

x′ℓ =
1

1− a

(

xi − ab
j −m

j − i

)

+
1

1− a

(

xj − ab
m− i

j − i

)

+
∑

ℓ 6=i,j

xℓ
1− a

=
1

1− a

2m
∑

ℓ=0

xℓ −
ab

1− a
=

b

1− a
−

ab

1− a
= b

and
2m
∑

ℓ=0

ℓx′ℓ =
i

1− a

(

xi − ab
j −m

j − i

)

+
j

1− a

(

xj − ab
m− i

j − i

)

+
∑

ℓ 6=i,j

ℓxℓ
1− a

=
1

1− a

2m
∑

ℓ=0

ℓxℓ −
abm

1− a
=

bm

1− a
−

abm

1− a
= bm.

Therefore, x = avi,j + (1− a)x′ with 0 < a < 1 and vi,j , x
′ ∈P. Moreover, vi,j 6= x′ since x has at least 3

non-zero entries. Thus, x is not a vertex and V is the vertex set of P(b), as claimed.
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For a convex polytope P and an integer k, let kP = {kα : α ∈P}. A convex polytope P is integral
if every vertex of P has integer coordinates. We remind the reader that Γ(m) = lcm(1, . . . , m). The
following is immediate from Lemma 16 and the fact that cP(b) = P(bc) for any integers b, c.

Corollary 17. For m > 1 if Γ(2m− 1) divides b, then the set P(b) is an integral (2m− 1)-dimensional
convex polytope.

A convex polytope P ⊆ Rn has the integer decomposition property if for all k > 1, and α ∈ kP ∩ Zn,
there is a way to write α =

∑k
i=1 αi for some αi ∈P ∩Zn (such a convex polytope is also called integrally

closed). Note that if a convex polytope P has the integer decomposition property, then so does kP for
any integer k > 1. The following result is an immediate consequence of Theorem 1.1 in [2].

Theorem 18. Let P be an integral convex polytope of dimension d > 2. Then (d − 1)P has the integer
decomposition property.

We can now prove Lemma 15.

Proof of Lemma 15. Recall that f(1) = 2 and f(m) = (2m − 2)Γ(2m − 1) for m > 2. Let β be an
integer such that f(m) | β and x0, . . . , x2m be non-negative integers satisfying (6). By assumption, x =
(x0, . . . , x2m) ∈P(2β)∩Z2m+1. By Corollary 17 and Theorem 18, P(f(m)) is an integral convex polytope
with the integer decomposition property, when m > 1. When m = 1, observe that P(2k) = {(a, c, a) ∈
R3 : 2a+ c = 2k and a, c > 0} for any k > 1 and that the vertex set of P(2) is {e0 + e2, 2e1}. Therefore,
for any y ∈P(2k)∩Z3, y = a(e0+e2)+(c/2)(2e1) for some non-negative integers a, c such that 2a+c = 2k
(which in particular means that c must be even). Thus, P(2) has the integer decomposition property,
when m = 1. Therefore for any m > 1, there exists x1, . . . ,x2β/f(m) ∈ P(f(m)) ∩ Z2m+1 such that

x =
∑2β/f(m)

j=1 xj. Let xi,j be the i-th entry of xj , where we index from 0. We show that the xi,j satisfy

the conclusion of Lemma 15. As xj ∈ P(f(m)) ∩ Z2m+1 for each j = 1, . . . , 2β/f(m), x0,j, . . . , x2m,j are
non-negative integers that satisfy (7). The final statement in the conclusion of Lemma 15 is immediate

from x =
∑2β/f(m)

j=1 xj .

5 A non-existence result for maximal orthogonal pairs

Theorem 10 shows that there does not exist a maximal orthogonal pair of binary frequency squares (that
is, a set of 2-maxMOFS(2m;m)) if m is divisible by 48. We improve this significantly in this section by
proving the following:

Theorem 19. If m is even, then there does not exist a set of 2-maxMOFS(2m;m).

For the remainder of the paper, F1 and F2 are binary frequency squares of order n = 2m. Initially we
do not assume that F1 and F2 are orthogonal. It is plausible that in some application one might need a
frequency square that is orthogonal to each member of a set of frequency squares, even though the members
of that set are not themselves orthogonal. This viewpoint does materially change what is possible. For
example, below are two superimposed triples of frequency squares, one of type (4; 2), and the other of type
(6; 3):









111 011 100 000
101 000 010 111
010 100 111 001
000 111 001 110

























111 111 111 000 000 000
111 111 111 000 000 000
110 110 000 111 001 001
001 001 100 011 110 110
000 000 011 100 111 111
000 000 000 111 111 111

















(10)

Both of these triples are non-extendable in the sense that there is no frequency square of the same type that
is orthogonal to all squares in the triple. This contrasts with Theorem 2 which showed the non-existence
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of 3-maxMOFS(n;n/2) for n < 8. Of course, any set of frequency squares of type (6; 3) that contains a
bachelor square will be non-extendable. However, a computation shows that the examples in (10) are the
smallest non-extendable sets of order n ∈ {4, 6} that do not contain a bachelor square.

It will be convenient for us to assume that m is even from now on, although some of our statements
apply also to the case when m is odd. Since Theorem 2 has completely settled the case n = 4, we will
assume for the remainder of the paper that

8 6 n ≡ 0 (mod 4), x = ⌊n/6⌋ > 1, and y = ⌊n/8⌋ > 1. (11)

For a set of rows S of a frequency square F , we define F (S) to be F restricted to the rows in S. When
S = {r1, r2}, F (S) is (equivalent to) F (r1, r2) defined in §3. We say that two binary arrays L and L′ of
the same dimensions are orthogonal if each of the ordered pairs (1, 1), (0, 0), (0, 1) and (1, 0) occur the
same number of times in L ⊕ L′, where ⊕ was defined in §3. A binary frequency rectangle is any matrix
of 0’s and 1’s with the same number of 0’s and 1’s in each row and in each column. For an even subset
S of the rows of F1 ⊕ F2, we say that S is balanceable if there is an |S| × n binary frequency rectangle F
that is orthogonal to F1(S) and F2(S). Clearly, the union of disjoint balanceable sets is balanceable, so
the following generalisation of Lemma 12 is immediate.

Lemma 20. If there exists a partition of the rows of F1⊕F2 into balanceable sets, then there is a frequency
square F orthogonal to F1 and F2.

We prove Theorem 19 by finding a suitable partition R of the rows of F1 ⊕ F2 into balanceable sets
and applying Lemma 20. To do this, we define tools to analyse pairs of rows in §5.3. We use these tools
to describe all possible pairs of rows that do not balance and classify them into several different types. In
§5.4, we show that it is not possible to have large sets of rows of a given type that pairwise do not balance.
Finally in §5.5, we prove Theorem 19, using the results of the first four subsections.

5.1 Preliminaries

In this subsection we define much of the notation and terminology that will be needed later in the proof
of Theorem 19, as well as giving preliminary results involving those concepts. A detailed example using
these definitions and results can be found in §5.2.

Define ψ(r) to be the number of cells in row r of F1 ⊕ F2 which contain (0, 0). Also, given two rows
r1, r2 of a frequency square F , let η(r1, r2) be the number of columns in F containing 0 in row r1 and r2.
The following lemma is immediate from the definition of a binary frequency square.

Lemma 21. Let F and F ′ be two binary frequency squares of the same order n. Then in row r of F ⊕F ′,
the number of cells containing (1, 1) is ψ(r), the number of cells containing (0, 1) is m−ψ(r) and the number
of cells containing (1, 0) is m − ψ(r). In any rows r1 and r2 of F , the number of columns containing 1
in both row r1 and row r2 is η(r1, r2), the number of columns containing 0 in row r1 and 1 in row r2 is
m− η(r1, r2) and the number of columns containing 1 in row r1 and 0 in row r2 is m− η(r1, r2).

For integers p and q (which may be negative), we say that a pair of rows {r1, r2} in F1 ⊕ F2 is (p, q)-
balanceable if there exists a 2× n binary frequency rectangle F such that:

• F1(r1, r2)⊕ F has m+ p occurrences of (0, 0) and

• F2(r1, r2)⊕ F has m+ q occurrences of (0, 0).

By Lemma 21, a pair of rows {r1, r2} is balanceable, if and only if it is (0, 0)-balanceable; for such a pair of
rows, F is orthogonal to both F1(r1, r2) and F2(r1, r2).

In the above, if we swap the symbols 0 and 1 in F , then by Lemma 21, F1(r1, r2)⊕F and F2(r1, r2)⊕F
have m − p and m − q occurrences of (0, 0), respectively. Thus a pair of rows is (p, q)-balanceable if and
only if it is (−p,−q)-balanceable. The following is immediate.
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Lemma 22. Let S be a 2(s + t)-set of rows of F1 ⊕ F2. Let R be a partition of S into pairs {ri, r
′
i}

such that {ri, r
′
i} are (pi, qi)-balanceable for integers pi, qi for i = 1, . . . , s + t. If

∑s
i=1 pi =

∑t
i=s+1 pi and

∑s
i=1 qi =

∑t
i=s+1 qi, then S is balanceable.

To analyse a pair of rows {r1, r2} in F1⊕F2, we use the following definitions. Let [vi]
4
i=1 = [(0, 1), (1, 0),

(0, 0), (1, 1)]. Define a 4 × 4 matrix A′ = A′(r1, r2) = [a′ij ] by letting a′ij equal the number of columns of
F1 ⊕ F2 in which vi occurs in the first row and vj occurs in the second row.

Lemma 21 implies that the sum of the entries in the first row of A′ equals the sum of the entries in the
second row of A′. Similarly, the sum of the entries in the third row of A′ equals the sum of the entries in
the fourth row of A′. Analogous properties hold for the columns of A′. From A′ we can also determine the
number of cells containing (0, 0) within rows r1 and r2 of F1⊕F2. We summarise these observations in the
lemma, below.

Lemma 23. Let r1 and r2 be two rows in F1 ⊕ F2 and A′ = A′(r1, r2). Then,

• the sum of the entries of A′ is n = 2m;

• a′11 + a′21 + a′31 + a′41 = a′12 + a′22 + a′32 + a′42;

• a′11 + a′12 + a′13 + a′14 = a′21 + a′22 + a′23 + a′24;

• a′13 + a′23 + a′33 + a′43 = a′14 + a′24 + a′34 + a′44;

• a′31 + a′32 + a′33 + a′34 = a′41 + a′42 + a′43 + a′44;

• ψ(r1) = a′11 + a′13 + a′31 + a′33 = a′22 + a′24 + a′42 + a′44;

• ψ(r2) = a′22 + a′23 + a′32 + a′33 = a′11 + a′14 + a′41 + a′44.

We say that a 4× 4 matrix is admissible if it satisfies the above equalities except possibly for the first dot
point. We will sometimes write A′ = B + C, where B and C are both admissible matrices.

Swapping the symbols in F1 (respectively, F2) corresponds to applying the permutation (12)(34) to the
rows (respectively, columns) of A′. Swapping row r1 with r2 corresponds to applying the permutation (12)
to both the rows and the columns of A′. Finally, swapping F1 with F2 corresponds to taking the transpose
of A′. We consider two admissible matrices A′

1 and A′
2 to be equivalent if A′

2 can be formed from A′
1 by

some combination of the above operations.
Given that each matrix A′ may be equivalent to up to 16 matrices satisfying Lemma 23, we often

consider a condensed form of A′(r1, r2) which we denote by A(r1, r2). Given a pair of rows {r1, r2} in
F1 ⊕ F2, we define a 3× 3 matrix A(r1, r2) = [aij] as follows. If i, j ∈ {1, 2}, then aij = a′ij . For 1 6 i 6 2,
ai3 = a′i3 + a′i4 and for 1 6 j 6 2, a3j = a′3j + a′4j . Finally, a33 = a′33 + a′34 + a′43 + a′44. Informally, A is
formed from A′ be merging the last two rows and the last two columns. We have opted to give the simpler
notation to this condensed format because we will use it much more often than the 4 × 4 version. We
consider the 3 × 3 matrices A1 and A2 equivalent if A2 can be formed from A1 by some combination of
swapping the first two rows, swapping the first two columns and/or taking the transpose. The next lemma
is implied by Lemma 23.

Lemma 24. Let r1 and r2 be two rows in F1 ⊕ F2 and A = A(r1, r2). Then,

• the sum of the entries of A is 2m;

• a11 + a12 + a13 = a21 + a22 + a23 = m− (a31 + a32 + a33)/2;

• a11 + a21 + a31 = a12 + a22 + a32 = m− (a13 + a23 + a33)/2;

• a31 + a32 + a33 ≡ a13 + a23 + a33 ≡ 0 (mod 2).
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We can determine if a pair of rows {r1, r2} is (p, q)-balanceable by considering only the condensed
matrix A(r1, r2), as the following lemma shows.

Lemma 25. Let r1, r2 be rows in F1 ⊕ F2 and A = A(r1, r2) = [aij ]. Suppose there exists a 3 × 3 matrix
B = [bij ] such that

• The sum of the entries of B is m;

• b11 + b12 + b13 − (b21 + b22 + b23) = p;

• b11 + b21 + b31 − (b12 + b22 + b32) = q;

• 0 6 bij 6 aij for 1 6 i 6 3 and 1 6 j 6 3.

Then the pair of rows {r1, r2} is (p, q)-balanceable in F1 ⊕ F2.

Proof. For 1 6 i 6 3 and 1 6 j 6 3, partition those columns of F1 ⊕ F2 that are counted by aij into sets
Cij and C ′

ij of cardinalities bij and aij − bij , respectively. Such a partition exists, since 0 6 bij 6 aij . It
follows that {Cij, C

′
ij : 1 6 i, j 6 3} partitions the columns of F1 ⊕ F2. We construct a 2 × 2m binary

frequency rectangle F satisfying the properties required for {r1, r2} to be (p, q)-balanceable, as follows. For
each column c, place a 0 in the first row and a 1 in the second row of F if c ∈ Cij for some i, j and place
a 1 in the first row and a 0 in the second row of F , otherwise. By Lemma 24, the total number of pairs
(0, 0) in F1(r1, r2)⊕ F is given by:

b11 + b12 + b13 + (a21 − b21) + (a22 − b22) + (a23 − b23) + (a31 + a32 + a33)/2 = m+ p.

Similarly, the total number of pairs (0, 0) in F2(r1, r2)⊕ F is given by:

b11 + b21 + b31 + (a12 − b12) + (a22 − b22) + (a32 − b32) + (a13 + a23 + a33)/2 = m+ q.

We say that A = A(r1, r2) is (p, q)-balanceable if {r1, r2} is (p, q)-balanceable. A matrix B satisfying
the conditions in Lemma 25 is said to (p, q)-balance A and {r1, r2}. When B (0, 0)-balances A, we just say
that B balances A and {r1, r2}.

If B is such that it (p, q)-balances A, then taking the transpose, swapping the first two rows or swapping
the first two columns of A and B, results in matrices A′ and B′, respectively, such that B′ (q, p)-balances,
(−p, q)-balances or (p,−q)-balances A′, respectively. We therefore sometimes only need to consider (p, q)-
balanceability up to equivalence. In particular, a matrix A can be balanced if and only if any matrix
equivalent to A can be balanced.

5.2 A detailed example

We give four rows of F1 ⊕ F2 where F1 and F2 are each of order 8:

r1 (0, 0) (0, 0) (0, 0) (1, 0) (1, 1) (1, 1) (0, 1) (1, 1)
r2 (1, 1) (1, 1) (1, 0) (0, 0) (0, 1) (0, 1) (0, 0) (1, 0)
r3 (0, 0) (0, 1) (1, 0) (1, 1) (0, 0) (1, 1) (0, 1) (1, 0)
r4 (1, 1) (1, 0) (0, 1) (0, 0) (1, 0) (0, 1) (0, 0) (1, 1)

Then:

A(r1, r2) =
2 0 1
0 0 3
0 2 0

A′(r1, r2) =

2 0 1 0
0 0 1 2
0 1 0 0
0 1 0 0

A(r3, r4) =
1 1 1
1 1 1
1 1 0

A′(r3, r4) =

1 1 1 0
1 1 0 1
0 1 0 0
1 0 0 0

.
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Furthermore the matrix

B =
1 0 1
0 0 1
0 1 0

(1, 0)-balances both A(r1, r2) and A(r3, r4), by Lemma 25. Note that the pair of rows {r1, r2} is not
balanceable (this is an instance of exception E1 in Lemma 26, which we will prove shortly). However, by
Lemma 22, the set of rows S = {r1, r2, r3, r4} is balanceable. Indeed we exhibit a 4 × 8 binary frequency
rectangle F orthogonal to both F1(S) and F2(S):

F =

0 1 0 0 1 1 0 1
1 0 1 1 0 0 1 0
1 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1

.

5.3 Pairs of rows that do not balance

We next determine all matrices that correspond to a pair of rows that is not balanceable.

Lemma 26. Let A be a matrix with the properties from Lemma 24. Then there exists a matrix B that
balances A, unless A is equivalent to one of the follow configurations Ei, 1 6 i 6 6, where x and y are
defined in (11).

2x 0 1
0 0 2x+ 1
0 2x 0
E1 : n ≡ 2 (mod 6)

2x+ 1 0 0
0 1 2x
0 2x 0

E2 : n ≡ 2 (mod 6)

2x+ 1 0 0
1 0 2x
0 2x+ 2 0

E3 : n ≡ 4 (mod 6)

2x+ 1 0 0
0 0 2x+ 1
0 2x+ 1 1
E4 : n ≡ 4 (mod 6)

2y + 1 0 0
2y + 1 0 0

0 4y + 2 0
E5 : n ≡ 4 (mod 8)

2y + 1 0 0
2y 0 1
0 4y + 1 1

E6 : n ≡ 4 (mod 8)

Proof. We consider cases according to the parity of a11, a12, a21 and a22. For each case, we either present
a matrix B that balances A or show that A must be equivalent to one of the exceptional configurations in
the lemma statement. Throughout the proof, we make extensive use of Lemma 24 and, for simplicity, we
omit referencing the lemma every time it is used.
Case 1: a11, a12, a21 and a22 have the same parity.
Case 1A: a11 ≡ a12 ≡ a21 ≡ a22 (mod 2) and a13 ≡ a31 (mod 2). Note that a33 is even. A
solution for B in this case is:

⌊a11/2⌋ ⌈a12/2⌉ ⌈a13/2⌉

⌈a21/2⌉ ⌊a22/2⌋ ⌈a23/2⌉

⌊a31/2⌋ ⌊a32/2⌋ a33/2

.

So, in all other cases we may assume that a13 6≡ a31 (mod 2). By transposing if necessary, we may assume
that a13 is odd and a31 is even.
Case 1B: a11 ≡ a12 ≡ a21 ≡ a22 (mod 2), a13 is odd and a31 is even and a33 > 0. A solution
for B in this case is:

⌊a11/2⌋ ⌈a12/2⌉ (a13 − 1)/2

⌈a21/2⌉ ⌊a22/2⌋ (a23 − 1)/2

a31/2 a32/2 a33/2 + 1

.
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Case 1C: a11, a12, a21, a22 and a13 are odd, a31 is even and a33 = 0. As n ≡ 0 (mod 4), at least
one of a31 or a32 is non-zero. A solution is to take B equivalent to

(a11 − 1)/2 (a12 − 1)/2 (a13 + 1)/2

(a21 − 1)/2 (a22 + 1)/2 (a23 − 1)/2

(a31 + 2)/2 a32/2 0

.

Case 1D: a11, a12, a21, a22 and a31 are even, a13 is odd and a33 = 0. If a11 and a31 are non-zero
then a solution for B is

(a11 − 2)/2 a12/2 (a13 + 1)/2

a21/2 a22/2 (a23 − 1)/2

(a31 + 2)/2 a32/2 0

.

A similar solution exists if a31 6= 0 and a21 6= 0 or a32 and one of a12 and a22 are non-zero. As n ≡ 0
(mod 4), at least one of a31 or a32 is non-zero. Therefore, without loss of generality, it suffices to consider
the following configuration.

0 a12 a13
0 a22 a23
a31 0 0

,

where either a12 or a22 is non-zero. If a12 6= 0 and a13 6= 1, then a solution for B is

0 (a12 + 2)/2 (a13 − 3)/2

0 a22/2 (a23 − 1)/2

(a31 + 2)/2 0 0

.

A similar solution exists when a22 6= 0 and a23 6= 1. So, without loss of generality, a12 6= 0 and a13 = 1. If
a22 6= 0 (and a23 = 1), then we have the following configuration:

0 a12 1

0 a12 1

2a12 0 0

which is a contradiction as n ≡ 0 (mod 4). So, a22 = 0 and we have the exceptional case E1:

0 a12 1

0 0 a12 + 1

a12 0 0

.

Case 2: Precisely 3 of a11, a12, a21 and a22 have the same parity.
Without loss of generality, we can assume that a12, a21 and a22 have the same parity. Necessarily

a13 6≡ a23 (mod 2) and a31 6≡ a32 (mod 2) and a33 ≡ 1 (mod 2). In particular a33 > 1.
Case 2A: a11 even and a12, a21 and a22 are odd. Without loss of generality, we consider the three
cases: a13 and a31 are both odd; a13 is odd and a31 is even; a13 and a31 are both even. Solutions for B in
these respective cases are:

a11/2 (a12 + 1)/2 (a13 − 1)/2

(a21 + 1)/2 (a22 − 1)/2 a23/2

(a31 − 1)/2 a32/2 (a33 + 1)/2

,

a11/2 (a12 + 1)/2 (a13 − 1)/2

(a21 + 1)/2 (a22 − 1)/2 a23/2

a31/2 (a32 + 1)/2 (a33 − 1)/2

,

a11/2 (a12 + 1)/2 a13/2

(a21 + 1)/2 (a22 + 1)/2 (a23 − 1)/2

a31/2 (a32 − 1)/2 (a33 − 1)/2

.
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Case 2B: a11 is odd, a12, a21 and a22 are even and at least one of a13 and a31 is odd.
Without loss of generality, we can consider the two cases when a13 and a31 are both odd, and when a13

is odd and a31 is even. Solutions in these respective cases are

(a11 + 1)/2 a12/2 (a13 − 1)/2

a21/2 a22/2 a23/2

(a31 − 1)/2 a32/2 (a33 + 1)/2

,

(a11 + 1)/2 a12/2 (a13 − 1)/2

a21/2 a22/2 a23/2

a31/2 (a32 + 1)/2 (a33 − 1)/2

.

Case 2C: a11 is odd and a12, a21, a22, a13 and a31 are even. For subcases (a) a33 > 1, (b) a22 6= 0,
(c) a31 6= 0, (d) a12 6= 0, a21 6= 0, and (e) a12 = 0, a21 6= 0, a23 > 3, respectively, solutions for B are:

(a11 + 1)/2 a12/2 a13/2

a21/2 a22/2 (a23 + 1)/2

a31/2 (a32 + 1)/2 (a33 − 3)/2

,

(a11 − 1)/2 a12/2 a13/2

a21/2 (a22 − 2)/2 (a23 + 1)/2

a31/2 (a32 + 1)/2 (a33 + 1)/2

,

(a11 + 1)/2 a12/2 a13/2

a21/2 a22/2 (a23 + 1)/2

(a31 − 2)/2 (a32 − 1)/2 (a33 + 1)/2

,

(a11 + 1)/2 (a12 − 2)/2 a13/2

(a21 − 2)/2 a22/2 (a23 + 1)/2

a31/2 (a32 + 1)/2 (a33 + 1)/2

,

(a11 − 1)/2 a12/2 a13/2

(a21 + 2)/2 a22/2 (a23 − 3)/2

a31/2 (a32 + 1)/2 (a33 + 1)/2

.

Therefore, without loss of generality, the remaining cases are when a22 = a31 = a13 = 0 and a33 = 1, and
either a12 = 0 = a21 or a12 = 0 and a23 = 1. If a12 = a21 = 0 then we have the following exceptional case
E4:

a11 0 0

0 0 a11
0 a11 1

.

If a12 = 0 and a23 = 1, then we have the following exceptional case E6:

a11 0 0

a11 − 1 0 1

0 2a11 − 1 1

.

Case 3: a11 ≡ a22 (mod 2), a12 ≡ a21 (mod 2) and a11 6≡ a12 (mod 2).
Without loss of generality, we only need to consider the case when a11 and a22 are odd and a12 and a21

are even. We necessarily have that a13 ≡ a23 (mod 2) and a31 ≡ a32 (mod 2) and a33 is even.
Case 3A: a11, a22 and a13 are odd, while a12 and a21 are even. Solutions when a31 is odd (respec-
tively even) are:

(a11 + 1)/2 a12/2 (a13 − 1)/2

a21/2 (a22 − 1)/2 (a23 + 1)/2

(a31 − 1)/2 (a32 + 1)/2 a33/2

,

(a11 + 1)/2 a12/2 (a13 − 1)/2

a21/2 (a22 + 1)/2 (a23 − 1)/2

a31/2 a32/2 a33/2

.

Case 3B: a11 and a22 are odd, while a12, a21, a13 and a31 are even. If a33 6= 0 we have this solution

(a11 + 1)/2 a12/2 a13/2

a21/2 (a22 + 1)/2 a23/2

a31/2 a32/2 (a33 − 2)/2

.
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So, henceforth we assume that a33 = 0. As n ≡ 0 (mod 4), at least one of a13 and a23 is non-zero and at
least one of a31 and a32 are non-zero. So, without loss of generality a31 6= 0. If a23 6= 0, then a solution is

(a11 + 1)/2 a12/2 a13/2

a21/2 (a22 − 1)/2 (a23 + 2)/2

(a31 − 2)/2 a32/2 0

.

So, without loss of generality it remains to consider the case when a23 = a32 = 0 and a13 6= 0. If a11 > 3,
then a solution is

(a11 − 3)/2 a12/2 (a13 + 2)/2

a21/2 (a22 − 1)/2 0

(a31 + 2)/2 0 0

.

If a11 = 1 and a21 6= 0, then a solution is

(a11 − 1)/2 a12/2 (a13 + 2)/2

(a21 + 2)/2 (a22 − 1)/2 0

(a31 − 2)/2 0 0

.

So, without loss of generality a12 = 0 = a21 and a11 = 1 and we get the exception E2:

1 0 a13
0 a13 + 1 0

a13 0 0

.

By equivalence, only the following case remains.
Case 4: a11 ≡ a21 (mod 2), a12 ≡ a22 (mod 2) and a11 6≡ a12 (mod 2).

Without loss of generality, we can assume that a11 and a21 are odd and we necessarily have that a13 ≡ a23
(mod 2), a31 ≡ a32 (mod 2) and a33 is even.
Case 4A: a11, a21 and a13 are odd, while a12 and a22 are even. Solutions when a31 is odd (respec-
tively, even) are

(a11 + 1)/2 a12/2 (a13 − 1)/2

(a21 + 1)/2 a22/2 (a23 − 1)/2

(a31 − 1)/2 (a32 + 1)/2 a33/2

,

(a11 + 1)/2 a12/2 (a13 − 1)/2

(a21 − 1)/2 a22/2 (a23 + 1)/2

a31/2 a32/2 a33/2

.

Case 4B: a11 and a21 are odd, while a12, a22 and a13 are even and a33 > 0. If a31 is odd then a
solution for B is

(a11 + 1)/2 a12/2 a13/2

(a21 + 1)/2 a22/2 a23/2

(a31 − 1)/2 (a32 + 1)/2 (a33 − 2)/2

.

The subcase when a13 and a31 are both even requires a more thorough analysis. A solution if a13 6= 0
(similarly a23 6= 0), and a31 6= 0 are, respectively:

(a11 + 1)/2 a12/2 (a13 − 2)/2

(a21 − 1)/2 a22/2 a23/2

a31/2 a32/2 (a33 + 2)/2

,

(a11 + 1)/2 a12/2 a13/2

(a21 + 1)/2 a22/2 a23/2

(a31 − 2)/2 a32/2 a33/2

.

So, it remains to consider configurations of the form

a11 a12 0

a21 a22 0

0 a32 a33

.
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Note that a32 6= 0, since otherwise we would have the contradiction a11 = a22. If a12 6= 0, then the following
is a solution for B:

(a11 + 1)/2 (a12 − 2)/2 0

(a21 − 1)/2 a22/2 0

0 (a32 + 2)/2 a33/2

.

A similar solution exists if a22 6= 0. The final case is when a12 = 0 = a22 (necessarily a21 = a11 and
a32 = 2a11). As n ≡ 0 (mod 4) and a33 6= 0, we have a33 > 4 and the following is a solution:

(a11 + 1)/2 0 0

(a21 + 1)/2 0 0

0 (a32 + 2)/2 (a33 − 4)/2

.

Case 4C: a11 and a21 are odd, while a12, a22 and a13 are even and a33 = 0. First consider the
subcase when a31 is odd. As n ≡ 0 (mod 4), at least one of a13 or a23 is non-zero. So, without loss of
generality, a13 6= 0 and then a solution for B is:

(a11 + 1)/2 a12/2 (a13 − 2)/2

(a21 − 1)/2 a22/2 a23/2

(a31 + 1)/2 (a32 + 1)/2 0

.

Now we consider the case when a13 and a31 are both even. As n ≡ 0 (mod 4) at least one of a31 and a32
is non-zero. If a31 6= 0 then a solution for B is

(a11 + 1)/2 a12/2 a13/2

(a21 + 1)/2 a22/2 a23/2

(a31 − 2)/2 a32/2 0

.

So, without loss of generality, a31 = 0 and a32 6= 0. If a12 6= 0, then a solution is

(a11 − 1)/2 (a12 + 2)/2 a13/2

(a21 + 1)/2 a22/2 a23/2

0 (a32 − 2)/2 0

.

A similar solution exists when a22 6= 0. So, without loss of generality, let a12 = a22 = 0. If a13 and a23 are
both non-zero, then a solution is

(a11 + 1)/2 0 (a13 − 2)/2

(a21 + 1)/2 0 (a23 − 2)/2

0 (a32 + 2)/2 0

.

So, without loss of generality, a23 = 0. If a11 > 3 and a13 > 4, then a solution for B is

(a11 + 3)/2 0 (a13 − 4)/2

(a21 − 1)/2 0 0

0 (a32 + 2)/2 0

.

So either a11 = 1 or a13 6 2. If a11 = 1, then we obtain the following exceptional case E3:

1 0 a13
a13 + 1 0 0

0 a13 + 2 0

.
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If a13 = 2 or a13 = 0 then we have following, respectively:

a11 0 2

a11 + 2 0 0

0 2a11 + 2 0

or

a11 0 0

a11 0 0

0 2a11 0

.

The former is impossible as n ≡ 0 (mod 4). The latter is the exception E5.

Before studying the exceptional configurations of Lemma 26 in more detail, we first note the following
simple consequences of the lemma. We start by noting that we have shown a special case of Theorem 19.

Corollary 27. If n ≡ 0 (mod 24), then there is no set of 2-maxMOFS(n;n/2).

Proof. Lemma 26 gives a complete list of configurations which correspond to pairs of rows which are not
balanceable and none can occur if n ≡ 0 (mod 24). The result then follows by Lemma 20.

Since we have not used the fact that F1 is orthogonal to F2 in deriving Lemma 26, we have the following,
more general corollary, which improves Theorem 11 when k = 2.

Corollary 28. If n ≡ 0 (mod 24) and F1 and F2 are any frequency squares of type (n;n/2), then there
exists a frequency square F , also of type (n;n/2), that is orthogonal to both F1 and F2.

As all exceptional configurations listed in Lemma 26 satisfy a33 6 1, we have the following.

Corollary 29. Let r and r′ be two distinct rows in F1 ⊕ F2. If there exists two distinct columns c and c′

such that F [r, c] = F [r′, c] and F [r, c′] = F [r′, c′], then the pair {r, r′} is balanceable.

As mentioned earlier, A(r1, r2) is sufficient to determine the balanceability of the rows r1 and r2. We say
that A′ = A′(r1, r2) is an Ei if A(r1, r2) is equivalent to Ei for i ∈ {1, . . . , 6}. All such matrices characterise
pairs of rows that do not balance, by Lemma 26. Unpacking that result, we find that the exceptional cases
are each based on one of two underlying structures:

Lemma 30. Let

D =

2x 0 0 0
0 0 x x
0 x 0 0
0 x 0 0

and F =

2y 0 0 0
2y 0 0 0
0 2y 0 0
0 2y 0 0

.

Then up to equivalence Ei = D + Bi for i ∈ {1, 2, 3, 4} and Ei = F +Bi for i ∈ {5, 6}, where

B1 =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

, B2 =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, B3 = B5 =

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0

and

B4 = B6 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

or

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

.

We say that a pair of rows {r, r′} and the matrices A(r, r′) and A′(r, r′) are of type α, β or γ if,
respectively, A(r, r′) is equivalent to an element of {E1, E2}, {E3, E4} or {E5, E6} from Lemma 26. We
say a row r is of type α, β or γ if there is an r′ such that {r, r′} has type α, β or γ, respectively. In the
next three lemmas we further categorise rows and pairs of rows by the number ψ(r) of occurrences of (0, 0)
in each row r. Each lemma is a consequence of Lemma 23 and Lemma 30, by considering the exceptional
configurations and equivalences.
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Lemma 31. Let {r1, r2} be a pair of rows of type α. Then the multiset {ψ(r1), ψ(r2)} is either {2x, 2x+1},
{2x + 1, 2x+ 1}, {x + 1, x} or {x, x}. In the first two cases we say that {r1, r2} has type α1, and we say
the pair {r1, r2} has type α2 otherwise.

Lemma 32. Let {r1, r2} be a pair of rows of type β. Then the multiset {ψ(r1), ψ(r2)} is one of {2x +
1, 2x+1}, {2x+ 1, 2x+ 2}, {x+ 1, x+ 1} or {x+ 1, x}. In the first two cases we say the pair {r1, r2} has
type β1 and we say the pair {r1, r2} has type β2 otherwise.

A row r has type α1, α2, β1 or β2 if it is in a pair {r, r′} that is of type α1, α2, β1 or β2, respectively.
Note that we do not claim that every row has exactly one type in the previous two lemmas; we show the
contrary in Lemma 34 below. For technical reasons, we do not further classify pairs of rows of type γ here,
only individual rows, as below.

Lemma 33. Let {r1, r2} be a pair of rows of type γ. Then the multiset {ψ(r1), ψ(r2)} is one of {2y, 2y+1},
{2y+ 1, 2y+ 1}, {2y+ 1, 2y+ 2}. For i ∈ {1, 2}, we say that row ri has type γ1 if ψ(ri) = 2y+ 1 and type
γ2 otherwise.

As mentioned above, it is possible for a row to have more than one of the types αi, βi or γi. We now
show, however, that in most instances no such row exists.

Lemma 34. A row r is of two different types from the set {α1, α2, β1, β2, γ1, γ2} only if

(i) n = 8, ψ(r) = 2 and r has type α1 and α2, or

(ii) n = 20, ψ(r) ∈ {4, 6} and r has type γ2 and either α1 or α2.

Proof. Note that by definition, r can never be of type γ1 and γ2. By Lemmas 31 and 32, r has type α1

and α2 or β1 and β2 only if 2x 6 x + 1 or 2x+ 1 6 x + 1, respectively. As x > 1, r is never type β1 and
β2 and has type α1 and α2 only if x = 1 and ψ(r) = 2. So we can assume that r has two of the three
types α, β and γ. The row r can never be of type α and β, since any type α row can only occur when
n ≡ 2 (mod 6) while any row of type β only occurs when n ≡ 4 (mod 6). By Lemmas 26, 32 and 33, r has
type β and γ only if n ≡ 4 (mod 24) and at least one of 2y 6 x + 1 or 2y + 2 > 2x + 1 holds. However,
these inequalities imply n/4 − 1 6 (n + 2)/6 and n/4 + 1 > (n − 1)/3, respectively, both contradicting
the fact that 4 < n ≡ 4 (mod 24). Finally, by similar reasoning to the previous case, r has type α and
γ only if n ≡ 20 (mod 24) and at least one of 2y 6 x + 1 or 2y + 2 > 2x holds. However, this implies
n/4− 1 6 (n+ 4)/6 or n/4 + 1 > (n− 2)/3; in both cases n 6 20. It follows that r has type α and γ only
if n = 20, ψ(r) ∈ {4, 6} and r has type γ2 and one of α1 or α2.

Observe the following property of types α and β (the same does not hold for type γ).

Lemma 35. If {r1, r2} is a pair of rows of type αi (respectively βi), where i ∈ {1, 2}, then after swapping
0 and 1 in exactly one of the frequency squares F1 and F2, the pair {r1, r2} is of type α3−i (respectively,
β3−i).

For a matrixA′ = A′(r, r′), its dual is the equivalent matrix formed fromA′, by applying the permutation
(12)(34) to its rows and columns. The following is then a corollary of Lemma 30.

Corollary 36. Let A′ = A′(r, r′) have type α1. Then either A′ or its dual is one of the following (up to
transpose):

2x 0 1 0
0 0 x x+ 1
0 x 0 0
0 x 0 0

or

2x 0 0 1
0 0 x+ 1 x
0 x 0 0
0 x 0 0

or

2x+ 1 0 0 0
0 1 x x
0 x 0 0
0 x 0 0

.
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Let A′ = A′(r, r′) have type β1. Then either A′ or its dual is one of the following (up to transpose):

2x+ 1 0 0 0
1 0 x x
0 x+ 1 0 0
0 x+ 1 0 0

or

2x+ 1 0 0 0
0 0 x+ 1 x
0 x+ 1 0 0
0 x 0 1

or

2x+ 1 0 0 0
0 0 x x+ 1
0 x 1 0
0 x+ 1 0 0

or

2x+ 1 0 0 0
0 0 x x+ 1
0 x+ 1 0 0
0 x 1 0

.

5.4 Sets of rows that pairwise do not balance

We next give upper bounds on the number of rows in F1⊕F2 that are pairwise not balanceable and of the
same type. We begin with rows of type α.

Lemma 37. If n > 8, then any set of four rows of type α in F1 ⊕ F2 contains a balanceable pair.

Proof. Let r, r1, r2 and r3 be 4 rows of type α in F1 ⊕ F2. We may assume that {r, ri} is not balanceable
for i ∈ {1, 2, 3}, since otherwise we are done. It follows from Lemmas 33 and 34 that {r, ri} is of type α for
i ∈ {1, 2, 3}, since, even if n = 20, there can be at most one row in a non-balanceable pair which is of two
different types. By Lemma 35, we can assume that A′(r, r1) is of type α1. Lemma 31 implies that A′(r, r2)
and A′(r, r3) both have type α1. Let C00 be the set of columns of F1⊕F2 for which row r contains a (0, 0).
By Corollary 36, by taking the dual if necessary, we can assume that A′(r, r1) and A

′(r, r2) are each one of

2x 0 0 1
0 0 x+ 1 x
0 x 0 0
0 x 0 0

and

2x 0 0 0
0 0 x x
0 x+ 1 0 0
1 x 0 0

.

when ψ(r) = 2x and A′(r, r1) and A
′(r, r2) are each one of

2x+ 1 0 0 0
0 1 x x
0 x 0 0
0 x 0 0

and

2x 0 1 0
0 0 x x+ 1
0 x 0 0
0 x 0 0

and

2x 0 0 0
0 0 x x
1 x 0 0
0 x+ 1 0 0

when ψ(r) = 2x + 1. In particular, there is at most one column in C00 such that row ri of F1 ⊕ F2 does
not contain (1, 1), for each i ∈ {1, 2}. Thus, there are at least 2x− 2 columns in C00 such that both rows
r1 and r2 of F1 ⊕ F2 contain a (1, 1). As x > 2, the result follows from Corollary 29.

The above lemma is also true when n = 8, using a slightly more complicated argument, but this will
not be necessary. We show an analogous result for rows of type β.

Lemma 38. Any set of four rows of type β in F1 ⊕ F2 contains a balanceable pair.

Proof. Let r, r1, r2 and r3 be 4 rows of type β in F1⊕F2. We may assume that {r, ri} is not balanceable for
i ∈ {1, 2, 3}, since otherwise we are done. By Lemma 34, it follows that {r, ri} is of type β for i ∈ {1, 2, 3}.
By Lemma 35, we can assume that A′(r, r1) is of type β1. Lemma 32 and Lemma 34 then imply that
A′(r, r2) and A

′(r, r3) are also of type β1. Let C00 be the set of columns with (0, 0) in row r of F1⊕F2. By
Corollary 36, by taking the dual if necessary, we can assume that A′(r, r1) and A

′(r, r2) have 2x+ 1 in cell
(1, 1) and ψ(r) ∈ {2x + 1, 2x + 2}. Thus for each i ∈ {1, 2}, there are at least 2x + 1 columns of C00 for
which ri contains a (1, 1) and at most one column of C00 for which ri does not contain (1, 1). So there are
at least 2x > 2 columns of C00 that contain a (1, 1) in both row r1 and r2. It follows from Corollary 29
that {r1, r2} is balanceable.
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We now consider rows of type γ. We start by categorising configurations equivalent to E5, as given
below.

2y + 1 0 0
2y + 1 0 0

0 4y + 2 0

T1

0 2y + 1 0
0 2y + 1 0

4y + 2 0 0

T2

2y + 1 2y + 1 0
0 0 4y + 2
0 0 0

T3

0 0 4y + 2
2y + 1 2y + 1 0

0 0 0

T4

Figure 1 depicts each of the types given above as they would appear in F1 ⊕ F2, up to permuting the
columns.

←− n/4 −→ ←− n/4 −→ ←− n/4 −→ ←− n/4 −→
r (0, 0) · · · (0, 0) (1, 1) · · · (1, 1) (1, 0) · · · (1, 0) (0, 1) · · · (0, 1)
T1 (1, 1) · · · (1, 1) (1, 0) · · · (1, 0) (0, 1) · · · (0, 1) (0, 0) · · · (0, 0)
T2 (0, 1) · · · (0, 1) (0, 0) · · · (0, 0) (1, 1) · · · (1, 1) (1, 0) · · · (1, 0)
T3 (1, 1) · · · (1, 1) (0, 1) · · · (0, 1) (0, 0) · · · (0, 0) (1, 0) · · · (1, 0)
T4 (1, 0) · · · (1, 0) (0, 0) · · · (0, 0) (0, 1) · · · (0, 1) (1, 1) · · · (1, 1)

Figure 1: Some type γ rows.

Define each E6 as type T ∗
i if Ti is obtained from T ∗

i by changing exactly 4 entries. We say that
A = A(r1, r2) has type Ti and r2 has type Ti with respect to r1 if A forms an E5 of type Ti. We define type
T ∗
i similarly and define A′(r1, r2) to be the same type as A(r1, r2) for any pairs of rows r1 and r2.
We find several of the pairs (p, q) for which the types defined above are (p, q)-balanceable.

Lemma 39. Let {r, r′} be a pair of rows in F1 ⊕ F2 such that A = A(r, r′) is equivalent to E5 or E6. If
A is of type T ∗

i for some i, then A is (p, q)-balanceable for (p, q) ∈ {(0, 1), (1, 0), (1, 1), (1,−1)}. If A is of
type T1 or T2, then A is (1, 0)-balanceable and if A is of type T3 or T4 then A is (0, 1)-balanceable.

Proof. Consider the following array of type T ∗
1 ,

2y + 1 0 0
2y 0 1
0 4y + 1 1

. (12)

By Lemma 25, the following 4 matrices (p, q)-balance the array above for (p, q) = (0, 1), (1, 0), (1, 1) and
(1,−1), respectively:

y + 1 0 0
y 0 1
0 2y 0

y + 1 0 0
y 0 0
0 2y + 1 0

y + 1 0 0
y 0 0
0 2y 1

y + 1 0 0
y − 1 0 1
0 2y + 1 0

.

By noting that an array is (p, q)-balanceable if and only if it is (−p,−q)-balanceable, it follows that the
array (12) is (p, q)-balanceable for (p, q) ∈ {−1, 0, 1}2\{(0, 0)}. As the set {−1, 0, 1}2\{(0, 0)} is preserved
under negation of an entry or swapping the entries of the ordered pairs, it follows that any array equivalent
to (12), is also (p, q)-balanceable for (p, q) ∈ {−1, 0, 1}2 \ {(0, 0)}. As all arrays of type E6 are equivalent,
this proves the result when A = A(r, r′) is of type T ∗

i with i ∈ {1, 2, 3, 4}. The matrix above that (1, 0)-
balances (12) also (1, 0)-balances A if A is of type T1. Swapping the first two columns of T1 results in T2,
while T3 and T4 are the transpose of T1 and T2, respectively. It follows that A is (1, 0)-balanceable if A is
of type T2 and A is (0, 1)-balanceable if A is of type T3 or T4.

We also need to consider the balanceability of rows of type α.
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Lemma 40. Let {r, r′} be a pair of rows in F1 ⊕ F2 such that A(r, r′) has type α. Then A(r, r′) is
(0, 1)-balanceable, (1, 0)-balanceable and either (1, 1)-balanceable or (1,−1)-balanceable.

Proof. Consider the arrays

2x 0 1
0 0 2x+ 1
0 2x 0

and

2x+ 1 0 0
0 1 2x
0 2x 0

(13)

of types E1 and E2, respectively. By Lemma 25, the following matrices (p, q)-balance the arrays above for
(p, q) = (0,−1), (−1, 0) and (1, 1), respectively:

x 0 0
0 0 x
0 x+ 1 0

and

x 0 0
0 0 x+ 1
0 x 0

and

x+ 1 0 0
0 0 x
0 x 0

.

As an array is (p, q)-balanceable if and only if it is (−p,−q)-balanceable and A = A(r, r′) is equivalent
to one of the arrays in (13), it follows that A is both (0, 1)-balanceable and (1, 0)-balanceable and either
(1, 1)-balanceable or (1,−1)-balanceable.

Corollary 41. Let r1, r2, r3, r4, r5 and r6 be distinct rows. If A(r1, r2) is of type α and A(r3, r4) is of
type α or γ, then {r1, r2, r3, r4} is balanceable. Moreover, if A(r1, r2), A(r3, r4) and A(r5, r6) are each of
type α, then the set {r1, r2, r3, r4, r5, r6} is balanceable.

Proof. The first result follows directly from the previous two lemmas and Lemma 22. For the second result,
by Lemma 40, A(r1, r2) can be (1, 1)-balanced or (1,−1)-balanced, A(r3, r4) can be (−1, 0)-balanced and
A(r5, r6) can be (0, 1)-balanced. The result follows from Lemma 22.

To analyse sets of rows of type γ more closely, we consider tables similar to Figure 1. Let Si be the
subtable of the table in Figure 1, with rows r and Ti. Also, let S

∗
i be a table formed from Si, by replacing

the row Ti with a row r′ that has type T ∗
i with respect to r, the first row of Si. By Lemma 33, any pair

of rows of type γ include one row of type γ1, that is, a row with exactly n/4 occurrences of (a, b) for each
(a, b) ∈ {0, 1}2. Therefore, any pair of rows of type γ is equivalent to the rows of Si or an S∗

i for some
i ∈ {1, 2, 3, 4}.

Note that by swapping F1 with F2 and rearranging columns, we map S1 to S3 and S2 to S4 and vice
versa. Moreover, swapping the symbols in F1 and rearranging columns maps S3 to S4 and vice versa, while
fixing S1 and S2. Thirdly, swapping the symbols in F2 and rearranging columns maps S1 to S2 and vice
versa, while fixing S3 and S4. Thus, the tables S1, S2, S3 and S4 are equivalent, and each S∗

i is equivalent
to some S∗

1 . We will exploit these facts in the following lemmas.
Next, define Si,j to be the table formed by rows r, Ti and Tj from Figure 1 (if i = j then we repeat row

Ti). Let S
∗
i,j be a table Si,j with row Ti replaced by a row of type T ∗

i with respect to r and/or with row Tj
replaced by a row of type T ∗

j with respect to r. As above, every table Si,j is equivalent to either S1,1, S1,2

or S1,3 and each S∗
i,j is equivalent to S

∗
1,1, S

∗
1,2 or S∗

1,3.
In Lemma 42 below, we show that any S∗

i can be formed from Si by swapping particular entries. The
definition of such a swap is in part motivated by the following observation that will be used throughout this
subsection. By inspecting Figure 1, one notices that if A(r, r′) is of type T3 or T4, then rows r and r′ of F1

are complementary. Similarly, if A(r, r′) is of type T1 or T2, then rows r and r′ of F2 are complementary. Let
r′ be the second row of S1 or S2. Then a legitimate swap in r′ is a swap which replaces two cells containing
(a, b) and (c, 1 − b) with (a, 1 − b) and (c, b), or with (c, 1 − b) and (a, b), respectively. A legitimate swap
in the second row of S3 or S4 is defined analogously by interchanging the roles of F1 and F2.

Lemma 42. Let i ∈ {1, 2, 3, 4}. Then any S∗
i can be formed from Si by performing one legitimate swap in

the second row. In particular, every S∗
i has exactly two columns where both rows have the same first entry

if i ∈ {3, 4} or the same second entry if i ∈ {1, 2}.
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Proof. From the symmetries described above, it suffices to consider the case when i = 1. Let r and r′ be
the first and second rows of a table S∗

1 , respectively. Observe that S∗
1 will differ from S1 by two columns;

these correspond to the 1’s in the 3rd column of A(r, r′). As every Si and S
∗
i have the same first row, S∗

1

in fact only differs from S1 by two cells in the second row. Let (a, b) and (c, d) be the entries in the two
cells of S1 that differ from those in S∗

1 . In any column of S∗
1 corresponding to a 1 in the third column of

A(r, r′), the ordered pairs in the two rows of S∗
1 must have the same second entry. On the other hand, in

every column of S1 the ordered pairs in both rows have a different second entry. So (a, b) and (c, d) in S1

are replaced with (a′, 1− b) and (c′, 1− d), respectively, for some a′, c′. The number of 0’s in row r′ of each
of F1 and F2 is n/2 only if we have the multiset equalities {a′, c′} = {a, c} and {1 − b, 1 − d} = {b, d},
respectively. It quickly follows that replacing (a, b) and (c, d) with (a′, 1 − b) and (c′, 1 − d), respectively,
must be a legitimate swap.

It is an immediate corollary of Lemma 42 that any S∗
i,j can be formed from Si,j by performing a

legitimate swap in the second row and/or by performing a legitimate swap in the third row. We now
consider two rows r1 and r2 that do not balance with a given row r of type γ1. By the comments above,
any three such rows r, r1 and r2 are equivalent to the rows of S1,j or an S∗

1,j for j ∈ {1, 2, 3}. Next, we
focus on these situations.

Here and for the remainder of the section, we use the following definition. Let C be a subset of the
columns of F1 ⊕ F2. Then let AC(r1, r2) be defined analogously to A(r1, r2), where each cell (i, j) of
AC(r1, r2) only counts columns in C.

Lemma 43. Let r, r1 and r2 be the three rows of S1,j or an S
∗
1,j for j ∈ {1, 2, 3}. Then the matrix A(r1, r2)

is of the form A + B, where B is an admissible matrix whose entry sum is 8 and A is the following
configuration,

0 0 0
0 0 0
0 0 8y − 4

,
0 0 4y − 2
0 0 4y − 2
0 0 0

,
0 0 2y − 1

2y − 1 0 0
0 2y − 1 2y − 1

when j = 1, j = 2 and j = 3, respectively.

Proof. Let S be S1,j or an S
∗
1,j for j ∈ {1, 2, 3} with rows r, r1, r2. Choose a set C of 8 columns of S such

that exactly two columns contain the pair (a, b) in row r for each (a, b) and every column involved in the
legitimate swaps in r1 and r2 (if any) are in C. Note that by Lemma 42, such a set of columns exists, as
a legitimate swap cannot change two cells containing the same ordered pair. Let C ′ = N(n) \ C. Then by
considering Figure 1, it is easy to check that A = AC′(r1, r2) is the configuration given in the lemma, when
j = 1, j = 2 and j = 3, respectively. Finally, B = AC(r1, r2) clearly has entry sum 8, and is admissible,
since A(r1, r2) and A are admissible. As A(r1, r2) = AC(r1, r2) + AC′(r1, r2), the result follows.

We can now show a stronger analogue of Lemmas 37 and 38 for rows of type γ.

Lemma 44. In any set of three rows of type γ in F1 ⊕ F2 at least one pair of the rows is balanceable.

Proof. Let r, r1, r2 be three rows of type γ in F1 ⊕ F2. By Lemmas 33 and 34, without loss of generality,
we can assume that r is of type γ1 and neither {r, r1} nor {r, r2} is balanceable. Also by equivalence, we
can assume that r, r1 and r2 are the rows of S1,j or an S∗

1,j for j ∈ {1, 2, 3}. As n > 4, a row of type γ
exists in F1 ⊕ F2 only if n > 12. By comparing the configurations A in Lemma 43 with the exceptional
configurations in Lemma 26, {r1, r2} is balanceable unless n = 12, j = 3 and A(r1, r2) = A+B where A is
the last configuration in Lemma 43, so assume these conditions hold. The only exceptional configurations
in Lemma 26 consistent with the last configuration of Lemma 43 are E4 and E6. However, E4 can only
occur if n ≡ 4 (mod 6), so we can assume that A(r1, r2) is equivalent to E6.

Let S be S1,3 or the S
∗
1,3 with rows r, r1 and r2. Then S can be formed from S1,3 by performing at most

one legitimate swap in the second row and at most one legitimate swap in the third row. Thus, given that
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the last two rows of S1,3, that is, the rows T1 and T3 of Figure 1, correspond to the configuration

0 0 3
3 0 0
0 3 3

and A(r1, r2) is equivalent to E6, A(r1, r2) must be either

2 0 1
3 0 0
0 5 1

or

0 0 5
3 2 0
0 1 1

. (14)

Now, as S1,3 has n/4 = 3 columns where the second and third rows both contain the pair (1, 1), S must
differ from S1,3 by exactly one legitimate swap in each of the last two rows. Moreover, the two legitimate
swaps must include distinct columns that contain (1, 1). The legitimate swap in row r1 replaces a (1, 1) in
some column c with (1, 0) or (0, 0). As the legitimate swap in row r2 cannot occur in column c, replacing
a (1, 1) with a (1, 0) in row r1 is inconsistent with the configurations in (14), since the entry in cell (3, 1)
of A(r1, r2) would then be at least 1. Therefore, the legitimate swap in row r1 is one which swaps a (1, 1)
with a (0, 0). By a similar argument, the legitimate swap in row r2 is also one which swaps a (1, 1) with a
(0, 0). Hence, A(r1, r2) must be

1 0 3
3 1 0
0 3 1

,

which is neither of the configurations in (14). It follows that {r1, r2} is balanceable even when n = 12,
completing the proof.

Lemma 45. If n > 8, then any set of four rows in F1 ⊕ F2 contains a balanceable pair.

Proof. By Lemma 44 we may assume that our four rows are r, r1, r2, r3 where r does not have type γ. Now,
either n 6≡ 2 (mod 6) and none of r, r1, r2, r3 has type α, or n 6≡ 4 (mod 6) and none of r, r1, r2, r3 has type
β. Hence, by Lemma 37 and Lemma 38, we may assume that there is r′ ∈ {r, r1, r2, r3} such that r′ does
not have type α or β. If r′ 6= r then the pair {r, r′} is balanceable by Lemma 26, since it is not of type α,
β or γ. For the same reason, if r′ = r then {r, ri} is balanceable for each i ∈ {1, 2, 3}.

We will also require a result about balancing particular sets of four rows. To prove this result, we
need a refined version of Lemma 43 in very special cases, as in the lemma below. For the lemma and the
remainder of the section, we use the following definition. Let r1, r2 be rows of type T

∗
i1 and T

∗
i2 with respect

to r, respectively. We say the legitimate swaps in r1 and r2 are disjoint if the columns involved in each
swap are disjoint.

Lemma 46. Let r, r1 and r2 be the rows of an S∗
1,j for some j ∈ {1, 2}. Suppose that r1 and r2 both have

legitimate swaps that are disjoint. Then the entries of A = A(r1, r2) satisfy

• a33 = 8y and a13 = 0 = a23 if j = 1;

• a13 + a23 = 8y, a33 = 0 and a13, a23 > 4y − 2 if j = 2.

Proof. Let S be the S∗
1,j with rows r, r1, r2 and let r′1 and r′2 be second and third rows of S1,j, respectively.

By considering Figure 1, it is easy to check that A(r′1, r
′
2) is

0 0 0
0 0 0
0 0 8y + 4

and
0 0 4y + 2
0 0 4y + 2
0 0 0
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when j = 1, and j = 2, respectively. By Lemma 42, rows r1 and r2 differ from, respectively, r′1 and r
′
2 by a

legitimate swap. By assumption, these legitimate swaps are disjoint, so S and S1,j differ by 4 cells located
in different columns; call this set of 4 columns C and let C ′ = N(n)\C. Clearly, AC(r1, r2) has entry sum 4
and AC′(r1, r2) has entry sum 8y with all non-zero cells occurring in the last column. In each column in C
the element in S in exactly one of the rows r1 and r2 has a different second entry to the element in row r, by
Lemma 42. It follows that AC(r1, r2) has 0’s in the last column. As A = A(r1, r2) = AC(r1, r2)+AC′(r1, r2),
the last column of A(r1, r2) has entry sum 8y, which, along with the configurations above, imply that
a33 = 8y and a13 = 0 = a23 when j = 1 and a13 + a23 = 8y when j = 2. Finally, as S and S1,j differ in
exactly 4 cells, neither a13 nor a23 can be less than 4y − 2 when j = 2, and the result follows.

Finally, we also require a result about three rows that do not balance with a given row of type γ1.

Lemma 47. Let r, r1, r2 and r3 be rows of F1⊕F2 such that r is of type γ1 and {r, rj} has type Tij or T ∗
ij

for j ∈ {1, 2, 3}, where i1, i2, i3 ∈ {1, 2, 3, 4}. If either

(i) {i1, i2, i3} ∩ {1, 2} 6= ∅ and {i1, i2, i3} ∩ {3, 4} 6= ∅; or

(ii) {r, rj} has type T
∗
ij
for j ∈ {1, 2, 3} such that the legitimate swaps in two of r1, r2, r3 are disjoint

then {r, r1, r2, r3} is balanceable.

Proof. By equivalence, it suffices to consider the case when i1 = 1 and either i2 = 3 or i2, i3 ∈ {1, 2} and
the rows satisfy (ii). First suppose that i2 = 3. By Lemma 43, A(r1, r2) is

0 0 2y − 1
2y − 1 0 0

0 2y − 1 2y − 1
+B

where B is an admissible matrix with entry sum 8. As y > 1, we can write A(r1, r2) as

0 0 1
1 0 0
0 1 1

+B′

where B′ is some admissible matrix with entry sum n−4 = 8y. If B′ is not an exceptional configuration in
Lemma 26, then there exists a matrix B′′ which (0, 0)-balances B′. The following then show that A(r1, r2)
is (0, 1)-balanceable and (1, 0)-balanceable, respectively, by Lemma 25:

0 0 1
1 0 0
0 0 0

+B′′ and

0 0 1
0 0 0
0 0 1

+B′′.

As A(r, r3) is equivalent to E5 or E6, Lemma 39 implies that A(r, r3) is either (0, 1)-balanceable or (1, 0)-
balanceable. Therefore, {r, r1, r2, r3} is balanceable, by Lemma 22. If n > 20, then b′33 > 2y − 2 > 2, so
B′ cannot be an exceptional configuration in Lemma 26, by Corollary 29. Thus, if B′ is an exceptional
configuration in Lemma 26, then n = 12 and B′ must be equivalent to E1 or E2, as B

′ has entry sum 8. By
Lemma 40, there are matrices B′′ and B′′′ that (1, 0)-balance and (0,−1)-balance B′, respectively. Thus

0 0 0
1 0 0
0 0 1

+B′′ and
0 0 0
1 0 0
0 0 1

+B′′′

(0, 1)-balance and (−1, 0)-balance A(r1, r2), respectively. As before, Lemma 39 implies A(r, r3) has to be
either (0, 1)-balanceable or (1, 0)-balanceable, so {r, r1, r2, r3} is balanceable by Lemma 22.
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Now suppose that i2, i3 ∈ {1, 2} and condition (ii) is satisfied. Without loss of generality, let rows r1
and r2 have disjoint legitimate swaps. First suppose that i2 = 1. Then by Lemma 46, A(r1, r2) is of the
form

0 0 0
0 0 0
0 0 8y

+B

for some admissible matrix B, with entry sum 4 and 0’s in the last column. In particular, B has at least
one non-zero entry in the first column. Thus at least one of

1 0 0
0 0 0
0 0 4y + 1

or

0 0 0
1 0 0
0 0 4y + 1

or

0 0 0
0 0 0
1 0 4y + 1

(p, q)-balances A(r1, r2), where (p, q) is (1, 1), (−1, 1) or (0, 1), respectively. As A(r, r3) is equivalent to E6,
Lemma 39 implies that A(r, r3) is (1, 1)-balanceable, (−1, 1)-balanceable and (0, 1)-balanceable. Hence,
Lemma 22 implies that {r, r1, r2, r3} is balanceable.

Finally, suppose that i2 = 2. Then, by Lemma 46, A = A(r1, r2) satisfies a13 + a23 = 8y, a33 = 0 and
a13, a23 > 4y − 2. In particular, the first two columns of A each have at least one non-zero entry. So if
a13 and a23 are both at least 2y + 1, then at least one of the following matrices (p, q)-balances A for some
(p, q) ∈ {(0, 1), (1, 1)}:

1 0 2y
0 0 2y + 1
0 0 0

and

0 0 2y + 1
1 0 2y
0 0 0

and

0 0 2y + 1
0 0 2y
1 0 0

.

Otherwise, as a13, a23 > 4y − 2 and y > 1, one of a13 and a23 is less than 2y + 1 only if y = 1 and a13
or a23 is 4y − 2. If a13 = 4y − 2, then a23 = 4y + 2 and so one of a11 and a12 is non-zero. It follows that at
least one of the following (0,±1)-balances A

1 0 2y
0 0 2y + 1
0 0 0

and

0 1 2y
0 0 2y + 1
0 0 0

and so A is (0, 1)-balanceable. Similarly, if a23 = 4y−2, then A is (0, 1)-balanceable. In all cases A is (0, 1)-
balanceable or (1, 1)-balanceable. As A(r, r3) has type T ∗

i3
, it is (0, 1)-balanceable and (1, 1)-balanceable,

by Lemma 39. Hence, {r, r1, r2, r3} is balanceable, by Lemma 22.

We end this subsection with two results that limit the number of rows that F1 ⊕ F2 can have of a
particular type. In both we will need to use that F1 is orthogonal to F2, an assumption that we have not
needed until now.

Lemma 48. Let F1 and F2 be orthogonal and n > 8. Also let wα(i) be the number of type αi rows and
wβ(i) the number of type β rows in F1 ⊕ F2 for each i ∈ {1, 2}. Then

max{wα(1), wα(2), wβ(1), wβ(2)} 6
3n2

4(n− 2)
< 3n/4 + 2.

Proof. Suppose that wα(1) >
3n2

4(n−2)
. Then by Lemma 31, there are more than 3n2

4(n−2)
× n−2

3
= n2

4
occurrences

of (0, 0) in F1 ⊕ F2, contradicting the assumption that F1 and F2 are orthogonal. The proofs for the other
cases are similar.
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Lemma 49. Let F1 and F2 be orthogonal and r be a row of type γ1 in F1 ⊕ F2. Then there are at most
n
2
+ 1 rows r′ such that A(r, r′) has a type from the set {T1, T

∗
1 , T2, T

∗
2 }. Furthermore, if there are exactly

n
2
+1 such rows, then at least n

2
of them must be types T ∗

1 or T ∗
2 and every column has at least one row with

a legitimate swap in that column. In particular, there are at least two rows with legitimate swaps in disjoint
pairs of columns. All of the above statements hold with T1, T

∗
1 , T2, T

∗
2 replaced respectively by T3, T

∗
3 , T4, T

∗
4 .

Proof. We only prove the claim about T1, T
∗
1 , T2, T

∗
2 , as the other case is equivalent. Let S be the submatrix

of F1⊕ F2 with 1 + t rows consisting of r and all other rows that are of types T1, T2, T
∗
1 or T ∗

2 with respect
to r. Let S ′ be the (t+1)×n matrix formed from S by replacing each row r′ of type T ∗

1 or T ∗
2 with respect

to r with the row r′′ of type T1 or T2 with respect to r, respectively. For each (a, b) ∈ {0, 1}2, let Cab be
the submatrix of S with all the rows of S, and the columns for which r contains (a, b). Define C ′

ab from S ′

in the analogous way, for each (a, b) ∈ {0, 1}2.
By Lemma 42, each row of S ′ (except the first row) can be formed from the corresponding row of S

by performing a single legitimate swap. Let tab be the number of elements in C ′
ab that differ from those

in Cab. We then have that t00 + t01 + t10 + t11 6 2t. Let tmin = min{t00, t01, t10, t11}. By the pigeonhole
principle, tmin 6 t/2. Recall that if A(r, r′) is of type T1 or T2, then every column has a different entry in
rows r and r′ of F2. So, the columns of Ca(1−b) contain at least tn/4− ta(1−b) occurrences of the symbol b
in F2. As each Cab is a subset of n/4 columns of F1 ⊕ F2, we must have that tn/4 − tab 6 n2/8, for each
ab. Therefore,

n2/8 >
tn

4
− tmin >

tn

4
−
t

2

and rearranging for t implies that t 6 n2

2(n−2)
= n+2

2
+ 2

n−2
. Since we are assuming that n > 8 and t is an

integer, it follows that t 6 (n+ 2)/2, proving the first claim of the lemma.
Finally, suppose that t = (n+ 2)/2, and hence tab > tn/4 − n2/8 = n/4 for each ab. So there are at

least n elements in S ′ that differ from the corresponding element in S. As each row of S ′ differs from the
corresponding row in S in 0 or 2 places, there are at least n/2 rows in which S and S ′ differ. Also, if
there were a column in which S and S ′ agreed, then the corresponding column of F2 would contain at least
(n + 2)/2 copies of some symbol, violating the fact that F2 is a frequency square. Hence there are either
n/2 or n/2 + 1 legitimate swaps which between them cover all n columns. It follows that at least two of
them must involve disjoint pairs of columns.

5.5 Proof of Theorem 19

We separate the proof of Theorem 19 into cases depending on the type of rows present. We begin with the
case when there is a row not of type γ. Here and for the remainder of the paper, we assume that F1 and
F2 are orthogonal frequency square of order n > 8.

Lemma 50. Let n /∈ {8, 20} and suppose there exists a row which is not of type γ in F1 ⊕ F2. Then the
rows of F1 ⊕ F2 can be partitioned into balanceable sets.

Proof. By Lemma 34, no row of F1⊕F2 can have two different types from the set {α1, α2, β1, β2, γ1, γ2}. In
particular, any two rows not of the same type always form a balanceable pair, unless they are of types γ1
and γ2. By Lemma 45, we can partition the rows of F1⊕F2 into pairs R such that at most one pair is not
balanceable, by greedily selecting pairs of rows that balance. We are done unless there is a pair {r, r′} ∈ R
that is not balanceable. We proceed by showing there is always a way to re-pair r and r′ so that all pairs
in R are balanceable.

Suppose first that {r, r′} is of type α or β. We assume that the pair is of type α1; the other cases are
similar. Since n > 12, Lemma 48 implies that there exists at least two rows v and w which are not of
type α1. If {v, w} ∈ R, then we can replace {r, r′} and {v, w} with {r, v} and {r′, w}, both of which must
be balanceable. Otherwise, {v, v′}, {w,w′} ∈ R for some rows v′ and w′. If {r, v′} is balanceable, we are
done, as we can replace pairs {r, r′} and {v, v′} in R with the balanceable pairs {r, v′} and {r′, v}. We are
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similarly done if any of {r′, v′}, {r, w′} or {r′, w′} are balanceable. By Lemma 45, at least one pair from
{r, r′, v′, w′} is balanceable. So we are done unless {v′, w′} is balanceable, in which case we can replace
pairs {r, r′}, {v, v′} and {w,w′} in R with balanceable pairs {r, v}, {r′, w} and {v′, w′}.

Finally suppose that rows r and r′ are of type γ. By assumption, there is a row v that is not of type γ.
Then both {r, v} and {r′, v} are balanceable. Let v′ be the row such that {v, v′} ∈ R. If v′ is not of type
γ, then {r, v′} and {r′, v′} are both balanceable. If v′ is of type γ, then at least one of {r, v′} and {r′, v′}
is balanceable, by Lemma 44. In any case, the pairs {r, r′} and {v, v′} in R can be replaced with two
balanceable pairs. This completes the proof.

The cases when n = 8 or n = 20 are dealt with separately in the following two lemmas.

Lemma 51. If n = 8, then the rows of F1 ⊕ F2 can be partitioned into balanceable sets.

Proof. Observe that F1 ⊕ F2 has rows of neither type β nor γ, since n = 8.
Let G be the graph whose vertices are the rows of F1 ⊕ F2 with an edge between rows v and v′ if and

only if {v, v′} is balanceable. We may assume that G has no perfect matching since otherwise the rows of
F1 ⊕ F2 can be partitioned into balanceable pairs.

Let R be a partition of the rows of F1 ⊕ F2 into pairs, with as few balanceable pairs as possible.
Corollary 41 implies that, if R contains more than one unbalanceable pair, then the rows of F1 ⊕ F2 can
be partitioned into balanceable sets. Thus, we may assume that R contains a pair of rows {r, r′} of type
α, and the rows other than r and r′ induce a clique in G. If there are two disjoint edges in G incident to
r and r′, then there exists a perfect matching in G. Alternatively, if there exists two disjoint pairs of rows
both of which are not balanceable, then it violates our choice of R. It follows that G must be the disjoint
union of a K7 and K1, where the isolated vertex is either r or r′.

Finally, we show that G cannot be the disjoint union of K7 and K1. Assume otherwise and let r be
the isolated vertex. That is, assume that {r, v} is not balanceable for all rows v 6= r of F1 ⊕ F2. Without
loss of generality, we can assume that r has type α1. Then ψ(r) ∈ {2, 3}, by Lemma 31. If ψ(r) = 2, then
the remaining rows must have 1 or 3 occurrences of (0, 0) each, by Lemma 31. However, we then have the
contradiction that the total number of occurrences of (0, 0) in F1 ⊕ F2 is odd. Lastly, if ψ(r) = 3, then
the remaining rows each have at least 2 occurrences of (0, 0), by Lemma 31. However, this would mean
that F1 ⊕ F2 has at least 3 + 7 × 2 = 17 occurrences of (0, 0), contradicting the fact that F1 and F2 are
orthogonal. This completes the proof.

Lemma 52. Let n = 20. If there exists a row of type α in F1 ⊕ F2, then the rows of F1 ⊕ F2 can be
partitioned into balanceable sets.

Proof. Let {r, r′} be a pair of rows of type α. As n = 20 ≡ 2 (mod 6), every row that is in a pair that
is not balanceable is of type α or γ. Within any four rows of F1 ⊕ F2, at least one pair is balanceable
by Lemma 45. So, we can partition the rows of F1 ⊕ F2 into pairs R, such that {r, r′} ∈ R and at most
one pair other than {r, r′} is not balanceable. If R contains a pair {v, v′} distinct from {r, r′} that is not
balanceable, then {v, v′} must be of type α or γ. Therefore by Corollary 41, {r, r′, v, v′} is balanceable and
it follows that the rows of F1 ⊕ F2 can be partitioned into balanceable sets. So suppose that {r, r′} is the
only pair in R that is not balanceable. We show that there is always a way to re-pair the pairs in R so
that all pairs are balanceable. Without loss of generality, we can assume that {r, r′} has type α1 and that
ψ(r) ∈ {6, 7} and ψ(r′) = 7 by Lemma 31.

The average value for ψ(·) across all rows is 5, so by the pigeonhole principle there exists distinct pairs
{v, v′}, {w,w′} ∈ R such that ψ(v′) 6 4 and ψ(w′) 6 5. It follows from Lemma 31 and Lemma 33 that
{r, v′}, {r′, v′} and {r′, w′} are all balanceable pairs. If either {r, v} or {r′, v} is balanceable then we can
replace {r, r′} and {v, v′} by two balanceable pairs and we are done. So assume that is not the case. It then
follows from Lemma 31 and Lemma 33 that ψ(r) = 7 or ψ(v) = 7. By interchanging r and v if necessary,
we may assume that ψ(r) = 7. It then follows that {r, w′} is balanceable.
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Finally, we apply Lemma 45 to find that there must be a balanceable pair among {r, r′, v, w}. This
pair, together with two of the balanceable pairs {r, v′}, {r, w′}, {r′, v′}, {r′, w′}, {v, v′} and {w,w′}, can
be used to replace the pairs {r, r′}, {v, v′} and {w,w′}.

Next, we consider the case where every pair of rows is either balanceable or of type γ. To do so we
require the following simple graph theoretical result.

Lemma 53. Let G be a simple graph with an even number of vertices such that each subset of three
vertices induces at least one edge. Then either G has a perfect matching or G is the disjoint union of two
odd cliques.

Proof. Suppose that G has no perfect matching. Then by Tutte’s criterion there exists a set S of vertices
whose removal leaves at least |S| + 1 components of odd order. But the given condition means that no
induced subgraph of G has more than 2 components. Given that G has an even number of vertices, the
only possibility is that S = ∅ and that G has two components, both of odd order. Considering each set of
3 vertices from 2 different components then shows that each component is a clique.

Lemma 54. If every pair of rows of F1 ⊕ F2 is either balanceable or of type γ, then the rows of F1 ⊕ F2

can be partitioned into balanceable sets.

Proof. There is nothing to prove unless some rows have type γ, so we may assume that n ≡ 4 (mod 8).
Let G be a graph with rows in F1 ⊕ F2 as vertices and an edge between r and r′ if and only if {r, r′} is
balanceable. A perfect matching in G corresponds to a partition of the rows of F1 ⊕ F2 into balanceable
pairs. So, by Lemmas 44 and 53, we are done unless G is the union of two disjoint odd cliques. So,
without loss of generality, let Ka and Kn−a be the connected components of G, with a < n − a and a
odd. Suppose there exists 4 rows r, r1, r2, r3, with r in Ka and r1, r2, r3 in Kn−a, such that {r, r1, r2, r3} is
balanceable. Then the induced subgraph of G on the remaining rows forms two disjoint even cliques and
so the remaining rows can be partitioned into balanceable pairs. It then follows that the rows of F1 ⊕ F2

can be partitioned into balanceable sets.
So it suffices to show that such a set of four rows exists. Note that as G is the disjoint union of two

cliques, every row is in some pair that is not balanceable. So, by assumption, every row is of type γ. We
claim that there is at least one row in Ka that is of type γ1. If there were no such row, then every row
in Ka is of type γ2. Inspecting Lemma 33, we see that any two γ2 rows form a balanceable pair, so Ka

contains every γ2 row. Also, every γ2 row contains an odd number of occurrences of (0, 0), while any γ1
row contains an even number of occurrences of (0, 0). In total, there are n2/4 ≡ 0 (mod 2) occurrences of
(0, 0) in the rows of F1 ⊕ F2. We conclude that Ka contains a row r of type γ1.

If there are rows r1, r2 and r3 in Kn−a such that A(r, r1) and A(r, r2) are of types Ti or T
∗
i and Tj or

T ∗
j with i ∈ {1, 2} and j ∈ {3, 4}, then by Lemma 47, {r, r1, r2, r3} is balanceable. So we can assume that,

without loss of generality, every row in Kn−a is of type T1, T
∗
1 , T2 or T ∗

2 , with respect to r. By Lemma 49,
if follows that n− a = n/2 + 1 and there are at least two rows r1 and r2, such that r1 and r2 are of types
T ∗
1 or T ∗

2 with respect to r and r1 and r2 have disjoint legitimate swaps. Choose any r3 in Kn−a distinct
from r1 and r2 that is of type T ∗

1 or T ∗
2 with respect to r; such a row exists since at least n/2 > 6 rows in

Kn−a are type T ∗
1 or T ∗

2 with respect to r, by Lemma 49. Then by Lemma 47, {r, r1, r2, r3} is balanceable.
This completes the proof.

We can now prove Theorem 19.

Proof of Theorem 19. Let R be the set of rows of F1 ⊕ F2. By Lemma 20, it suffices to show that R can
be partitioned into balanceable sets. If all non-balanceable pairs from R are of type γ then we are done,
by Lemma 54. So, assume that {r, r′} ⊂ R is a non-balanceable pair not of type γ, from which it follows,
without loss of generality, that r is not of type γ. If n /∈ {8, 20} then Lemma 50 implies that we can
partition R into balanceable sets. Meanwhile, if n = 8, then we can partition R into balanceable sets,
by Lemma 51. Finally, if n = 20, then n ≡ 2 (mod 6), so r must be of type α, by Lemma 26. Hence,
Lemma 52 completes the proof.
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It may be possible to prove the analogue of Theorem 19 for n ≡ 2 (mod 4) by similar methods. However,
new configurations arise in (the analogue of) Lemma 26, making the subsequent analysis substantially more
complicated. It was important for our proof that only certain rows can be in non-balanceable pairs (as
shown by Lemmas 31, 32 and 33). However, if we assume that n ≡ 2 (mod 4), then any pair of rows in
F1 ⊕F2 that are complementary in at least one of F1 and F2 is not balanceable. Let r be a row in F1⊕F2

and let r′ be the row which agrees with r in F1 and is complementary to r in F2. Let s and s′ be the
complementary rows to r and r′, respectively. Then no pair of {r, r′, s, s′} is balanceable. This means that
the analogue of Lemma 45 fails for n ≡ 2 (mod 4).
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